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For polymer chains the torsional potential is an important intramolecular energy influencing
chain flexibility and segmental dynamics. Through molecular dynamics simulations of an atom-
istic model for melts of cis-trans 1,4-polybutadiene (PBD) we explore the effect of the torsions on
conformational properties (bond vector correlations, mean-square internal distances), fundamental
thermodynamic quantities (density, compressibility, internal energy, specific heat), and glass tran-
sition temperature Tg. This is achieved by systematically reducing the strength of the torsional
potential, starting from the chemically realistic chain (CRC) model with full potential towards the
freely rotating chain (FRC) model without torsional potential. For the equilibrium liquid we find
that the effect of the torsions on polymer conformations is very weak. Still weaker is the influence
on the monomer density ρ and isothermal compressibility κT of the polymer liquid, both of which
can be considered as independent of the torsional potential. We show that a van–der–Waals-like
model proposed by Long and Lequeux [Eur. Phys. J. E 4, 371 (2001)] allows to describe very well
the temperature (T ) dependence of ρ and κT . We also find that our data obey the linear relation
between 1/

√
kBTρκT and 1/T (with the Boltzmann constant kB) that has recently been predicted

and verified on experiment by Schweizer and coworkers [J. Chem. Phys. 140, 194507 (2014)]. For
the equilibrium liquid the simulations result in a specific heat, at constant pressure and at constant
volume, which increases on cooling. This T dependence is opposite to the one found experimentally
for many polymer liquids, including PBD. We suggest that this difference between simulation and
experiment may be attributed to quantum effects due to hydrogen atoms and backbone vibrations
which, by construction, are not included in the classical united-atom model employed here. Finally,
we also determine Tg from the density-temperature curve monitored in a finite-rate cooling process.
While the influence of the torsional potential on ρ(T ) is vanishingly small in the equilibrium liquid,
the effect of the torsions on Tg is large. We find that Tg decreases by about 150 K when going from
the CRC to the FRC model.

I. INTRODUCTION

The drastic increase of the structural relaxation time
by many orders of magnitude is a basic characteristic ob-
served when cooling glass-forming liquids [1, 2], including
polymer melts [1, 3], toward low temperature. For poly-
mers the structural relaxation is related to the local seg-
mental dynamics which are determined by intramolecular
conformational energies (bonding and bending energies,
relative energy of stable conformations and barriers be-
tween them, etc.) and nonbonded excluded volume and
cohesive energies [4, 5]. The importance of intramolecu-
lar and nonbonded interactions for polymer glass forma-
tion has long been appreciated by the polymer science
community [5, 6], and both factors are explicitly incor-
porated into current developing coarse-grained theories
for glass-forming polymers, such as the generalized en-
tropy theory [7, 8] or the elastically collective nonlinear
Langevin equation theory [9–11].

A complete, microscopic description of polymer liq-
uids can be obtained by molecular dynamics (MD) sim-
ulations that integrate the classical equations of motion
for model systems and enable the study of the equilib-
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rium structure and dynamics [4, 5, 7, 8, 12, 13] up to
time scales of microseconds on modern-day processors
and aided by efficient simulation strategies [14]. Such
simulations allow to single out the role of intramolecu-
lar or nonbonded interactions by systematically varying
the strength of the respective potential while keeping the
other potentials unchanged. For bead-spring models, re-
cent examples involve the variation of cohesive energy
via the depth of the nonbonded potential well [7], or of
chain stiffness via the amplitude of the bond-angle poten-
tial [15]. As a general finding, the simulations show that
for fully flexible models without bond-angle potential,
changes in the temperature (T ) dependence of the struc-
tural relaxation time caused by cohesive energy strength
can be largely eliminated when scaling T with the non-
bonded potential-well depth, while this is not possible
for models with strong bond-angle potential [7]. More-
over, increase of chain stiffness, at fixed cohesive energy
strength, shifts the glassy dynamics to higher temper-
ature. These findings are in general accord with the
results of an earlier systematic simulation study for a
bead-spring model [16–18], lucidly reviewed in Ref. [5],
where chain stiffness is varied not only by the bond-angle
potential but also by the torsional potential.

Torsional potentials are invariably a part of the force
field for atomistic polymer models. Work on a chemically
realistic united-atom model for polybutadiene (PBD) [4]
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varied the torsional potentials [19–22] and reported a re-
markable feature. Complete elimination of the torsional
potentials does not change the structure of the liquid
or of the polymers, and so chain stiffness [19], whereas
the structural relaxation is significantly enhanced com-
pared to the underlying parent model with full torsional
potential [19–22]. Although this relation between the
torsional potentials and melt properties might be spe-
cific to the PBD model employed, it hints at the inter-
esting possibility to separate structural and dynamic ef-
fects. According to the rotational isomeric state model
[23], the equilibrium polymer structure is determined by
the population of the minima of the torsional potential.
Exploration of the torsional energy landscape, however,
requires to cross the energy barriers between the minima.
Developing models that maintain the minima but reduce
the barriers could be of great interest: on the one hand,
as a speed-up algorithm to accelerate the segmental dy-
namics, thereby enabling equilibration at low T where
standard MD simulations of the model with full torsions
would be impractical; on the other hand, as a tool to
explore the fundamental question of how to incorporate
intramolecular barriers in the construction of increasingly
accurate microscopic theories of vitrification in polymer
liquids.

In this paper we make a very first step in this direction
by revisiting and extending the work on the PBD mod-
els discussed in Refs. [19–22]. The layout of the paper
is as follows. In Sec. II, we describe the atomistic poly-
mer model, introduce variants with reduced or eliminated
torsional potentials, and outline the simulation method-
ology. This presentation is quite detailed for the purpose
of later reference. Subsequently, we discuss the impact
of the torsional potential on polymer conformation in
Sec. III, on density and compressibility in Sec. IV, and on
internal energy and specific heat in Sec. V. Much of this
discussion refers to the equilibrium liquid. Nonequilib-
rium properties induced by finite-rate cooling processes
are illustrated in Sec. III by the shift of the glass tran-
sition temperature with reduction of the torsional po-
tential. We summarize and discuss our main results in
Sec. VI. Further supporting information is given in the
Supplementary Material.

II. MODEL AND SIMULATION

A. Atomistic model of 1,4 polybutadiene

We examine a polymer melt withNc = 40 chains of 1,4-
polybutadiene (PBD). Each PBD chain (CH2–CH=CH–
CH2)n consists of Nm = 29 monomers which can adopt a
trans or a cis configuration (Fig. 1). Our PBD chains
are random copolymers with 55% trans and 45% cis
monomers. The chemical structure of PBD is not ex-
plicitly taken into account, but CH2 and CH are mod-
eled as particles, i.e. as united atoms (UAs), with mass
mCH2

= 14.027 g/mol and mCH = 13.019 g/mol [25], im-

FIG. 1. Top sketch: trans and cis configuration of a monomer
in PBD. For the trans monomer the values of the bond angles
from Table II are indicated. The cis monomer has the same
angles. Bottom sketch: Torsion (or dihedral) angles of PBD
for double bonds, α trans and α cis bonds, and β bonds. The
naming of the angles follows Ref. [24].

plying that a monomer has the mass M0 = 54.092 g/mol.
With Nm = 29 a chain comprises N = 116 UAs and the
melt has NcN = 4640 particles in total.

Our simulation model for PBD builds upon a quantum
chemistry based united atom potential [24, 26] that pre-
dicts static [24, 26] and dynamic [27–30] properties of a
PBD melt in very good agreement with experiment over
a wide range of temperatures (cf. [4] for a review). Re-
cent work with this model has focused on polymer films
[31–35] and employed an adapted version of the origi-
nal potential functions [24, 26] for implementation in the
GROMACS code [36]. Since we modify some of the inter-
action potentials here, we review the force field utilized
in [31–35] and explain the changes made.

The force field of PBD is composed of four poten-
tials associated with bond stretching, bond-angle bend-
ing, torsional rotations, and pair interactions. Stretching
of the bond length ` is modeled by a harmonic potential

Ubond(`) = Kbond(`− `0)2 , (1)

where Kbond is (half of) the force constant and `0 the
equilibrium bond length. PBD has three different bonds.

TABLE I. Parameters for the bond potential of Eq. (1).

Bond length type Kbond (kcal/(mol Å
2
)) `0 (Å)

CH=CH 2500 1.34
CH2–CH2 2500 1.53
CH–CH2 2500 1.50
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The corresponding values for `0 are taken from Ref. [24]
and given in Table I. Prior work [4, 19, 22, 24, 26, 29–
35, 37] has not used Eq. (1), but fixed ` at its equilibrium
value. Here we are changing the bond potential because
the simulations are carried out with the LAMMPS code
[38]. To assure good parallel performance the backbone
bonds of PBD cannot be constrained in LAMMPS, con-
trary to GROMACS. Since we want to stay close to the
original model with ` = `0, we limit the bond length fluc-
tuations by choosing a large value for the force constant,

Kbond = 2500 kcal/mol Å
2

(cf. Table I). This value is a
compromise between spectroscopic data [39] and not too
long computation times (see Sec. II C). With this value

one finds
√
〈(`− `0)2〉 =

√
kBT/(2Kbond) ≈ 0.01 Å for

T = 353 K, the highest temperature studied in the fol-
lowing. Thus, bond length fluctuations are less than 1%
of `0.

In the simulation the bond angle θ is calculated by the
scalar product of the bond vectors. Computationally, it
is therefore convenient to express the bending potential
in terms of cos θ. Here the bending potential is taken to
be harmonic in cos θ,

Uang(θ) = Kbend(cos θ − cos θ0)2 , (2)

whereas the original model of Ref. [24] employed

Uang(θ) =
1

2
kθ(θ − θ0)2 .

Assuming θ to be close to the equilibrium bond angle θ0
the bending stiffnesses Kbend and kθ are related to one
another by [40]

Kbend =
kθ

2 sin2 θ0
. (3)

In this way, Kbend was determined from kθ of Ref. [24].
As indicated in Fig. 1, PBD has two different bond an-
gles. The corresponding values for θ0 and Kbend are
given in Table II. Kbend is smaller than Kbond by a fac-
tor of about 37, implying larger fluctuations of θ than
for `. Still, the fluctuations remain very small because√
〈(θ − θ0)2〉 ≈ [kBT/(2Kbend sin2 θ0)]1/2 ≈ 4.6◦ even for

T = 353 K
The torsion (or dihedral) angle φ is the angle be-

tween two intersecting planes defined by three succes-
sive bonds along the chain backbone. The associated
potential Utor(φ) accounts for steric interactions between
UAs separated by these three bonds. Since Utor(φ) is
an even and periodic function of φ, it can be expressed

TABLE II. Parameters for the bending potential of Eq. (2).

