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Simulating nuclear quantum effects in condensed
matter systems via quantum baths.
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Abstract

This paper reviews methods that aim at simulating nuclear quantum effects (NQEs)
using generalized thermal baths. Generalized (or quantum) baths simulate statistical
quantum features, and in particular zero-point energy effects, through non-Markovian
stochastic dynamics. They make use of generalized Langevin Equations (GLEs), in
which the quantum Bose-Einstein energy distribution is enforced by tuning the random
and friction forces, while the system degrees of freedom remain classical. Although
these baths have been formally justified only for harmonic oscillators, they perform
well for several systems, while keeping the cost of the simulations comparable to the
classical ones.

We review formal properties and main characteristics of classical and quantum
GLEs, in relation with the fluctuation-dissipation theorems. Then, we describe the
quantum thermostat and quantum thermal bath, the two generalized baths currently
most used, providing several examples of applications for condensed matter systems,
including the calculation of vibrational spectra. The most important drawback of these
methods, zero-point energy leakage, is discussed in detail with the help of model
systems, and a recently proposed scheme to monitor and mitigate or eliminate it - the
adaptive quantum thermal bath - is summarised. This approach considerably extends
the domain of application of generalized baths, leading, for instance, to the successful
simulation of liquid water, where a subtle interplay of NQEs is at play. The paper
concludes by overviewing further development opportunities and open challenges of
generalized baths.
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1 Introduction
This paper reviews methods that use generalized thermal baths, that we shall indicate
generically as quantum baths, 1 to approximate nuclear quantum effects (NQEs), and in
particular atomic zero-point energy (ZPE).

It is well-recognised that NQEs cannot be neglected for systems at low temperatures
or at high pressure, where they can have, for example, a strong influence on phase tran-
sitions [Bronstein et al., 2014, Tuckerman & Ceperley, 2018, Schaack et al., 2020]. Nu-
clear quantum effects, however, also often come into play at ambient conditions, typi-
cally when the thermal energy of chemical bonds in molecules is comparable or smaller
than the associated vibrational ZPE or when characteristic interatomic distances in the
system are comparable to the de Broglie wavelength of the nuclei. These conditions
are met, in particular, in systems containing light atoms and most notably hydrogen.
[Markland & Ceriotti, 2018, Fallacara et al., 2021], which is an ubiquitous constituent of
inorganic compounds and a basic element in biological systems. Thus, nuclear quan-
tum effects influence, for example, the stability of crystal polymorphs of pharmaceutical
interest, the spectroscopy of ice and water, or enzymatic reactions in living organisms
[Rossi et al., 2016, Ceriotti et al., 2016, Prah et al., 2020, Rossi, 2021]. NQEs are also re-
quired to reveal the effect of isotopic substitutions on equilibrium properties, as a classical
description of the nuclei predicts identical statistical properties for all isotopes. The exact
simulation of these effects is, however, a challenging problem due to the large (sometimes
unachievable) computational cost of available methods. Time-independent statistical prop-
erties of quantum nuclei at thermal equilibrium can be obtained using the so-called classical
isomorphism of path integrals (see section 6), in which a quantum particle is represented as
a collection of beads interacting via an effective classical-like potential. While this approach
guarantees theoretical convergence to the exact quantum result in the limit of an infinite
number of beads, it necessitates in practice to simulate a number of degrees of freedom
that can become prohibitive, in particular when first-principles methods are used for the
interatomic interactions. The situation is even more problematic for time-dependent prop-
erties for which exact simulation methods scale exponentially with the number of degrees of
freedom. Different approaches have been proposed, [Althorpe, 2021, Ceotto et al., 2017]
each with its strengths and weaknesses, but, in spite of several interesting results, no clear,
practical and general reference method has emerged.

In the following, we focus on the family of approximate methods for simulating quantum
nuclear effects that rely on the use of quantum baths. Although these methods can substan-
tially differ from one another in their practical implementation, they all aim at introducing
quantum statistical properties into classical trajectory-based dynamics. This is achieved

1Different expressions, such as generalized, quasiclassical or quantum baths, are used in the literature to
designate a family of methods revolving around various flavors of dynamics aiming at mimicking quantum
properties via generalized Langevin equations. We adopt here the generic expression quantum bath which is
clear enough to specify the field without entering into the technical details separating these schemes.
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via a stochastic evolution that takes the form of a generalized Langevin Equation (GLE), in
which the quantum Bose-Einstein energy distribution is enforced instead of equipartition,
by means of an appropriate tuning of the random and friction forces. The main advantage of
these approaches is that the number of degrees of freedom in the system and the determin-
istic part of the propagation remain classical, thus enabling to mimic quantum properties
at a numerical cost directly comparable to that of standard Langevin dynamics. Contrary
to standard Langevin, however, quantum baths exhibit a complex non-Markovian dynam-
ics whose formal properties are not obvious. In particular, while these methods deliver
remarkable performances in a growing number of applications, they cannot be formally
justified except for harmonic systems. This intriguing scenario motivates our approach for
this review. In section 2, we start by stating some fundamental results in the statistical
mechanics of classical and quantum systems, the fluctuation-dissipation theorems (FDT).
We then introduce the standard and generalized Langevin equations and set the stage for
the following developments. This is done, in particular, by recalling how the GLE can be
derived starting from the physical picture of a generic system (not necessarily harmonic)
bilinearly coupled to an environment modelled as a set of harmonic oscillators. We shall
consider both classical and quantum versions of this system-bath model and describe how
the quantum version can be used, via an appropriate quasiclassical limit, to motivate the
quantum bath algorithms on which we focus in this review. While more general models for
the bath are possible (including, in particular, anharmonicity) these are not particularly rel-
evant for this work and will therefore not be discussed, nor included in examples. Section 3
focuses on using the quantum FDT to build GLEs that combine classical deterministic evo-
lution with quantum stochastic behaviour to mimic NQEs. In particular, we introduce two
approaches, the Quantum Thermal Bath[Dammak et al., 2009] (QTB) and the Quantum
Thermostat[Ceriotti et al., 2009a, Ceriotti et al., 2009b] (QT) that have recently attracted
considerable interest. Section 4 aims at understanding more in depth the capabilities
of the quantum thermal bath via the detailed analysis of simple low-dimensional systems
that enable a comparison with exact quantum results. In particular, the most important
pathology of this type of methods, namely the ZPE leakage, is illustrated on an elementary
example. Although this section focuses on the QTB, which is formally simpler and has
fewer parameters than the QT, the general observations apply to both frameworks. In
section 5, we review the capabilities of quantum bath methods by summarizing some sig-
nificant applications to realistic models of condensed matter systems. Remarkably, these
techniques prove useful not only in the simulation of static equilibrium properties of quan-
tum nuclei, but also in the calculation of vibrational spectra [Calvo et al., 2012b], including
subtle anharmonic features that elude other trajectory-based approximations to quantum
dynamics [Plé et al., 2021]. In section 6, we complete the overview of important applica-
tions of thermal baths by showing how they can be used to improve the convergence of
calculations based on the path integral formalism. We then introduce in section 7 a recent
development that, by exploiting the quantum fluctuation-dissipation theorem, enables to
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monitor and efficiently compensate ZPE leakage. This approach, known as the adaptive
quantum thermal bath[Mangaud et al., 2019] (adQTB) extends considerably the domain of
application of the QTB, leading, for example, to the successful simulation of liquid water
[Mauger et al., 2021]. The review ends with a discussion of remaining limitations, open
questions and possible future developments of quantum baths as effective and accurate tools
for the simulation of condensed phase systems.

We conclude this Introduction by noting that GLEs have a long and rich history, with
applications in a very broad range of domains that we do not account for here. The literature
on quantum baths is also rapidly increasing. While we have tried to provide appropriate
references throughout the text, we have chosen to present the material focusing on results
and derivations that seemed more directly related to the methods at the core of this work,
intended as a relatively self-contained introduction to a still developing set of exciting new
algorithms for growing classes of quantum problems in physics and chemistry.

2 The Langevin equation as a thermal bath
Originally introduced as a description of the Brownian motion, the Langevin equation
is widely used in molecular dynamics simulations as a practical way to implement the
canonical ensemble sampling. Starting from the microcanonical ensemble for a closed
system, the canonical distribution is obtained by considering a small portion of the system
that can exchange energy with its environment, which is referred to as the bath. In order
to avoid the explicit representation of the bath degrees of freedom, the Langevin equation
describes the bath via the combination of a random force and a friction mechanism (see
Fig. 1), that both act on the system degrees of freedom.

Since any stable physical system at equilibrium fulfills the fluctuation-dissipation the-
orem (FDT), we start by recalling this pivotal result in statistical mechanics, that will be
used all along this review. We then introduce the Langevin equation and its non-Markovian
generalization and recall how they can be derived from an explicit harmonic model for the
bath. We end this section by reviewing some instances of the generalized Langevin ap-
proach in the literature, pointing out more specifically some developments that are relevant
in the perspective of the implementation of quantum bath methods to approximate NQEs,
as presented in section 3.

2.1 Linear response and fluctuation-dissipation theorems

Linear response theory provides useful relations characterizing dynamical properties under
external perturbations via averages over the equilibrium probability of the system, e.g.
thermal probability density. We first introduce the complex admittance or susceptibility
j(l) that characterizes the linear response of a system subject to a perturbative force
� (C) = Re[�04

8lC] along a given direction G. At first order in the perturbation, the change
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in the velocity along G induced by the perturbation reads:2:

ΔE(C) = Re[�0j(l)48lC]

This relation can be considered as a definition for j(l). For a classical system at thermal
equilibrium at temperature ) , it can be shown that the following fluctuation-dissipation
theorem (FDT) holds [Kubo, 1966, Kubo et al., 2012]:

�EE (l) = 2:�) Re[j(l)] (1)

The theorem relates the real part of the susceptibility (that is dissipative) to the equilibrium
velocity autocorrelation spectrum (that characterizes fluctuations)3:

�EE (l) =
∫ ∞

−∞
3C 〈E(C0)E(C0 + C)〉 e−8lC (2)

The FDTcharacterizes the frequency distribution of energy at equilibrium, in its classical
formulation (1), it expresses the equipartition of energy in the system. However, a slightly
different FDT can be derived for quantum systems [Callen & Welton, 1951, Kubo, 1966]:

�BEE (l) = 2\ (l,)) Re[j(l)] with \ (l,)) = ℏl
2

coth
(
ℏl

2:�)

)
(3)

Here the classical thermal energy :�) has been replaced by the quantum Bose-Einstein
distribution \ (l,)), and the autocorrelation spectrum that is used is now the Fourier
transform of the symmetrized correlation function:

�BEE (l) =
∫ ∞

−∞
3C Tr

[
1
2
d4@

{
E(0)E(C) + E(C)E(0)

}]
e−8lC

with d4@ the equilibrium density operator. E(C) now designates the time-dependent velocity
operator in the Heisenberg picture 4. The fluctuation-dissipation theorem plays a key role in
the generalized Langevin equations used to sample the classical canonical ensemble, as we
will develop in the following sections. More recently, the quantum version of this theorem
has also been employed to design the trajectory-based approximations for the simulation of
NQEs at the core of this review.

2.2 The Langevin equation in classical molecular dynamics simula-
tions

In its basic form, the Langevin equation of motion writes:

< ¥G = −3+
3G
− <W ¤G + '(C) (4)

2Here and in the remaining of the section, we use one-dimensional notations. The generalization to higher
dimension is straightforward.

3The theorem derived by Kubo in [Kubo, 1966] is actually more general than eq. (1) and can be used
to relate the cross-correlation spectrum ��� (l) of two arbitrary observables � and � to the corresponding
linear response function.

4The definition of the linear susceptibility is also modified in the quantum case and it is related to the
change induced by the perturbative force on the density operator d.
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Figure 1: The Langevin equation (4)& (5) as a thermal bath in classical molecular dynamics
simulations: the random force '(C) (magenta arrows) pumps energy from the bath into the
system, while the friction force −<W ¤G (blue arrows) extracts energy from the system. The
balance between the two produces the correct thermal equilibrium. These forces can be
modified to generate generalized baths with different given properties.

where '(C) is a random force with zero mean (usually taken from a Gaussian distribution)
and characterized by a white noise correlation function:

〈'(C)'(C + g)〉 = 2W<:�)X(g) (5)

The random and friction forces model the effect of a thermal bath and ensure the canon-
ical statistics, including the energy equipartition theorem and the fluctuation-dissipation
theorem as stated in section 2.1. The constant W is the strength of the coupling of the ther-
mal bath with the simulated system. Its inverse 1/W provides an indication of the relaxation
time of the system, that is, the time it takes for the random force and the dissipation to
equilibrate.

Used as a thermostat in molecular dynamics simulations, the Langevin equation (4)
provides, for any W, an exact sampling of the canonical Boltzmann distribution5. Dynamical
properties, on the other hand, are affected by the coupling with the bath and depend on the
value of W. In particular, the damping term generally broadens the peaks corresponding to
modes in the vibrational spectra over a typical width W.

