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The quantum taste of hydrogen.

At the borderline between classical and quantum physics.

Philippe Depondt1,⇤, Simon Huppert1,⇤⇤, and Fabio Finocchi1,⇤⇤⇤

1Institut des NanoSciences de Paris (INSP), Sorbonne Université, CNRS-UMR 7588, 75005 Paris, France

Abstract. Electronic properties of materials are dominated by quantum e↵ects, but nuclei, being much heavier,
are usually treated as classical particles. This approximation, although tremendously convenient, is not always
valid, even in close to ambient pressure and temperature conditions, especially when light nuclei such as hydro-
gen are involved. Zero point energy and proton tunneling can be relevant. Isotopic e↵ects, obtained by replacing
hydrogen with deuterium, are observed experimentally and are a clear indication of Nuclear Quantum E↵ects
(NQE) since mean values obtained through classical statistical physics do not depend on mass. Introducing
NQEs into simulations at an acceptable computational cost raises fundamental questions and yields subtle and
unexpected results.

1 Introduction

Atomic nuclei are relatively heavy with respect to elec-
trons, and therefore usually considered as classical parti-
cles. However they are sometimes at the border at which
their “quantumness” cannot be completely neglected. The
introduction of quantum physics, even when relatively
moderate, generates e↵ects that are both complex and sub-
tle, and largely escape intuition.

It has been well known for almost a century that heavy
water, in which the hydrogen atoms of H2O are substi-
tuted with their isotope deuterium D, the same chemical
but twice heavier, is toxic (see e.g. [1]): since its discov-
ery in 1932, numerous experiments were carried out with
bacteria, fungi, algæ, plants, fish, frogs and mice (albeit
not, to our knowledge, with human beings). . . High con-
centrations (up to 92%) of D2O will eventually kill many
living organisms. It seems that D2O will interfere with the
cell division process with dramatic consequences on life.

As the chemical properties of H2O and D2O are ex-
actly the same, this raises a question: why should a sim-
ple change of the mass of an atom, with no alteration of
its electronic structure, which is the basis for its chemical
properties, have such consequences?

Of course, it is also well known that the melting point
of deuterated water is 3.8°C instead of 0°C, while boil-
ing takes place at 101°C instead of 100°C. More spectacu-
lar, the ice-VII to ice-X structural phase transition at room
temperature under high pressure occurs at 65GPa for H2O
[2–6] and approximately 90 GPa for D2O [7, 8].

Many other such examples exist: for instance KOH
and KOD [9] exhibit a 30K temperature di↵erence for a
structural phase transition at ambient pressure; NaOH is
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paraelectric without change as temperature is decreased,
while NaOD undergoes a phase transition to an anti-
ferroelectric structure at 150K [10–13]. SrTiO3 also shows
isotopic e↵ects [14] upon O16-O18 substitution.

Changes in the chemical bonds can hardly be invoked
for these behaviors while the evaluation of mean values
of observables such as lattice constants, structure, etc., via
classical statistical physics is not sensitive to mass. One
should therefore take into account the quantum behavior,
not only of the electrons, but also of the nuclei. Introduc-
ing quantum mechanics into molecular dynamics simula-
tions is by no means trivial and we attempt to show in this
paper how it can be done.

We therefore recall in section 2 some relevant ideas
about molecular dynamics simulations, then, in section 3,
we introduce general issues with nuclear quantum e↵ects
and briefly develop methods, successes and problems in
section 4.

2 Molecular dynamics simulations

Condensed matter physicists deal with systems that con-
tain a large number of atoms (Avogadro’s number which
gives an indication of the number of atoms in a macro-
scopic sample weighing a few grams is tremendous: A =
6.02 ⇥ 1023) so that trying explicitly to solve the related
equations is absolutely out of reach. It turns out that, in
many cases, using a computer to solve these equations for
a few hundreds of atoms is quite enough accurately to eval-
uate the quantities of interest, compare with experimental
results, etc. Large e↵orts are devoted to such simulations,
as they are often the key to understanding the underlying
mechanisms behind observable e↵ects and properties of
considerable practical importance for many materials of
interest.
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Several additional approximations are also usually
made:

• the so-called Born-Oppenheimer approximation [15]:
electrons are about 2000 times lighter than the lightest
nucleus (hydrogen) and therefore can be considered to
react almost instantly to nuclear motion and always be
at equilibrium with the nuclear configuration,

• the electronic structures cannot be calculated exactly,
however the “Density Functional Theory” (DFT) [16,
17] allows to evaluate with reasonable accuracy atom-
atom interactions,

• since the above approximation provides the forces be-
tween atoms, it is possible numerically to integrate
Newton’s classical equations of motion: this approxima-
tion assumes the nuclei to be heavy enough to be con-
sidered as classical particles: their quantum behavior is
ignored.

While numerous very precise and highly informative such
simulations were done over the years, and continue to pro-
vide invaluable insights into the behavior of many systems,
it is this last assumption, using Newton’s classical equa-
tions, that is being seriously questioned by the examples
mentioned in the introduction (section 1). These examples
show that, in some cases, especially when hydrogen is in-
volved (which is quite often!), quantum corrections should
somehow be included into our simulations.