Bond angle type Kbend (kcal/mol) θ0 (deg)
CH2–CH–CH 68.1475 125.896
CH–CH2–CH2 66.5925 111.652

FIG. 2. Torsional potential Utor(φ) (in kcal/mol) for the dif-
ferent torsion angles φ illustrated in Fig. 1: in panel (a) for
the double bonds of the cis (db cis) and trans (db trans) con-
figuration of a monomer, in panel (b) for the β bond between
two monomers, and in panel (c) for the α bond adjacent to
the double bond of a cis (α cis) and trans (α trans) configu-
ration.

as an expansion in powers of cosφ. Here we employ the
Ryckaert–Bellemans function [41],

Utor(φ) =

6∑
n=1

An(cosφ)n−1 , (4)

while the original model of Refs. [24, 26] utilized

Utor(φ) =
1

2

6∑
n=1

kn [1− cos(nφ)] . (5)

In these equations φ is in the interval 0◦ ≤ φ ≤ 360◦ and
An and kn are energy coefficients. The An were deter-
mined by adjusting the Ryckaert–Bellemans function to
Eq. (5) [42]. The corresponding {An}n=1,...,6 are given
in Table III for the five different torsion angles depicted
in Fig. 2.

Figure 2(a) plots Eq. (4) for the double bond of the cis
and trans monomer. Per definition, the minimum occurs
at φmin = 0◦ (or 360◦) for cis and at φmin = 180◦ for
trans. Deviations from these planar configurations are
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TABLE III. Coefficients An (in kcal/mol) of the torsional potential (4) for the different dihedrals of PBD indicated in Fig. 1.

torsion angle A1 A2 A3 A4 A5 A6

double bond (cis) 24.011 −5.31647 0.100537 −27.5485 −0.160949 8.91436
double bond (trans) 24.011 5.31647 0.100537 27.5485 −0.160949 −8.91436
β −3.2615 −4.94228 0.340155 5.58258 0.280129 2.00093
α (cis) 1.16054 0.360163 0.680313 1.48069 −0.640294 −3.04142
α (trans) 0.385179 3.46661 1.05049 −3.86178 −0.320148 −0.720332

possible, but quickly become penalized energetically due
to large values of Utor(φ) relative to the thermal energy
that is kBT ' 0.7 kcal/mol at T = 353 K [43]. The po-
tential energy of the inflection points at φ = 90◦, 270◦

corresponds to about 12 000 K and that of the maxima
at φ = 180◦ for cis or φ = 0◦, 360◦ for trans to about
24 000 K. These temperatures are much larger than the
temperatures studied (T ≤ 353 K) so that the corre-
sponding angles are never adopted in the simulation.
In practice, the double bonds stay close to the planar
equilibrium state. We can estimate typical fluctuations
around this state by a harmonic expansion of Utor(φ)
around φmin. This expansion provides an excellent ap-
proximation up to Utor(φ ≈ φmin ± 20◦) ≈ 2.7 kcal/mol
with a force constant kφ = 0.0133 kcal/(mol deg2), im-

plying that
√
〈(φ− φmin)2〉 =

√
kBT/kφ ≈ 7◦ for T =

353 K. Deviations from the equilibrium state are there-
fore small, though larger than for ` and θ. The double
bonds, together with the bond lengths and bond angles,
are therefore stiff degrees of freedom.

The main source of chain flexibility and conformational
rearrangements in PBD stems from torsional rotations
around the β bond and the α cis and α trans bonds.
This is the case because the maximum potential energy
of these dihedrals is an order of magnitude smaller than
for the double bonds, as seen from Fig. 2(b) and (c).
Figure 2(b) plots Eq. (4) for the β bond. The tor-
sional energy of this bond has the shape familiar from
hydrocarbon chains, such as polyethylene [44]. There
are three minima, the primary minimum being the trans
state at φ = 180◦ and the secondary minima being the
gauche-plus and gauche-minus states at φ ' 180◦±120◦.
The energy difference between trans and gauche states is
about 0.41 kcal/mol ≈ 0.58kBT at 353 K and the barrier
at φ ' 180◦ ± 60◦ is about 3.84 kcal/mol ≈ 5.48kBT at
353 K. Figure 2(b) plots Eq. (4) for the α cis and α trans
bonds. Qualitatively, the shape of Utor(φ) for these dihe-
drals is the mirror image of Utor(φ) of the β bond, having
minima at φ = 0◦, 360◦ and φ ' 180◦±60◦. The barriers
between these minima are smaller than those of the β
bond, implying that torsional transitions are more easily
possible about the highly flexible dihedals.

Pair interactions between united atoms of a chain sep-
arated by four or more bonds and between united atoms
of different chains are modeled by a 12-6 Lennard–Jones
(LJ) potential with an additional switching function S(r)
commonly used in the GROMACS code [36] and also im-
plemented in LAMMPS (see pair style lj/gromacs com-

mand [38]),

Upair(r) =

{
4ε
[(
σ
r

)12 − (σr )6]+ S(r) if r < rc ,

0 if r ≥ rc .
(6)

The switching function S(r) shifts Upair(r) smoothly to
zero between an inner cutoff r1 and the outer cutoff rc
so that the force and second derivative of Upair(r) vanish
continuously at rc [42]. We choose constant values, r1 =
9 Å and rc = 12 Å, for all pairs of UAs. The original
model [4, 19, 22, 24, 26, 29–35, 37] did not apply S(r),
but employed an LJ-potential truncated at rc = 9 Å with
tail corrections [45] for energy and pressure. Here we
change the pair interaction to Eq. (6) to avoid impulsive
corrections [45, 46] and to allow for future extension to
polymer films where the isotropic tail corrections cannot
be applied. However, the original model was validated
against experiments [24, 26–30], a salient feature we want
to keep. To achieve this we take the same values for
the LJ diameters σij (i, j = CH2,CH) as in Ref. [24]
but enhance the values of the LJ energies εij so that the
monomer density of the model with enhanced εij is the
same as for the original model with tail corrections [42].
The resulting LJ parameters are summarized in Table IV.

The values of σij show that the inner cutoff r1 is r1 >
2σij and the outer cutoff rc is rc & 3σij . Therefore, the

distance rc−r1 (= 3 Å) over which S(r) smooths Upair(r)
to zero is close to about one particle diameter.

From the point of view of the pair interactions PBD
corresponds to a binary mixture. The values in Table IV
show that PBD deviates from the standard Lorentz–
Berthelot mixing rule [47]. By contrast to the Lorentz
rule, PBD is a nonadditive mixture, since σij 6= (σii +
σjj)/2, and has enhanced mixing ability relative to the
Berthelot rule because εij >

√
εiiεjj [42]. In simple liq-

uids and metallic alloys both features are favorable for
better glass-forming ability [48, 49]. We discuss this point
further in the Supplementary Material by comparing the

TABLE IV. Parameters of the Lennard–Jones potential (6)
for the different types of united atoms i, j = CH2,CH.

Pair type εij (kcal/mol) σij (Å)
CH2 ↔ CH2 0.107639 4.00904
CH ↔ CH 0.114999 3.38542
CH2 ↔ CH 0.116723 3.79256
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LJ parameters of PBD with those of the Kob–Andersen
binary mixture [50–52].

B. Model variants with reduced torsional potential

In the following we refer to the PBD model described in
Sec. II A as the chemically realistic chain (CRC) model.
To explore the impact of the dihedrals on the prop-
erties of PBD we also study model variants with re-
duced torsional potential while keeping the other poten-
tials for the bond lengths, bond angles and pair interac-
tions unchanged. These variants are obtained by replac-
ing Utor(φ) for all dihedral angles with λUtor(φ) where
λ = 0, 1/4, 1/2. We refer to these models as:

λ = 0: freely rotating chain (FRC) model ,

λ = 1
4 : CRC4 model ,

λ = 1
2 : CRC2 model , (7)

λ = 1: CRC model .

The FRC model has already been introduced and stud-
ied in Refs. [19, 20]. Due to the absence of the torsional
potential the model enables free rotation around the dou-
ble bonds, thereby eliminating the difference between
cis and trans conformers. Within the FRC model PBD
is therefore no longer a random copolymer of cis and
trans monomers, but a homopolymer. While it would
have been possible to preserve the copolymer charac-
ter by maintaining the dihedral potentials for the dou-
ble bonds only [22], we adopted the FRC model here
because it resembles extensively studied glass-forming
bead–spring models with intramolecular forces resulting
only from bond-length and bending potentials (see e.g.
[5, 7, 13, 17, 18, 53, 54]. The CRC4 and CRC2 mod-
els are introduced because they smoothly interpolate be-
tween the FRC and CRC models.

C. Simulation methodology

We perform molecular dynamics (MD) simulations of
PBD with the LAMMPS code [38, 55]. The classi-
cal equations of motion are integrated by the rRESPA
multi-timescale integrator with two hierarchical levels:
The outer level integrates the pair interactions with a
time step δtouter = 1 fs, while the inner level inte-
grates the bond-length, bending and dihedral potentials
with a four times smaller time step δtinner = 0.25 fs.
With the estimates of the bond oscillation time τbond ≈
1.6 × 10−14 s and of the LJ time τLJ ≈ 1.8 × 10−12 s
[56] these choices imply that the time steps are much
smaller than the time scales of the associated potentials
(δtinner/τbond ≈ 1.6×10−2, δtouter/τLJ ≈ 5.6×10−4). We
combine the rRESPA integrator with the Nosé–Hoover
thermostat and the Nosé–Hoover–Andersen barostat to
control temperature T and pressure p in NPT simula-
tions and with the Nosé–Hoover thermostat when car-
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FIG. 3. Sketch of the simulation protocol consisting a cool-
ing run according to Eq. (8) followed by equilibration and
production runs. Starting from the melt configuration stored
during the cooling run at a given T (here T = 273 K), equili-
bration comprises three steps: 1) NPT relaxation over 100 ns
with determination of the equilibrium volume V (T ) as the
time average over the final part of the time series of the vol-
ume, 2) the instantaneous volume of the final configuration
of the NPT run is rapidly deformed over 10 ps toward V (T ),
3) NVT relaxation at V (T ) over another 100 ns. Equilibra-
tion is followed by a production run which lasts 1 µs or more,
depending on temperature.

rying out canonical NVT simulations at constant vol-
ume V (LAMMPS parameters [38]: Tdamp = 1000 fs,
Tchain = 3; Pdamp = 10000 fs, Pchain = 3). All simu-
lations make use of periodic boundary conditions.

The simulations are started from an equilibrated melt
configuration of the CRC model at T = 353 K taken from
Ref. [34]. This configuration is further equilibrated un-
der NPT conditions to impose a pressure of p = 0 atm.
This pressure was chosen because future work will focus
on supported polymer films where the films are in con-
tact with vacuum at its free surface. For these studies
bulk simulations at p = 0 atm serve as a reference point.
Starting from Ti = 353 K the melt is continuously cooled
down to T = 3 K at p = 0 atm according to the schedule
(Fig. 3),

T (t) = Ti − Γ t , (8)

with cooling rate Γ = 0.83 K/ns. Clearly, this rate is
much faster than experimental rates, but slow compared
to values typical of simulations [57]. With Γ = 0.83 K/ns
the total cooling process from 353 K to 3 K takes about
420 ns (4.2×108 time steps). As the CPU-time per δtouter
and united atom is about 4×10−7 s (on Intel(R) Xeon(R)
Gold 6126 Skylake-based CPU, 2x12 cores), completion
of a cooling run for our system of 4640 UAs requires
nearly 9 days of computer time. Due to this computa-
tional effort we repeat the cooling run only five times
for statistical averaging (starting from equilibrated NPT
configurations at T = 353 K, each separated by 200 ns
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from one another) and we only use one of these cooling
runs for later equilibration.