2.3 Generalized Langevin Equation (GLE)

The standard (Markovian) Langevin equation (4) can be generalized in the followingmanner:

< ¥G = −3+
3G
−

∫ C

−∞
3B  (C − B) ¤G(B) + '(C) (6)

This equation is non-Markovian since the friction force does not only depend on the velocity
¤G at time C, but instead is expressed as an integral over past values of ¤G. This dependence over

5More precisely, it can be proved that the probability distribution converges exponentially to the invariant
one starting from a wide range of different initial conditions [Herzog & Mattingly, 2019], thus avoiding
temperature oscillations or other spurious effects that other thermostats, such as Nosé-Hoover, can generate.
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past velocities is characterized by the memory kernel function  (g). In order to enforce
the canonical ensemble statistics and the equipartition of energy, the random force should
then be related to  (g) by the following relation6:

〈'(C)'(C + g)〉 = :�)  (g) (7)

which reduces to (5) in the Markovian limit  (g) = 2<WX(g). Defining the Fourier
transformed quantities,

 ̃ (l) =

∫ ∞

−∞
3g  (g) e−8lg

�'' (l) =

∫ ∞

−∞
3g 〈'(C)'(C + g)〉 e−8lg,

yields the following relation:

�'' (l) = :�)  ̃ (l). (8)

Equation (8) - or its time-domain version (7) - follows from the equilibrium between
the system and the thermal bath, and it is generally referred to as a fluctuation-dissipation
theorem (FDT), similarly to eq. (1). The latter, however, is a general result of linear response
theory that involves only intrinsic observables of the system (its velocity autocorrelation
and its linear response function) whereas eq. (7) and (8), characterize the system-bath
interactions via the friction and random forces in the particular context of the generalized
Langevin dynamics. As pointed out by Kubo, Toda and Hatsishume [Kubo et al., 2012],
eq. (1) can be regarded as more fundamental and following these authors, we will refer to it
as the first kind FDT while eq. (7) and (8) (that can be derived from it as a corollary when
the potential + (G) is harmonic) will be designated as second kind FDT.

2.4 Coupling to a harmonic bath

The generalized Langevin equation (6) appears in a variety of contexts. In particular, a
slightly different form of GLE can be derived under very general assumptions using pro-
jection operator techniques [Mori, 1965, Kubo et al., 2012], an approach that has recently
lead to interesting developments [Glatzel & Schilling, 2022, Meyer et al., 2017]. However,
the damping and random forces obtained in this formalism are generally not explicit. In this
section, we focus on an alternative, more practical and explicit, approach: we derive the
GLE from the description of a system bilinearly coupled to a bath of independent harmonic

6In principle the memory kernel  (g) is only defined for positive time g, here, we symmetrized it assuming
 (−g) =  (g). As the bath is supposed to be at equilibrium, the time correlation function 〈'(C)'(C + g)〉
does not depend on the arbitrary time origin C.
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oscillators 7. The extended system is then described by the Hamiltonian:

� =
?2

2<
++ (G) +

∑
9

[
?2
9

2< 9

+ 1
2
< 9l

2
9 (@ 9 − G)2

]
(9)

where G and ? are the system coordinate and momentum, while @ 9 , ? 9 are an ensemble
of harmonic oscillators that constitute the thermal bath. The coupling to the system arises
from the fact that the equilibrium position of the bath oscillators is taken at @ 9 − G and
therefore changes in time with the variations of G. It is then easily shown that the equation
of motion for the system coordinate can be recast into a GLE of the form of (6), where the
memory kernel  (g) is defined as:

 (g) =
∑
9

< 9l
2
9 cos(l 9g), or equivalently,  ̃ (l) = c

∑
9

< 9l
2
9

[
X(l − l 9 ) + X(l + l 9 )

]
(10)

The damping force is therefore generally non-Markovian with a kernel that depends on the
spectral density of the bath oscillators. In particular, in the limit of an infinite number of bath
oscillators with a spectral density proportional to 1/l2,  ̃ (l) becomes constant and the
Markovian limit is recovered. The random force '(C) is related to the initial configuration
of the bath at an initial time C0:

'(C) = − (C − C0)G(C0) +
∑
9

[
< 9l

2
9@ 9 (C0) cos[l 9 (C − C0)] + l 9 ? 9 (C0) sin[l 9 (C − C0)]

]
(11)

If C0 is in a distant past, the first term vanishes. Moreover, if the bath oscillators are assumed
to be initially (i.e. at C0) in thermal equilibrium, the random force autocorrelation function
can be shown to obey the second kind FDT of eq. (7) and (8).

Interestingly, if the system-bath Hamiltonian (9) is treated quantum-mechanically, a
GLE formally identical to eq. (6) can be derived for the time-dependent operator G in the
Heisenberg picture. The expression of the memory kernel  (g) and the random force '(C)
are the same as in the classical case (only '(C) is now an operator), but the second kind
FDT becomes (compare to (8)):

�B'' (l) =
∫ ∞

−∞
3C

1
2
〈
'(C)'(C + g) + '(C + g)'(C)

〉
e−8lg = \ (l,)) ̃ (l) (12)

where, similarly to what was reported for the first kind FDT (3), the symmetrised correlation
function is used and the classical average thermal energy :�) is replaced by its quantum
counterpart \ (l,)).

In the developments above, we followed mostly the work and formalism of Ford and
coworkers in [Ford & Kac, 1987, Ford et al., 1988]. In their studies, the authors point out

7In principle, the bath can be constructed in different ways, for instance by including non-harmonic
oscillators. However, the bath of harmonic oscillators is at the same time easy to treat analytically and general
enough to describe all features that are relevant for the system. The system, in contrast, can be harmonic or
not, the latter case being the most physically relevant one.
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that the quite simple harmonic bath model is more general than it appears. First, they show
that, for the GLE (6) to be physically meaningful, the memory kernel  ̃ (l) should be
positive for all frequencies8. Now, according to eq. (10), with an appropriate choice of the
frequenciesl 9 (potentially in infinite number), the harmonic bath can be tailored to produce
any arbitrary positive memory kernel  ̃ (l). Therefore, it can be regarded as a very generic
prototype for the GLE (6) and the authors proceed by pointing out the relation between the
harmonic bath of eq. (9) and some of the pre-existing models. Interestingly, in a former
work[Cortes et al., 1985], Cortes et al., had shown that the simple and general second kind
FDT in (12) might not be valid when considering forms of the system-bath coupling more
complex than the bilinear interaction. In that case, and for a quantum mechanical treatment
(in the classical case the FDT remains of a simple form), the relation between the dissipation
and the fluctuations depends on the details of the actual system-bath coupling. In particular,
Cortes et al. derive an expression for the FDT in the case of a quadratic interaction..

2.5 Quasiclassical limit of harmonic bath

The Hamiltonian (9) or closely related harmonic bath models are common starting points
to derive GLE also when looking at quasiclassical approximations for quantum dynamical
properties. In general, these developments start from a fully quantum dynamical description
of a generic system coupled to the harmonic bath and then approximate the dynamics in
some flavour of the classical limit. The specific form of the results depends both on the pro-
cedure enforced to impose the classical limit (e.g. high temperature, formal limit for ℏ→ 0,
stationary phase approximation of the propagator...), and on the adopted representation of
quantum mechanics. For example, starting from the Wigner representation of quantum av-
erages, nuclear quantum effects can be approximated using generalized Langevin equations
where the friction and random forces are kept Markovian but become position-dependent
[Liu & Zhang, 2016, Plé et al., 2019]. Furthermore, one can take the classical limit for all
degrees of freedom (semiclassical methods) or exploit knowledge of the exact solution of
the harmonic part of the problem to derive a mixed quantum-classical scheme in which the
bath is described quantum mechanically, while the dynamics of the system, that includes
the coupling to the harmonic bath, is treated classically (quasiclassical or mixed quantum
classical limit). Mixed quantum-classical limits, however, are delicate. For instance, Bader
and Berne [Bader & Berne, 1994] considered the - apparently simple - case of a harmonic
system linearly coupled to a harmonic bath to investigate the problem of vibrational energy

8Ford and coauthors actually consider more generally the Laplace transform:

`(I) =
∫ ∞

0
3C e−8Ig (g),

that is related to the Fourier transform of the (symmetrized) memory kernel by  ̃ (l) = 2Re [`(l + 80+)].
They show that `(I) is analytical in the upper half-plane (I is a complex variable), and belongs to the class
of the so-called positive real functions that possess several specific mathematical properties that the authors
then use in their argumentation on the generality of the harmonic bath model [Ford et al., 1988].
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relaxation. They recovered the well known result that, for this kind of system, quantum
and classical dynamics lead to the same time-evolution for averages and showed that the
quantum relaxation time can be evaluated from a purely classical calculation. However,
they also proved that - when a mixed quantum-classical dynamics is imposed on the system
- the result for the relaxation time is incorrect and different depending on whether the bath
is treated quantum mechanically and the system classically or vice-versa.

A careful analysis of the mixed quantum-classical limit that nicely sets the stage for the
methods presented in the next chapter was performed by Schmid [Schmid, 1982]. Schmid
focused on the time evolution of the density matrix of a generic quantum system linearly
coupled to a bath of quantum harmonic oscillators (as in (9)) as written in the path integral
formulation of quantum mechanics (see also Section 6). In the coordinate representation,
the density matrix determines the probability to find the system at a given position at time
C = 0 and at another assigned position at time C. Within the path integral formalism, the
density matrix can be computed as a functional integral over the set of all possible paths
connecting the initial and final positions of the system and bath in the assigned time C. The
harmonic nature of the bath enables to obtain an explicit expression for the marginal density
matrix of the system by integrating over the paths of the bath. This still leaves an integral
over the system’s paths to perform. When the coupling with the bath is sufficiently strong,
quantum coherence effects are strongly suppressed. The integral can then be approximated
to argue that the relevant paths for the system become stochastic trajectories of the form:

< ¥G = −3+
3G
− <W ¤G + '(C) (13)

where '(C) is a Gaussian stochastic process such that, in Fourier space,

�'' (l) = 2<W\ (l,)) (14)

The result above is obtained by introducing a non-trivial (and somewhat heuristic) proba-
bilistic interpretation of the path integral representation of the density matrix and enforcing
a quasiclassical approximation based on a truncation of an expansion of the potential that
is not always easy to justify. Although equations (13) and (14) seem formally identical
to the quantum generalized Langevin equations (6) and (12) in the particular case of a
Markovian friction kernel  (g) = 2<WX(g), a fundamental difference has been introduced
with the quasiclassical approximation: whereas in eq. (6), G referred to the quantum posi-
tion operator (time-dependent in the Heisenberg picture), in eq. (13), G is now the position
of a classical-like system, following a stochastic trajectory. This result thus combines a
fully classical evolution of the system (given by the deterministic force −3+/3G) with a
colored thermostat that injects quantum properties, and in particular zero point energy, in
the dynamics. This early approach bears remarkable similarities with the two more recent
methods detailed in the next section.

10
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3 Enforcing quantum statistics via generalized bath.
In this section, we focus on two approaches, the Quantum Thermal Bath (QTB) and the
Quantum Thermostat (QT) that were developed independently in 2009 by two different
groups. Though these methods differ in their practical implementation, they both prescribe
a form of GLE that combines a classical evolution for the system and the coupling to a
quantum bath designed to induce relevant quantum properties (e.g. zero-point energy) in
the otherwise classical evolution of the system.

3.1 The quantum thermal bath

The quantum thermal bath was proposed by Dammak and coworkers [Dammak et al., 2009]
to approximateNQEs in generalmolecular dynamics simulations via a generalized Langevin
equation. They use a Markovian friction kernel and a colored random force '(C) with an
autocorrelation spectrum which is tailored according to the energy distribution \ (l,)) of
the quantum harmonic oscillator. The equations of the resulting dynamics are identical
to those derived from the quasiclassical approximation by Schmid [Schmid, 1982]. For
one-dimensional systems, equations (13) and (14) hold; their generalization to multiple
atomic degrees of freedom is straightforward. However, contrary to Schmid, who aimed
at simulating the dynamics of a system coupled to an actual physical bath, in the QTB
the Langevin equation is simply used as a thermostat in order to enforce the quantum
statistical distribution of energy (including zero-point energy effects). The expression of
the random force autocorrelation, equation (14), is universal, i.e. system-independent, so
that the method does not require a priori knowledge of the system or of its detailed spectral
density. Heuristically, this form of GLE tends to thermalize the vibration modes of the
system with the average energy distribution of quantum harmonic oscillators in equilibrium
at temperature ) , whence the lexical origin of the quantum thermal bath.

