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The birth-death exposed-infectious (BDEI) model describes the transmission of pathogens featuring an incubation period (when the host
is already infected but not yet infectious), for example Ebola and SARS-CoV-2. In a phylodynamics framework, it serves to infer such
epidemiological parameters as the basic reproduction number R0, the incubation period and the infectious time from a phylogenetic tree (a
genealogy of pathogen sequences). With constantly growing sequencing data, the BDEI model should be extremely useful for unravelling
information on pathogen epidemics.
However, existing implementations of this model in a phylodynamic framework have not yet caught up with the sequencing speed. While
the accuracy of estimations should increase with data set size, existing BDEI implementations are limited to medium data sets of up to 500
samples, for both computing time and numerical instability reasons.
We improve accuracy and drastically reduce computing time for the BDEI model by rewriting its differential equations in a highly parallelizable
way, and by using a combination of numerical analysis methods for their efficient resolution. Our implementation takes one minute on
a phylogenetic tree of 10 000 samples. We compare our parameter estimator to the existing implementations on simulated data. Results
show that we are not only much faster (50 000 times), but also more accurate. An application of our method to the 2014 Ebola epidemic in
Sierra-Leone is also convincing, with very fast calculation and precise estimates. Our BDEI estimator should become an important tool for
routine epidemiological surveillance. It is available at github.com/evolbioinfo/BDEI.

Phylodynamics | Epidemiology | Mathematical modelling | Ordinary Differential Equations | Ebola

The interaction of epidemiological and evolutionary processes leaves a footprint in pathogen genomes. Phylodynamics leverages this
footprint to estimate epidemiological parameters (1, 2). It relies on models that bridge the gap between traditional epidemiology and

sequence data by estimating parameters like the basic reproduction number, R0, from topology and branch lengths of pathogen phylogenies
(i.e. genealogies of the pathogen population, approximating the transmission trees) combined with metadata on the samples. This is particularly
useful for emerging epidemics, for which not enough data (e.g. incidence curves) might yet be gathered for accurate estimations with classical
epidemiological methods: Rapidly growing genetic data coupled with phylodynamic estimations can provide valuable insights at an early stage
of the epidemic spread and help prevent it (e.g. accurate estimation of the infectious period is crucial for adjusting policies for self-isolation).

Phylodynamic models can be classified into two main families: coalescent (3–5) and birth-death (BD) (6–9). Coalescent models are often
preferred for estimating deterministic population dynamics, however BD models are better adapted for highly stochastic processes, such as the
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dynamics of emerging pathogens (10). In BD models, births represent pathogen transmission events, while deaths correspond to becoming
non-infectious (e.g. due to healing, self-isolation, starting a treatment, or death). Models of the BD family are phylodynamic analogies of
compartmental models in classical epidemiology (e.g. SIR, Susceptible-Infectious-Removed). Many extensions of the classical BD model with
incomplete sampling (BDS (8)) were developed over time, including multi-type birth-death (MTBD) models (11), which add a population
structure to the classical birth-death process by allowing for different types of individuals. A particularly useful representative of the MTBD
family is the birth-death exposed-infectious (BDEI) model (12), which was designed for pathogens featuring an incubation period between the
moments of infection and of becoming infectious, e.g. Ebola and SARS-CoV-2. It is closely related to the Susceptible-Exposed-Infectious-
Recovered (SEIR) model (13), widely used in classical epidemiology.

In MTBD framework, the evolution of a transmission tree is described with a system of master differential equations with respect to
global time. The model parameters can be estimated with maximum-likelihood (11) or Bayesian methods (15) by exploring the likelihood (or
posterior probability) landscape of trees. However, the closed form solution of the master equations exists only for the initial BDS model, while
for its extensions (like MTBD) the master equations for likelihood calculation need to be resolved with numerical methods. The complexity of
the master equations and their initial conditions (which recursively depend on the tree evolution later in time), make their numerical resolution
challenging and time consuming (16, 17).

The trade-off between the complexity of the biological questions a model can address, its computational speed and the size of the input data
set is crucial in phylodynamics. On one hand, a denser sampling should improve the accuracy of parameter estimations with complex models,
on the other hand it leads to larger data sets (thousands of samples), while computational issues often limit model applicability to medium or
small ones (hundreds of samples). Calculations become time-consuming and numerically challenging (e.g. due to underflow issues) as tree size
increases, resulting in numerical instability and inaccuracy (16, 17). Existing likelihood-based implementations of the BDEI model (11, 15, 16)
can handle trees of medium size (hundreds of samples). In (17) we proposed PhyloDeep, a likelihood-free deep-learning-based solution to the
numerical instability issue. While being very efficient at the prediction stage, this approach however requires a computationally heavy training
stage: Millions of trees covering a wide parameter range (where the real data is expected to fall) need to be simulated and used for training the
deep learning predictor.

In this study we fix the computational bottleneck and extend the applicability of the BDEI model by proposing a likelihood-based approach
that improves the accuracy and reduces the likelihood computation time. For that we (i) identify a subclass of MTBD models (including
the BDEI model) for which the likelihood formulae can be expressed in a highly parallelizable way, which avoids underflow issues; and
(ii) develop targeted numerical analysis methods permitting accurate and fast resolution of the equations involved in the computation of the
likelihood for the BDEI model. We show the accuracy and speed of our parameter estimator PyBDEI on simulated data and compare it to
the gold standard Bayesian tool BEAST2 (15) and the deep-learning-based tool PhyloDeep (17). We find that our approach outperforms the
competitors and makes the BDEI model applicable to very large data sets. Lastly, we apply PyBDEI to infer the epidemiological parameters
that shaped the Ebola epidemic in Sierra-Leone in 2014. Our estimator is freely available from github.com/evolbioinfo/bdei.

1. Results

The BDEI model. In a pathogen transmission tree T (approximated by a time-scaled pathogen phylogeny) the tips represent sampled
pathogens, patient state transitions occur along the branches, and bifurcations (i.e. internal nodes) correspond to pathogen transmissions
(Fig. 1). The tree branch lengths are measured in units of time, where T is the time that passed between the tree root (the beginning of the
(sub-)epidemic) and the last sampled tip.
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Fig. 1. A transmission tree T with n = 5 external nodes (i.e. tips,
which correspond to sampling events: A,B,C,D,E), n− 1 =
4 internal nodes (which correspond to transmissions: a, b, c, d)
and 2n − 2 = 8 branches (plus the root branch of zero length).
Time t starts at the root of the tree (t = 0) and goes till the last
sampled tip. The times of the nodes are shown on the left, e.g.
tB is the time of tip B (when B’s pathogen was sampled). T
corresponds to the end of the sampling period (when the most
recent tip, A, was sampled).

The BDEI model (Fig. 2) has two possible states:

• infectious I , an individual who can transmit the pathogen further or get removed from the system (with potential sampling);

• exposed E, an individual who is already infected but not yet infectious (cannot transmit), and will eventually become infectious.