For this equilibration the melt configuration at seven
working temperatures—213 K, 225 K, 240 K, 253 K,
273 K, 293 K, 353 K—is stored during the cooling run.
For the CRC model these temperatures range from the
high-T liquid state to the supercooled state near the
critical temperature of ideal mode-coupling theory Tc ≈
215 K [37] (the experimental glass transition tempera-
ture Tg of high-molecular weight 1,4 PBD is Tg ≈ 175 K
[58, 59]). At each working temperature the stored con-
figuration serves as the starting point of an equilibration
run that consists of three stages: NPT equilibration, de-
formation to the equilibrium volume, and NVT equili-
bration (Fig. 3).

In the NPT equilibration run the system is tempered
at p = 0 atm over a total duration of 100 ns. This dura-
tion suffices to relax the volume, since we find the volume
relaxation to last no longer than 30 ns for T ≥ 213 K.
The final 70 ns of the NPT run are then used to deter-
mine the equilibrium volume V (T ) as the time average
over the time series of the volume. In the subsequent de-
formation stage we start from the instantaneous volume
of the final configuration of the NPT run and isotrop-
ically change the size of the simulation box until the
equilibrium volume V (T ) is reached (deform command
in LAMMPS [38]). Since the deformation is carried out
over a fairly short time of 10 ps, it is necessary to relax
residual stresses possibly created by the quenching of the
box volume. To this end, the third equilibration stage
consists of an NVT run at fixed V (T ), during which we
monitor the time series of the pressure. For the duration
of this third stage we also take 100 ns, which suffices to
stabilize the pressure at p ≈ 0 atm.

Following equilibration we perform NVT production
runs at each working temperature. The production run
lasts at least 1 µs (109 time steps), sometimes even up to
3 µs. With a CPU-time of about 4×10−7 s per δtouter and
united atom the simulation of 1 µs takes about 20 days
of computer time for our system with 4640 UAs. This
long time explains why we work with a relatively small
system whose linear dimension L = V 1/3 (≈ 49.3 Å at
T = 353 K) is not much larger than the average end-
to-end distance Re (≈ 36.5 Å at T = 353 K) of the
CRC chain. Therefore, finite-size effects cannot be fully
excluded, as far as the properties at the scale of a chain
are concerned.

To equilibrate the CRC2, CRC4 and FRC models at
the seven working temperatures from 213 K ≤ T ≤ 353 K
it is efficient to start from the configuration of the CRC
model at the end of the deformation stage at tempera-
ture T , fix the corresponding volume V (T ), switch Utor

according to Eq. (7), and continue the equilibration in the
NVT ensemble (at the fixed V (T ) from the CRC model).
This procedure is justified because we find the pressure
to remain at p = 0 atm in the NVT runs for the CRC2,
CRC4 and FRC models [60]. Following the NVT equili-
bration we carry out NVT production runs of (at least) 1
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FIG. 4. Log-linear plot of pλ(φ) versus φ for the double bond
of the trans conformer at T = 353 K. The symbols present the
MD results for the CRC (blue circles, λ = 1), CRC2 (green
triangles, λ = 1/2), CRC4 (orange crosses, λ = 1/4) and
FRC models (red squares, λ = 0). The full lines show the
results from Eq. (9) for the CRC (blue), CRC2 (green) and
CRC4 models (orange). The horizontal dotted line indicates
the uniform distribution pλ=0(φ) = 1/360 expected for the
FRC model from Eq. (9).

µs for data analysis. The final configurations of the pro-
duction runs are taken as starting points for two further
simulations: i) for NPT simulations (of 1 µs) at p = 0 atm
to calculate the isothermal compressibility from the vol-
ume fluctuations [Eq. (17)] for 213 K ≤ T ≤ 353 K and
ii) for cooling runs to determine Tg for the models with
reduced or disabled torsions. For the latter runs we take
five configurations at T = 353 K, separated by 200 ns
from each other, that are subsequently subject to a cool-
ing process down to T = 3 K at p = 0 atm according
to Eq. (8). The five cooling runs are used for statistical
averaging as for the CRC model. Since the sole difference
between the CRC model and the other models is the re-
duction of Utor, the cooling runs reveal the influence of
the torsional potential on the glass transition of PBD.

III. CONFORMATIONAL PROPERTIES

A. Distributions of the torsion angle

A first insight into the influence of reducing the tor-
sional potential may be provided by the distribution of
the dihedral angle, pλ(φ), where λ identifies the differ-
ent models as defined in Eq. (7). If the dihedral angle
was independent of the other potentials, pλ(φ) would be
solely determined by λUtor,

pλ(φ) =
exp(−λUtor(φ)/kBT )∫ 2π

0
dφ exp(−λUtor(φ)/kBT )

. (9)

It is therefore instructive to compare Eq. (9) with the dis-
tribution obtained from the MD simulations for a given
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FIG. 5. Plot of pλ(φ) versus φ at T = 353 K for three dif-
ferent torsion angles: in panel (a) for the β bond between
two monomers, in panel (b) for the α bond adjacent to the
double bond of a trans monomer (α trans), and in panel (c)
for the α bond adjacent to the double bond of a cis monomer
(α cis). In all panels, the symbols present the MD results
for the CRC (blue circles, λ = 1), CRC2 (green triangles,
λ = 1/2), CRC4 (orange crosses, λ = 1/4) and FRC models
(red squares, λ = 0). The full lines show the results from
Eq. (9) for the CRC (blue), CRC2 (green) and CRC4 models
(orange). The horizontal dotted line indicates the uniform
distribution pλ=0(φ) = 1/360 expected for the FRC model
from Eq. (9).

dihedral. Such a comparison is shown in Fig. 4 for the
double bond of the trans conformer and in Fig. 5 for the
β, α cis and α trans bonds. As seen from Fig. 4, the dis-
tribution from the MD for the CRC model is in excellent
agreement with Eq. (9). This is not unexpected because
the dihedral associated with the double bond is “hard”
conformational variable which is kept close to the equilib-
rium value by its stiff torsional potential. Reducing this
potential could change the situation. However, the agree-
ment between the simulated distribution and Eq. (9) is
still good for both the CRC2 and CRC4 models (Fig. 4).
While progressive softening of the torsional potential en-
hances deviations from the trans configuration, the pop-
ulation at φ = 0◦ or 360◦ vanishes, even for the CRC4
model despite the decrease of the potential barrier of the

FIG. 6. Sketch of a fragment of a PBD chain comprising a cis
conformer and 2 adjacent UAs. The bond lengths and bond
angles are fixed at their equilibrium values given in Table I
and Table II and all dihedral angles (α cis, db) are fixed at
φ = 0◦. This leads to a distance of 1.457 Å between the UAs
at the ends of the fragment and to 2.618 Å for the 1-5 (pentane
group) distance as indicated. Both distances are substantially
smaller than the LJ diameters of the UAs (Table IV), leading
to strongly repulsive pair interactions.

cis state by a factor of 4. This implies that cis/trans iso-
merization is precluded not only for the CRC model, but
also for the CRC2 and CRC4 models. Since the torsional
potential for the double bond of the cis conformer is only
shifted by 180◦ relative to that of trans conformer, the
results reported here for the trans conformer are found
for the cis conformer, too (not shown).

The difference between the cis and trans conformers
disappears when the torsional potential is switched off.
Then, Eq. (9) predicts a uniform distribution, pλ=0(φ) =
1/2π. The simulated distribution for the FRC model
deviates from this prediction (Fig. 4). The probabil-
ity of finding φ near 180◦ is increased relative to the
uniform distribution, while it is decreased near φ = 0◦

or 360◦. These deviations stem from intrachain LJ in-
teractions between united atoms separated by four and
more bonds, which contribute to the conformational en-
ergies and thereby create an effective torsional potential.
Such an influence of the LJ potential is expected from
the force field parameterization developed in Ref. [24],
where intramolecular pair interactions were optimized, in
conjunction with the other potentials, so as to reproduce
correlations between consecutive torsional states (second-
order effects between consecutive pairs of torsions and
third-order effects involving three consecutive torsions).

For the FRC model this also implies that similar devia-
tions between the simulated and the uniform distribution
must be observed for the other dihedrals of the β, α cis
and α trans bonds. This is illustrated in Fig. 5. As in the
case of the double bonds, we see that the probability of
adopting torsional angles near 180◦ is enhanced for the
FRC model and suppressed near φ = 0◦ or 360◦. Devi-
ations between the MD results for the dihedral distribu-
tions and the predictions from Eq. (9) are also visible for
the CRC, CRC2 and CRC4 models. While Fig. 5(a) and
(b) show that the deviations are small for the β and α
trans bonds, they are large for the α cis bond [Fig. 5(c)],
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in particular for torsional states near φ = 0◦ or 360◦

which are suppressed in the MD simulation, contrary to
the prediction of Eq. (9). Figure 6 explains this result.
The sketch shows a cis monomer and its two contiguous
UAs when all dihedral angles are fixed at φ = 0◦. This
geometry results in a distance of 2.168 Å between UAs
four bonds apart and a distance of 1.457 Å between the
outer UAs. Since these united atoms are separated by
four or more bonds, they interact by Upair, resulting in

repulsive energies, Upair(r = 2.168 Å) ≈ 66 kcal/mol and

Upair(r = 1.457 Å) ≈ 8× 104 kcal/mol, which are so high
that the angle φ = 0◦ is never adopted in the simula-
tion. This is an example for the “steric hindrance” (or
“pentane”) effect known in the literature [23]. Clearly,
intrachain correlations beyond those of single torsions are
important for the conformational properties of PBD [24].

B. Bond correlations and internal distances

Let ~rn denote the position of the nth united atom and
~̀
n = ~rn+1 − ~rn its bond vector. For the UA m = n + s

that is separated by s bonds from n, we define the mean-
square internal end-to-end distance R2

e(s) and the bond
correlation function P1(s),

R2
e(s) = 〈(~rn+s − ~rn)2〉 , P1(s) =

〈~̀n+s · ~̀n〉
l2

, (10)

where l2 = 〈~̀2n〉 is the mean-square bond length. Here
〈. . .〉 denotes the thermal average and also the average
over all possible pairs (n,m). (Hence, the statistics will

deteriorate for s→ N−1.) Since ~rn+s−~rn =
∑n+s−1
i=n

~̀
i,

R2
e(s) and P1(s) are related to each other by

R2
e(s) = l2s+ 2l2

s−1∑
k=1

(s− k)P1(k) . (11)

Both quantities are of considerable theoretical impor-
tance [44, 61, 62] and have often been studied in polymer
melt simulations [62–65]. Therefore, we also determine
them here.