Plots of \ (l,)) and its temperature derivative, that enters the definition of key quantities
such as the heat capacity, are provided in Fig.2 for three typical frequencies l. One can
easily check that:

\ (l,)) = ℏl

2
coth

(
ℏl

2:�)

)
=
ℏl

2

[
2:�)
ℏl
+ ℏl

6:�)
− >

(
ℏl

2:�)

)3
]

for
ℏl

2:�)
� 1 (15)

Therefore in the classical high-temperature limit, i.e. when :�) � ℏl for all relevant
frequencies, \ (l,)) approaches its classical value :�) , and substituting in equation (14)
shows that the QTB reduces to a classical Langevin thermostat. However, the typical
temperature where the classical limit is reached can be rather high (see Figure 2). Even
more delicate are quantities such as the heat capacity, i.e. the temperature derivative of the
average energy that for a harmonic oscillator is given by 3\ (l,))/3) which shows a very
slow convergence to the classical value.
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Figure 2: Left: \ (l,)) (left panel) and its temperature derivative 3\ (l,))/3) for three
representative frequencies a = l/2c. a1 = 4 THz is typical of acoustic modes in crystals;
a2 = 20 THz is in the range of optical modes in crystals formed by light mass elements, as
well as of OH and CH bending modes; a3 = 100 THz could correspond to C-H and O-H
stretching modes. For the latter frequency, one can see that the classical behavior is never
reached for ) ≤ 1000 K.

Apart from a slight dependence on the friction parameter W that is further analyzed
in section 4.1, the probability distributions obtained in QTB simulations are exact for
harmonic systems, by construction of the method. For more general cases, it can provide a
good approximation to zero-point energy effects in realistic systems, under some conditions
that are further developed in sections 4, 5 and 7.

3.2 The quantum thermostat

Independently from the work by Dammak and coworkers, Ceriotti, Bussi and Parrinello
also proposed to approximate NQEs via a non-markovian GLE. In two papers in 2009
[Ceriotti et al., 2009a, Ceriotti et al., 2009b], they introduced a general framework to im-
plement and propagate GLEs of the form of (6) using auxiliary variables. The authors aim at
thermalizing different degrees of freedomwith distinct characteristic frequencies at different
effective temperatures. This tool can be used for different purposes: in particular, the au-
thors exploit it to build a quantum thermostat (QT) and thermalize vibrational modes with an
effective temperature that includes a zero-point motion contribution [Ceriotti et al., 2009b],
similarly to the QTB. They also propose to apply this method in the context of Car-Parrinello
molecular dynamics [Hutter, 2012], where the ionic degrees of freedom should evolve at a
given (physical) temperature while the faster electronic degrees of freedom should oscillate
around the ground state that corresponds to the instantaneous ionic configuration, at much
smaller temperatures [Ceriotti et al., 2009a]. The authors successfully applied the colored
bath thermostat on a model polarizable system and verified that the fast degrees of freedom
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(i.e. the motion of the centers of mass of the shells with respect to their nuclei) are correctly
thermalized. More generally, they showed that the colored bath thermostat can be adapted to
specific cases once the density of vibrational states is known and that it allows a faster ther-
malization than the Nosé-Hoover chains [Ceriotti et al., 2009a, Herzog & Mattingly, 2019].

Starting from theOrstein-Uhlenbeck theory of stochastic processes, Ceriotti and cowork-
ers show how a non-Markovian GLE can be implemented via a Markovian Langevin
dynamics for an extended set of variables of which two are the physical position and mo-
mentum (for a one-dimensional physical system) and # are additional auxiliary momenta
[Ceriotti et al., 2010a]. In this way, the colored thermostat GLE can be efficiently applied by
integrating the Markovian dynamics in the (# + 2)-dimensional space via usual molecular
dynamics techniques. This dynamics is governed by the following equations:

¤G
¤?
¤s

 = −


0 −1/< 0
+ ′(G) 0?? aT

p
0 āp A



G

?

s

 +

0 0 0
0 1?? bT

p
0 b̄p B




0
A?

r

 (16)

where s and ¤s are the #-component vectors of the auxiliary momenta and their time deriva-
tives, A and B are (# × #) matrices of adjustable parameters that characterize respec-
tively the friction and the random force memory kernels, together with the #-component
parameter vectors ap, āp and bp, b̄p. + ′(G) is the spatial derivative of the potential en-
ergy and the (# + 1)-component vector (A?, r) contains normalized white noise variables:
〈A8 (C)A 9 (C′)〉 = X8 9X(C− C′). The dynamics in the extended (G, ?, s)-space is thereforeMarko-
vian and it can be solved analytically for a harmonic potential + (G) = <l2G2/2. In more
general non-linear cases, a numerical algorithm based on the symmetric Trotter decom-
position of the Liouvillian can be used, where the linear drift and the random force terms
in ( ¤?, s) are integrated exactly according to the theory of Ornstein-Uhlenbeck processes,
whereas the evolution of G and the non-linear part of ¤? are integrated via a velocity Verlet
scheme [Ceriotti et al., 2010a].

As described in detail in appendix in [Ceriotti et al., 2010a], by integrating away the
auxiliary momenta s, equations (16) reduce to a GLE of the form of (6) for the physical
degree of freedom G, with a memory kernel:

 (g) = 20??X(g) − ap
)4−|g |Aāp

In appendix B, we illustrate the method by examining two simple cases for # = 1 and
# = 2, which correspond to an exponentially decaying memory kernel and to a damped
oscillatory kernel, respectively, and we explicitly write the associated A and B matrices (see
also appendix A of ref.[Ceriotti et al., 2010a]) 9. The classical FDT (8) is enforced when

B?B)? = <:�) (A? + A)
?), (17)

9More generally, the kernels that can build via the extended variable formalism include (not exclusively)
the functions of the form  (g) = Re

[
2:4
−U: |g |+8l: C

]
with arbitrary parameters 2: , U: and l: . It is therefore

very generic.
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where B? is the (# + 1) × (# + 1) matrix that comprises 1??, b?, b̄? and B (and similarly
for A?). However, the noise matrix B? can also be chosen not to fulfill the classical FDT,
so that the GLE can be arbitrarily tuned in order to thermalize the different frequencies of
the system with well-chosen effective temperatures.

While in [Ceriotti et al., 2009a], the focus was on the thermalization of classical degrees
of freedom at different temperatures, in the following paper [Ceriotti et al., 2009b], the
same authors applied the colored baths strategy in order to include quantum corrections
to the classical dynamics of ions in systems that are weakly anharmonic, such as diamond
and ordinary ice �ℎ. In order to design this quantum thermostat (QT), they considered the
particular case of the harmonic oscillator+ (G) = 1

2<l
2G2 for which the stochastic equations

of motion (16) can be solved analytically and the exact kinetic and potential energies of the
physical system explicitly computed. The parameters of the GLE are then tuned in order
for the average position and momentum distributions to be as close as possible to that of a
quantum harmonic oscillator that is Gaussian, as in the classical case, but with a width that
is a function of the oscillation period l:

1
<
〈?2〉 = <l2 〈G2〉 = ℏl

2
coth

(
ℏl

2:�)

)
= \ (l,)) (18)

By properly adjusting  (g) and the noise correlation function, one can tune the average
fluctuations in position and in momentum so as to reproduce the quantum-mechanical
behavior (equation 18), over a wide range of vibrational frequencies. In practice, this is
done via a fitting procedure of the Ap and Bp matrices that have been introduced in equation
16. This method is general and versatile and offers a wide choice for the friction and
random force kernels, nonetheless, it requires a fine tuning of the characteristic matrices,
that might depend on the system under consideration. The QT method has been made
available in the open-source i-PI suite [Kapil et al., 2019], which has enabled its wider use
[Druzbicki et al., 2018, Prlj et al., 2022, Kundu et al., 2021].

4 Critical analysis of quantum baths: model systems
In sections 3.1 and 3.2, the generalized baths (QTB and QT) are introduced as tools to
impose the quantum statistics to a system that generally follows classical laws of motion.
However, the question of the trustworthiness of quantumbathsmethods should be addressed.
In this section, we provide a systematic analysis of the performances of the QTB on
1D and 2D model systems for which exact solutions are available analytically or can be
obtained for comparison from a direct numerical resolution of Schrödinger’s equation
(another example with a 1D double well is given in appendix C). Although we focus here
on the QTB formalism, similar results could be obtained with the quantum thermostat of
[Ceriotti et al., 2009b].
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4.1 Harmonic systems

A pedagogical introduction to the QTB has been given by Barrat and Rodney, with several
useful remarks, in particular, concerning the application of the QTB to a harmonic system,
+ (G) = 1

2<l
2
0G

2[Barrat & Rodney, 2011]. In that case, as the force is linear with position,
an explicit expression can be obtained for the Fourier transform of the position and the
velocity and hence for their respective correlation spectra:

�GG (l) =
2W \ (l,))/<
(l2 − l2

0)2 + l2W2
and �EE (l) =

2W l2\ (l,))/<
(l2 − l2

0)2 + l2W2
(19)

These spectra correspond to Lorentzian peaks centered at l0, and with a width W. They are
good approximations to the quantum symmetrized correlation spectra �BGG (l) and �BEE (l)
apart from a spectral broadening with respect to the Dirac X−function expected for the 1D
quantum system, which is only recovered in the W → 0 limit. The integral of these two
spectra provide respectively the average potential and kinetic energies as :

〈�?>C〉 =

∫
3l

2c
W l2

0

(l2 − l2
0)2 + l2W2

\ (l,)) (20)

〈�:8=〉 =

∫
3l

2c
W l2

(l2 − l2
0)2 + l2W2

\ (l,)) (21)

As the zero-point energy term in \ (l,)) is linear for large l, the integral in (21) diverges
logarithmically. Barrat and Rodney therefore suggested to introduce a cutoff frequency
l<0G in the random force spectrum, that should be larger than the highest frequency of the
physical system 10. With this precaution, in the limit of small values of W, the lorentzian
factors in eq. (20) and (21) tend to Dirac X−functions and both the kinetic and the potential
energy equal \ (l0, ))/2 as expected for the quantum harmonic oscillator11. The position
and the momentum probability distributions obtained in QTB simulations of the harmonic
oscillator, are Gaussian with widths fixed by equations (20) and (21), therefore the method
provides exact estimates (at least in the W → 0 limit) for the quantum average of any static
observable depending only on position or momentum, including zero-point energy effects.
As mentioned above, it also yields a good approximation to some dynamical properties
such as position and velocity autocorrelation spectra. This distinction is important in the
context of nuclear quantum effects simulations as path-integral techniques can provide exact
references for static properties (though at an elevated computational cost, see section 6),
but only approximate methods are available to simulate the quantum dynamical properties
of complex systems with large numbers of atoms.

10Note that the integration time step XC, implicitly imposes a maximal frequency XC−1/2. However, the use
of a noise power spectrum with no high-frequency cutoff poses various numerical problems. In appendix A,
the practical noise generation as well as the choice of the algorithms to integrate the Langevin equation is
briefly discussed.

11For nonzero W, the average energies are slightly different from \ (l0, ))/2, although this difference can
be corrected using spectral deconvolution techniques [Rossi et al., 2018, Mauger et al., 2021]
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The paragraphs below examine the effect of anharmonicity on the accuracy of QTB
simulations. However, even at the harmonic level, a remark should be made about static
observables with a joint position and momentum dependence such as the total energy
fluctuations:

Δ�2 = 〈�2〉 − 〈�〉2 = 〈(�:8= + �?>C)2〉 − 〈�:8= + �?>C〉2 =

[
ℏl0

2
sinh

(
ℏl0

2:�)

)−1
]2

= :�)
2 3\ (l0, ))

3)
(22)

for the quantum harmonic oscillator at temperature ) . In contrast, in QTB simulations,
the energy fluctuations are equal to \ (l0, ))2, as the method is equivalent in the harmonic
case to a classical Langevin dynamics at the effective temperature \ (l0, ))/:� (at least
in the small W limit). Indeed, even though the QTB describes correctly the fluctuations
of the kinetic and potential energies separately, it cannot capture the intrinsically quantum
correlation between the two observables, which leads to a systematic overestimation of
Δ�2, in particular at low temperatures ℏl0

2:�) � 1. As a consequence, in QTB simulations,
quantities such as the heat capacity should be evaluated by differentiation of the average
energy with respect to temperature, as they cannot be directly related to energy fluctuations
as it is usual in classical MD. The overestimation of the energy fluctuations may also have
indirect consequences on the estimation of some dynamical observables in more complex
systems (in particular barrier crossing rates).

4.2 Morse potential in one dimension

The anharmonic Morse potential (figure 3) can be written as:

+ (G) = +0 e−
G−G0
3

(
e−

G−G0
3 − 2

)
(23)

where +0 is the depth of the well, G0 the position of the minimum and 3 the ‘width’ of the
well which in practise controls the anharmonicity thereof.

A ‘mildly’ anharmonic example: simulations were carried out with the following pa-
rameters: +0 = 3.0 eV, G0 = 1.0 Å, 3 = 0.4 Å, ) = 300 K, W = 0.1 THz and cutoff frequency
5max = 500 THz. The mass of the particle is that of a proton. These parameters yield a
harmonic frequency of 3185 cm−1, of the same order of magnitude as that of OH stretching
modes in various systems. The zero-point energy over+0 ratio is 0.065, so this example can
be considered as weakly anharmonic, given that, at this low temperature only the ground
state is significantly populated.