At the moment of a transmission, the transmitter is always in state I , while the recipient is in state E. However, we typically do not have
the information to distinguish a transmitter from a recipient in a phylogenetic tree (which approximates the transmission tree), and hence
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Fig. 2. The BDEI model. An individual in exposed state E becomes infectious at a rate µ. An infectious individual I transmits
the pathogen at a rate λ (hence creating a new exposed individual E), and gets removed at a rate ψ (decreasing the number of
infectious individuals I). Upon removal, the individual’s pathogen might be observed with a probability ρ. Note, that the BDEI
model does not include a susceptible state S (as for example SEIR) and makes the assumption that the susceptible population
is unlimited (as for example in the beginning of an epidemic, or when the removed individuals could get reinfected).

consider both possibilities. While inner branches finish with a transmission event, tip branches finish with a sampling: After sampling, the
individual (and their pathogen) exits the study. In the BDEI model, we assume that only the individuals in state I can be detected and sampled:
For instance, for many pathogens with an incubation period, the detection is triggered by the onset of symptoms, which in turn happens in the
infectious state. Hence all the tree tips are in state I . However, the sampling is incomplete: an infectious individual may be removed from the
system without being sampled (i.e. unobserved in the transmission tree), for example due to healing.

The BDEI model permits the inference of such important epidemiological parameters as the basic reproduction number R0 (the expected
number of individuals directly infected by an infectious case), the incubation period (time between the infection and becoming infectious), and
the infectious time (time during which the individual can further spread the epidemic). They can be expressed via 3 exponential rates:

• µ – becoming infectious rate, corresponding to a state transition from E to I;

• λ – transmission rate, from a transmitter in state I to a newly infected recipient, whose state is E;

• ψ – removal rate, corresponding to becoming non-infectious of an individual in state I (e.g. due to healing, death or starting a treatment).

The epidemiological parameters can be estimated from the rate parameters as: R0 = λ
ψ

, the incubation period is 1
µ

, and the infectious time
is 1
ψ

. The fourth model parameter is the sampling probability ρ – the probability to sample the pathogen (and therefore observe it as a tip of
the tree) upon removal of an individual in state I . This parameter is needed as not all the removed infectious individuals are sampled, as, for
example, asymptomatic persons who healed.

The BDEI model, as an extension of the BDS model, is asymptotically unidentifiable (see Remark 3.4 in (8)), but to become identifiable it
requires one of its parameters to be fixed. In practice, it is often the sampling probability ρ, as it may be approximated from epidemiological
data (e.g. the proportion of sampled cases among the declared ones) or the infectious time 1

ψ
(estimated from observations of infected cases).

Master equations. In the MTBD framework, time goes backward from the last sampling event (the most recent tip in the tree) till the beginning
of the epidemic. Stadler et al. (11) developed master equations for MTBD models. In System [1] we show the special case of these equations
that corresponds to the BDEI model, however presenting them with the time t going forward from the time of the root (t = 0) to the time of the
last sampled tip (t = T ). These equations describe the probability density functions (PDFs) P (i)

s (t) of an individual evolving as observed in
the tree, starting at time t in state s ∈ {E, I} on a branch connecting a node i to its parent, and evolving till the end of the sampling period.
The initial conditions are defined at time t = ti (i.e. at the node i). Note that the node i can correspond either to a transmission (an internal
node) or a sampling (a tip), however in both cases it is in state I as only infectious individuals can transmit or get sampled. To account for
incomplete sampling, the system also includes the probabilities Us(t) of evolving unobserved till the time T , starting at time t in state s.



Ṗ
(i)
E (t) = µP

(i)
E (t)← no event in the next infinitesimal time ∆t

−µP (i)
I (t)← becoming infectious, followed by evolution from state I

Ṗ
(i)
I (t) = (λ+ ψ)P (i)

I (t)← no event in the next infinitesimal time ∆t
−λP (i)

I (t)UE(t)← transmission, where the recipient subtree stayed unsampled
−λP (i)

E (t)UI(t)← transmission, where the donor subtree stayed unsampled

P
(i)
I (ti) = C(i) =

{
ψρ, if i is a sampled tip

λ
(
P

(left child of i)
I (ti)P (right child of i)

E (ti) + P
(left child of i)
E (ti)P (right child of i)

I (ti)
)

, if i is an internal node (transmission)

P
(i)
E (ti) = 0← an individual in state E cannot become infectious (I) over time 0
U̇E(t) = µUE(t)← no event in the next infinitesimal time ∆t

−µUI(t)← becoming infectious, followed by unsampled evolution from state I
U̇I(t) = (λ+ ψ)UI(t)← no event in the next infinitesimal time ∆t

−λUI(t)UE(t)← transmission, followed by unsampled evolutions of both the donor and the recipient subtrees
−ψ(1− ρ)← removal without sampling

UE(T ) = 1← the probability to stay unsampled over time 0 is 1
UI(T ) = 1← the probability to stay unsampled over time 0 is 1

[1]

Tree likelihood. The likelihood of a tree T for given parameter values Θ = {µ, λ, ψ, ρ} is then calculated as the PDF at time t = 0 (root):

L(T |Θ) = P
(root)
I (0) [2]
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It recursively depends on the PDFs of the child node branches via the initial condition C(root), and hence is calculated with a pruning
algorithm (18) while climbing the tree from tips till the root. Therefore when parallelized to maximum, it still requires O(hT ) consecutive
steps, where hT stands for the height of the tree T and depends on its topology: (balanced tree) log(n) ≤ hT ≤ n (ladder-like tree). At each
step System [1] needs to be resolved for the corresponding nodes. Moreover, the values of P (i)

s (t) at internal nodes and their initial conditions
C(i) progressively become smaller as getting deeper in the tree, due to successive additions and multiplications of the PDF values. In trees
with many tips, this might lead to numerical underflow, and hence such measures as rescaling need to be taken (16, 19, 20).

Avoiding numerical problems and parallelizing calculations. In this subsection we introduce a way to rewrite PDFs in System [1] that permits
(1) obtaining simpler initial conditions to avoid potential numerical issues during resolution of equations; and (2) removing recursion and
resolving equations for each tree node in parallel, hence speeding up the calculations.

System [1] (as well as System [12] corresponding to a general MTBD model, see Materials and Methods) has several properties. First of
all, its subsystem that defines unobserved probabilities (UE(t) and UI(t) for the BDEI model) is self-defined, and hence can be calculated
independently from the rest. Secondly, in the subsystem that defines observed PDFs (P (i)

I (t) and P (i)
E (t)) the right-hand side of the differential

equations is a sum whose elements are linear with respect to either P (i)
I (t) or P (i)

E (t), and this sum does not contain a free term. This condition
implies that if we rescale P (i)

I (t) and P (i)
E (t) by a common factor, the differential equations will not change. Moreover, as the initial condition

for P (i)
E (t) (at t = ti) is zero, the rescaling will only change the initial condition for P (i)

I (t) (at t = ti).
Let us define p(i)

s (t), where s ∈ {E, I} as: {
p

(i)
I (t) = P

(i)
I (t)/C(i)

p
(i)
E (t) = P

(i)
E (t)/C(i) . [3]

Then the differential equations for p(i)
s (t) will only differ from those for P (i)

s (t) in the initial condition for s = I , which is p(i)
I (ti) = 1.

