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Abstract— In this paper, deterministic and robust design 
optimizations of a permanent magnet assisted synchronous 
reluctance machine were performed to increase its mean 
torque while reducing torque ripple.  These optimizations were 
carried out using a surrogate model based on 2-D finite 
element simulations. The results of the robust optimizations, 
which considered manufacturing uncertainties, were compared 
to the deterministic optimization. The robust designs have 
shown not only good mean torque and torque ripple 
performances, but they have also shown improved robustness 
against design parameters uncertainties.   

Keywords— Synchronous Machines, Robust Design 
Optimization, Manufacturing uncertainties, Surrogate model, 
Finite elements analysis. 

I. INTRODUCTION  
 With the increasing concerns over climate change, many 
measures have been adopted to reduce greenhouse gas 
emissions. For transportation systems, in order to replace 
internal combustion engine vehicles, electric and hybrid 
vehicles (EV, HEV) have been intensively developed. In 
these vehicles, the electrical machine is one of their main 
components.  

Among the different types of electrical machines used in 
electric vehicles, Permanent Magnet assisted Synchronous 
Reluctance Machines (PMaSRMs) are one of the most used 
machines nowadays thanks to their good performances and 
their relatively low cost [1]. Unlike Surface-Mounted 
Permanent Magnet Synchronous Machines (SMPMSM), 
PMaSRMs exploit two types of torque: the hybrid torque 
generated using permanent magnets and, the reluctance 
torque which makes profit of the machine’s saliency. Since 
SMPMSMs only generate hybrid torque, they need more 
permanent magnets to achieve the same torque density and 
tend therefore to be more expensive. However, PMaSRMs 
have the disadvantage of having higher torque ripple partly 
due to the inhomogeneous reluctance in their rotors. The 
design optimization phase of PMaSRMs is therefore critical 
to get the right balance between performances and an 
acceptable level of torque ripple.  

Many studies have dealt with reducing torque ripple in 
PMaSRMs [2][3]. The optimization methodologies used in 
such studies can be described as deterministic since they do 
not consider any uncertainties on the input parameters. 
However, in practice, there are many discrepancies between 
the theoretical and real (measured) values of these 

parameters. These differences can be caused by 
manufacturing and assembly tolerances in the prototype as 
well as by the lack of precision on the magnetic properties of 
the used materials. These variabilities impact the measured 
performances which can diverge from those simulated in the 
design phase. To reduce such deviations, the parameter 
uncertainties should be considered in the optimization 
procedure. 

In opposition to the deterministic optimization, robust 
optimization considers two types of input parameters: certain 
parameters also known as controllable parameters, and 
uncertain parameters. Controllable parameters are the same 
ones used in a deterministic optimization whereas uncertain 
parameters are specific to robust optimization techniques. 
This type of parameter can take varying values due to the 
associated uncertainties: it is then modelled by a random 
variable and an associated probability distribution. The 
presence of random input variables for the simulator leads to 
random output variables and then, random objective and 
constraint functions. Various formulations of the resulting 
optimization problem are proposed in the literature [4][5][6]  
based on expectation, probability, or quantiles of these 
random variables.  

Reliability Based Design Optimization (RBDO) is a 
method used to obtain optimal and safe designs in the sense 
that the outputs of certain functions are inside a security 
domain, described by constraints. A robust or reliable design 
has therefore a high probability to respect these constraints. 
Examples of this approach can be found in [7].   

Worst-case optimization considers the extreme values as 
objective functions and/or constraints i.e., the maximum or 
minimum value of the outputs at the controllable inputs 
caused by the uncertainty propagation [8] .   

There is another very common formulation which was 
also adopted in this work: Robust Design Optimization 
(RDO). In this methodology, the expectation (average) of the 
objective function is optimized. To limit extreme values, a 
second objective based of the variances of the objective 
function can be added [9].  

Computing these quantities requires a large sample of the 
uncertain input variables and thus a large number of 
simulations. To limit this high computational cost especially 
with the use of finite element simulations, meta-modelling 
techniques coupled with design of experiments are used to 



replace the costly simulations by predictions using the 
resulting surrogate model [10].  