1. Parameterization of the MD results and temperature
dependence of the characteristic ratio

As an example for the typical behavior of P1(s) found
for all models in the interval 213 K ≤ T ≤ 353 K, Fig. 7
shows the results of the CRC model at T = 353 K. If bond
correlations were only caused by the bond angle, one
would expect from the freely rotating chain model the-
ory an exponential decay P1(s) = |〈cos θ〉|s [44]. Clearly,
this prediction (dashed line in Fig. 7) must underestimate
P1(s) for PBD. It only accounts for correlations between
consecutive pairs of bonds [P1(s = 1)], but not for corre-
lations between more distant pairs along the chain back-
bone [P1(s > 1)], resulting from dihedral and interchain
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_
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FIG. 7. Log-log plot of P1(s) versus the number of bonds s
(1 ≤ s ≤ N − 1) for the CRC model (blue circles) at T =
353 K. The dashed line indicates the exponential decay based
on the freely rotating chain model theory, |〈cos θ〉|s [44]. The
solid line represents the fit result to A exp(−s/s) with A =
0.760 and s = 3.633 from [42]. s is indicated by a vertical
dotted line. For s > 25 the statistical accuracy of the data
deteriorates: P1(s) can become negative, explaining the gap
in the log-log plot for 30 . s . 100. The associated “noise”
does not allow an analysis of P1(s) for s� s ≤ N − 1.

pair interactions. To fit these more distant correlations
we use an exponential function P1(s) = A exp(−s/s) with
A and s as adjustable parameters. This gives a good de-
scription of the MD data for 2 ≤ s . 25 (full line in
Fig. 7). Figure 7 shows that P1(s ≈ 25) ∼ 10−3, which
is the noise level of our MD results. Since the statistical
accuracy does not allow to explore bond correlations for
large s→ N−1, a viable parameterization of the present
data is given by

P1(s) =

{
α for s = 1 ,

A exp(−s/s) for s > 1 .
(12)

where we defined α = −〈cos θ〉 (> 0). We have analyzed
all models for 213 K ≤ T ≤ 353 K with Eq. (12). The
directly measured values for α and the fit results for A
and s are compiled in the Supplementary Material.

Insertion of Eq. (12) into Eq. (11) gives

R2
e(s) = l2s

[
C∞ −

2

s

(
α−Aα+A

α− αs+1

(1− α)2

)]
, (13)

where α = e−1/s (< 1) and C∞ is the characteristic ratio
of the infinitely long chain,

C∞ = lim
N→∞

R2
e(N − 1)

(N − 1)l2
= 1 + 2(α−Aα) +

2Aα

1− α
. (14)

The characteristic ratio determines the effective bond
length be =

√
C∞l [66] and the temperature coefficient κ

of the mean-square end-to-end distance R2
e(N −1) of the

chain [23],

κ = 1000
d lnR2

e(N − 1)

dT
= 1000

d lnC∞
dT

. (15)
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TABLE V. Characteristic ratio C∞ from Eq. (14) for the var-
ious models studied [Eq. (7)] at temperature T . The values
are rounded to the first decimal place [42].

C∞
T (K) CRC CRC2 CRC4 FRC
213 6.2 6.2 6.0 5.9
225 5.8 6.0 6.0 5.8
240 5.8 5.8 5.9 5.8
253 6.1 5.9 5.8 5.6
273 5.8 5.8 5.8 5.6
293 5.8 5.7 5.7 5.6
353 5.6 5.6 5.6 5.4

The factor of 1000 is introduced in this definition because
κ is typically of the order of 10−3 K−1 [24, 67].

Figure 8(a) depicts the ratio R2
e(s)/s as a function of

s for all models at T = 353 K. This ratio starts from
the mean-square bond length l2 (= 2.158 Å2 [68]), then
increases first steeply for small s and eventually levels off
when s approaches N − 1. We find that the dependence
R2

e(s)/s on s can be well fitted by Eq. (13) for all mod-
els and temperatures. The dashed line in Fig. 8(a) gives
an example for the FRC model. From this analysis we
obtain the T dependence of C∞ (cf. Table V and [42]).
The results are plotted as lnC∞ versus T in Fig. 8(b).
This plot format approximately rectifies the data, yield-
ing negative values for the temperature coefficient in the
range −0.64 K−1 . κ . −0.54 K−1 for all models stud-
ied. A negative value for κ implies that the chains tend
to expand on cooling.

The results for κ may be compared with experimental
values [69] and Rotational Isomeric State (RIS) calcu-
lations [24, 70]. These studies show that the thermal
coefficient is sensitive to the stereochemical composition
of PBD. While pure cis-PBD has positive κ, negative
values are obtained for the pure trans-form. For mixed
stereoirregular microstructures similar to our simulation
model, RIS calculations [70] mostly lead to small negative
values of κ (∼ −0.1 K−1), in resonance with experimen-
tal results (where PBD also contains about 9% of vinyl
groups in addition to cis and trans units) [69]. From this
comparison we can conclude that our simulation results
are in qualitative accord with available literature data
(κ < 0), but the extent of the chain extension on cooling
is stronger in the simulation.

IV. DENSITY AND COMPRESSIBILITY

A. Continuous cooling through the glass transition:
Temperature dependence of the density

A remarkable observation from the previous section is
the weak influence of the torsions. Even when switching
off all dihedral potentials the conformational properties
of the resulting FRC model are very close to those of
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FIG. 8. Panel (a): Plot of the mean-square internal distance
R2

e(s) divided by the number of bonds s versus s (1 ≤ s ≤
N − 1) for the CRC (blue circles), CRC2 (green triangles),
CRC4 (orange crosses) and FRC models (red squares). All
data refer to T = 353 K. The (black) dashed line shows a
fit to Eq. (13) for the FRC model. The horizontal dotted
lines show respectively the mean-square bond length l2 =
2.158 Å2 and for the FRC model the square effective bond
length b2e = 11.73 Å2. Panel (b): Temperature dependence of
the characteristic ratio C∞ from Eq. (14) for the CRC (blue
circles), CRC2 (green triangles), CRC4 (orange crosses) and
FRC models (red squares). The plot format, lnC∞ versus T ,
is motivated by Eq. (15) when assuming κ to be constant. The
full line presents a linear fit to the FRC data, yielding κ =
−0.54 K−1. The dashed line shows the fit result to the CRC
model, leading to κ = −0.64 K−1. The dotted line indicates
the experimental result, κ = −0.10 K−1 (obtained for 298 K ≤
T . 373 K), from Table VIII of Ref. [69].

the CRC model. This finding resonates with the original
studies of Refs. [19, 20]. While chain conformations (and
liquid structure [4, 19, 20]) remained essentially unper-
turbed by the torsions, Refs. [19, 20] report a strong influ-
ence on dynamic properties: Conformational and struc-
tural relaxation in the polymer liquid was found to be en-
hanced for the FRC model compared to the CRC model
at the same T . Based on this observation we expect shifts
of Tg to lower temperature when reducing the dihedral
potentials.

To test this expectation we use dilatometry, an of-
ten employed method in experiments [71–73] and sim-
ulations [13, 74–76]. Figure 9 shows the mass density
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FIG. 9. Mass density ρm(T ) for the CRC (circles), CRC2
(triangles), CRC4 (crosses) and FRC models (squares). All
data are obtained from 5 independent cooling runs with rate
Γ = 0.83 K/ns, which were first averaged at each time step
and then smoothed by averaging over an interval of ∆T = 1 K.
For clarity only every 10th data point is shown. For the CRC
and FRC models the (black) full lines exemplify the fits to
Eq. (16) with parameters from Table VI. The vertical dotted
lines indicate Tg from Table VI. Inset: Tg versus ρg from
Table VI (symbols). The solid line shows a fit to Tg = A−Bρg
yielding A = 1378 K and B = 1227 K/(g/cm3).

ρm(T ) = M0NmNc/V (T ) where V (T ) = V (T = Ti −Γ t)
is the volume of the system at time t of the cooling pro-
cess with rate Γ = 0.83 K/ns [Eq. (8)]. At high tem-
perature, say for T & 250 K, we find the same ρm(T )
for all models. The superposition of the data indicates
that the influence of the torsions on the density is van-
ishingly small in the equilibrium liquid. This changes on
cooling. For lower T the densities of the different mod-
els gradually separate from each other. The CRC model
is the first to deviate, falling below the densities of the
other models and crossing over to a weaker T depen-
dence than found for the CRC model at high tempera-
ture. Similar crossovers occur for the other models but
are systematically shifted to lower T with decreasing λ.
Since the crossover can be identified with the glass tran-
sition, Fig. 9 reveals the coupling of the torsions to the
glass transition: Tg decreases with the reduction of the
dihedral potentials.

For quantitative analysis, we fit the logarithm of ρm(T )
to

ln ρm(T ) = ln ρg − (T − Tg)

(
αl + αg

2

)
(16)

− w
(
αl − αg

2

)
ln

[
cosh

(
T − Tg
w

)]
,

TABLE VI. Parameters obtained from fitting Eq. (16) to
ln ρm(T ) [42] for the different models studied : CRC (λ = 1),
CRC2 (λ = 1/2), CRC2 (λ = 1/4), FRC (λ = 0) [cf. Eq. (7)].

λ w (K) αl (1/K) αg (1/K) Tg (K) ρg (g/cm3)
1 57 7.4× 10−4 2.0× 10−4 197 0.965
0.5 51 7.3× 10−4 2.2× 10−4 146 1.002
0.25 37 7.2× 10−4 2.4× 10−4 111 1.030
0 28 8.1× 10−4 3.6× 10−4 44 1.089

where ρg = ρm(Tg) is the density at Tg, w the width
of temperature interval over which the glass transition
occurs, αl the thermal expansion coefficient in the liq-
uid, and αg the expansion coefficient in the glass. Both
αl and αg are assumed to be constant. If we further
assume that the thermal expansion coefficient α(T ) =
−∂ ln ρm(T )/∂T |p can be smoothly interpolated from αg

to αl by a hyperbolic tangent, Eq. (16) is obtained upon
integration. This method was originally suggested by
Dalnoki–Veress et al. [77] and applied to the thickness
h(T ) of polymer films, assuming that the slopes ∂h/∂T
are constant in the melt and glass state of the films. Here
we also tested this method, taking the slopes ∂ρm/∂T ,
instead of α, as constant in the liquid and in the glass.
Details about the fit and a comparison of results obtained
from both assumptions—constant slope or constant α—
can be found in the Supplementary Material. Since the
results closely agree with each other, we focus on Eq. (16)
here. As illustrated by the solid lines in Fig. 9 for the
CRC and FRC models, we see that Eq. (16) provides
a very good parameterization of the density across the
glass transition. The quality of the fit is the same for the
other models.