Conceptually, p(i)
s (t) is a PDF of an individual evolving as on an observed branch that connects a node i to its parent, starting at time t in state

s on this branch and finishing at time ti in state I (without taking into account i’s subtree and the event at node i).
Solving the master equations for p(i)

s (t) instead of P (i)
s (t) permits us both (1) to avoid numerical issues that could arise from very small

values of the initial condition of P (i)
I (t), which is particularly pertinent for large trees; and (2) to remove the recursive dependency between

child and parent nodes, thus permitting their parallel calculation. The calculation of p(i)
s (t) can be done in parallel for each node i (i.e. constant

number of master equation resolutions when parallelized on 2n− 2 (number of non-root tree nodes) cores). This PDF reconditioning technique
can be generalized to any MTBD model, as we explain in Materials and Methods.

Finally, as all the internal node states of the tree are known (I), the state of a parent node does not depend on its child states, and hence we
can write the tree likelihood in a non-recursive logarithmic form:

logL(T |Θ) = nlog(ψρ) ← sampling of n tips

+ (n− 1)logλ ← n− 1 transmission events

+
∑

i∈internal nodes

log
(
p

(left child of i)
I (ti)p(right child of i)

E (ti) ← child branch evolutions

+ p
(left child of i)
E (ti)p(right child of i)

I (ti)
)

for each internal node [4]

In Materials and Methods we show the equivalence between Eq. [2] and Eq. [4], and explain that such a non-recursive log-likelihood equation
can be obtained for any MTBD model on a tree with known internal node states (Eq. [13]). Logarithmic representation helps avoid underflow
issues (we sum up log values instead of multiplying very small PDF values).

Overall, the PDF reconditioning technique can be applied to any model of the MTBD family, and facilitates its parameter estimation by
separating ODE resolution (non-recursive and parallelizable) from likelihood calculation (recursive, but negligible in time cost compared to
ODE resolution, see Eq. [15] in Materials and Methods). Recursive likelihood calculation can be performed with a standard pruning algorithm
and rescaling techniques to control for potential underflow. For parameter estimation on trees with known node states (e.g. from metadata, or
because they were generated by an MTBD process in which only one state can transmit or get sampled, like the BDEI model), tree likelihood
can be calculated with a non-recursive formula in a logarithmic form (Eq. [4] and Eq. [13]), avoiding underflow.

Forests. In some cases, the assumption that a (sub-)epidemic started with one infected individual might be too constraining. For instance, there
could be multiple pathogen introductions to a country of interest (e.g. while in China the SARS-CoV-2 epidemic is commonly assumed to have
started with one case, there were multiple independent introductions to other countries (21)). Another example is a change of health policies
leading to a change in parameter values (e.g. sampling). Such a change corresponds to a new stage of the epidemic, starting from several
infected cases from the previous stage. In Bayesian settings, the situations when the system behaviour (and parameters) change over time, are
modelled via skyline methods. Stadler et al. (22) developed the one-state Bayesian birth-death skyline plot that divides the time into intervals
and allows for different piecewise constant rates on them. Kühnert et al. (23) combined the MTBD model with the skyline to allow for both
piecewise-constant rate changes over time and multiple individual types. The skyline approach therefore relies on a single tree, but estimates
a separate set of parameters for each time interval, all under the same model. As the number of parameters increases with multiple skyline
intervals, the BDEI-skyline model therefore requires more data for their accurate estimation, more computational time and is more prone to
numerical instability than the classical BDEI model.

We propose a simpler alternative, where the (sub-)epidemic starts with multiple individuals (not necessarily at the same time) and leads to
f observed trees with n sampled tips in total. If all the trees started at the same time (e.g. due to health policy change), the information on
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the number of declared cases (m) at the start of the (sub-)epidemic might be available. If this number is larger than the number of observed
trees (m > f ), it implies that the other u = m− f trees stay unobserved as none of their tips got sampled, which can be incorporated in the
likelihood calculation. Forest likelihood formula (see Eq. [6] in Materials and Methods) hence combines the likelihoods of f observed and u
hidden trees. Tree likelihood formula [4] is its special case, where f = 1 and u = 0.

Using forests allows to estimate the BDEI model parameters on the last skyline interval without the restriction that the epidemic followed
the same model before this interval (i.e. the top part of the tree, which includes the common ancestors of the forest roots). It reduces the number
of parameters to those of the last interval, and informs the inference with the number of declared cases at the start of the sub-epidemic. It also
permits estimation of parameters for a (sub-)epidemic that started with several individuals but not at the same time (e.g. multiple introductions
to a country).

Efficient parameter and CI estimation. We estimate the BDEI model parameters Θ = (µ, λ, ψ, ρ) ∈ R4 for a forest F (comprising f ≥ 1
observed and u ≥ 0 unobserved trees) in the maximum-likelihood framework, where one of the parameters in Θ is fixed. The estimation starts
with a preprocessing step of reading the input trees, calculating the time ti at each node i and memorising the association between each node
and its child nodes: i → (left child of i, right child of i). This step requires one tree traversal, and its time is negligible with respect to the
numerical resolution of the differential equations that is performed in the next steps.

The estimation then proceeds with a search for the optimal parameter set Θopt = arg max
Θk∈Q

L(F |Θk), where Q is the

set of admissible parameter values. We use the globally-convergent method of moving asymptotes (24) for the optimisa-
tion. At each optimisation step k the corresponding likelihood L(F |Θk) needs to be calculated, which implies calculating
p

(left child of i)
I (ti), p(left child of i)

E (ti), p(right child of i)
I (ti), p(right child of i)

E (ti) for each of the n − f observed internal nodes of F , and combining
them as in the forest likelihood formula (Eq. [6]). The reconditioned version of master equations [1] for the parameter values Θk can be
resolved in parallel for each of the 2n− f observed forest nodes (differing in the times ti in their initial conditions pI (i)(ti) = 1).

To resolve these master equations numerically, we start by separating the self-defined subsystem for the unknowns UE(t) and UI(t) from
the rest of System [1] to calculate it independently. Taking into account the fact that the equations in System [1] are either linear (for p(i)

E (t)
and p(i)

I (t)) or quadratic (for UE(t) and UI(t)) we note that the use of an implicit scheme is simple. We chose implicit schemes with an
automatic computation of the time step, such that the error is less than a given tolerance. In our implementation, we used the implicit Euler
scheme (26) for solving the linear equations and the Crank-Nicolson implicit scheme (25) for the non-linear ones. This allows to avoid possible
stability time restrictions and only choose the time steps for precision.

Once the optimal parameter values are found, we calculate their confidence intervals (CIs) using Wilks’ method (27). For each of the
non-fixed parameters p ∈ Θ, we calculate its 95%-CI as including values p̃ such that logL(F |Θopt|p=p̃) > logL(F |Θopt)− χ2

1(0.95)/2,
where Θopt|p=p̃ corresponds to the maximum-likelihood value of the other two non-fixed parameters when p = p̃.