In this work, the results of a deterministic and two robust 
optimizations on a 3-phases 10-poles 60-slots PMaSRM 
were compared. To do so, techniques like Design Of 
Experiments (DOE), Finite Element Method (FEM) 
surrogate modelling, sensitivity analysis, quasi Monte Carlo 
methods and optimization algorithms were used. All the 
steps followed in this work will be detailed in the next 
sections. 

II. MACHINE TOPOLOGY AND DESIGN PARAMETERS 
The machine studied in this paper is shown in Fig. 1 – 

a). It is a 3-phases 10-poles 60-slots PMaSRM with a 
Machaon rotor structure. This machine was initially 
designed for an EV application having a maximum torque of 
430 N.m. It has an outer stator diameter of 220 mm and an 
active length of 200 mm. Each pole has 3 flux barriers and 7 
PMs. Fig. 1 – b) shows the design parameters for the stator 
and for the rotor considering one layer. TABLE I lists the 
optimization variables with their lower and upper bounds.  
 

  
a) b) 

Fig. 1: a) Geometry of the PMaSRM studied in this work, b) design  
Parameters for one layer (# is the number of the layer). 

 
TABLE I. Optimization variables 

Input 
Parameter Description 

Lower 
bound 

xl 

Upper 
bound xu 

Manufacturing 
Tolerance 

Slot_angle Stator slot width 
opening angle  2.47° 3.27° ±0.1° 

Beta_L1_P1 Layer 1-Pole 1 
Opening angle 27.03° 29.66° ±0.33° 

Beta_L1_P2 Layer 1-Pole 2 
Opening angle 37.03° 39.66° ±0.33° 

Beta_L2_P1 Layer 2-Pole 1 
Opening angle 31.03° 33.66° ±0.33° 

Beta_L2_P2 Layer 2-Pole 2 
Opening angle 47.03° 49.66° ±0.33° 

Beta_L3_P1 Layer 3-Pole 1 
Opening angle 33.7° 37° ±0.33° 

Beta_L3_P2 Layer 3-Pole 2 
Opening angle 59.7° 63° ±0.33° 

Airgap Airgap width 0.55 
mm 0.65 mm ±0.03 mm 

Bridge_L1 Layer 1 radial bridge 
width 2.6 mm 2.98 mm ±0.05 mm 

Bridge_L2 Layer 2 radial bridge 
width 0.9 mm 1.18 mm ±0.05 mm 

Bridge_L3 Layer 3 radial bridge 
width 0.5 mm 0.62 mm ±0.03 mm 

Bridge_tang Bridge between airgap 
and flux barriers. 0.4 mm 0.6 mm ±0.05 mm 

III. OPTIMIZATION WORKFLOW 
We detail in this section the workflow used to carry out 

the optimizations (Fig. 2). At first, a DOE was built with the 
upper and lower bounds of the input parameters shown in 
TABLE I to fit a surrogate model for the objective 
functions: the mean torque and torque ripple. Secondly, 
these models were used to perform a global sensitivity 
analysis to detect the most impacting parameters on the 
objective functions. This will allow us to limit the number 
of parameters considered as uncertain. At last, and after 
performing the meta-model-based deterministic and robust 
optimizations, FEM simulations will be carried out to verify 
the results. 
 

 
Fig. 2: Optimization workflow. 

 

To reduce computation time, surrogate models have been 
built for each of the objective functions. To build such 
models, there are three steps to follow: build a DOE, train the 
metamodel and check its predictivity with a test set. The 
chosen DOE is a maximin Latin Hypercube Sampling (LHS) 
as it aims to cover the search space while preserving good 
projection properties [11]. This DOE was built with 234 
points using the bounds described in TABLE I. As for the 
surrogate model, it is a universal Kriging with linear trend 
function. For mean torque, a tensorized Matérn 5/2 
covariance function has given the best predictivity. As for 
Torque ripple, a tensorized absolute value exponential kernel 
was used since the latter is not that smooth. Kriging was 
chosen as metamodel since it is very good at learning 
nonlinear objective functions and has demonstrated good 
performances in electrical machines optimization [12]. 
Finally, to evaluate the accuracy of the metamodel, a 
Normalized Root Mean Square Error (NRMSE) was 
computed on a validation test set: 