The quantum analysis and the QTB both yield a mean postition 〈G〉 = 1.02 Å, while
the classical simulation yields 1.00 Å. The quantum total energy (actually the zero-point
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Figure 3: A one-dimensional mildly anharmonic Morse potential (magenta, left-hand scale),
with the position distributions (right-hand scale) for a classical simulation (yellow), a quantum
solution through Schrödinger’s equation (green) and the Quantum Thermal Bath (light blue).

energy at this temperature) turns out to be 194 meV while the QTB gives 197 meV12 and
the classical only 26 meV which, of course, does not take into account the large ZPE. The
quantum distribution is shown in green in figure 3 while the classical distribution (yellow)
in much sharper. The distribution generated by the QTB (blue) is adequately broadened,
however, its shape is slightly modified: the maximum is at the the classical position, while
its tail reaches out further and compensates in this example the difference.

Figure 4 shows the corresponding spectra. The QTB spectrum is broadened and red-
shifted with respect to the classical one as the anharmonic part of the potential is explored
further, but red-shift of the actual quantum transition (between the ground state and first
excited states) is even larger, therefore the QTB captures the correct trend while slightly
underestimating the quantum effect. The inset shows the overtone resonance at approxi-
mately twice the main peak frequency. Similar shifts are observed between the classical,
QTB and exact quantum results as for the main resonance. The detailed perturbation anal-
ysis performed in [Plé et al., 2021] shows that an analogy can be drawn between the QTB
and linearized semiclassical initial value representation (LSC-IVR) methods, that combine
quantum phase space sampling with classical molecular dynamics for the evaluation of time
correlation functions [Miller, 2001, Liu, 2015]. Indeed, in QTB simulations, the short-term
dynamics is essentially classical, whereas the coupling with the bath introduces quantum

12For the small friction coefficient W used in this case, the kinetic energy overestimation effect mentioned
in paragraph 4.1 is minor and the dependence on the frequency cutoff is negligible.
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Figure 4: �EE (l) spectra for the mildly anharmonic Morse potential, for the classical MD
simulation (magenta), the QTB (blue) and the first quantum transition between the ground
state and first excited state (green). The inset shows show the overtones (the classical
spectrum is multiplied by a factor of 10).

statistics in the phase space sampling. It can be shown that the overtone intensity is un-
derestimated by approximately a factor of two due to the absence of position-momentum
correlation in the QTB phase space sampling [Basire et al., 2013, Beutier et al., 2014]. This
error on the overtone intensity can be detected (and potentially corrected) using the first-
kind fluctuation-dissipation theorem criterion defined in section 7, and it remains limited
compared to that of path integral methods (see section 6), which yield amuch lower overtone
intensity, similar to that of classical simulations[Plé et al., 2021].

A ‘strongly’ anharmonic example: Now the following parameters are used: +0 = 1.7
eV, G0 = 1.0 Å, 3 = 0.2 Å and ) = 300 K. This yields a harmonic frequency at 3185 cm−1

and ground state energy over depth ratio of 0.75, that is significantly more anharmonic.
Another qualitative criterion for anharmonicity can be found in how the exact quantum
distribution obtained from solving Schrödinger’s equation extends beyond the potential
inflexion point: beyond this point, the restoring force decreases instead of increasing, and
therefore contributes strongly to anharmonic behavior. In this example the exact distribution
(green line in figure 5) does significantly extend beyond that point (G ≈ 1.14Å) while in the
previous (figure 3) it doesn’t.

Figure 5 shows the results. The features already noticed for the mildly anharmonic case
are enhanced: themaximum still remains at the classical position, while the tail extends even
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Figure 5: Distributions (top) and�EE (l) spectra (bottom) for the strongly anharmonic Morse
potential, for the classical MD simulation (magenta), the QTB (blue) and the first quantum
transition between the ground state and first excited state (green). The inset shows show
the overtones Note that the classical spectrum is multiplied by a factor of 10.

further towards larger distances, requiring the introduction of Gmax = 2.6Å to prevent the
particle from escaping the well: in this strongly anharmonic situation, the calculated QTB
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mean position therefore will depend on how Gmax is chosen and ends up being unreliable
(〈G〉QTB = 1.27Å, versus the exact 1.04Å). The total energy is also over-estimated (exact
quantum: 184.4 meV, QTB: 250.4 meV, classical: 26.3 meV), mainly because the increased
probability at large distances G leads to an over-estimation of the average potential energy.
The spectra show qualitatively the same features as above, but are much broader as expected
from the increased anharmonicity.
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Figure 6: Comparison of the particle position distributions for a classical Langevin simula-
tion at the QTB effective temperature )eff = 1800K with the corresponding QTB distribution
at ) = 300K and the exact quantum distribution at the same temperature.

In these simple 1D examples, the QTB can be considered to a certain extent as a
classical dynamics simulation at a higher effective temperature: )eff ' 1800K in the above
example. Indeed, figure 6 shows that the classical distribution, obtained at ) = )eff , is
quite similar to that of the QTB at ) = 300K. This should not mean that it suffices to
estimate the effective temperature and do a classical simulation to describe NQEs correctly!
In realistic systems with many degrees of freedom, each vibration mode is characterized
by a different frequency and therefore a different effective temperature, so that performing
classical simulations at an averaged )eff would yield erroneous results [Li et al., 2022]. The
main advantage of the QTB and QT approaches is that the effective temperature imposed
to each mode naturally corresponds to their frequency by construction of the generalized
bath (including approximate anharmonic shifts, as shown above), without requiring prior
knowledge on the system nor harmonic frequency calculations.

4.3 Several degrees of freedom and zero-point energy leakage

While in one-dimensional systems, the Quantum Thermal Bath introduces a significant
correction to the classical Langevin simulations by taking into account the quantum zero-
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point energy, the issue of energy transfer between modes due to anharmonicity is irrelevant
for lack of several modes to transfer between. However, most simulations deal with systems
that involve a large number of degrees of freedom and such transfers are quite likely to occur.
The unwanted consequence thereof is Zero-Point Energy Leakage (ZPEL), first illustrated
with a simple two-dimensional model and then described from a more general viewpoint:
a diagnosis and a cure are presented in section 7.

A 2D model for an O–H vibration :

We extend the above analysis to the following 2D model:

+ (G, H) = +0 e−
A (G,H)−A0

3

(
e−

A (G,H)−A0
3 − 2

)
+ 1

2
:\ (G, H)2 (24)

A (G, H) and \ (G, H) represent the polar coordinates associated with the cartesian coordinate
(G, H). This model represents an O–H bond in the direction G (associated to the ‘mildly’
anharmonicMorse potential of section 4.2 for the stretching vibration) which allows bending
vibrations (with a harmonic potential for the angle \ with force constant : = 9.48 eV.rad−2).
The mass for both degrees of freedom is set to that of a proton. Figure 7 shows the quantum,
classical andQTBprobability distributions at 300K.As for the 1Dmodels, theQTB captures
very well the strong broadening caused by zero-point energy effects, although the details of
the shape of the QTB distribution display slight discrepancies with respect to the quantum
reference.

Zero-point energy leakage

Table 1 shows different energy contributions calculated exactly, with the QTB and with
classical MD. We easily notice that the QTB provides a massive energy correction to the
classical MD and that the total energy is in good agreement with the exact one. The total
kinetic energy in QTB is slightly overestimated due to spectral broadening effects for finite
W coefficients (as presented in section 3.1). The most notable energy errors are found in the
stretching and bending contributions to the potential energy: the former is underestimated
while the latter is overestimated. This discrepancy is typical of the zero-point energy
leakage (ZPEL). Note that the impact of the ZPEL is reduced when the coupling coefficient
W is increased.

Zero-point energy leakage is a well-known issue, initially described in the context of
LSC-IVR simulations, inwhich the system is first preparedwith the appropriate quantum en-
ergy distribution afterwhat short classical simulations are carried out to assess the dynamics.
As the dynamics is indeed classical, the equipartition theorem will take over and eventually
destroy the quantumdistribution [Ben-Nun & Levine, 1994,Habershon & Manolopoulos, 2009,
Althorpe et al., 2020]. This is clearly connected with anharmonicity that allows vibrational
modes to exchange energy, resulting in practice in a flow of energy from high frequency
modes to low frequency modes. As the effective temperature can be very high, the outcome
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Figure 7: Quantum probability distribution (solid black), classical distribution (dotted grey)
and QTB probability distribution (red), at ) = 300K for the 2D O–H potential. Contour levels
are 1.0 Å−2, 5.0 Å−2, 9.0 Å−2, 13.0 Å−2, 17.0 Å−2

〈�kin〉 〈�stretch〉 〈�bend〉 〈�tot〉
Classical 26 13 13 52

QTB (W = 1THz) 143 87 64 294
QTB (W = 10THz) 146 90 60 296
QTB (W = 20THz) 149 93 56 298

Quantum 143 99 49 291

Table 1: Average energy repartitions for the 2DO–Hmodel at 300K (energy values in meV).
Quantum results are obtained from a PIMD simulation with 96 beads.

might be dramatic, as the melting down of the system in solid state simulations. In the
case of LSC-IVR simulations, the problem can be addressed by carrying out short enough
classical dynamics, so that the leakage does not significantly alter the energy distribution
and thus the dynamical results.

It is not sowith the quantumbathsmethods [Ceriotti et al., 2010a,Hernández-Rojas et al., 2015]
as the quantum energy distribution is generated on the fly through the colored Langevin ther-
mostat. The result is therefore a compromise between how much energy is being pumped
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into the system by the colored noise and how fast this energy is flowing to low frequency
vibrational modes finally to be dissipated by the friction forces. A systematic endeavour
[Brieuc et al., 2016a] to measure ZPEL in QTB simulations as a function of anharmonicity
and the coupling coefficient W in simple model systems such as non-linearly coupled har-
monic oscillators showed that ZPEL indeed increaseswith anharmonicity and that increasing
the coupling coefficient W significantly reduces the effects of ZPEL13. However, the spectral
broadening induced by large coupling coefficients can hinder the use of quantum baths for
the computation of vibration spectra. Even more importantly, large system-bath couplings
do not completely suppress ZPEL, which can remain significant in strongly anharmonic
systems such as liquid water where it has massive consequences as examined in section 7.3.
Some authors also proposed to modify modify the colored noise memory kernel in the QTB
method in order to compensate for the ZPEL and restore the correct energy distribution
between the different modes[Hernández-Rojas et al., 2015, Bedoya-Martinez et al., 2014].
However, without an appropriate criterion to detect and quantify the ZPEL in general cases,
these attempts remained somewhat ad hoc and could not be generalized. Such a criterion
was finally derived in [Mangaud et al., 2019], and is the basis for the adaptive QTB method
presented in section 7.

5 Applications of quantum baths to realistic systems.
Quantum baths have been used to introduce the quantum statistics in the simulation of
several systems, and yield valuable results. In the following, we discuss some selected
applications of these methods to simulate the properties of condensed matter systems,
by splitting the discussion between structural properties and time-dependent observables.
These examples illustrate the usefulness of quantum bath approaches and highlight their
most serious pathology, i.e. zero-point energy leakage, whichmotivates the detailed analysis
of ZPEL and the recent work to mitigate its effects presented in section 7. blueThe studies
reviewed in this section include both QTB and QT simulations, though in fewer number for
the latter method. We note that the GLE framework developed in the context of the QT
also found a wide application in its extension to path integral molecular dynamics (briefly
presented in section 6).

5.1 Structural and thermodynamic properties

An important quantity for crystals is the Debye temperature Θ� , below which the specific
heat and other thermodynamic properties diverge from their classical behavior [Deacon et al., 1992].
In particular, crystals with Θ� > 300 K can show significant nuclear quantum effects at
room temperature.

13Similar observationsweremade regarding theQT in the early papers on thismethod [Ceriotti et al., 2009b,
Ceriotti et al., 2010a] and strongly coupled generalized baths were designed in order to mitigate the effect of
ZPEL, an approach comparable to the increase of the coupling coefficient W of the QTB.
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5.1.1 MgO.

Dammak and coworkers [Dammak et al., 2009] showed that the QTB reproduces the ex-
perimental trends of the lattice parameter and the heat capacity of the MgO crystal as a
function of temperature. While recovering the classical limit for temperatures close to or
above the Debye temperature (Θ� ' 940K in MgO), the specific heat follows the expected
quantum behavior at low temperatures (�+ → 0 as ) → 0), in excellent agreement with
experimental data.

5.1.2 Diamond.

Diamond has a particularly high Debye temperature Θ� ' 2000 K. Ceriotti and coworkers
[Ceriotti et al., 2009b] applied the quantum thermostat (QT) to model diamond crystals14
and compared their results to existing path integral (PI) simulations. The internal energy
�8=C ()) and lattice parameter 0()) as provided by the QT follow the PI trends with tem-
perature down to ) ∼ 0.06Θ� . Below this temperature, the quantum thermostat failed
to counterbalance the strong phonon-phonon coupling, which results in zero-point energy
leakage from high to low frequencies and a too short phonon lifetime. Therefore, �8=C ())
and 0()) sensitively diverge from the PI behavior at low temperatures.