Performance on simulated data and comparison to other tools. To assess the performance of our maximum-likelihood estimator (which
we called PyBDEI), we used the simulated data from (17), where we generated 10 000 medium trees with 200–500 tips under the BDEI model,
with the parameter values sampled uniformly at random within the following boundaries: incubation period 1

µ
∈ [0.2, 50], basic reproduction

number R0 = λ
ψ
∈ [1, 5], infectious period 1

ψ
∈ [1, 10]. Out of these 10 000 trees, 100 were randomly selected and evaluated with the gold

standard Bayesian method BEAST2 (15) and the deep learning-based estimator PhyloDeep (detailed configurations are described in Materials
and Methods). Additionally 100 large trees (5 000–10 000 tips) were generated for the same parameter values as the 100 selected medium
trees, and assessed with PhyloDeep in (17). PhyloDeep’s maximal pre-trained tree size is 500 tips, however for larger trees it estimates BDEI
parameters by (1) extracting the largest non-intersecting set of subtrees of sizes covered by the pre-trained set (50–500 tips), (2) estimating
parameters on each of the subtrees independently, and (3) averaging each parameter’s estimate over the subtrees (weighted by subtree sizes).

We applied PyBDEI to these data sets (for the large data set, both to full trees and to forests of subtrees produced by PhyloDeep), and
compared the results to those reported for BEAST2 and PhyloDeep in (17). We calculated the relative error (normalized distance between the
estimated and the target values: |estimated−target|

target
) and the relative bias ( estimated−target

target
) for each parameter on each tree. Average relative

errors for PyBDEI were ≤ 13% on the medium trees and ≤ 2% on the large trees (hence decreasing with the data set size, as expected), and
well centred around zero (i.e. unbiased), as shown in Fig. 3. The relative CI width ( target95%−target5%

target
) also decreased: from ∼ 0.5 on the

medium data set to ∼ 0.1 on the large one. The target values of rates µ, λ and ψ were within the estimated CIs in correspondingly 92%, 89%,
and 98% of cases on the medium data set, and in 96%, 90% and 94% of cases on the large one.

In terms of accuracy, on the medium data set PyBDEI was at least as accurate as PhyloDeep and more accurate than BEAST2 (p < 0.05 for
all the parameters but R0, where all the methods performed in a comparable way, see Fig. 3). On the large data set BEAST2 was inapplicable
due to computation times (57 CPU hours were already required for each medium tree, on average), while PyBDEI was more accurate than
PhyloDeep, both using full trees and forests (p < 0.01 for all the parameters, see Fig. 3).

In terms of time, on the medium data set PyBDEI needed on average 4 seconds per tree on 1 CPU, and converged in 461 iterations.
These times cannot be directly compared to BEAST2 times, as BEAST2 performs a Markov Chain Monte Carlo (MCMC) parameter space
exploration instead of looking for the optimum, hence requires many more steps. BEAST2 required on average 57 CPU hours for 106 MCMC
steps. Comparing time per iteration (which is roughly time per likelihood calculation), our optimiser required ∼ 0.01 CPU seconds, while
BEAST2 took one order of magnitude longer: ∼ 0.2 CPU seconds. PhyloDeep took 0.2 CPU seconds per tree, which is faster than our
method’s time but does not include the training time of deep learning predictors (hundreds of hours). Neither can this value be converted
into time per iteration as it is a likelihood-free deep learning-based method. To our knowledge, the only other available maximum-likelihood
estimator for BDEI is implemented in the TreePar package (11). However, as it suffers from underflow issues for BDEI already on trees of
medium size, its developers suggest using BEAST2 instead (private communication). The average time of PyBDEI convergence on the large
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Fig. 3. Comparison of inference accuracy of different methods on the medium (200-500 tips, top) and large (5 000–10 000 tips, bottom) data sets. For the medium data set
BEAST2 (in orange), PhyloDeep (in green) and our estimator (PyBDEI, in blue) are compared. For large trees (> 500 tips), PhyloDeep extracts the largest non-intersecting set
of subtrees of 50–500 tips, estimates parameters on each of the subtrees independently, and averages each parameter’s estimate over the subtrees (weighted by subtree
sizes). We assessed our method both on full trees (dark-blue) and forests of subtrees extracted by PhyloDeep (light-blue). We show the swarmplots (coloured by method) of
relative errors for each test tree and parameter, which are measured as the normalized distance between the median a posteriori estimate by BEAST2 or a point estimate by
PhyloDeep/PyBDEI and the real value. Average relative error (and in parentheses average bias, calculated on normalized values) are displayed for each parameter and method
below their swarmplot. The accuracy of the methods is compared by a paired z-test; p < 0.05 are shown above each method pair; non-significant p-values are not shown.

data set was 111 seconds on 1 CPU, and required 492 iterations. Parallelization on 2 CPUs reduced it to 68 seconds (1.6 times faster). The
speed up is close to the number of cores, which shows the efficiency of parallelization of ODE resolution despite the pre- and post-processing
steps (tree reading, distribution of jobs between the threads, combining their results), which are always performed on one CPU. This suggests
that our estimator will be easily applicable to much larger trees.

As the BDEI model requires one of the parameters to be fixed in order to become asymptomatically identifiable (8), we fixed ρ to the real
value, both in (17) and in the comparison described above. However, to assess PyBDEI performance with other parameters fixed, we estimated
parameters for trees in the large data set under three additional settings: with (1) µ, (2) λ, or (3) ψ fixed to its real value. The results are shown
in Fig. S1. Average relative errors were ≤ 4% for all parameters when µ was fixed to the real value, ≤ 3% when λ was fixed, ≤ 2% when
ψ or ρ were fixed. For estimates of ρ we calculated absolute errors |estimated− target| instead of relative ones |estimated−target|

target
: their

average was 0.02 for fixed µ or λ , and 0.01 for fixed ψ. Hence, the estimations can be successfully performed with any of the parameters
being fixed, but fixing ψ might be particularly useful.

The assessment of our maximum-likelihood estimator on simulated data shows that it opens new possibilities to fast and efficient analyses
of extremely large data sets, while being flexible with respect to parameter settings (e.g. the parameter to be fixed).

Application: Ebola in Sierra-Leone. Using PyBDEI, we analysed the 2014 Ebola epidemic in Sierra-Leone (SLE). Ebola virus features an
incubation period (reported by WHO to take between 2 and 21 days, see who.int). Using statistical methods based on time series of reported
Ebola cases, the incubation period of Ebola during the 2014 SLE epidemic was previously estimated to be around 10–11 days, the infectious

6 Zhukova et al.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.22278328doi: medRxiv preprint 

https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease
https://doi.org/10.1101/2022.08.02.22278328
http://creativecommons.org/licenses/by-nc-nd/4.0/


time around 4–5 days, and the reproduction number to decrease from around 2 in the beginning of the epidemic to values close to 1 by late
2014 (due to control measures) (28–30) (see also (31) for a review).