                  NRSME = (||yreal ypred||  ̸||yreal||)*100%

A. Surrogate Models 



where ||·|| represents the Euclidean norm. A value close to 
zero indicates a good model fit. The obtained NRSME of the 
kriging model for mean torque is 0.2% and for torque ripple 
is 8%. These results were obtained with a train and test sets 
composed by 175 and 59 samples, respectively. Torque 
ripple depends not only on mean torque but also on torque 
amplitude which makes this function more difficult to model 
than mean torque. We consider those metamodels 
sufficiently accurate for performing the sensitivity analysis 
and the optimization procedures.  
 

To measure the impact of each input parameter on the 
considered outputs, a sensitivity analysis can be performed 
[13]. For this work, the Sobol Indices were chosen as they 
measure the global impact of the input variables on the 
output functions. The commonly used ones are the first 
order indices (S) and the total indices (STOTAL) computed 
with the Kriging surrogate models:                                             

Si = VARXi( X~i[Y|Xi]) /VAR(Y)                   

STOTAL,i = X~i [VARXi (Y|X~i )] /VAR(Y)                   

where X~i = X1,∙∙∙,Xi-1,Xi+1,∙∙∙,XNx and Nx is the number of 
optimization parameters. The results of the sensitivity 
analysis applied to mean torque and to torque ripple are 
presented in Fig. 2 and Fig. 3. Only the most important 
inputs are displayed for better visibility. It was found that 
the stator slot width opening angle (Slot_angle) and the flux 
barrier opening angles for barriers 1 and 2 (Beta_L1_P1, 
Beta_L1_P2, Beta_L2_P1 and Beta_L2_P2) have the 
biggest impacts on the mean torque as well as on torque 
ripple. These 5 parameters will be then considered as 
uncertain variables in the robust optimization. The 
dispersion of these variables will be then integrated in the 
robust optimizations by considering a perturbation vector U. 

 

 We will present in this section the results of different 
optimizations: a deterministic and two robust optimizations. 
For the deterministic optimization problem, we have: 

minxϵX f1(x), f2(x)  

where f1 is the opposite of the mean torque (in order to 
maximize it) and f2 the torque ripple; X is the controllable 
parameters space defined in TABLE I. For the robust 
optimization problems, two formulations have been 
considered: 

- Expectations optimization:  

minxϵX(U) U f1(x+U)], U f2(x+U)] 

- Worst-case optimization:  

minxϵX(U)  maxuϵ f1(x+u), maxuϵ f2(x+u) 

where X(U)= [xl1-uu1, xu1+uu1]×∙∙∙×[xlNx-uuNx, xuNx+uuNx]

and   = [-uu1, uu1]×∙∙∙×[-uuNx, uuNx]

 

uuj is the manufacturing tolerance of parameter number j. 
The tolerance for each geometrical parameter is given in 

TABLE I. Based on the sensitivity study in the previous 
section, only 5 parameters will be considered as uncertain. 
Their uncertainties were considered to follow uniform 
distributions, i.e., Uj ~Unif(-uuj,uuj). For parameters with no 
considered uncertainties, uu is simply equal to 0.  
 

 
Fig. 3: Mean torque Sobol’ indices 

 

 
Fig. 4: Torque ripple Sobol’ indices  

 
The goal of the first robust formulation is to optimize the 

mean torque’s and torque ripple’s expectations in a Pareto 
sense. As for the worst-case formulation, the objective is to 
optimize the worst possible value of the mean torque and 
torque ripple caused by uncertainties. The idea is then to 
limit the performance degradation. To solve these 
optimization problems, the genetic algorithm NSGA 2 was 
used [14]. This algorithm has shown good performances for 
other studies of electrical machine optimization as in [15]. 
We used a DOE maximin LHS to compute samples of x+U 
to calculate the objective functions’ expectations with a 
quasi-Monte Carlo method. When it comes to the Worst-
case formulation, we have two options: computing samples 
of x+U and take the maximum value of these samples as an 
estimator of maxuϵ f(x+u) or obtaining the absolute 
maximum value with an optimization algorithm. In this 
work, the latter was adopted using a Particle Swarm 
Optimization (PSO) [16] algorithm for the embedded mono-
objective optimizations. 
 