For all models studied, Table VI summarizes the fit
results to Eq. (16). We find that an excellent description
of the shift of Tg with λ is given by a power law,

Tg(λ) = Tg(0)− [Tg(1)− Tg(0)]λaT ,

with aT = 0.59. A similar ansatz for the density,

ρg(λ) = ρg(0)− [ρg(0)− ρg(1)]λaρ ,

also provides a very good fit with aρ = 0.53. Since the
exponents aT and aρ are close, we expect an approxi-
mately linear correlation between Tg(λ) and ρg(λ), that
is Tg(λ) = A−Bρg(λ) with positive constants A and B.
The inset in Fig. 9 confirms this expectation.

Thus, reduction of the dihedral potentials entails a de-
crease of Tg that is accompanied by an increase of ρg.
How can this finding be explained? Following earlier
work on PBD [19, 20, 22] and other simulation stud-
ies [5, 16–18], we argue that two coupled kinetic arrest
mechanisms operate in the PBD melt: (i) intermolec-
ular packing constraints, as in any glass-forming liquid,
and (ii) intramolecular torsional barriers, specific to poly-
mers. Relaxational motion of a united atom in PBD re-
quires not only the nearest-neighbor cage to give way
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equilibrium densities for 213 K ≤ T ≤ 353 K. The stars
(“Smith et al.”) present the (scanned) MD data from Fig. 1
of Ref. [78] for the original 1,4 PBD model at p = 1 atm
(M = 1622 g/mol; PBD with 40% 1,4-cis/50% 1,4-trans/10%
1,2-vinyl). The circles and triangles show experimental re-
sults from Table IV of Ref. [79] for M = 1420 g/mol (cir-
cles; PBD with 34% 1,4-cis/58% 1,4-trans/8% 1,2-vinyl) and
M = 10500 g/mol (triangles; PBD with 35% 1,4-cis/56%
1,4-trans/8% 1,2-vinyl microstructure). The (red) solid lines
represent interpolations through the experimental data with
ρm(T ) = ρm(T = 333) exp[α(333 − T )] and thermal ex-
pansion coefficients α(M = 1420) = 7.4 × 10−4 K−1 and
α(M = 10500) = 7.0× 10−4 K−1 from Table IV of Ref. [79].

and thus a release of intermolecular constraints, but also
large-angle excursions of the dihedral angles. If, with de-
creasing T , the dihedrals are progressively bound near
the minima of the torsional potential by large barriers,
particle mobility is already slowed down by this barrier-
induced confinement, requiring less intermolecular con-
straints for kinetic arrest. Glass formation in the CRC
model thus occurs at higher T—and so at lower density—
compared to the other models with reduced torsions. In
the extreme case of the FRC model, the absence of the
dihedral potentials implies that glass formation is mainly
driven by intermolecular constraints, akin to flexible or
semiflexible bead–spring models without torsional barri-
ers [5, 7, 13]. For such bead–spring models, Tg is typ-
ically smaller than the LJ temperature unit ε/kB, pro-
vided ε is not too large [7]. This is the case here for
PBD. Taking ε = (εCH2,CH2

+ εCH,CH)/2 with the ener-
gies of Table IV, one gets ε/kB ' 56 K [43], implying
that Tg ≈ 0.79 ε/kB for the FRC model, in qualitative
accord with bead–spring model results [5, 7, 13]. For the
CRC model, however, one finds Tg ≈ 3.5ε/kB, which,
for bead–spring models, would correspond to the high-
T regime of the polymer liquid. This clearly highlights
the importance of dihedral barriers as an additional ar-
rest mechanism that, together with collective many-body
effects, drives the polymer glass transition.

Finally, Fig. 10 focuses for the CRC model on the T
regime of the polymer liquid, where equilibrium can be
achieved, and compares ρm(T ) to literature results from
simulation [78] and experiment [79]. We see that cool-
ing with Γ = 0.83 K/ns can be considered as quasistatic
process for T & 250 K because the densities from cool-
ing runs (circles) and equilibrium simulations (crosses)
agree. For this T regime we also find excellent agreement
between the experimental thermal expansion coefficient
α = 7.4 × 10−4 K−1 [79] and the simulation results for
the present and original (stars [78]) CRC models. On the
other hand, the simulated densities are larger than in ex-
periment, suggesting that the CRC model has a lower
compressibility. We turn to the compressibility and its
variation with the dihedral potential in the following sec-
tion.

B. Temperature dependence of the compressibility
in the polymer liquid

One method to determine the isothermal compressibil-
ity κT is to monitor the volume fluctuations in NPT sim-
ulations

κT = − 1

V

∂V

∂p

∣∣∣∣
T

=
〈V 2〉 − 〈V 〉2

kBT 〈V 〉
. (17)

This equation is a special case of the theory of the ensem-
ble dependence of thermodynamic fluctuations [80–82].

For temperature range 213 K ≤ T ≤ 353 K of the equi-
librium polymer liquid Fig. 11 depicts the dimensionless
compressibility kBTρκT where ρ (= 4ρm/M0) is the num-
ber density of united atoms in the PBD melt. We see that
the dihedral potential does not affect the compressibility
of the melt; the data for all models studied superimpose,
albeit the statistics appears to deteriorate with decreas-
ing T .

Figure 11 plots the compressibility as 1/
√
kBTρκT ver-

sus 1/T . This plot format was suggested by Schweizer
and Saltzman based on a prediction from the Polymer-
Reference-Interaction-Site-Model theory, yielding [83]

1√
kBTρκT

= −A+
B

T
, (18)

with A > 0 and B > 0. Equation (18) was not claimed to
be “quantitatively reliable nor rigorous” (cf. Appendix A
in [83]), but found to be practically relevant, since it
linearizes the experimental data for numerous polymers,
including PBD [83]. We scanned the experimental data
for PBD from Fig. 4 of Ref. [83] and present them as stars
in Fig. 11 together with the fit result to Eq. (18) obtained
in [83] (dashed line). Figure 11 shows that the simulation
results are in reasonable agreement with experiment and
that Eq. (18) describes the numerical data very well in
the T range studied. A similar observation has recently
been made in a systematic simulation study of the role
of cohesive energy and bending rigidity on polymer glass
formation using a coarse-grained bead-spring model [7].
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FIG. 11. Temperature dependence of the compressibility for
T ≥ 213 K. The data are rectified as suggested by Eq. (18).
The stars are experimental results for PBD scanned from
Fig. 4 of Ref. [83]. The dashed line shows Eq. (18) with pa-
rameters A = 0.435 and B = 987 K taken from Table I of
Ref. [83]. The other symbols show the simulation results ob-
tained from volume fluctuations [Eq. (17)] for the CRC (cir-
cles), CRC2 triangles), CRC4 (crosses) and FRC (squares)
models. As the experimental results, they are linearized and
can be fitted by Eq. (18) (with A = 0.384 and B = 1019 K,
not shown). The solid line shows the fit to the Long–Lequeux
theory from a joint adjustment of the monomer density to
Eq. (19) (see inset) and of the compressibility to Eq. (20),
yielding ρm,0 = 1.114 g/cm3, β = 2.219, T vdW

c = 1196 K,
γ = 4.754 [42].

In the past, Schweizer and co-workers derived Eq. (18)
from a van–der–Waals (vdW) model for the equation of
state, both in the limit of zero pressure approximating at-
mospheric conditions [84] and in the limit of high pressure
[85]. These and further [86] results reveal that Eq. (18)
works very well for nonpolar molecular and polymer liq-
uids over a wide range of temperatures and pressures.
This is an interesting and potentially significant finding.
Equation (18) is then employed as a key input in a map-
ping of a hard-sphere fluid to molecular liquids [84] and
polymer melts [9, 10]. This mapping is used in the elas-
tically collective nonlinear Langevin equation (ECNLE)
theory [9, 10, 84] and its extensions to polymer films [87–
89] to convert the density dependence of the dynamics in
hard-sphere fluids to the T dependence of the dynamics
in thermal fluids.

Given the proposed universal relationship between κT
and T , the recent simulation study by Xu et al. [7] also
examined the validity of Eq. (18) for a flexible and semi-
flexible bead-spring model and a broad range of cohesive
interaction strengths (i.e. depths of the LJ potential). It
is found that Eq. (18) can linearize the simulation data

at low T (typically below the onset temperature of super-
Arrhenius increase of the α relaxation time), while devia-
tions occur at high T . The authors conclude that further
analysis is desirable [7]. If Eq. (18) was established, it
could not only serve as input for the ECNLE theory but
would also allow to determine the cohesive energy pa-
rameter of the Generalized Entropy Theory [8], a further
developing theory for polymer glass formation.

In this respect, it is interesting that a vdW approach
akin to that of Schweizer and coworkers was proposed
before by Long and Lequeux [90]. The Long–Lequeux
model is closely related to the cell model of the liq-
uid state [91] and was also extended to account for ef-
fects of pressure and temperature in polymer blends [92].
To model the pressure-volume-temperature behavior of
polymer melts Long and Lequeux start from a vdW-like
ansatz for the free energy. Minimization of the free en-
ergy with respect to density implies zero pressure condi-
tions and leads to the following expressions for the equi-
librium density,

ρ =
ρ0
2

1 +
√

1− T/T vdW
c

1 + β
(
1−

√
1− T/T vdW

c

)
/2

, (19)

and compressibility,

1

κT
=
kBTρ0

2γ2

[
1 +

√
1− T

T vdW
c

]3
×[

1(
1−

√
1− T/T vdW

c

)2 − T vdW
c

T

]
. (20)

Here ρ0 is the maximum close-packing density and T vdW
c

the temperature at which air would become a good sol-
vent for the polymer. Clearly, this hypothetical temper-
ature must be very high so that Tg . T � T vdW

c is the
temperature regime where the theory is expected to hold
[90]. The two other parameters, β and γ, are numbers
that account for incompressibility, that is, for the con-
straint that the local density in the system needs to be
smaller than ρ0.

A similar incompressibility constraint is not imple-
mented by Schweizer and coworkers, implying that β = 0
and γ = 1 [90]. Indeed, Eq. (19) for β = 0 gives back
Eq. (6) from Ref. [84]. In this study [84], Mirigian and
Schweizer obtain Eq. (18) for zero pressure in the limit
T � T vdW

c . Since zero pressure corresponds to the min-
imization condition of the free energy [90], we carry out
a low-T expansion of Eqs. (19) and (20). This gives back
Eq. (18) with A = (5 − β)/2γ and B = 4T vdW

c /γ. In-
serting the values for (β, γ, T vdW

c ) from Fig. 11 we get
A = 0.292 and B = 1006 K [42] . These predictions are
slightly different from the best fit to Eq. (18) (cf. Fig. 11),
which is not unexpected due to the low-T approximation
employed. Since Eqs. (19) and (20) avoid the low-T ap-
proximation, they should apply over a larger temperature
range. Indeed, Ref. [90] suggests that Eqs. (19) and (20)
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provide a consistent description of both ρ and κT for su-
percooled polymer melts down to Tg. Therefore, we fit-
ted Eqs. (19) and (20) to our simulation results for the all
models studied [42]. As shown in Fig. 11, we find good
agreement for ρ (solid line in the inset) and κT (solid
line in the main figure), with values for the fit param-
eters that are in reasonable accord with the results re-
ported in Ref. [90] for other hydrocarbon polymers, such
as polystyrene or poly(isobutylene).