Isotope effects: LiH vs. LiD. Simulations that rely on classical statistical mechanics
cannot account for isotope effects straightforwardly, because statistical averages are inde-
pendent of the nuclear mass. A marked isotope effect takes place in LiH/LiD crystals: one
of the first QTB simulations in conjunction with first-principle description of interatomic
forces via the density functional theory [Dammak et al., 2012] explain the mechanism be-
hind the experimental observation that the lattice parameter of LiH is significantly larger
than that of Li D from very low temperatures up to 600K; the expansion coefficient is also
different in this ) range between the two isotopes15. The elastic properties of LiH and LiD
with increasing pressure are markedly distinct, which reflects in two different equations of
state for the two isotopes as measured by x-ray diffraction experiments in the 0-94 GPa pres-
sure range [Loubeyre et al., 1998]. Remarkably, the quasi-harmonic approximation fails in
reproducing the isotope shift in pressure Δ%, which is defined as the difference in pressure
between LiH and LiD at fixed volume. The QTB simulations follow the experimental
trend in Δ%, while the quasi-harmonic approximation deviates from it, especially when %
increases. This has been interpreted as a consequence of the importance of anharmonic
contributions to the thermal properties of those crystals.

14Interatomic interactions in diamond were modeled with a semi-empirical potential.
15The Debye temperatures as obtained by fitting the thermal conductivity of LiH and LiD crystals are 851

K and 638 K, respectively (see [Dammak et al., 2012] and references therein).

24



Special Issue "Computer Simulation of Quantum and Classical Systems", 2021 Quantum Baths

0.01

0.02

0.03

0.04

0.00
100 200 3000100 200 3000

Temperature (K)

Experimental Simulation

LiH

LiH

LiD LiD

a(
T

) 
– 

a Li
D
(T

=
0

K
) 

 (
Å

)

Figure 8: Variation of the lattice parameters of cubic LiH and LiD vs. temperature, with
respect to the LiD lattice parameter at ) = 0 K. Left: experimental; right: QTB simulations.

5.1.3 Energetic and structural properties of atomic and molecular clusters.

Hernández-Roja and coworkers applied the QTB to study rare-gas clusters, modelled via
Lennard-Jones interatomic potentials [Hernández-Rojas et al., 2015]. They found that the
method generally reproduces energetic properties relatively well, reinforcing earlier results
on cationic neon clusters [Calvo et al., 2012a]. However, close to the liquid-like to solid-
like (l-s) transition, the QTB performed unevenly against PI-based simulations: the l-s
transition in Ar clusters is shifted to low temperatures and the Ne clusters show liquid-like
behavior at all temperatures, even when PI simulations would predict a solid-like behavior.
As pointed out by the authors, this failure is due to ZPEL. They also encountered similar
difficulties in the simulation of water octamers with the QTB, where the strong leakage
of zero-point energy stemming from high-frequency intra-molecular modes completely
distorts the cluster structure and causes spurious melting, even down to low temperatures
[Hernández-Rojas et al., 2015].

5.1.4 Proton momentum distribution.

In the original quantum thermostat paper, the authors applied the newly introduced method
to compute the proton momentum distribution of ordinary ice Ih [Ceriotti et al., 2009b].
NQEs strongly broaden this distribution with respect classical simulations and shift its
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maximum to larger momentum values. The QT was able to capture these effects and
yielded close agreement with experimental measurements. In a later study, the samemethod
was applied to lithium imide Li2NH, using density functional theory to model atomic
interactions, and the results were compared to inelastic neutron scattering measurements
[Ceriotti et al., 2010b]. In this system, the N–H bond is strongly anharmonic, as evidenced
by the divergence between molecular dynamics and quasi-harmonic results for the radial
distribution of the N–H groups. Still, the QT method captures NQEs efficiently in this
context and allows recovering a fine agreement with the experimental proton momentum
distribution.

5.2 Structural properties: hydrogen bonds.

Hydrogen bond symmetrization under pressure provides a stringent test on the capability of
quantum baths to reproduce nuclear quantum effects at extreme conditions that are relevant
for planetary physics.
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Figure 9: The one-dimensional proton effective potential energy + (G; %) for ice under in-
creasing pressure %. The variable G is the difference between the distances from H to its
two O neighbors: G = 3 (O(1) − H) − 3 (O(2) − H). At % = 40 GPa, the proton forms a short
covalent bond and a long hydrogen bond (left panel); at % = 100 GPa, according to the
classical picture, + (G) shows a single minimum at G = 0 and the two bonds are equivalent
(right panel).
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5.2.1 High-pressure VII-X transition in ice.

In the crystal phase VII of ice under high pressure, hydrogen atoms are connected to
their nearest neighbour oxygen via a covalent bond and to their next-nearest neighbour
via a hydrogen bond: O–H · · ·O. As pressure increases, the oxygen atoms get closer
and the proton tends to delocalize over two equivalent positions (resonating O–H . . .O
and O . . .H–O configurations) [Benoit et al., 1998]. Beyond a critical pressure %2, the
asymmetry vanishes: there are no more a (longer) hydrogen bond and a (shorter) ionic-
covalent bond; the proton forms two equivalent bonds to the neighboring O atoms. This
proton-centered phase (ice X) is cubic with %=3̄< symmetry (space group 224). The order
parameter G for this transition can be taken as the difference of the proton distances from the
two neighboring O atoms [Benoit et al., 1998]. By first-principle constrained minimization
at fixed G and excluding all nuclear quantum effects, an expression can be obtained fitting
the proton effective potential energy [Bronstein et al., 2014]:

+ (G; %) = 0G4 + 1(% − %0)G2 + 1
2(% − %0)2

40
for % ≤ %0 (25)

with 0 = 7.2 eV/Å4, 1 = 0.04 eV/(GPa Å2), and %0 = 100 GPa. Under increasing pressure
%, the O-O distance shrinks; the potential wells come closer and the barrier lowers (see Fig.
9). In the classical framework, the proton centering occurs when the barrier disappears, so
the critical pressure is %2 = %0; in the quantum framework, the proton is delocalized, so
that proton centering occurs at much lower pressure, when the zero-point energy equals the
barrier height so that %2 ' 70 GPa < %0. Experimentally, the VII to X phase transition in
ice at room temperature under pressure takes place at approximately 65 GPa while classical
simulations, that do not takeNQEs into account, mostly predict a transition pressure between
90 and 100GPa. InQTB simulations at different pressures [Bronstein et al., 2014], the onset
of hydrogen-bond symmetrization occurs at % ' 65 − 70 GPa, in agreement with previous
results obtained via a path-integral based method [Benoit et al., 1998].

5.2.2 AlOOH.

Under increasing pressure the X phase of AlOOH crystal undergoes a phase transition
from a %21=< structure with asymmetric and disordered O–H · · ·O bonds to a stiffer
%==< phase with symmetric hydrogen bonds, which should be stable within the pressure
and temperature ranges typical for the Earth’s mantle. In QTB simulations at pressures
as low as 10 GPa, the mean proton position equals the midpoint of the O-O distance
[Bronstein et al., 2017], while only at much larger pressures (around 30 GPa) the %==<
phase with symmetric hydrogen bonds becomes stable according to the classical viewpoint
[Tsuchiya & Tsuchiya, 2009]. However, the proton centering occurs when the effective
potential that is seen by the proton is still asymmetric. The lack of the full inversion
symmetry impacts the proton distribution, which is skewed as provided by the QTB even
beyond the critical pressure [Bronstein et al., 2017]. At the transition the O-H stretching
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modes soften considerably and fade out around 10 GPa in the %21=< structure, when
thermal and nuclear quantum effects are taken into account in the simulations. Later X-ray
diffraction experiments [Simonova et al., 2020] also confirm the transition from a hydrogen
off-centered to a hydrogen-centered phase above 10 GPa.

Overall, the QTB provides a satisfying description of hydrogen bonds under increasing
pressure, either where a center of inversion exists (as in ice X) or does not (as in X-AlOOH).

5.3 Dynamical properties

Although initially devised to introduce the Bose-Einstein statistics for the evaluation of
equilibrium properties, the quantum baths have been also used to evaluate dynamical prop-
erties. The following results show that the performances of quantum baths are rather system-
and property-dependent, although in most cases the introduction of NQEs via the quantum
baths improves the description of vibrational properties, even in very anharmonic systems.
Although the coupling with the bath tends to distort vibrational spectra, particularly in the
context of the QT method, this effects can be efficiently corrected a posteriori using spec-
tral deconvolution techniques [Rossi et al., 2018, Mauger et al., 2021]. Moreover, quantum
baths have been employed to study intrinsically nonequilibrium properties, such as thermal
conductivity in crystals (see section 5.3.3).

5.3.1 Phonon spectra in pure and salty ices under pressure.

As observed in section 4, QTB simulations provide direct access to vibrational spectra,
accounting consistently (though approximately) for anharmonic and quantum effects. This
property has been exploited in different studies to confront QTB results with other more
established simulation methods [Calvo et al., 2012b, Mauger et al., 2021], or with experi-
mental data. In particular, the phonon spectrum of ice was extracted from QTB simulations
at various pressures, computed from the Fourier transform of the velocity-velocity autocor-
relation function[Bronstein et al., 2014].

These QTB results are shown in Fig. 10, and compared with the infra-red absorption
and Raman scattering data. The QTB reproduces the experimental data well in the whole
pressure range, including the softening of the O–H stretching mode close to the VII-X
transition. This softening is an essential feature of the transition that can be related to
the response of the system : in the classical picture, the squared frequency of the soft
phonon mode is proportional to the inverse susceptibility j−1 and, in the simple one-
dimensional double-well model, j is maximum at the transition pressure %2. This relates
the O-H stretching mode softening with the enhanced fluctuations of the dipole moment that
typically occurs at the transition. Interestingly, the O-H stretching mode softening occurs
at larger pressures when a small quantity (∼ 1%) of LiCl or NaCl salt is incorporated into
the ice crystal, an effect that is well captured by the QTB [Bronstein et al., 2016].
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Figure 10: Left panel: ice spectra obtained through the Fourier transform of the velocity-
velocity autocorrelation function from QTB simulations at several pressures, by using the
data from [Bronstein et al., 2014]. Right panel: the peaks extracted from the QTB ice spectra
(lines) are compared to the experimental infrared and Raman scattering data (triangles and
circles).

Contrary to previous beliefs, this effect is not due to steric hindrance, but to the a-
symmetrization of the OHO triplet because of the long-range dipolar field generated by
the dissociated Li+ Cl− or Na+ Cl− salts. Accordingly, the critical pressure for the VII-X
transition in salty ice under pressure is upshifted and much closer to its classical value than
in pure ice. This counterintuitive phenomenon (salty ice is "more classical" than pure ice)
shows the subtleties of nuclear quantum effects in hydrogen-bonded systems.

5.3.2 Highly-excited molecules.

Calvo and coworkers [Calvo et al., 2014] studied the response of naphtalene to a strong laser
pulse at varying frequence, by using classical molecular dynamics or accounting for nuclear
quantum effects via path-integral molecular dynamics or the QTB. First, they observed
that the spectrum of the transferred energy from the laser to the molecule is much distinct
in the classical and the quantum frames; the path-integral and the quantum bath spectra
both yield absorption at lower frequencies than the classical molecular dynamics. From
the trajectories, and using a pre-computed rate constant, they predicted the emission of a
hydrogen atom. Also for the dissociation probability spectrum, QTB and path-integral yield
consistent descriptions, which both differ from the harmonic picture.

5.3.3 From equilibrium to nonequilibrium.

In this section, we first introduce the approach adopted byDhar and Roy [Dhar & Roy, 2006]
to compute the thermal conductivity within a fully quantum formalism in the case of a one-
dimensional harmonic chain of atoms. We then shortly describe how this method was
generalized to anharmonic models by Wang [Wang, 2007], by introducing a quasiclassical
approximation in which the thermal conductivity is evaluated through molecular dynamics
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simulations with a quantum heat bath (QHB). This approach has enabled the study of to
realistic systems[Wang et al., 2009] and it presents striking formal similarities with the QTB
(and QT) methods. We conclude this section by briefly reviewing a few studies that exploit
the QTB formalism to evaluate similar nonequilibrium properties.