Fig. 5 shows a comparison between the deterministic 
(blue) and the Expectations optimization (red) Pareto fronts. 
The expected performances of the deterministic Pareto front 
have been reevaluated (pink): The design variables were 
perturbed by adding sampled values of the uncertain 
variables. These expected values represent the average mean 
torque and average torque ripple for each machine obtained 
by the deterministic Pareto optimization considering a 
posteriori uncertainty on the input parameters. As we can 
notice, an optimal deterministic design does not guarantee 
its performances when manufacturing tolerances are 

B. Sensitivity Analysis 

C. Deterministic and robust optimizations 



considered: even though the front of the deterministic 
optimization (blue) shows better performances than the 
Expectations optimization one (red) at first glance, the 
torque ripple expectation values (pink) are larger than the 
robust front indicating that the proposed deterministic 
solution designs are more sensitive to uncertainties. 

 
The pareto front of the Worst-case optimization (green) 

is presented in red in  Fig. 6. As in Fig. 5, the deterministic 
pareto front was also added (blue). The worst-case 
performances of the deterministic Pareto front have been 
evaluated (light green) thanks to a posteriori uncertainty on 
the input parameters and PSO maximization. Once again, 
these results show the importance of a robust optimization 
in limiting the performance degradation that a sample of 
machines can have. 
 

 
Fig. 5: Pareto fronts obtained by deterministic optimization (blue: Mean 
Torque and Torque ripple) and robust optimization (red: Mean Torque 
expectation and Torque ripple expectation). Posterior perturbations of 

solutions of deterministic optimization (pink: Mean Torque expectation and 
Torque ripple expectation). Dark gray zones highlight points with similar 

Mean Torque expectation values (430 ± 0.1, 435 ± 0.1, 440 ± 0.1, 445 ± 0.1 
and 450 ± 0.1 N.m). 

 

 
Fig. 6: Pareto fronts obtained by deterministic optimization (blue: Mean 
Torque and Torque ripple) and robust optimization (green: Mean Torque 

worst-case and Torque ripple worst-case). Posterior perturbations of 
solutions of deterministic optimization (light green: Mean Torque worst-

case and Torque ripple worst-case). Dark gray zones highlight points with 
similar worst case Mean Torque values (430 ± 0.1, 435 ± 0.1, 440 ± 0.1, 

445 ± 0.1 and 450 ± 0.1 N.m). 
 

To go deeper into this analysis, we empirically compared 
the distribution of different designs. For this purpose, we 
show in Fig. 7 and Fig. 8 boxplots of a subset of points 
selected from the deterministic and robust Pareto fronts 
shown in Fig. 5 and Fig. 6, respectively. Each pair of 
boxplots represents a comparison of the distribution of 
torque ripple values between a determinist machine (blue) 

and a robust machine (red, green) falling in one of the zones 
(A, B, C, D and E). These boxplots show the values of q1 
(the value for which there is 25% of the samples below it), 
q2, which is the median of the sample (there is 50% of the 
sample below it) and q3 (there is 75% of the samples below 
it) as represented in Fig. 7.    
  

We can observe in this figure that for each pair of 
machines, the robust one shows better overall performance 
than the deterministic one. For example, for the machines in 
zone A, we can notice that the median of the deterministic 
machine is almost the same as the q3 value of the robust 
machine (4.5%). This means that there is a 50% chance for 
the deterministic design and 75% chance for the robust 
design of having a torque ripple value smaller than 4.5%. 
Another remarkable result is that the expectation and 
Standard Deviation (STD) of the torque ripple associated 
with the robust optimization solution (4.3%, 0.35%, 
respectively) outperform the expectation and STD obtained 
by the posterior analysis of the deterministic solution (4.6%, 
0.56%, respectively). These results stress the importance of 
robust optimizations when dealing with uncertainties.  
 