Sequence data could improve and complement these estimates. However, the existing phylodynamic study of these parameters was limited
by the data set size: Stadler et al.(11) applied the BDEI model to the early spread of Ebola in SLE by analysing 72 Ebola samples from late
May to mid June 2014 (sequences from Gire et al. (32)). They estimated the expected length of the infectious period to be 2.6 days (median;
95% HPD 1.2-7), and the incubation period of 4.9 days (median; 95% HPD 2.1-23.2).

To show the power of phylodynamic analyses on larger data sets, we took the 1 610-sequence alignment and metadata (sampling times and
countries) that were used in the study by Dudas et al. (33), who analysed the factors that spread the 2014–2016 Ebola epidemic in West Africa.
Using these data, we reconstructed a time-tree of the Ebola epidemic in West Africa, which we then used to extract a forest of time-subtrees
representing the Ebola epidemic in SLE between July 30, 2014 (when the SLE government began to deploy troops to enforce quarantines
according to news24.com) and September 12, 2015 (the last SLE sample in the data set). This was done to obtain a forest of subtrees with a
homogenous health policy (after July 30). The details on the forest reconstruction are given in Materials and Methods. To check for robustness
of the estimates, forest reconstruction was performed 10 times, obtaining slightly different trees.

We estimated the BDEI parameters on these 10 forests, fixing the total number of trees to N = 533 (the declared number of cases in SLE
by July 31, 2014 from cdc.gov), and hence the number of unobserved trees to N − k, where k was the number of trees in the corresponding
forest (k varied between 55 and 70). To check the robustness of the predictions with respect to N , we additionally estimated the parameter
values assuming 50% more cases, i.e. N = 800.

As the BDEI model requires one of the parameters to be fixed for identifiability (8), we performed the estimations fixing the infectious
period (to 2.6 and to 5 days, i.e. the estimates from the previous studies). The results are listed in Table S1: the effective reproduction number
Re was ∼ 0.9 [0.94− 0.98] in all the settings and forests, suggesting a contained epidemic (which is in a good agreement with the quarantine
measures and the end of the epidemic in early 2016), the incubation period was estimated between 9.7 and 14.4. These estimates are fully
compatible with the previous studies and allow to narrow the previous incubation period estimate (2–23 days, non-specific to SLE epidemic)
down to 10–14 days. The sampling probability ρ was estimated ∼ 0.1 [0.08− 0.16]. This number corresponds quite well to the proportion of
cases represented by our forests (755–779) with respect to the total number of people infected during the SLE 2014 Ebola outbreak (8 704, as
reported by WHO at afro.who.int): 760/8 704 ≈ 0.09.

Overall, the analysis took ∼ 1 hour for the forest reconstruction and < 5 seconds for the BDEI parameter estimation.
This application shows the advantages of PyBDEI not only in terms of calculation times, but also in terms of flexibility of input settings

(parameter to be fixed, extracting information from multiple trees and using data on declared but unobserved cases).

2. Discussion

We revisited the BDEI model, which allows estimation of epidemiological parameters from genomic data for pathogens that feature an
incubation period. We implemented a new maximum-likelihood BDEI parameter estimator, PyBDEI, which drastically increases parameter
optimisation performance, accuracy and speed with respect to previously available estimators.

Previous implementations were either limited by data set size (in likelihood-based frameworks) or by heavy computational effort required
to train the predictors, hence limiting the applicability outside of already pre-trained settings (in a machine learning framework): The
Bayesian gold standard method BEAST2 required ∼ 57 CPU hours for a 500-tip tree analysis (on a fixed input tree) and sometimes suffered
from numerical instability; the maximum-likelihood implementation TreePar was limited to trees of ∼ 50 tips; the deep-learning estimator
PhyloDeep required hundreds of CPU hours for generating training data and training the predictors. However, the accuracy of estimations
improves with the data set size (as expected, see our simulations). In the world of rapidly growing sequencing data sets (34), we can gain
important insights on epidemic spreads by harvesting all available information.

Our fast and accurate maximum-likelihood estimator is applicable to very large data sets (2 minutes on a 10 000-tip tree), making parameter
estimation instantaneous with respect to phylogenetic tree reconstruction times (hours). We obtained this performance by using the peculiarities
of master equations behind the BDEI and general MTBD-family models, which permitted us to rewrite them in a branch-specific way. This
representation features simple initial conditions with zero or one values, and avoids numerical problems that could occur in the original system
due to very small positive values of the initial conditions. Even more importantly, our branch-specific representation removes the recursive
dependency between ODEs corresponding to different tree nodes, and permits their time-consuming resolution to be performed in parallel
and independently for each tree node. The results can then be combined into tree likelihood with a standard pruning algorithm. While the
likelihood-combining step remains recursive, its time cost is negligible in comparison with the recursive ODE resolution used in the previous
studies. Moreover, for cases where tree node states are known we obtained an explicit likelihood formula. It can be represented in a logarithmic
form to avoid potential underflow issues during calculations. Tree node states could be known from metadata, or because they were generated
by an MTBD process in which only one state can transmit or get sampled (e.g. BDEI). Our approach could be easily used in Bayesian setting
as well, and could potentially be implemented in BEAST2.

Extension to forests permits the use of our estimator in situations where health policies change over time (providing a flexible alternative to
the Bayesian skyline), as well as in situations of multiple (not necessarily simultaneous) pathogen introductions to a country of interest.

We applied our estimator to the 2014 Ebola epidemic in Sierra-Leone, after the introduction of quarantine measures. The analysis took < 2
hours (the majority of which was the tree reconstruction), and allowed us to estimate the reproductive number Re ≈ 0.9 suggesting contained
epidemic, narrow down the incubation period estimate to 10–14 days, and estimate the sampling probability ρ ≈ 0.1.

The results of our study break the computational bottleneck that was preventing phylodynamics from catching up with rapid pathogen
genome sequencing. It opens way to fast and accurate estimations of epidemiological parameters for emerging and on-going epidemics.
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Materials and Methods

Equivalence between Eq. [2] and Eq. [4]. The likelihood Eq. [2] for a tree T is recursive, and when using P (i)
I (t) and P (i)

E (t) needs to be resolved with a

pruning algorithm while climbing the tree. However, we can transform it into a non-recursive Eq. [4] with p(i)
I (t) and p(i)

E (t), by alternating replacement and

unfolding steps. A replacement step consists in replacing P (i)
s (t) (s ∈ {E, I}) with p(i)

s (t) · C(i) and is followed by an unfolding step. An unfolding step

either (if i is a tip) unfolds C(i) into ψρ and stops; or (if i is an internal node) unfolds C(i) into λ
(
P

(l.c. of i)
I (ti)P (r.c. of i)

E (ti) +P
(l.c. of i)
E (ti)P (r.c. of i)

I (ti)
)

,

where l.c. and r.c. stand for left child and right child, and proceeds with replacements. In Eq. [5], we show the transformation process:

L(T |Θ) = P
(root)
I (0) ← Eq. [2]

= p
(root)
I (0) · C(root) ← replacement

= 1 ← p
(root)
I (0) = 1

· λ
(
P

(l.c. of root)
I (troot)P (r.c. of root)

E (troot) + P
(l.c. of root)
E (troot)P (r.c. of root)

I (troot)
)

← unfolding of C(root)

= λ

(
p

(l.c. of root)
I (troot)p(r.c. of root)

E (troot) + p
(l.c. of root)
E (troot)p(r.c. of root)

I (troot)
)

← replacement

· C(l.c. of root) · C(r.c. of root)

= λ

(
p

(l.c. of root)
I (troot)p(r.c. of root)

E (troot) + p
(l.c. of root)
E (troot)p(r.c. of root)

I (troot)
)

·


ψρ, if l.c. of root is a tip

λ

(
p

(l.c. of l.c. of root)
I (tl.c. of r.)p

(r.c. of l.c. of root)
E (tl.c. of r.) + p

(l.c. of l.c. of root)
E (tl.c. of r.)p

(r.c. of l.c. of root)
I (tl.c. of r.)