We briefly recall the connection between equilibrium properties and time-dependent
propagators via atomicGreen’s functions, which is the subject of a vast literature [Zhang et al., 2007].
Here, we follow the formalismadopted byDhar andRoy for a harmonic system [Dhar & Roy, 2006].
They considered a one-dimensional harmonic chain of # particles of mass " , with dis-
placement D 9 ( 9 = 1, . . . , #) with respect to their equilibrium position. The chain is linearly
coupled at its left (L) and right (R) sides with two semi-infinite harmonic lattices that act as
heat reservoirs at two different temperatures )! and )'. Substituting the formal solution of
the quantum propagation for these reservoirs, one can eliminate the bath degrees of freedom
and obtain the quantum Langevin equation for the displacement vector: D� = (D1, . . . , D# ):

¥D� = − D� −
∫ C

C0

3B Σ+(C, B) D� (B) + b! (C) + b' (C) (26)

Where  is the # × # coupling matrix describing the harmonic forces within the chain,
and Σ+ = Σ+

!
+ Σ+

'
is the self-energy matrix due to the combined interaction with the left

and right reservoirs. Since the baths are assumed to be harmonic, Σ+(C, B) can be expressed
analytically in the frequency domain. The noise vectors b! (C) and b' (C) can then be related
to the self-energies by assuming that the reservoirs are at thermal equilibrium and therefore
obey Bose-Einstein statistics, which yields the following fluctuation-dissipation relation for
the symmetrized correlation function in the frequency domain:

1
2
〈b̃ (l)b̃) (l′) + b̃ (l′)b̃) (l)〉 = X(l + l′) ℏΓ(l)

2c
coth

(
ℏl

2:�)

)
(27)

where Γ(l) = Im[Σ+(l)] and b̃ (l) refer either to the left or the right lead, with the
appropriate temperature ) = )! , )'. Here the bath self-energy provides the connection
between the equilibrium correlation function of the bath and the time propagator of the
system that is needed to evaluate transport and nonequilibrium properties. The quantum
Langevin equation (26) is formally very similar to the GLE (6), that was also derived under
the assumption of bilinear coupling with an harmonic bath and extended by Dhar and Roy
to a nonequilibrium case with two baths at different temperatures.
The atomistic Green’s function for the chain can then be expressed as:

�±(l) =
[
−"l2 +  + Σ±! (l) + Σ±' (l)

]−1 (28)

In this expression, the harmonic frequencies of the isolated chain are renormalized by the
self-energies of the interaction with the right and left bath leads. Provided Σ±

!
(l) and
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Σ±
'
(l) are known 16, an expression is then derived for the thermal conductivity, by relating

the energy flux though the chain and the temperature difference )! − )' between the two
reservoirs. In this fully quantum treatment, which is made possible by the fact that the
system is harmonic, the thermal conductivity tends to zero at low temperatures, contrary to
the classical description of heat transport.

5.3.4 Thermal Conductivity of insulating crystals.

Wang aimed at simulating heat transport in realistic nanostructures from the ballistic regime
at low temperatures to the diffusive regime at high) , via molecular dynamics [Wang, 2007].
He noted that the kinetic theory for phonons provides the thermal conductivity as ^ = 1

32E;,
where 2 is the heat capacity, E the sound velocity and ; the mean free path. Therefore,
classical molecular dynamics cannot provide a reliable estimation of heat transport in
the low-temperature regime as 2 goes to a non-zero constant for ) → 0 in the classical
framework, which clearly contradicts the experimental facts.

Wang then followed the Dhar and Roy’s approach [Dhar & Roy, 2006], that he extended
to anharmonic systems. In order tomake the problem tractable in that case,Wang introduces
a quasiclassical approximation similar to that of Schmid [Schmid, 1982], and ended up with
a generalized Langevin equation. It is formally identical to (26), apart from the fact that the
harmonic force term − D� is replaced by a general nonlinear force � (D�). However, the
interpretation of this equation is completely modified in the quasiclassical approximation
as, instead of quantum position operators, the vector D� (C) now describes the classical-
like stochastic trajectories of the atoms that can be obtained by integrating the GLE using
molecular dynamics techniques. Wang showed that this quantum heat bath (QHB) 17 allows
recovering the exact quantum thermal conductivity in the case of harmonic chains, and
provide consistent results for both the high- and low-temperature regimes for anharmonic
one-dimensional chains [Wang, 2007].

Later on, Wang and coworkers [Wang et al., 2009] applied the QHB to analyze thermal
transport in a two-dimensional realistic model of graphene nanoribbon 18. They show that
the QHB results are more consistent than other schemes that use a posteriori quantum
corrections to otherwise classical dynamics. For instance, some authors run classical MD
simulations at a "quantum-equivalent classical temperature")"� =

∫
3l� (l)\ (l,))/:�,

where � (l)is the phonon density of states [Wang et al., 1990]. Such a posteriori correction
schemes are nevertheless not fully consistent even for the one-dimensional harmonic chain,

16The advanced and retarded self-energies Σ± are related to the interaction at the interfaces between
the system sites and the bath sites. The self-energies therefore depend on the bath mode distribution and
on their geometry. For a thorough account of the atomistic Green’s function method, see, for instance,
[Sadasivam et al., 2014].

17Wang named such a method as quantum molecular dynamics. In the context of the present review, we
refer to this approach as quantum heat bath.

18In that more complex geometry, they noted that the QHB self-energy contains delta-like peaks that should
be regularized in the numerical implementation of the quantum heat bath.
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as they differ from the exact result by a numerical factor [Wang et al., 2009]. Interestingly,
Wang and coworkers also provide a diagrammatic perturbative expansion of the QHB
results for weakly anharmonic systems and analyze their discrepancies with respect to a
fully quantum-mechanical nonequilibrium Green functions approach. From this analysis,
they argue that QHB is exact in leading order in the anharmonic perturbation for the phonon
lifetime.

The thermal conductivity of solid argon, modelled via Lennard-Jones interatomic po-
tentials, was also investigated using nonequilibrium QTB molecular dynamics by Bedoya-
Martinez et al. [Bedoya-Martinez et al., 2014]. In these calculations, the simulation cell is
divided into slabs, two of which are thermalized at different temperatures. The ratio between
the imposed temperature gradient and the resulting heat flux then yields the thermal con-
ductivity. As was observed for other materials [Dammak et al., 2009, Qi & Reed, 2012],
the QTB greatly improves the estimation of the heat capacity with respect to classical
simulations. Nonetheless, these authors observed that, at low temperatures (where NQEs
are expected to be most relevant), the experimental trends for the thermal conductivity
were much better predicted when a classical Langevin equation was used as a thermostat
than with the QTB. This result, which contrasts the outcomes by Wang and coworkers
[Wang, 2007, Wang et al., 2009], was related by Bedoya-Martinez et al. to the underesti-
mation of the phonon lifetimes. After the analysis of the simulations, they attributed the
too short phonon lifetime to the presence of a strong ZPE leakage, that tends to equalize
the effective temperature for all phonon modes irrespective of their frequency, and partly
to a more fundamental limitation of the QTB method, that would be intrinsically unable to
capture this quantity accurately (see also our analysis in Sec.4).

5.3.5 Shock compression.

Qi and Reed [Qi & Reed, 2012] proposed atomistic simulations of shock-compressed ma-
terials that incorporates quantum nuclear effects on the fly. The authors combined the
MultiScale Shock Technique to reproduce the kinetics of liquid CH4, described through
semiempirical interatomic potentials, with the QTB as a bath. The heat capacity as well
as the temperature and pressure versus density curves are significantly improved by the
introduction of NQEs in comparison with experimental data.

6 Path integrals and colored bath
Quantum baths are also used to reduce the numerical cost of the reference method to include
NQEs in simulations of realistic systems: path-integral molecular dynamics (PIMD). It can
be shown, at least for time-independent properties, that PIMD systematically converges to
the exact quantum result irrespective of the form of the interaction potential. This conver-
gence can however come at a considerable numerical cost that sometimes hinders ambitious
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applications. The successful use of generalized baths to facilitate convergence of this ap-
proach is therefore an additional motivation for their interest, regardless of the theoretical
limitations discussed in previous sections. In this chapter a very brief introduction to PIMD
is provided, followed by a description of two approaches based on generalised baths that
effectively improve the efficiency of path integral calculations.

6.1 Path integral molecular dynamics

PIMD implements numerically a discrete version of Richard Feynman’s path-integral for-
malism applied in imaginary time to the thermal density matrix. In practise, there is a
correspondence between the quantum equilibrium distribution and that of a classical equiv-
alent system in which each particle is replaced by a set of % replicas or “beads”, subject to
the following potential:

+% (G1, . . . , G%) =
<%

2ℏ2V2

%∑
ℓ=1
(Gℓ − Gℓ+1)2 +

1
%

%∑
ℓ=1

+ (Gℓ) (29)

The first term in the right-hand side is the bead-bead interaction that arises from the kinetic
energy operator, while in the second term + is the physical potential to which the original
particle is submitted, e.g. interactions with other particles [Parrinello & Rahman, 1984].
Standard molecular dynamics methods can then be used to obtain trajectories and sample a
probability distribution of the classical equivalent system, that effectively includes NQEs.
Themain advantage of thismethod is that it converges towards the exact quantumdistribution
as the number of beads % is increased to infinity. Its computational cost is however an
important drawback, especially at low temperature when the number of beads needed
to reach convergence becomes very large. This issue can be mitigated by combining
path integrals with quantum baths (see paragraphs 6.2 and 6.3 below). An other more
fundamental limitation concerns dynamical observables such as vibrational spectra: PIMD
is based on an imaginary-time path integral mapping of the quantum equilibrium density to
that of the classical equivalent system described by equation (29), but this mapping does not
capture the quantum dynamics (even in the large % limit). PIMD is nontheless at the basis
of different approximations to the quantum dynamics among which, in particular, centroid
MD and ring-polymer MD as well as other more computationally demanding methods
[Plé et al., 2019, Althorpe, 2021, Plé et al., 2021].

6.2 Combining path integrals with Langevin equation

In 2011, Ceriotti and coauthors proposed to use generalized Langevin thermostats in the
context of PIMD simulations [Ceriotti et al., 2011] (this combination was first denoted
PI+GLE). In a standard PIMD simulation, the equivalent potemtial +% of (29) is sampled
using molecular dynamics with a classical thermostat (e.g. a white noise Langevin thermo-
stat) and the sampled distribution tends to the exact quantum one for large %. In PI+GLE,
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on the contrary, the equivalent system is attached to a GLE thermostat designed in such a
way that, for a harmonic oscillator, the sampled distribution equals the quantum one for
any number of beads %. For a single bead, this strategy reduces to the quantum thermostat
approach described in section 3.2, while for large %, it tends to the standard PIMD. By con-
struction, the method is exact for harmonic systems, and, for general anharmonic systems,
the number of beads required to converge is significantly reduced with respect to standard
PIMD. For example, for liquid water at ambient temperature, 6 beads yield similar accuracy
as 32 in standard PIMD [Ceriotti et al., 2011]. A further refinement of the method was then
introduced under the name PIGLET [Ceriotti & Manolopoulos, 2012], in which the GLE
thermostat is applied in the ring-polymer normal mode basis in order to speed up the conver-
gence of the quantum kinetic energy estimator. The PIGLET approach considerably reduces
the computational burden of PIMDwhile retaining the systematic convergence with increas-
ing beads number, which in particular makes accurate simulations at ultra-low temperatures
feasible [Uhl et al., 2016]. Although path integral generalized Langevin equation methods
have been limited to the study of static properties, Kapil and coworkers recently introduced
a post-processing scheme that estimates the dynamical perturbation introduced by the gen-
eralized bath and recover time-correlation functions [Kapil et al., 2020]. The PIGLET
availability in the i-PI simulation platform [Kapil et al., 2019] has enabled for a wide use
of this appealing compromise[Giberti et al., 2014, Fang et al., 2016, Lamaire et al., 2019].

6.3 The Quantum Thermal Bath and Path-Integral Molecular Dy-
namics.

Following the work by Ceriotti et al. Brieuc and coauthors proposed to combine PIMD
with the QTB formalism [Brieuc et al., 2016b]. In this approach, denoted PIQTB, the
path-integral equivalent system of equation (29) is thermalized via a Langevin equation
with a Markovian friction and a colored random force (as in the QTB). As for the PIGLET
method, PIQTB tends to standard white noise Langevin PIMD for large number of beads
while it reduces to QTB in the single bead case. For intermediate beads number, the
memory kernel of the random force is chosen in such a way as to enforce a modified second
kind FDT, in order to ensure sampling of the exact quantum distribution when applied to
harmonic oscillators. For anharmonic systems, PIQTB offers similar convergence speed-up
as PIGLET down to very low temperatures [Schran et al., 2018]. In particular, combined
with other recent developments, PIQTB has enabled accurate simulations of chemical
systems in superfluid helium nanodroplet down to ultra-low temperatures on the order of 1
K, whereas the computational cost of converging such calculations using standard PIMD
techniques would be prohibitive [Brieuc et al., 2020].
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7 Overcoming the leakage via theAdaptiveQuantumTher-
mal Bath (adQTB)

Although quantum baths are very attractive for its simplicity and efficiency, the ZPEL is a
major limitation, therefore dearly needing a cure. In this section we show how the first kind
quantum FDT can be used as a quantitative diagnostic tool for the ZPEL and to design an
adaptive method in which it is systematically compensated for.