 
Fig. 7: Boxplots showing comparisons of predicted torque ripple values 
between deterministic (blue) and robust (red) machines from Fig. 5 with 

similar predicted Mean Torque Expectation values. 
 

 
Fig. 8: Boxplots showing comparisons of predicted torque ripple values 

between deterministic (blue) and robust (green) machines from Fig. 6 with 
similar predicted Mean Torque Worst-case values. 

 
Fig. 8 also shows pairs of boxplots comparing predicted 

torque ripple values between deterministic (blue) and robust 
(green) machines from Fig. 6 with similar predicted Mean 
torque worst-case values. For all the selected zones, the 
worst-case torque ripple value of a robust design is lower (or 
equal) than a deterministic one. Besides this, robust 
solutions also have lower STD values than deterministic 
solutions, especially for zones with low mean torque worst 



case. In zone A for example, the robust machine has a STD 
of 0.26% and a worst-case torque ripple of 6.7% compared 
to 0.54% and 7.2%, respectively for its deterministic 
counterpart. Both optimizations lead practically to the same 
design for high values of mean torque worst case like in 
zone E. This can also be seen in  Fig. 5 and Fig. 6, with the 
Pareto fronts of the deterministic and robust optimizations 
getting very close with increasing torque.   
 

Although the worst-case optimization has allowed to 
limit the performance degradation of the least performant 
machine in a sample, it has led to worse expectance values 
on torque ripple. Instead of using the worst-case as an 
objective function, it could be used as a constraint in a 
constrained optimization problem while still using the 
expectations as an objective. Such formulation allows to 
have good machines samples while limiting the worst 
performances we can have.  The main disadvantage of the 
robust machines through a worst-case optimization is that 
there is still a big probability of having a torque ripple value 
greater than the deterministic machine (min, q1, q2, q3). For 
instance, the deterministic design in zone A has around 75% 
chance of obtaining a torque ripple lower than 5.2%, while 
the q1 value of the robust design is 5.4%.  
 

In order to compare these two robust formulations, we 
propose in Fig. 9 new boxplots comparing designs issued 
from both optimizations and belonging to the same zones. 
This time, a zone corresponds to a mean torque expectation 
value. The robust optimization based on expectations 
provides not only better results in terms of expectations, but 
also in terms of q1, q2 and q3. For example, in zone A, a red 
machine has a 75% chance of having a torque ripple value 
outperforming any of the machines in the green sample. 
This is because the minimum value (4.6%) of the sample 
almost coincides with the q3 value of the blue machine 
(4.5%). Comparisons of worst-case values between boxplots 
from these two optimizations are inconclusive (no 
significant advantage in terms of worst-case torque ripple 
for the worst-case optimization). It can also be noticed that 
the worst-case optimization leads to lower STD torque 
ripple values. This can be explained by two reasons. First, in 
a torque ripple worst-case optimization, we are interested in 
limiting the extreme upper values which tends to bring 
closer the performances of the boxplots’ samples. Second, in 
such optimization, reducing extreme lower values is not 
contemplated. Due to that, we risk obtaining non-optimized 
extreme lower values. This has been the case in our 
optimizations where the minimum values of the green 
samples are higher than the red ones. The combination of 
these 2 facts leads to reduced STD values. 
 

All the results presented in the previous sections were 
based on the surrogate models. We will therefore verify in 
this section some results using FEM simulations. Fig. 10 
and Fig. 11  show the same boxplots in Fig. 7, Fig. 8, 
however, this time, FEM simulations were used to 
determine the performances. Only zones A and E are 
represented in these figures. The STD values were added on 
these figures.   

 
Fig. 9: Boxplots showing comparisons of predicted torque ripple values 

between machines from worst-case (green) and expectations (red) 
optimizations with similar predicted Mean Torque Expectation values. 