)
·C(l.c. of l.c. of root) · C(r.c. of l.c. of root), otherwise

← unfolding of C(l. c. of root)

·


ψρ, if r.c. of root is a tip

λ

(
p

(l.c. of r.c. of root)
I (tr.c. of r.)p

(r.c. of r.c. of root)
E (tr.c. of r.) + p

(l.c. of r.c. of root)
E (tr.c. of r.)p

(r.c. of r.c. of root)
I (tr.c. of r.)

)
·C(l.c. of r.c. of root) · C(r.c. of r.c. of root), otherwise

← unfolding of C(r. c. of root)

= . . . ← keep unfolding and replacing

=
∏

i∈internal nodes

λ

(
p

(l.c. of i)
I (ti)p(r.c. of i)

E (ti) + p
(l.c. of i)
E (ti)p(r.c. of i)

I (ti)
)
← unfolded and replaced C(i) for n− 1 internal nodes

· (ψρ)n ← unfolded C(i) for n tips ← non-log version of Eq. [4] [5]

Forest likelihood. Forest F likelihood [6] under the BDEI model with parameters Θ = {µ, λ, ψ, ρ} generalizes tree likelihood Eq. [4] to the case of f ≥ 1
observed and u ≥ 0 hidden trees:

logL(F ,Θ) = ulog

(
πEUE(0) + πIUI(0)

)
← unobserved trees

+ nlog(ψρ) ← sampling of n tips

+ (n− f)logλ ← n− f transmission events

+
f∑
j=1

log

(
πEp

(root of forest j)
E (0) + πIp

(root of forest j)
I (0)

)
← f root branch evolutions

+
∑

i∈internal nodes

log

(
p

(l.c. of i)
I (ti)p(r.c. of i)

E (ti) + p
(l.c. of i)
E (ti)p(r.c. of i)

I (ti)
)
← child branch evolutions for n− f internal nodes [6]

While in tree likelihood Eq. [4], we assumed that the epidemic started directly with the first transmission, for a forest we relax this assumption. The root
of the tree in Fig. [1] is placed at t = 0, and does not have a branch (its length is zero). For trees in a forest we allow for non-zero root branches, which
corresponds to their sub-epidemics starting some time before the first transmission. This implies that the states of the individuals represented by the root branches
are unknown, and both I and E should be considered. We therefore combine the two possibilities weighting them by probabilities πs of a root being in the
corresponding state s ∈ {E, I} at time t = 0. Assuming that the relative number of individuals in each state is at equilibrium, we can calculate πE and πI as
described in the next subsection (Eq. 11).

In Eq. [6] we assumed that all the f + u sub-epidemics in the forest F started at the same time (t = 0). This condition can be easily relaxed by replacing
zeros with the corresponding starting times (for unobserved trees and for root branch evolutions).

Stationary distribution. Stationary state distribution Π = {πE , πI} : πE + πI = 1 corresponds to the ratios of states E and I at a given time t after these
ratios stopped changing (assuming that this may happen). πs = Ns(t)

N(t) , where Ns(t) is the number of individuals of type s ∈ {E, I} and N(t) is the total
number of infected (infectious or not) individuals at time t. Hence, the derivative of the number of individuals of type s is proportional to the derivative of the
total number of infected individuals:

dNs(t) = πsdN(t). [7]
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The number of individuals in state I increases due to becoming infectious of individuals in state E and decreases due to removal, while the number of
individuals in state E decreases due to becoming infectious and increases due to transmissions:{

dNI(t) = µNE(t)− ψNI(t)
dNE(t) = −µNE(t) + λNI(t)

. [8]

Becoming infectious changes the corresponding individual’s state but does not affect the total number of infected individuals, transmissions increase the total
number, and removal decreases it. Note that only individuals in state I can transmit or be removed:

dN(t) = λNI(t)− ψNI(t). [9]

Combining [8] and [9] we rewrite [7] as a system of multivariate algebraic equations:{
µπE − ψπI = π2

I (λ− ψ)
πE + πI = 1

, [10]

from which we derive a quadratic equation for πI : π2
I (λ− ψ) + πI(µ+ ψ)− µ = 0, and the following stationary distribution:πI =

{
µ

µ+ψ , if λ = ψ

−(µ+ψ)+
√

(µ−ψ)2+4µλ
2(λ−ψ) , otherwise

πE = 1− πI

. [11]

PDF reconditioning and likelihood calculation for a general MTBD model. A general MTBD model describes m possible individual states, their
state-change, removal and transmission rates, and a sampling probability upon removal ρ. An individual in state k can be removed at rate ψk , change their state
to state l at rate µkl (where µkk = 0), and transmit their pathogen to an individual in state l at rate λkl. The corresponding master equations are presented in
System [12], which describes the probabilities P (i)

kl
(t) of an individual evolving as observed in the tree, starting at time t in state k on a branch connecting

a node i to its parent. The initial conditions are defined at time t = ti (i.e. at the node i). To account for incomplete sampling, the system also includes the
probabilities Uk(t) of evolving unobserved till the end of the sampling period (time T ), starting at time t in state k.

Ṗ
(i)
kl

(t) =
( m∑
s=1

µks +
m∑
s=1

λks + ψk

)
P

(i)
kl

(t)← no event in the next infinitesimal time ∆t

−
m∑
s=1

µksP
(i)
sl

(t)← change of the state, followed by evolution from the new state

−
m∑
s=1

λksP
(i)
kl

(t)Us(t)← transmission, where the recipient subtree stayed unsampled

−
m∑
s=1

λksP
(i)
sl

(t)Uk(t)← transmission, where the donor subtree stayed unsampled

P
(i)
kl

(ti) = C
(i)
kl

=


0, if k ̸= l

ψlρ, if i is a sampled tip in state k = l
m∑
s=1

λls

(
P

(l.c. of i)
l

(ti)P (r.c. of i)
s (ti) + P

(l.c. of i)
s (ti)P (r.c. of i)

l
(ti)

)
, if i is an internal node in state k = l

U̇k(t) =
( m∑
s=1

µks +
m∑
s=1

λks + ψk

)
Uk(t)← no event in the next infinitesimal time ∆t

−
m∑
s=1

µksUs(t)← change of the state, folowed by unsampled evolution from the new state

−
m∑
s=1

λksUk(t)Us(t)← transmission, followed by unsampled evolutions of both the donor and the recipient subtrees

−ψk(1− ρ)← removal without sampling
Uk(T ) = 1← the probability to stay unsampled over time 0 is 1

[12]

Note that for a node i in state l the initial condition C(i)
kl

= 0 for all k ̸= l, while C(i)
ll

> 0. This allows us to rescale the equations, using

p
(i)
kl

(t) = P
(i)
kl

(t)/C(i)
ll

, in the same way as we did for the BDEI model. Conceptually, p(i)
kl

(t) is a PDF of an individual evolving as on an observed branch that
connects a node i to its parent, starting at time t in state k on this branch and finishing at time ti in state l (at node i), without taking into account i’s subtree and
the event at node i. Like for the BDEI model, PDF reconditioning allows to (1) avoid potential underflow issues during equation resolution by having only zero
and one initial condition values, and (2) perform costly numerical resolution of master equations for each tree node in parallel.