7.1 Quantitative assessment of the ZPEL.

As mentioned in sections 4.3 and 5, ZPEL and its consequences were observed in several
studies with either the QTB or the QT method. ZPEL can be mitigated by increasing the
damping coefficient W, or equivalently in the QT formalism, by designing more strongly
coupled GLE thermostats [Ceriotti et al., 2010a]. However, strong system-bath couplings
also affect the accuracy of the GLE methods (even for harmonic systems, the QTB and
the QT are only rigorously exact in the weak coupling limit), and distort the vibrational
spectra. Furthermore, even for large W values, the ZPEL is not completely suppressed and
it can still have non-negligible effects. Therefore, a first step to design an effective cure
is to provide a reliable diagnostic tool. Such a diagnosis is derived from the first kind
fluctuation-dissipation theorem (see section 2.1) that, in the context of the QTB, can be
written as:

2\ (l,))Re[j(l)] = �EE (l) (30)

where \ (l,)) is the quantum energy distribution, j(l) is the complex admittance or
susceptibility that characterizes the response of the system to a perturbation, and �EE (l)
is the Fourier transform of the velocity-velocity correlation function19. As introduced in
section 2.1, the first kind FDT is a very general relation that holds for a quantum system at
thermal equilibrium20, it indicates that the vibration power density is distributed according
to the quantum energy distribution \ (l,)). It is more fundamental than the second kind
FDT used in the QTB, which relates the strength of the friction and random forces of the
generalized Langevin equation. Indeed, the QTB would thermalize the vibrational modes
with the appropriate average energy if they were isolated, but in general, anharmonicity
couples the different modes and generates an energy flow from high to low frequencies, even
though the system-bath coupling obeys the second kind FDT. This flow, however, creates
an energy unbalance that can be detected through the violation of the first kind FDT (30).

19With respect to the quantum first kind FDT, eq. (3), the symmetrized autocorrelation spectrum �BEE (l)
was replaced here by �EE (l), that can be evaluated from the Fourier transform of the QTB trajectories as
it would be in a classical framework, consistently with the quasiclassical approximation at the root of the
method.

20Here we use one-dimensional notations but in a more complex system, the FDT should be satisfied for
each degree of freedom and for each frequency independently.
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Figure 11: Plot of the effective temperature defined by eq. (33) in liquid water at 300 K
described with the q-TIP4P/F model and simulated with the QTB method using W = 20 ps−1.
The blue dashed line corresponds to oxygen (it is average over all O atoms and over all
three directions G, H and I), the dotted orange line to hydrogen, and the black continuous
line is the reference :−1

�
\ (l,)) that corresponds to the first kind FDT. The simulations were

performed using Tinker-HP software [Lagardère et al., 2018] and parameters similar to that
in Ref. [Mauger et al., 2021]. The inset represents a zoom on the low-frequency region and
the vibrational power spectrum <�EE (l) is shown as a dashed-dotted grey line.

To exploit this relation, it was shown that, in a Langevin dynamics, the linear suscepti-
bility can be estimated from the velocity-random force correlation [Mangaud et al., 2019]:

Re[j(l)] = Re[�E' (l)]
�'' (l)

=
Re[�E' (l)]
2<W\ (l,)) (31)

The first kind FDT can then be rewritten as:

Re[�E' (l)] = <W�EE (l) (32)

where �E' (l) is the Fourier transform of the velocity-random force correlation function.
All terms in equation (32) are now easily computed during a simulation run, and deviations
from it are a clear indication that ZPEL occurs. Indeed the ratio between the two sides of
the equation can be used to define an effective frequency-dependent temperature )eff (l),
that, if the first kind FDT holds, should follow the quantum distribution of energy:

)eff (l) =
Re[�E' (l)]
<W�EE (l)

:−1
� \ (l,)) = :−1

� \ (l,)) iff FDT holds (33)

The effect of ZPEL on this effective temperature is represented in Fig. 11 in the case of
liquid water. Even with a relatively large value of W, the effective temperature deviates from
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the first kind FDT reference (shown as a black line), which is a clear evidence of ZPEL.
In particular, at low frequencies, the effective temperature is overestimated by more than
50 K for hydrogen atoms (around 30 K for oxygen). This is a consequence of the leakage of
the large zero-point energy present in the high-frequency bending and stretching molecular
modes towards low frequencies, and it can lead to massive errors as it strongly distorts the
water molecular structure (see also Fig. 13).

7.2 A cure through strict enforcement of the first kind FDT

To design a cure for ZPEL, an adaptive procedure was proposed in order to compensate
the energy unbalance measured via the first kind FDT [Mangaud et al., 2019]. To that
end, the second kind FDT must be broken and two different frequency-dependent coupling
coefficients are introduced: WA (l), that replaces W in the random force power spectrum,
equation (14), and W 5 (l) that characterizes the memory kernel of the friction force that
is rendered non-Markovian (it is related to the memory kernel in eq. (6), by  ̃ (l) =
2<Re[W 5 (l)]). The first kind FDT is then written as [Mangaud et al., 2019]:

Re[�E' (l)] = <WA (l)�EE (l) (34)

In the adaptive QTB (adQTB) method, the frequency-dependent coefficients WA and W 5
are adjusted on the fly during the simulation through a relaxation process that nullifies
the difference between the two sides of eq. (34). This means that the random and the
friction forces adapt by modifying the energy balance for each frequency to compensate
for ZPEL and enforce the proper quantum energy distribution. In practice, only one
of the two coefficients W 5 or WA has to be adapted. Both possibilities were tested in
[Mangaud et al., 2019] and provide similar accuracy in compensating the ZPEL, although
the variant where WA is adapted while W 5 is kept fix is much simpler to apply as it does not
require the implementation of a non-Markovian friction force.

The adaptive procedure was successfully checked on several model systems and on Ne13
clusters where it was able to stop the spurious melting of the solid clusters that ZPEL causes
in QTB simulations [Hernández-Rojas et al., 2015, Mangaud et al., 2019]. Plots of WA (l)
on figure 12 clearly show how the bath adapts, reducing the energy input from the bath at
low frequencies, while increasing it at high frequencies.

7.3 Application to hydrogen-bonded systems: Liquid water

In a very recent study, liquid water was simulated using adQTB [Mauger et al., 2021] in
its adaptive random force version (i.e. adapting WA (l) while keeping the friction Marko-
vian with a constant coefficient W). Different observables such as average energies and
radial distributions were compared to PIMD simulations and shown to closely follow this
reference technique (see Fig. 13). Constant-pressure simulations were also performed to
evaluate the density and the vaporization enthalpy as a function of temperature, in good
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Figure 12: a) Adapted WA (l) for the Ne13 clusters of [Mangaud et al., 2019] at 4K (blue) and
18.3K (orange). b) Radial pair distribution function for the QTB (dotted red) and adQTB(dash-
dotted blue) compared to classical (dashed grey) and PIMD (solid black) at 4K (results con-
verged using 32 beads). The friction coefficient was set to W = 2 ps−1 in all simulations.

agreement with the path integral calculations, at a computational cost comparable with
that of classical simulations. Water is a particularly challenging problem for the (ad)QTB
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Figure 13: Plot of the radial distribution functions in liquid water at 300 K described with the
q-TIP4P/F model and simulated with different molecular dynamics methods (left: oxygen-
oxygen, middle: oxygen-hydrogen). The friction coefficient used for QTB and adQTB meth-
ods is W = 20 ps−1, the adapted random force coefficients WA (l) are plotted on the right
panel for oxygen (dashed blue) and hydrogen (dotted orange) atoms. The simulations were
performed using Tinker-HP software [Lagardère et al., 2018] and parameters similar to that
in Ref. [Mauger et al., 2021].

method. Indeed, it was shown in the literature that in hydrogen-bonded systems, two op-
posite NQEs are in competition. On the one side, the stretching zero-point motion tends
to strengthen hydrogen bonding while on the other, the bending zero-point energy weakens
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it [Habershon et al., 2009, Li et al., 2011]. In liquid water, these two effects almost cancel
each other, so that overall NQEs remain limited. Capturing this subtle balance is therefore
essential to reproduce the properties of water accurately. In the standard QTB method, the
molecular structure of water is strongly washed out by the ZPEL, as illustrated in Fig. 13,
but the adaptive procedure restores the correct distribution of energy, including zero-point
contributions, and hence recovers radial distribution functions very close to the PIMD ones.

Interestingly, this study also confirms the potential interest of the (ad)QTB for the in-
clusion of NQEs in the estimation of vibrational spectra: the infrared absorption spectrum
of water was computed and compared to thermostated ring-polymer molecular dynamics
(TRPMD), one of the most common approximations derived from the path-integral for-
malism for the calculation of time-dependent properties. The adQTB provides comparable
accuracy to TRPMD, and it even captures better the high-frequency part of the infrared spec-
trum, were overtone and combination bands appear, whose amplitude the TRPMD method
is unable to reproduce [Benson et al., 2019, Benson & Althorpe, 2021, Plé et al., 2021].

8 Quantumness from baths: state of the art and open
issues

Quantum baths rely on a kind of blend of classical and quantum features: the system
degrees of freedom follow a classical dynamics in which quantum effects are introduced via
a generalized Langevin equation. Langevin dynamics turns out to be remarkably versatile
and enables various choices for the bath characteristics and the strength of the coupling to the
system. In quantum baths methods, it is used to reproduce zero-point energy (ZPE) effects
by thermalizing the modes of the system at a well-chosen frequency-dependent effective
temperature. These approaches are particularly suited for the simulation of the statistical
properties of systems that are at the borderline between the classical and the quantumworlds.
This is typically the case of light nuclei in molecules and condensed matter, such as H, He,
or Li, or even heavier nuclei at low temperatures. In these cases, ZPEs can dramatically
change the energetic landscape of the system, especially for highly anharmonic systems
and shallow potential energy profiles; at low temperatures (much smaller than the ZPE)
some fluctuations can be frozen, which impacts the computed response functions, such as
the heat capacity; when energy barriers are present between several distinct configurations,
the quantum description can greatly differ from the classical one, whenever the extension
of the nuclear wavefunction is comparable to the width of the energy barrier. Isotope
effects are another important example of NQEs, as purely classical averages are mass-
independent. Therefore, the variation under isotope substitution of the thermodynamical
properties (geometric isotope effect) or the reaction rates (kinetic isotope effect) are often
clear experimental markers of the importance of quantum mechanics. In addition, within
the realm of condensed matter physics, simulations involve a large number of degrees of
freedom subject to non trivial potentials that are often expensive to calculate. When NQEs
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cannot be neglected – in many cases even at room temperature and pressure – methods
to account for them must therefore be adapted to these specific constraints. Quantum
baths attempt to use a classical formalism in which the energy distribution is altered to
follow the Bose-Einstein distribution via a stochastic process included into a generalized
Langevin equation. Apart from some technical subtleties that come along with the use of the
generalized Langevin formalism, these methods do not involve increasing the computational
load substantially, which make them highly desirable for the simulation of condensed matter
systems, with thousands of atoms and more, that could be unfeasible otherwise.

The idea of enforcing the correct quantum energy distribution in realistic molecular
dynamics simulations through a generalized Langevin equation is rather recent. As for
many other approaches 21, this quantum-classical blend is clearly an approximation, which
must be assessed.

An important shortcoming of these approaches, which is common also to some other
mixed quantum-classical methods, is the zero-point energy leakage, that is, the trend to
transfer a significant part of the excess ZPE from high to low frequencies. In this respect,
the use of a generalized fluctuation-dissipation theorem (FDT) to monitor and regulate
energy fluxes between the bath and the distinct degrees of freedom of the system has
provided an elegant and easily implementable solution to this problem. The last-generation
adaptive QTBs enforce the first kind FDT to every frequency separately rather than the
second kind FDT, as used in previous quantum baths methods, and, by keeping the ZPE
leakage below a certain threshold via an effective built-in feedback mechanism, is affirming
as a quite safe mixed quantum-classical approximate scheme to appreciate NQEs in many
systems. Moreover, this solution to the ZPE leakage made it possible to distinguish the
intrinsic inaccuracies of the QTB method from those that are induced by the leakage, thus
opening the way to other possible improvements of quantum baths. We note that, although
the adaptive procedure has so far only been explored in the context of the QTB, in principle
it could be extended to the QT formalism as well.

We stress that, at variance with their classical counterpart, the equilibrium distributions
obtained from quantum baths cannot be derived analytically apart from a few cases, such
as the harmonic oscillators. We illustrated through a few examples the performances
of quantum baths (focusing more particularly on the QTB) both on equilibrium, time-
independent, averages and time-dependent correlation functions. Quite a wide experience
has thus been gained on various systems, differing by the kind of interatomic bonding
and the thermodynamic conditions. Rather generally, the QTB yields the maxima of the
particle distributions at the minima of the potential energy surface, as the classical ones.
This is a minor shortcoming for mildly anharmonic cases, but might be a serious limitation
when dealing with strongly anharmonic systems, characterized by double wells or when

21A paradigmatic case is the Density Functional Theory, which has a longstanding record of controversial
approximations before becoming the most popular scheme for solving the many-electron problem, at least
for the ground state. See, e.g., Walter Kohn, "Electronic Structure of Matter – Wave Functions and Density
Functionals", Nobel Lecture, January 28, 1999.
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shallow potential energy surfaces are combined with large ZPE contributions; in such
cases, a comparison with exact probability distributions as obtained via path-integral based
simulations could be helpful. However, in many realistic problems, and even close to
phase transitions (for which the potential typically presents double well features), quantum
baths much improve the classical description, capturing the correct trends and yielding
quantitatively reliable results for a number of observables.