Due to the encouraging nature of this comparison be-
tween our simulations and the Long–Lequeux model, we
will utilize Eqs. (19) and (20) in the modeling of the spe-
cific heat at constant pressure in the next section.

V. INTERNAL ENERGY AND HEAT
CAPACITY

Let x denote the microstate of the PBD melt contain-
ing Nc polymers with N united atoms each. The hamil-
tonian is written as

H(x) = K(x) + Utot(x) , (21)

where K is the total kinetic energy and Utot is the total
potential energy consisting of valence terms (bond, bond
angle, dihedral) and pair (Lennard–Jones) interactions.
As explained in Sec. II C, the simulations are carried out
in two steps: First, NPT relaxation to get the average
volume V = V (T, p,NcN) corresponding to temperature
T and pressure p (= 0). Second, NVT production runs by
imposing the volume V (T, p,NcN). During the canoni-
cal production runs the internal energy U is determined
by U = 〈H(x)〉. Since V = V (T, p,NcN), we get the
internal energy at constant pressure, U(T, p,NcN), from
these production runs.

In Sec. V A we first discuss the contributions from the
different terms of Utot to the internal energy before we
turn to the heat capacity in Sec. V B.

A. Temperature dependence of the internal energy

1. Bond length and bond angle potentials

The bond length ` is subjected to the harmonic bond
potential of Eq. (1). Since the force constant Kbond is
large, ` is constrained to remain close to the equilibrium
bond length `0. It is therefore reasonable to assume that
the fluctuations of ` are determined solely by Eq. (1), i.e.
that the bond lengths are independent of each other and
of the potentials for the bond angles, torsion angles and
pair interactions. As a polymer chain has N − 1 bonds,
the average extensive bond length energy (Ebond) is given
by [42]

Ebond(T, p,NcN) ' NcN

(
1− 1

N

)
1

2
kBT . (22)
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FIG. 12. Intensive bond length energy ebond (= Ebond/NcN)
versus T for the CRC and FRC models. Results from con-
tinuous cooling runs with rate Γ = 0.83 K/ns (CRC: cir-
cles, FRC: squares) are compared to equilibrium data for
213 K ≤ T ≤ 353 K (CRC: crosses, FRC: stars). The black
dashed line depicts Eq. (22). The vertical dotted line indi-
cates Tg = 197 K of the CRC model (cf. Table VI). Inset:
Plot of the ratio ebond/[(1 − 1/N)kBT/2] versus T using the
same data as in the main panel.

Figure 12 compares Eq. (22) with simulation data for
the intensive energy ebond (= Ebond/NcN) of the CRC
and FRC models. Two data sets are shown from cooling
runs with rate Γ = 0.83 K/ns and equilibrium results for
T ≥ 213 K. We see that both data sets agree well for
T ≥ 213 K. Moreover, the main panel of Fig. 12 suggests
that Eq. (22) gives an excellent description of the T de-
pendence, not only for the equilibrated polymer liquid,
but also for the glass down to lowest T studied. The in-
set provides a more critical test. If Eq. (22) was valid
for all T , the ratio ebond/[(1 − 1/N)kBT/2] should fluc-
tuate around 1. While this is the case for T & 140 K,
the ratio systematically increases as T → 0. However,
the deviations are weak. To a good approximation, the
assumption of independent bond lengths is therefore jus-
tified and the rate Γ = 0.83 K/ns is sufficiently slow so
that the cooling process can be considered as quasistatic
for `.

Since the bond angle is also subjected to a harmonic
potential with a large Kbend [Eqs. (2), (3)], an approach
analogous to that of ` can be used to estimate the average
extensive bond angle energy (Eang). As there are N − 2
angles per chain, Eang is given by [42]

Eang(T, p,NcN) ' NcN

(
1− 2

N

)
1

2
kBT . (23)

Figure 13 compares Eq. (23) with the simulation results
for the CRC and FRC models. The intensive energies
eang (= Eang/NcN) from cooling runs and equilibrium
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FIG. 13. Intensive bond angle energy eang (= Eang/NcN)
versus T for the CRC and FRC models. Results from con-
tinuous cooling runs with rate Γ = 0.83 K/ns (CRC: cir-
cles, FRC: squares) are compared to equilibrium data for
213 K ≤ T ≤ 353 K (CRC: crosses, FRC: stars). The black
dashed line depicts Eq. (23). The vertical dotted lines indi-
cate Tg = 197 K and Tg = 44 K of the CRC model and FRC
model, respectively (cf. Table VI). Inset: Plot of the ratio
eang/[(1−2/N)kBT/2] versus T using the same data as in the
main panel. For T → 0 the ratio increases to about 1.6 for
the FRC model and to about 5.6 for the CRC model.

simulations agree with each other for T ≥ 213 K and
also with Eq. (23). However, for T → 0 systematic de-
viations from Eq. (23) appear. These deviations become
pronounced in the glass transition zone around Tg, as il-
lustrated in the inset of Fig. 13. Clearly, the softer force
constant Kbend, compared to Kbond, enables larger fluc-
tuations of the bond angles and so their stronger coupling
to the vitrifying melt.

2. Dihedral potential

The results from Sec. III A show that a harmonic ex-
pansion around the minima of the dihedral potentials
cannot be sufficient to describe the T dependence of the
average torsion energy Edih(T, p,NcN) in the polymer
liquid. Anharmonic effects need to be taken into account.
A possible scheme to include anharmonicity is to expand
Edih(T, p,NcN) in powers of T :

Edih(T, p,NcN) =

NcN
[
Aφ(p) +Bφ(p)T + Cφ(p)T 2 +O(T 3)

]
, (24)

where the coefficients Aφ(p), Bφ(p), Cφ(p), etc. are (p de-
pendent) fit parameters. This ansatz is inspired by simi-
lar approaches used in the potential energy landscape de-
scription of supercooled liquids and glasses (cf. Sect. 6.2
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FIG. 14. Intensive energy of the dihedral angles edih (=
Edih/NcN) versus T for the CRC and CRC4 models. For the
CRC4 model edih is shifted downward by −0.95 kcal/mol to
put the energies on the same scale as edih of the CRC model.
Results from continuous cooling runs with rate Γ = 0.83
K/ns (CRC: circles, CRC4: squares) are compared to equi-
librium data for 213 K ≤ T ≤ 353 K (CRC: crosses, CRC4:
stars). The black dashed lines depict a fit to the equilibrium
data with Eq. (24). In the glassy phase the black solid lines
show the fit result to edih(T ) = Ag

φ + Bg
φT [42]. The verti-

cal dotted lines indicate Tg = 197 K for the CRC model and
Tg = 111 K for the CRC4 model (cf. Table VI). Inset: Plot of
(edih − Aφ)/(BφT + CφT

2) versus T to examine the quality
of the fit with Eq. (24).

of [93]).

Figure 14 shows that already the first anharmonic cor-
rection (Cφ) suffices to give an excellent fit to the simula-
tion data for T ≥ 213 K for the CRC and CRC4 models.
(Results for the CRC2 model, not shown, are the same;
the FRC model has no torsional potential.) For the CRC
model |CφT | is by a factor of about 10 smaller than Bφ,
while this factor is about 5 for the CRC4 model [42].
For the CRC4 model anharmonic corrections are larger,
as expected. Still, for both models these corrections are
relatively small, justifying the truncation of Eq. (24) at
second order. However, the relatively small anharmonic-
ity does not imply a weak coupling of the torsions to
the vitrifying matrix. On the contrary, the impact of
the glass transition is clearly visible in the main panel of
Fig. 14. For both models the cooling process is too fast
for the melt to stay at equilibrium on approach to Tg. Ac-
cordingly, the dihedral energy at low T bends over to a
weaker temperature dependence. For T → 0 a harmonic
approximation, edih(T ) = Ag

φ + Bg
φT , provides a good

description (solid lines in Fig. 14). The fit results for the
ground state energy Ag

φ [42] are found to be much larger
than the values expected from the torsional potentials,
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which are given by the energy minimum at 180◦ of the
β dihedral (−5.28281 kcal/mol for the CRC model and
−1.32070 kcal/mol for the CRC4 model). This exempli-
fies the nonequilibrium character of the glass created by
the cooling process.

3. Pair interactions

From the viewpoint of the pair interactions the PBD
model corresponds to a binary LJ mixture [42]. For LJ
and other simple liquids various approaches to decribe
the T dependence of the excess energy have been pro-
posed, see e.g. [94, 95]. One influential theory was devel-
oped by Rosenfeld and Tarazona (RT) [94]. The RT the-
ory starts from an accurate approximation for the excess
free energy functional of densely packed hard spheres and
uses thermodynamic perturbation theory to extend the
theory to continuous (“soft”) potentials. First-order per-
turbation theory around η = 1 packing fraction gives for
the excess internal energy (Eex) of a three-dimensional
classical bulk fluid with N particles the following con-
stant volume (particle density ρ) and constant tempera-
ture expression (cf. Eq. (34) in Ref. [94]):

Eex(ρ, T )

N
= ART(ρ) +BRT(ρ)T 3/5 + · · · .

The leading T 3/5 term is expected to be accurate for large
densities (near freezing) and predominantly repulsive in-
teractions [94]. It implies that the excess isochoric heat
capacity (Cex

V = ∂Eex/∂T |V,N ) increases with decreasing

temperature as Cex
V ∝ T−2/5.

A detailed simulation study of the T dependence of
Cex
V was carried out in Ref. [96] for 18 model liquids with

different stoichiometric composition, molecular topology
and interactions. It was found that the RT expression
Cex
V ∝ T−2/5 provides a better approximation for liquids

with strong correlations between equilibrium fluctuations
of virial and potential energy, i.e., for so-called “Roskilde-
simple” liquids [97]. For instance, the Kob–Andersen bi-
nary LJ mixture [49–52] is a Roskilde-simple liquid (for
ρ ' 1.2 in LJ units) obeying Cex

V ∝ T−2/5 [52, 96]. Due
to the results reported in Ref. [96] it is tempting to test
whether the ansatz,

Epair(T, p,NcN) ' NcN
[
ART(p) +BRT(p)T 3/5

]
, (25)

can provide a good description for the pair interactions
of the PBD model.