In the case where all node states are known (e.g. from metadata or due to model peculiarities, as for the BDEI case), using p(i)
kl

(t) instead of P (i)
kl

(t) also
permits us to express tree likelihood for model parameters Θ in a non-recursive way, and easily transform it to a logarithmic form (to avoid underflow issues
while multiplying small numbers):

logL(T |Θ) =
∑
i∈tips

log(ψstate(i)ρ) ← sampling of n tips

+
∑

i∈internal nodes

log

( m∑
k=1

λstate(i),k· ← n− 1 transmission events

·
(
p

(l.c. of i)
state(i),state(l.c. of i)(ti)p(r.c. of i)

k,state(r.c. of i)(ti) ← child branch evolutions

+ p
(l.c. of i)
k,state(l.c. of i)(ti)p(r.c. of i)

state(i),state(r.c. of i)(ti)
))

for each internal node [13]
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However, for the general case, the combination of different internal node state configurations into tree likelihood formula need to be performed with a
pruning algorithm (18). The likelihood-combining tree traversal starts from the tips and climbs the tree till the root, while calculating a subtree likelihood
L

(i)
k

(Θ) for each visited node i for each possible state k:

L
(i)
k

(Θ) =



0, if i’s state is not k
ψkρ, if i is a tip whose state can be k
m∑
l=1

λkl·

·
( m∑
s=1

p
(l.c. of i)
ks

(ti)L(l.c. of i)
s (Θ) ·

m∑
s=1

p
(r.c. of i)
ls

(ti)L(r.c. of i)
s (Θ)

+
m∑
s=1

p
(r.c. of i)
ks

(ti)L(r.c. of i)
s (Θ) ·

m∑
s=1

p
(l.c. of i)
ls

(ti)L(l.c. of i)
s (Θ)

)
, if i is an internal node whose state can be k

[14]

Tree likelihood then can be calculated as the root likelihood:

L(T |Θ) =
m∑
k=1

πiL
(root)
s (Θ), where πi is the equilibrium frequency of state k, derived in (22). [15]

Note that unlike the known-tree-node-state likelihood (Eq. [13]), the recursive unknown-tree-node-state likelihood (Eq. [15]) does not allow for an easy
logarithmic representation, and hence is prone to underflow issues (as the original MTBD representation). Its calculation on large trees therefore requires
additional small number rescaling techniques as recently proposed in (16) and very common in phylogenetic inference.

Tree reconstruction for Ebola SLE epidemic analysis. We reconstructed a maximum-likelihood phylogeny of 1 610 tips for the Ebola samples from (33)
with RAxML-NG (v1.0.2, GTR+G4+FO+IO) (35), and rooted it based on sampling dates using LSD2 (v1.10) (36). As Ebola’s mutation rate is slower than its
transmission rate, the initial phylogeny contained 246 polytomies (i.e. multiple transmissions, which happened faster than the virus acquired a mutation, hence
making them undistinguishable in the phylogeny). The BDEI model, on the other hand, assumes a binary tree. We therefore resolved these polytomies randomly
(10 times, to check for robustness of the estimates) using a coalescent approach.

We then dated each of the 10 trees with LSD2 (36) (v1.10: github.com/tothuhien/lsd2/tree/v1.10, under strict molecular clock with outlier removal) using tip
sampling dates, and reconstructed the ancestral characters for country with PastML (37) (v1.9.34, MPPA+F81).

Lastly, we extracted 10 SLE forests from these trees to represent the Ebola epidemic in SLE between July 30 2014 (when the SLE government began to
deploy troops to enforce quarantines according to news24.com) and September 12 2015 (the last SLE sample in our dataset) by (1) cutting each tree on July 30
2014 to remove the more ancient part (with a different health policy); (2) among the July-31-on trees, picking those whose root’s predicted character state for
country was SLE (light-green branches at the level of July 31 2014 in Fig. S2); (3) removing the non-SLE subtrees (indicated with other colours in Fig. S2) from
the selected July-31-on SLE trees to focus on the epidemic within the country, without further reintroductions.

The reconstruction took 1 hour for the phylogeny, 10 minutes for tree dating, and 1 minute for country ancestral character prediction.

BEAST2 and PhyloDeep settings. BEAST2 (v2.6.2 with package bdmm (16) v1.0) was configured for 106 MCMC steps with the following priors:
µ ∈ U(0.02, 5.0), ψ ∈ U(0.1, 1.0), and ρ fixed to the real value. The initial values in the MCMC were set to the medians observed in the PhyloDeep training
set, namely µ = 2.51, ψ = 0.55, and R0 = 3. The tree was fixed to the real tree. For each tree, the Effective Sample Size (ESS) on all parameters was
evaluated, and the median of a posteriori values was reported, corresponding to all recorded steps (i.e. actual MCMC steps spaced by 1 000) past the 10%
burn-in. For simulations for which BEAST2 did not converge (2%) after 106 MCMC steps, the median of the parameter distribution used for tree simulations
was reported instead.

PhyloDeep (v0.2.51) was run with ρ fixed to the real value and Convolutional Neural Networks trained on the Compact Bijective Ladderized Vector full tree
representation (CNN-CBLV).

The visualisations of the analyses of simulated data were performed with the Python 3 library seaborn (42, 43).

Code and data availability. The core of our estimator is implemented in C++ and uses the NLopt library (38) for non-linear optimization. The parallelization is
achieved with the C++ thread_pool tools (39). To facilitate the use of our estimator in Python and perform additional validation of input trees, we wrapped
the core estimator into a Python 3 library PyBDEI. PyBDEI uses ETE 3 framework for tree manipulation (40) and NumPy package for array operations (41).

Our estimator is available as a command-line program and a Python 3 library via PyPi (pybdei), and via Docker/Singularity (evolbioinfo/bdei). Its source code,
the simulated and real data used for its assessment, as well as the Snakemake (44) data analysis pipelines, and the installation and usage documentation are available
on GitHub at github.com/evolbioinfo/bdei. BEAST2 xml files and command lines are available at github.com/evolbioinfo/phylodeep/tree/main/data_publication.
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Supporting Information Appendix (SI).