It turns out the quantum baths provide also encouraging results when dynamical pro-
cesses are under scrutiny. They combine approximate sampling of the quantum thermal
distribution with an essentially classical time propagation. The vibrational spectra, which
can be easily obtained and analyzed as in the purely classical dynamics, can provide a rele-
vant description of vibrational properties, including anharmonic properties, overtones and
resonances, although a built-in criterion for attaining the convergence with respect to fully
quantum simulations has not emerged yet. Many questions remain open in that respect and
quantum transport phenomena represent an interesting challenge at the day of this writing.

Another recent use of quantum baths relies on their coupling to other methods. In
this respect, the combination of quantum baths with the path-integral formalism often
provides a good compromise: while path-integral based methods converge towards exact
equilibrium states when the number of beads is increased, they are costly. When the
beads are thermalized or coupled to quantum baths, their number can be significantly
reduced. This enables the simulations of molecules and condensed matter systems at very
low temperatures, which are otherwise out of reach within pure path-integral molecular
dynamics, by keeping the number of beads relatively small.

To conclude, quantum baths have known an increasing number of applications for the
simulation ofmaterial properties since their birth. In this review, we analyzed the difficulties
in their use as well as their shortcomings; at the same time, we prospected new solutions for
making them more reliable and physically sound. We anticipate that other improvements
will be built, so as to make generalized (quantum) baths an increasingly reliable simulation
tool for nuclear quantum effects in materials science.
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Appendices

A Colored noise generation
While in the QT formalism, by Ceriotti et al., the GLE arises from a Markovian dynamics
in an extended phas space, the Quantum Thermal Bath (QTB) explicitly relies on a non-
Markovian random force, and requires the numerical generation of a colored noise, that is
a time-correlated noise, to mimic the quantum frequency-dependent energy distribution.

i) A priori noise generation
In the original paper [Dammak et al., 2009] as in the former work by Wang [Wang, 2007],
the noise is generated in the frequency domain: the real and imaginary parts of the discrete
Fourier transform components of '̃(l) are drawn as Gaussian random numbers with an
amplitude corresponding to eq. (14). Backward Fourier transform then provides the force
in the time domain '(C), that is stored in a large file before starting the actual simulation.
During the simulation, the numbers are then simply read as needed. This method is
well suited for ab initio molecular dynamics [Dammak et al., 2012, Bronstein et al., 2014],
where electronic calculations are computationally expensive so that the number of atoms and
the simulation length remain relatively small. However, when simulating long trajectories
with quickly evaluated analytical interatomic forces fields, storage and access to very large
random force files can become problematic. Furthermore, this a priori generation method
for the colored random force is not suited to adQTB simulations where the memory kernel is
adapted on the fly during the molecular dynamics in order to compensate for ZPE leakage.

ii) On-the-fly noise generation
An alternative, on-the-fly noise generation method was proposed [Barrat & Rodney, 2011],
based on the observation that the QTB colored noise can be obtained by filtering a white
noise [Oppenheim et al., 1999] with the filter defined by:

�̃ (l) =
√

2<W\ (l,)) (35)

The random force '(C) can then be obtained on the fly in real time by convolution of
the deterministic function � (C) (the inverse Fourier transform of �̃ (l)) with a Gaussian
normalized white noise A (C) (with a spectral density �̃AA (l) = 1). Discretization yields:

�̃: = �̃ (: Xl), : ∈ [−=, = − 1]

This, of course, introduces a cutoff frequency l<0G related to the discretization time step :
l<0G = =Xl =

c
XC
. Since � (C) must be real,

� (ℓ XC) = �ℓ =
1

2=

=−1∑
:=−=

�̃: cos
c:ℓ

=
(36)
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and,

'(ℓ XC) = 'ℓ =
=−1∑
<=−=

�<Aℓ−< (37)

where A< is a random number with Gaussian distribution, zero mean and variance
√
XC.

In practice, the time step used for the noise generation does not have to be equal to the
dynamical time step XC: Barrat and Rodney introduce the possibility to choose a larger time
step ℎ = "XC, by keeping the random force constant for " consecutive dynamical steps.
The convolution formula then become:

� (ℓℎ) = �ℓ =
1

2=

=−1∑
:=−=

�̃: cos
c:ℓ

=
and '(ℓℎ) = 'ℓ =

=−1∑
<=−=

�<Aℓ−<

This has two advantages: firstly it allows updating the random force every " time steps
only, and dividing the number of convolution points 2= by " while keeping the same time
interval ) = 2="XC for the convolution. This considerably reduces the computation load.
Secondly, it naturally decreases the cutoff frequency to l<0G = c/ℎ = c/"XC, which can
be useful to avoid kinetic energy overestimation, as indicated in section 4.1.

The increase of the random force step ℎ modifies its effective correlation spectrum,
which should be taken into account by replacing filter (35) with

�̃2 (l) =
�̃ (l)
� (l) , � (l) =

sin(ℎ l/2)
ℎ l/2 (38)

that is, correcting with the Fourier transform of the appropriate square function, since the
random force is kept constant on " consecutive timesteps.

iii) Segmented noise generation
In the adQTB method, the spectra �E' (l) and �EE (l) appearing in eq. (34) have to
be evaluated periodically during the course of the simulation, in order to adapt the bath
coefficients WA (l) - or W 5 (l). The adaptation also implies that the colored noise correlation
spectrum is modified periodically. Generating the noise a priori for the whole duration of
the simulation is thus not possible. It would in principle be possible to divide the trajectory
in segments of length )B46 = =XC and use the a priori method (i) to generate the colored
noise at the beginning of each segment for the duration )B46 only. However, this would
imply a rupture of the noise memory kernel, since the random force at the beginning of a
new segment would be entirely uncorrelated with the force at the end of the former one.
The associated error is small if)B46 is much longer than the random force typical correlation
time, but this might not be the case, particularly when using short segments to accelerate
the adaptation process. On the other hand, the on-the-fly method (ii) is compatible with the
adQTB - with a periodical adaptation of the filter �̃ (l) - but it requires the introduction of
a large random force time step ℎ = "XC in order to be computationally efficient.
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A workaround can be found with the segmented noise generation, that combines ideas
from both previous methods in order to alleviate their respective drawbacks. This method
relies on the filtering formula (37), but the later is applied at the beginning of each segments
only, in order to generate the random force for the whole duration )B46, taking advantage
of the computational efficiency of Fast Fourier Transform (FFT) algorithms in order to
avoid the introduction of a larger step than XC. In practice, one initializes the procedure
by generating the normal white noise A8 for 3= steps and store it in an array A (C). The
convolution with the filter is then performed in the frequency domain at the beginning of
each segment and the colored random force '(C) is finally obtained by backward FFT. The
whole procedure can be summed up in the expressions :

A (C) ↔ [A1, . . . , A3=] with A8 ∼ N(0, XC)

'(C) ↔ FFT−1
[
5l<0G (l)

√
2<WA (l)\ (l,)) × FFT[A] (l)

]
(39)

for C = 8XC, 8 = = + 1, ..., 2=

where 5l<0G (l) is a function implementing an explicit cutoff at frequency l<0G (for in-
stance a Fermi function centered at a well-chosen l<0G < c/XC in order to avoid kinetic
energy overestimation, as indicated in section 4.1). Note that '̃(l) should retain hermi-
tian symmetry in order for the resulting colored force in the time domain to be real. The
random force used for the coming segment is then given by the middle part of '(C) (from
index = + 1 to 2=), even though the white noise A (C) is considered also for the preceding
(8 = 1, ..., =) and for the ulterior (8 = 2= + 1, ..., 3=) ones, which avoids any rupture of the
memory kernel at the transition between segments. At the end of each simulation segment,
after the adaptation of the coupling parameters WA (l) the white noise array is shifted by =
indices, a new white noise segment is generated for 8 = 2= + 1, ..., 3= and the Fourier space
convolution procedure is repeated to provide the colored force '(C) for the coming segment
8 = = + 1, ..., 2=.

B Extendedvariable approach to the generalizedLangevin
equation: two simple cases

In this appendix, we illustrate the extended variable strategy of Ceriotti et al. for practical
implementation of the GLE with two simple examples where the number of auxiliary
momenta is # = 1 and # = 2, the matrix Ap and Bp are given explicitely as well as the
corresponding memory kernel.

In the # = 1 case, we consider following equations of motions for G, ? (the physical
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position and momentum, respectively) and the auxiliary momentum B:

¤G = ?/<

¤? = −∇+ (G) +
√
Wg−1

�
B (40)

¤B = − g−1
� B −

√
Wg�

−1 ? +
√

2<g−1
�
:�) '(C)

where < is the mass of the (physical) degrees of freedom and ' a Gaussian white noise.
According to the general expression given in section 3.2, the memory kernel is then a finite
time-range decaying exponential :  (g) = (Wg−1

�
) e−|g |/g� , g� is the self-correlation time

and W the amplitude of the friction. Both are free parameters of the thermostat and the
coupling between the physical momentum ? and the auxiliary momentum B increases with
W,while the limit of white noise is recovered for g� → 0 (more precisely, for all relevant
frequenciesl � g−1

�
). If the coupling terms are dropped (the second term on the right-hand

side of the two last equations), the motion reduces to a markovian Brownian dynamics for B
and a newtonian conservative dynamics for ?, both decoupled. The equations ofmotion (40)
obey to the classical FDT (17), and the equilibrium distribution for the extended system can
be shown to be % ∝ exp

(
− ?

2/2<++ (G)
:�)

− B2

2<:�)

)
.

More versatile functional forms for the memory kernel can be obtained by increasing the
number of auxiliary momenta. In particular, for # = 2, the following choice of matrices:

Ap =


0

√
Wg−1

�
/2

√
Wg−1

�
/2

−
√
Wg−1

�
/2 0 −Ω

−
√
Wg−1

�
/2 Ω 2g−

�
1


, Bp =


0 0 0
0 0 0
0 0 1

 , with Ω =
√
l2 + g−2

�

yields the memory kernel  (g) = W

g�
4−|g |/g�Re[48lg]. The classical FDT is then simply

12 = 4<:�)g−1
�
. The corresponding equations of motion for the extended system describe

the coupling between the physical coordinates (G, ?) and a damped harmonic oscillator
of frequency Ω, subject to a (Markovian) Langevin thermostat with a friction coefficient
2g−1
�
. The coefficient W controls the coupling between this harmonic oscillator and the

physical system. From this simple example, it is easy to understand how, by further
increasing the number # of auxiliary momenta, one can obtain the generic memory kernel
 (g) = Re

[
2:4
−U: |g |+8l:g

]
that can be arbitrarily tuned via the coefficient 2: , U: and

l: . Furthermore, the classical FDT condition can be broken, for example by coupling
the physical system with damped harmonic oscillators thermalized at different effective
temperatures. In the QT method, the classical FDT is broken in such a way as to thermalize
the harmonic modes of the physical system with the quantum equilibrium energy \ (l,)),
instead of enforcing the classical equipartition of energy.
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C The QTB for a double-well potential in one dimension
As the handling of an energy barrier is crucial in many applications, we consider a generic
1D double-well potential, written as a two-center Morse potential (figure 14):

+ (G) = +0

[
e−

G−G0+0/2
3

(
e−

G−G0+0/2
3 − 2

)
+ e−

−G−G0+0/2
3

(
e−
−G−G0+0/2

3 − 2
)
+ 1

]
(41)

In this example +0 = 3.0 eV, 3 = 0.2 Å while 0 is the distance between the two centers
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Figure 14: Double well potential (equation (41)) for several interatomic distances.

located at −0/2 and +0/2 (typically describing an H atom interacting with two heavier
atoms in an hydrogen bond configuration). When 0 is increased, the wells become deeper
and more separate. In this case, anharmonicity cannot be considered as a perturbation, as
it is inherent to the barrier handling.

Figure 15 shows how the QTB corrects the classical probability distributions to include
quantum effects. At 300K, the classical distribution remains strongly concentrated at the
bottom of the wells and at the simulation time-scale (20 ns), the classical particle hardly
crosses the energy barrier while the QTB-driven particle does. The QTB distribution
shape, however shows sharper peaks than the fully quantum result. The QTB tends to
underestimates the probability in between the two peaks when the wells are close, while
the peak positions are shifted away from the midpoint, with respect to the exact quantum
solution. For large inter-well distances 0 = 2.5Å and 2.6Å, the features obtained in the
single well problem (section 4.2) can be recognized: the QTB distribution maxima remain
at the classical location, while tails in between extend further.
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Figure 15: Quantum probability distribution (magenta), classical distribution (green) and
QTB probability distribution (blue), at ) = 300 K for several interatomic distances. The
damping coefficient here is W = 0.1 THz. Setting W to 1 THz or 10 THz does not change the
resulting probability distributions significantly.
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