Figure 15 shows that the description is indeed excel-
lent. The fit to Eq. (25) was carried out for the equili-
brated polymer liquid in the interval 213 K ≤ T ≤ 353 K
(dashed line), where the pair energies of the CRC and
FRC models (nearly) coincide. Interestingly, the extrap-
olation of the fit to low T agrees with the FRC results
from the cooling run down to the temperature regime
where the glass transition of the FRC model occurs (see
also the inset in Fig. 15 supporting the quality of the fit).
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FIG. 15. Intensive LJ energy epair (= Epair/NcN) ver-
sus T for the CRC and FRC models. Results from con-
tinuous cooling runs with rate Γ = 0.83 K/ns (CRC: cir-
cles, FRC: squares) are compared to equilibrium data for
213 K ≤ T ≤ 353 K (CRC: crosses, FRC: stars). The dashed
line depicts Eq. (25) with ART = −1.83785 kcal/mol and

BRT = 2.23478×102 kcal/mol K3/5. These parameters are the
average values for ART and BRT obtained from fits to the equi-
librium data of all models in the interval 213 K ≤ T ≤ 353 K
[42]. In the glassy phase the solid line indicate the fit result
to epair(T ) = Ag

pair + Bg
pairT [42]. The vertical dotted lines

indicate Tg = 197 K for the CRC model and Tg = 44 K for
the FRC model from Table VI. Inset: Plot of the ratio Eang

divided by Eq. (25) versus T to examine the quality of the fit
by Eq. (25) in the liquid phase.

The impact of the glass transition is clearly visible in
the main panel of Fig. 15. For the both models we find, as
for the dihedral angles, that the cooling process is too fast
for the melt to stay at equilibrium when the temperature
crosses the respective Tg. Accordingly, the pair energy
at low T is larger than the extrapolated liquid curve.
For T → 0 a harmonic approximation provides again an
excellent description of the energy (solid lines in Fig. 15),
as expected for a classical solid.

B. Heat capacity of the polymer liquid

The thermodynamic relation between the (extensive)
heat capacity at constant pressure Cp and at constant
volume CV is given by

Cp = CV + TV
α2

κT
= CV +NcN

Tα2

ρκT
, (26)

where α is the thermal expansion coefficient, κT the
isothermal compressibility and ρ the number density of
united atoms in the system. If we consider the heat ca-
pacity as the ability of a material to take up energy and to



16

200 250 300 350

T (K)

3

3.5

4
c

p
/k

B

CRC

CRC2

CRC4

FRC

FIG. 16. Specific heat at constant pressure cp versus T from
the equilibrium polymer liquid (213 K ≤ T ≤ 353 K) of the
CRC, CRC2, CRC4 and FRC models. The symbols present
the results from enthalpy fluctuations for cp. The solid lines
indicate cp obtained from the temperature derivative of the
enthalpy, i.e. by inserting Eqs. (29), (30), (31) into Eq. (27).

statistically distribute this energy over all degrees of free-
dom, it is natural to report the specific heat (c = C/NcN)
divided by kB because this quantity can be interpreted as
the number of degrees of freedom per particle contribut-
ing to the heat capacity at temperature T .

Figure 16 shows such a plot for the phase of the equi-
librium polymer liquid of all models studied. The specific
heat at constant pressure cp was obtained from the fluc-
tuations of the enthalpy H = U + pV in the NPT runs
(symbols) [98]. Alternatively, cp can also be calculated
by

cp =
1

NcN

∂H

∂T

∣∣∣∣
p,NcN

=
1

NcN

∂U

∂T

∣∣∣∣
p,NcN

, (27)

where U(T, p,NcN) is the internal energy. The pV term
of H does not contribute because the NPT simulations
are performed at p = 0. The internal energy is given by

U = Ekin + Ebond + Eang + Edih + Epair (28)

with Ekin being the average extensive kinetic energy [99],

Ekin = 〈K〉 =
3

2
NcNkBT .

The kinetic energy and the energies for the bond length
[Eq. (22)] and bond angle [Eq. (23)] give the following
contribution to the specific heat (N = 116)

1

NcN

∂

∂T
(Ekin + Ebond + Eang)

∣∣∣∣
p,NcN

=

[
5

2

(
1− 3

5N

)]
kB = 2.487 kB . (29)

For the dihedral and pair potentials we find from Eq. (24)
and Eq. (25)

1

NcN

∂Edih

∂T

∣∣∣∣
p,NcN

= Bφ − 2|Cφ|T , (30)

1

NcN

∂Epair

∂T

∣∣∣∣
p,NcN

=
3

5
BRT T

−2/5 . (31)

By adding Eqs. (29), (30) and (31) the solid lines in
Fig. 17 are obtained, which agree with the results from
the enthalpy fluctuations for all models (barring perhaps
the data point at T = 213 K for the CRC model, which is
the least precise due to the much longer relaxation time
of the CRC model compared to the other models at low
T ). Of course, this agreement is expected for systems
at thermal equilibrium. Here it illustrates, on the one
hand, the internal consistency of the simulation, i.e., of
the thermostating/barostating methods and the length
of the equilibration and production runs. On the other
hand, the splitting of the U into its contributions accord-
ing to Eq. (28) allows to obtain further insight into the
T dependence of cp. For instance, since Edih = 0 for the
FRC model, only Epair determines the T dependence of
cp via Eq. (31). As the coefficient BRT is (nearly) the
same for all models studied [42], the difference between
the FRC model and the other models thus singles out the
contribution of the dihedral energy to cp.

For the CRC model Fig. 17 further details this discus-
sion. With the value for Bφ from [42] the first term of
Eq. (30) adds a constant of about 0.701kB to cp. Together
with Eq. (29) this implies an overall constant contribu-
tion of about 3.138kB to the specific heat, resulting from
the kinetic energy and harmonic intrachain contributions
(bond length, bond angle, and Bφ). This baseline ac-
counts for the major part of the specific heat (dotted line
in Fig. 17), while the T dependent parts from Eq. (30)
and Eq. (31) represent less than one kB. The T depen-
dence is dominated by the pair interactions, as seen from
dash-dotted line in Fig. 17.

The specific heat at constant volume can be calculated
from the fluctuations of the hamiltonian H in the NVT
simulations

cV =
1

NcN

1

kBT 2

[
〈H2〉 − 〈H〉2

]
. (32)

The squares in Fig. 17 show the result of this calculation.
As expected, cV < cp. Alternatively, cV can be obtained
from cp via Eq. (26),

cV =
1

NcN

∂H

∂T

∣∣∣∣
p,NcN

− Tα2

ρκT
. (33)

The first term is known from Eq. (27), the second
term can be obtained from the Long–Lequeux model
[Eqs. (19), (20)]. Then, the right-hand side of Eq. (33)
can be calculated. The dashed line in Fig. 17 shows that
the result of this calculation agrees with Eq. (32), as it
should be for thermally equilibrated systems. Here this
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FIG. 17. Specific heat at constant pressure cp and constant
volume cV versus T from equilibrium simulations of the CRC
model. The symbols present the results from enthalpy fluctua-
tions for cp (circles) and energy fluctuations for cV (squares).
The solid line indicates cp obtained by inserting Eqs. (29),
(30), (31) into Eq. (27). The dashed line shows cV calculated
from Eq. (33) as discussed in the text. The horizontal dot-
ted line indicates the sum of Eq. (29) and Bφ (= 0.701 kB
[42]) from Eq. (30), yielding the constant 3.188 kB. When
adding the pair energy [Eq. (31)] to this constant one gets
the dash-dotted line. The difference between the circles and
the dash-dotted line corresponds to the contribution of the T
dependent part of the dihedrals [i.e. −2|Cφ|T from Eq. (30)].
Inset: Comparison to experiment. The circles and solid line
are the results for cp from the main panel. The dashed line
shows the experimental data from Ref. [100], i.e. Eq. (34)
divided by 4R with R being the gas constant. The (green)
squares depict the results from Eq. (36) using the experimen-
tal data for the solid state from Fig. 9 of [100] as a proxy
to account for contributions from quantum mechanical vibra-
tions in the experimental system.

agreement illustrates again the internal consistency of the
MD simulations, i.e. of the choices made for the simula-
tion parameters (barostat, thermostat, switching proce-
dure from the NPT to NVT ensemble, etc.).

C. Heat capacity of the polymer liquid:
Comparison with experiment

The inset of Fig. 17 compares the simulation results
for cp (circles with solid line) with the experimental heat
capacity of liquid 1,4 PBD (dashed line) [100]. The ex-
perimental data refer to cis-PBD and trans-PBD. Both
polymers crystallize, but have identical cp in the liquid
phase. To parameterize the T dependence of liquid PBD

Ref. [100] recommends the following equation for the spe-
cific heat per monomer:

cp = 52.63 + 0.178T (J/(mol K)) . (34)

Since PBD has 4 united atoms per monomers, the dashed
line in the inset shows Eq. (34) divided by 4R with R
being the gas constant. We see that the order of magni-
tude is the same for both simulation and experiment, but
the T dependence is different: The simulated cp increases
upon cooling, whereas the experimental cp decreases.

How can this difference be explained? A comprehen-
sive discussion of the thermal analysis of polymers is pro-
vided in the book by Wunderlich [101]. Section 2.3.9 of
[101] reports that the heat capacity of many liquid poly-
mers increases linearly with temperature. Equation (34)
thus represents a typical behavior found in experiment.
The linear T dependence is interpreted as resulting from
the superposition of three contributions [102]:

Cp = Cvib(T ) + Cconf(T ) +
TV α2

κT
, (35)

where Cvib denotes the vibrational heat capacity at con-
stant volume and Cconf the (nonvibrational) configura-
tional contribution to Cp due to backbone rotations and
intermolecular interactions. Analysis for several hydro-
carbon polymers in [102] shows that, even in the liquid,
the major contribution to Cp comes from Cvib. As ex-
plained in [100–102], Cvib can be calculated from the
vibrational spectrum of a polymer by considering two
modes of vibration: “skeletal modes”, involving tor-
sion vibrations, bond-angle vibrations as well as collec-
tive vibrations along the chain backbone, and “group
modes”, involving vibrations of small groups of atoms,
e.g. stretching vibrations of the CC and CH bonds, bend-
ing vibrations of the angle in CH2, etc. (see Fig. 2.48 on
p. 123 in [101] and Table 4 in [100]). To calculate Cvib(T )
both modes are treated quantum mechanically, based on
the Debye and Einstein theories for the heat capacity.
The Debye and Einstein theories predict the heat capac-
ity to increase toward the classical limit with increasing
T . Applications reveal that this classical limit is not yet
reached in the experimentally studied T regime of the
polymer liquid (cf. [102] and p. 138 in [101]). Therefore,
Cvib(T ) still increases with T . Although Cconf(T ) and
TV α2/ρκT are found to decrease upon heating, this de-
crease is weaker than the increase of Cvib(T ). Therefore,
the sum of the three contributions still leads to an in-
crease of Cp with T , which can be fitted by a linear T
dependence.

Clearly, our classical united-atom model must fail to
reproduce this behavior: Hydrogen atoms are not explic-
itly taken into account and quantum mechanical effects
are absent. In our case, cvib is a constant given by the
classical result as a multiple of kB.