Fig. S 1. Comparison of inference accuracy on 100 test trees of 500–10 000 tips from (17), with (blue) µ fixed to the real value, (yellow) λ fixed to the real value, (green) ψ fixed
to the real value, (orange) ρ fixed to the real value. We show the swarmplots of relative errors for each test tree and parameter. Average relative error (and in parentheses
average relative bias) are displayed for each parameter and setting below their swarmplot. For ρ, absolute errors and bias are shown instead of the relative ones.

Fig. S 2. Ebola 2014 − 2016 epidemic timetree (data from (33), polytomies are resolved as in forest 1) coloured by country predicted by PastML (37): Guinea (GIN) is
light-blue, Liberia (LBR) is dark-blue, Sierra-Leone (SLE) is light-green. The bottom colourstrip shows the samples kept for the SLE 2014 epidemic analysis (forest 1): SLE
samples that are directly related to the SLE epidemic of 31 July 2014 (start of quarantine) and sampled after this date. The SLE samples that were later reintroduced to SLE via
other countries (e.g. in the indicated GIN-rooted subtree) were not included in the analysis.
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Table S 1. Parameters estimated for SLE 2014 Ebola epidemic.

forest tips trees hidden trees infectious period Re incubation ρ
1
ψ

(fixed) period 1
µ

1 779 56 477 2.6 0.97 [0.92− 1.03] 14.3 [12.5− 16.3] 0.13 [0.11− 0.16]
1 779 56 477 5.0 0.98 [0.92− 1.04] 13.9 [12.1− 16.1] 0.16 [0.13− 0.18]
1 779 56 744 2.6 0.95 [0.91− 0.99] 12.1 [10.5− 13.9] 0.09 [0.07− 0.11]
1 779 56 744 5.0 0.95 [0.90− 1.00] 11.0 [9.6− 13.1] 0.11 [0.09− 0.13]

2 762 68 465 2.6 0.97 [0.92− 1.02] 13.8 [12.2− 15.8] 0.12 [0.10− 0.15]
2 762 68 465 5.0 0.97 [0.91− 1.02] 13.5 [11.7− 15.5] 0.15 [0.13− 0.17]
2 762 68 732 2.6 0.95 [0.91− 0.99] 11.7 [10.0− 13.4] 0.09 [0.07− 0.11]
2 762 68 732 5.0 0.94 [0.90− 0.99] 10.7 [9.0− 12.6] 0.10 [0.08− 0.12]

3 764 70 463 2.6 0.97 [0.92− 1.02] 14.3 [12.5− 16.2] 0.13 [0.11− 0.15]
3 764 70 463 5.0 0.97 [0.91− 1.03] 13.8 [12.2− 16.0] 0.15 [0.13− 0.18]
3 764 70 730 2.6 0.95 [0.91− 0.99] 12.0 [10.4− 13.8] 0.09 [0.07− 0.11]
3 764 70 730 5.0 0.94 [0.90− 0.99] 11.0 [9.4− 13.0] 0.10 [0.08− 0.13]

4 759 63 470 2.6 0.97 [0.92− 1.02] 14.2 [12.3− 16.2] 0.12 [0.10− 0.15]
4 759 63 470 5.0 0.97 [0.92− 1.03] 13.7 [12.1− 15.9] 0.15 [0.12− 0.18]
4 759 63 737 2.6 0.95 [0.91− 0.99] 12.0 [10.3− 13.8] 0.09 [0.07− 0.11]
4 759 63 737 5.0 0.95 [0.90− 0.99] 10.9 [9.1− 12.9] 0.10 [0.08− 0.12]

5 711 55 478 2.6 0.97 [0.92− 1.02] 13.0 [11.3− 14.9] 0.12 [0.10− 0.14]
5 711 55 478 5.0 0.97 [0.91− 1.02] 12.6 [10.6− 14.7] 0.14 [0.11− 0.17]
5 711 55 745 2.6 0.95 [0.91− 0.99] 10.9 [9.2− 12.7] 0.08 [0.06− 0.10]
5 711 55 745 5.0 0.94 [0.90− 0.99] 9.7 [7.9− 11.3] 0.09 [0.07− 0.11]

6 770 62 471 2.6 0.97 [0.92− 1.02] 14.1 [12.3− 16.0] 0.13 [0.11− 0.16]
6 770 62 471 5.0 0.97 [0.92− 1.03] 13.8 [11.8− 15.8] 0.15 [0.12− 0.19]
6 770 62 738 2.6 0.95 [0.91− 0.99] 11.9 [10.3− 13.7] 0.09 [0.07− 0.11]
6 770 62 738 5.0 0.95 [0.90− 0.99] 10.9 [9.0− 12.8] 0.10 [0.08− 0.12]

7 765 65 468 2.6 0.97 [0.92− 1.02] 13.6 [11.9− 15.5] 0.12 [0.10− 0.15]
7 765 65 468 5.0 0.97 [0.92− 1.03] 13.2 [11.2− 15.3] 0.15 [0.12− 0.17]
7 765 65 735 2.6 0.95 [0.91− 0.99] 11.5 [9.9− 13.3] 0.09 [0.07− 0.10]
7 765 65 735 5.0 0.95 [0.90− 0.99] 10.4 [8.6− 12.0] 0.10 [0.08− 0.12]

8 759 64 469 2.6 0.97 [0.92− 1.02] 14.4 [12.5− 16.5] 0.12 [0.10− 0.15]
8 759 64 469 5.0 0.97 [0.92− 1.03] 13.9 [11.8− 16.1] 0.15 [0.12− 0.17]
8 759 64 736 2.6 0.95 [0.91− 0.99] 12.1 [10.6− 13.8] 0.09 [0.07− 0.10]
8 759 64 736 5.0 0.95 [0.90− 0.99] 11.0 [9.2− 13.1] 0.10 [0.08− 0.12]

9 755 68 465 2.6 0.97 [0.92− 1.02] 13.3 [11.8− 15.1] 0.11 [0.10− 0.14]
9 755 68 465 5.0 0.97 [0.91− 1.02] 12.8 [10.9− 14.9] 0.14 [0.11− 0.16]
9 755 68 732 2.6 0.95 [0.91− 0.99] 11.2 [9.6− 12.9] 0.08 [0.06− 0.10]
9 755 68 732 5.0 0.95 [0.90− 0.99] 10.1 [8.3− 11.9] 0.09 [0.07− 0.11]

10 759 70 463 2.6 0.97 [0.92− 1.02] 13.9 [12.1− 15.9] 0.12 [0.10− 0.15]
10 759 70 463 5.0 0.97 [0.91− 1.02] 13.7 [11.7− 15.7] 0.15 [0.12− 0.17]
10 759 70 730 2.6 0.95 [0.91− 0.99] 11.7 [10.0− 13.6] 0.09 [0.07− 0.10]
10 759 70 730 5.0 0.94 [0.90− 0.99] 10.8 [9.2− 12.7] 0.10 [0.08− 0.12]
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