 

 
Fig. 10: Boxplots showing comparisons of FEM simulations’ torque ripple 
values between deterministic (blue) and robust (red) machines with similar 

predicted Mean Torque/ Mean Torque Expectation values. 
 

 
Fig. 11: Boxplots showing comparisons of FEM simulations’ torque ripple 

values between deterministic (blue) and robust (green) machines with 
similar predicted Mean Torque Worst-Case values. 

 
The results from Fig. 10 confirm what we have already 

seen in Fig. 7 using the meta-model. For both zones A and 
E, the robust optimization presents similar or better 
solutions than the deterministic optimization in terms of 
robustness. For zone A, both machines have practically the 
same mean torque ripple with a smaller STD for the robust 
design. As for zone E, the robust design presents a 
particularly lower maximum value, which means that in a 
worst-case scenario, the robust design will have a torque 
ripple of 8.4 % vs. 9.9 % for the deterministic design. The 
q3 value of the robust design is also equal to the median of 
the deterministic one (5.8 %), meaning that 75 % of the 
produced machines using the robust design would have a 
torque ripple lower than 5.8 % vs. only 50 % for the 
deterministic design. As also seen in Fig. 8, using the 
optimization formulation with the worst-case scenario tends 

D. Results verification 



to reduce the STD of the robust designs compared to the 
deterministic ones, especially at low torque. This is also 
confirmed by FEM simulations in Fig. 11. For the machines 
in zone A, the robust design has a notably lower STD 
compared to the deterministic one (0.4 % vs 0.78 %). As for 
the worst-case torque ripple value, both designs show 
similar performances.  

 
Regarding the precision of the meta-models compared to 

FEM simulations, some differences can be noticed. For 
example, the NRMSE between predicted values in Fig. 7 
and FEM simulations in Fig. 10 is 15.1% for torque ripple 
and 0.28% for mean torque. This lack of precision, 
especially for torque ripple, is somehow expected with the 
strategy used to create fixed meta-models and the difficulty 
to fit a torque ripple meta-model as seen in section III.A. A 
vast number of simulations is needed in this case to obtain 
acceptable level of accuracy. An alternative approach could 
be to use an adaptive strategy to update the surrogate model 
with additional simulations during the optimization. By 
using this approach, additional FEM simulations are 
performed only in promising points in the search space, 
limiting computational time and increasing the precision for 
optimal designs. Finally, we note that surrogate-based 
optimizations require much less computational time 
compared to FEM-based optimizations. For example, 17 
hours were needed to finalize the DOE simulations (Intel(R) 
Xeon(R) W-2195 CPU @ 2.30 GHz and 18 cores). The 
deterministic optimization using the meta-model took only 
13 seconds for 300 iterations and 150 particles. Doing the 
same optimization with only FEM simulations would have 
taken around 3 months to complete. 

IV. CONCLUSIONS 
We have presented in this paper a comparison between 

three different optimizations performed on a PMaSRM to 
minimize its torque ripple and maximize its mean torque.  
The first optimization used a deterministic formulation and 
the other ones used robust formulations which take input 
parameters’ uncertainties into account by setting the 
objective functions as expectations and worst-case values. In 
order to reduce computation time, surrogate models have 
been built for each of the objective functions. These 
surrogate models have been also used to perform a 
sensitivity analysis to detect the most impacting input 
parameters. Objective functions’ expectations were 
computed with a quasi-Monte Carlo scheme while worst-
cases where calculated with a PSO algorithm. It should be 
noted that while the predicted values of mean torque were 
consistent with FEM simulations, some differences were 
observed for torque ripple. This problem will be adressed in 
future projects by using an adaptive strategy to update the 
surrogate models with additionnal simulations during the 
optimization. Neverthless, the FEM simulations have 
confirmed the tendency of the predicted results using the 
metamodels. The comparison of Pareto fronts has shown 
that robust solutions outperform deterministic solutions in 
terms of robustness criteria. The expectations as well as the 
STD values using robust optimizations were better that for 
the deterministic optimization. This shows the importance of 
developing new techniques of optimization of electrical 
machines when dealing with manufacturing uncertainties. 
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