If quantum mechanical skeletal and group vibrations
are really the cause of the discrepancy between the simu-
lated and experimental cp, can we approximately correct
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for these missing effects? As an attempt to do so, we
scanned the calculated heat capacity Csolid

p for the solid
state from Fig. 9 of Ref. [100],

Csolid
p (T ) = Cvib(T ) +

TV α2

κT
,

and used this as a proxy to account for quantum mechan-
ical vibrational contributions. The resulting prediction
for the experimental specific heat then reads

cp ≈ csolidp (T ) +

[
3

5

BRT

T 2/5
− 2|Cφ|T

]
, (36)

where the term in angular brackets stems from Eqs. (30)
and (31). This term replaces Cconf in Eq. (35) because
it accounts for contributions to cp due to anharmonic
dihedral energies and soft pair interactions in the polymer
liquid.

The inset in Fig. 17 shows that Eq. (36) is reasonable.
Using csolidp (T ) from experiment inverts the T depen-
dence originally found from the simulation, now yielding
semiquantitative agreement with the experimental data
(squares in the inset). Moreover, this agreement also im-
plies that the term [3BRT/5T

2/5 − 2|Cφ|T ] in Eq. (36)
provides a good description of the configurational contri-
bution to cp compared to experiment.

The conclusions made here about quantum effects are
also supported by a recent study [103] comparing simu-
lated heat capacities for 11 hydrocarbon oligomers and
commodity polymers in the liquid phase with experimen-
tal data. This study demonstrates the importance of har-
monic quantum corrections to get good agreement with
experiment and also suggests computational methods to
implement these corrections in classical molecular simu-
lations, as an alternative to a full quantum mechanical
treatment of all atoms in the polymer [104] (see also ref-
erences in [103]).

VI. SUMMARY AND DISCUSSION

We have conducted molecular dynamics simulations
of polybutadiene (PBD) melts using a chemically real-
istic united atom model. Despite the fact that the model
[24, 26] is well established and has been extensively em-
ployed in studies of bulk melts [4, 24, 26–30] and polymer
films [31–35], the present paper begins with a detailed de-
scription of the model. There are two reasons for this.
First, since its introduction the model has undergone sev-
eral changes. In particular, recent simulations with the
GROMACS code [31–35] used an adapted version of the
original potential functions. Therefore, it seems helpful
to gather the information about the potentials from these
different sources for later reference. Second, we have
changed the potentials for the bond length and Lennard–
Jones (LJ) pair interactions. The original model [24, 26]
used rigid bonds and truncated LJ potentials with tail
corrections. Instead of this, we utilize harmonic bond

potentials and pair interactions that ensure continuity of
the potential up to the second derivative at the cutoff
distance. Although there are theoretical arguments that
flexible bonds are a more accurate than rigid bonds when
treating chain conformations by classical statistical me-
chanics [105], our choice not to fix the bond length is
mainly motivated by the fact that the simulations have
been carried out with the LAMMPS code which does not
support, contrary to GROMACS, the constraint of rigid
bonds for polymers. For the pair interactions, our choice
of ensuring continuity of the potential up to the second
derivative has the advantage of avoiding impulsive cor-
rections [45, 46], which otherwise need to be taken into
account e.g. in the computation of elastic constants [106–
108]. This amendment of the model may therefore be
helpful when extending future studies to the elasticity of
polymer glasses. The parameters of our modified force
field have been adapted so as to reproduce key proper-
ties of the original PBD model. In this way, we keep the
salient features of the original model, while rendering it
at the same time more versatile through the amendments
proposed here.

Prompted by studies of the original PBD model [19–
22] and other polymers [5, 17, 18] the present work fo-
cuses on the influence that reduction or elimination of
the dihedral potentials has on chain conformations, ba-
sic thermodynamic properties and glass transition, if all
other potentials are kept the same. For the equilibrium
polymer liquid we find that the impact of the dihedrals
on chain conformations is weak. Even when eliminating
all torsional potentials the chains become only slightly
more flexible (Table V and Fig. 8). This remarkable ob-
servation agrees with the original work of Refs. [19, 20];
it implies that an important contribution to chain stiff-
ness in PBD stems from local correlations involving four
or more bonds along the chain backbone. The weak in-
fluence of the dihedral potentials on chain conformations
is in stark contrast to their strong impact on dynamic
properties. Prior work with the original model [19–22]
reported a significant enhancement of the local and poly-
mer dynamics when reducing or eliminating the dihedral
potentials. This result resonates with studies of other
polymer models [5, 17, 18] and our finding that Tg de-
creases by about 150 K when going from the CRC model
with full torsional potential to the FRC model with no
torsional potential (Table VI and Fig. 9).

While we do not anticipate that the dichotomy of the
influence of the dihedral potential—weak effect on chain
conformations, huge impact on dynamics—is generally
valid, it is an attractive feature of the PBD model, which
could be harnessed in polymer glass simulations. One
can imagine to design a model that maintains the po-
tential wells of the dihedrals but reduces the barriers so
as to promote “tunneling” between the wells. Ideally,
such a model would only speed up the dynamics without
changing static properties of the underlying CRC model.
In this way, equilibration could be achieved at tempera-
tures where relaxation times for standard MD would be
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prohibitively large for current computational resources.

We have also investigated the T dependence of the den-
sity ρ and isothermal compressibility κT in the equilib-
rium polymer liquid. In excellent approximation, we find
ρ and κT to be independent of the torsional potentials
(Fig. 11). This finding may be rationalized as follows: As
shown in Ref. [109], the virial equation for the pressure
does not depend explicitly on angular bending and dihe-
dral potentials. These potentials only enter implicitly,
through thermal averaging of the virial for the bond-
length and pair potentials. But now the bond length
is a hard variable, essentially decoupled from the other
variables and so from the torsional potential in the poly-
mer liquid (Fig. 12). Therefore, the virial of the bond-
length potential is (virtually) independent of the torsions.
The virial of the pair potential is determined by the
intramolecular and intermolecular pair-correlation func-
tions [109]. We find (not shown here) that the influence
of dihedrals on intermolecular pair correlations is very
weak, while it is a bit stronger for intramolecular corre-
lations, but mainly for distances between united atoms
that have no pair interactions along the chain backbone.
Therefore, also the virial of the pair potential is essen-
tially independent of the torsions. These arguments to-
gether explain why density and related quantities, such
as κT , are not coupled to the strength of the dihedral
potentials for our PBD model.

Schweizer and coworkers have recently discovered that
nonpolar molecular and polymer liquids obey a linear
scaling relation between 1/

√
kBTρκT and 1/T and ratio-

nalized this result by the van–der–Waals (vdW) equation
of state [84–86]. We verified that this linear scaling works
very well for our PBD model (Fig. 11). A vdW model,
similar to one discussed in Refs. [84–86], has been pro-
posed before by Long and Lequeux [90, 92]. We find
that the Long–Lequeux model provides a very good fit
of both κT and ρ (Fig. 11), and also gives back the lin-
ear scaling of 1/

√
kBTρκT with 1/T in the low-T limit.

The T range of applicability of the Long–Lequeux model
could thus be larger and might help explain the devia-
tions from the linear scaling observed in recent simula-
tions of coarse-grained polymer models at high T [7]. Al-
though the Long–Lequeux model allows to parameterize
the T dependence of ρ and κT for our model, this does
not exclude that alternative approaches, based e.g. on
generalized entropy [7, 8] or advanced free volume [110]
concepts, can also provide a consistent description of the
data.

Another key thermodynamic quantity is the specific
heat at constant pressure cp or at constant volume cV .
By definition, reduction or elimination of the torsional
potentials must have a pronounced impact on the spe-
cific heat. We illustrate this impact for cp in Fig. 16
and find for all models that cp increases with decreas-
ing T . Decomposition of cp into the different energetic
contributions reveals that the T dependence stems from
anharmonic terms in the dihedral energy and from the LJ
energy (Fig. 17), the latter being very well described by

the functional form proposed by Rosenfeld and Tarazona
[94, 96] (Fig. 15). The increase of cp or cV (Fig. 17) upon
cooling is, however, opposite to the T dependence found
in experiment for many liquid polymers [3, 101], includ-
ing PBD [100]. Since the results obtained by the CRC
model for other static (cf. Sec. III B and Sec. IV and also
[4, 24, 26]) or dynamic properties [4, 27–30] are in good
agreement with experiment, the difference for the spe-
cific heat, shown in the inset of Fig. 17, is surprising. We
argue that this difference is a consequence of the classi-
cal united atom model chosen for PBD, which misses, by
construction, quantum mechanical effects due to hydro-
gen atoms and backbone vibrations. In hindsight, such
quantum effects must have been expected on the basis
of the comprehensive work by Wunderlich and coworkers
[101]. The importance of quantum effects for the model-
ing of the specific heat is also pointed out in other recent
studies [103, 111]. While quantum mechanics is thus per-
tinent for a realistic description of hydrogen atoms and
backbone vibrations, these degrees of freedom are not
coupled (or only very weakly) to the density of PBD or
other polymers, the temperature dependence of which
may be modeled accurately by approaches based on clas-
sical statistical mechanics, such as the Long–Lequeux
model [90, 92] or recent extensions of free-volume the-
ory [110].

In the future we plan to extend our studies to the equi-
librium dynamics of PBD melts. Based on the changes of
Tg observed here and prior work with the original model
[19–22], we expect that reduction or elimination of the
dihedral potentials accelerate the local dynamics. It is
plausible that this effect is present at all temperatures.
At high T , it is often found that the α relaxation time τα
exhibits an Arrhenius behavior, τα ∝ exp(EA/kBT ) with
EA being the activation energy [8, 84, 112]. Acceleration
of the dynamics should be reflected by a decrease of EA

when going from the CRC model with full torsional po-
tential to the FRC model with no torsional potential. On
approach to Tg the activation barrier increases with de-
creasing T . The changes of Tg reported here suggest that
this low-T barrier also decreases with reduction of the
torsional potentials. Since our PBD models with modi-
fied dihedral potentials affect only very weakly chain con-
formations, the ensemble averaged static structure factor
of the melt, and thermodynamic properties related to the
density, a systematic study of the impact of dihedral bar-
riers on the equilibrium dynamics may be of fundamen-
tal importance: on the one hand, for developing theories
that posit a causal relationship between these equilib-
rium static properties and polymer glass formation, and
on the other hand, for structure based coarse-graining ap-
proaches that map bead-spring models to real polymers
[113] and for which the static Kuhn length as a coarse-
graining scale might not necessarily faithfully represent
the dynamic size of a bead [114].
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SUPPLEMENTARY MATERIAL

The supplemental material provides further informa-
tion about the model and simulation, the fits of bond-
correlation function and internal distances to the freely-
rotating-chain-model theory, the fits of the T dependence
of the density from the continuous cooling runs, the fits
of the density and compressibility to the Long–Lequeux
model, and the fits of the T dependence of the different
contributions to the potential energy. Tables summarize
the results for the fit parameters.
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