3 Nuclear quantum effects (NQE).

3.1 Classical statistical physics will not work!

When a large number of particles is involved, physicists
use statistics to compute the mean values of the quantities
they are interested in, instead of trying to keep track of all
the details of the individual adventures of every particle.
These mean values are obtained by summing on the posi-
tions and velocities of all the particles in the system. As-
sume we are interested in quantity a (for instance, say, the
average distance between two atoms, or the angle between
two bonds): the mean value of a, denoted hai writes:

hai =
R

a(r, p) e−
p2/2m+V(r)

kBT dr dp
R

e−
p2/2m+V(r)

kBT dr dp
(1)

where r, p and m are the positions, momenta and mass
of the particles, V(r) the potential energy of the system,
T the temperature and kB Boltzmann’s constant. Equa-
tion (1) states that the mean value of a is the integral of a
over position and momentum (that is: all accessible states)
weighed by the probability of each state (r,p). In classical
statistical physics, if a does not depend on momentum (or
velocity), the integrals over p, on numerator and denomi-
nator, cancel out and yield:

hai =
R

a(r) e−
V(r)
kBT dr

R
e−

V(r)
kBT dr

(2)

This simply states that mass vanishes from the expres-
sion in equation (2): therefore substituting hydrogen with

deuterium will only increase mass and not change the
mean value of any velocity-independent observable in the
system: vibrational frequencies will change because deu-
terium is heavier, but structural properties should not be
altered, in contradiction with what the examples in section
1 tend to show.

In order to re-insert mass into these averages, one may
first note that equations (1) are (2) are not valid in a quan-
tum physics framework (technically because, then, r and
p are not numbers but non-commuting operators). More
generally, quantum physics states that a particle is not pre-
cisely localized in space, and an estimate of this quantum
delocalization is given, for a free particle, by de Broglie’s
thermal wavelength :

λdB =

s
2⇡ ~2

m kBT
(3)

which does depend on the mass m, ~ being Planck’s re-
duced constant. The following orders of magnitude are
of interest: for hydrogen at room temperature λdB ⇡ 1Å,
while for deuterium λdB ⇡ 0.7 Å, which can be compared
with the O – H covalent bond length dOH ⇡ 1 Å in many
compounds. The de Broglie wavelength di↵erence be-
tween the two isotopes is not negligible with respect to
the OH bond length, and therefore, this latter point should
lead us into introducing into models quantum e↵ects, for at
least light nuclei which can be significantly delocalized. In
practice, the problem is more complicated than suggested
by equation (3), since the particles under study are not free
but interacting with others, so that the actual quantum ef-
fects have to be examined for each physical system specif-
ically.

3.2 The textbook case of high-pressure ice: from

ice VII to ice X.

Before going into technical points, it is worth trying to un-
derstand, at least qualitatively, what is happening in high-
pressure ice (for a detailed description, see [8] and refer-
ences therein) and how quantum delocalization can alter a
phase transition, for instance.

At room temperature and 5 < P < 65 GPa, the sta-
ble phase of water is ice-VII, a body-centered cubic (bcc)
structure with an oxygen atom on each corner of the cube
and one at the center (figure 1). The hydrogen atoms are
located on the diagonals of the cube between the oxygen
atoms, but they are not at the mid-point between oxygens:
they are bonded to one oxygen atom via a short (⇡ 1 Å)
covalent bond and to the other through a longer (⇡ 1.5-2
Å) and much weaker hydrogen bond. It is worth mention-
ing however that most of the intriguing properties of water
are in fine determined by this longer hydrogen bond.

In practice, the hydrogen atom is caught in a double-
well potential and will rest in one of the wells.

When pressure is increased, the oxygen atoms are
pushed closer (figure 2): the covalent O – H bond, being
very strong, does not change much, so it is the hydrogen
bond length that is decreased significantly. From an en-
ergy viewpoint (figure 3), the two wells move closer while
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Figure 1. The structure of ice VII for pressures P < 65 GPa.
Oxygen atoms (in red) form a body-centered cube, while the hy-
drogen atoms (light blue) are located between the oxygen atoms
in an asymmetric position. The thin dashed lines represent weak
hydrogen bonds, while the bond with the nearest oxygen atom is
covalent. Each oxygen atom has 2 hydrogen neighbours (only 2
are represented on the figure, the others associated with the other
oxygen atoms have been omitted for clarity).

O H O

Low pressure

High pressure

covalent bond hydrogen bond

approx. 1 Angstrom

< 2.41 Angstrom

> 2.41 Angstrom. In liquid water approx. 3Ang.

Figure 2. Location of the hydrogen atoms between oxygen
atoms in an asymmetric position for ice VII at low pressure (top)
and in a symmetric position for ice X at high pressure (bottom)
when the oxygen atoms are pushed closer with dO−O < 2.41Å.

the barrier height decreases. When the barrier vanishes at
high enough a pressure, the structure changes to ice X and
the hydrogen atom will sit in the middle: this is called a
“symmetrization” transition. There is no “quantumness”
involved in this explanation, and indeed this transition can
occur within a classical frame, but only around 90 to 100
GPa instead of 65! We still have an error of approximately
30 GPa, which is by no means negligible.

Now, if the hydrogen atom is significantly delocalized
as can be inferred from the end of section 3.1, it will ex-
plore the potential well in which it is lying, even when the
temperature equals zero (figure 4). The result will be that
its energy will be greater than the potential minimum: this
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Figure 3. Potential energy of the system as a function of the
hydrogen atom position x between its two neighbouring oxygen
atoms for several pressures. The transition mechanism for ice
is shown from a classical viewpoint: as pressure is increased,
the two potential wells move closer and the barrier eventually
vanishes.

is called Zero-Point Energy (ZPE). The hydrogen atom
will thus be able to cross the energy barrier before it van-
ishes, therefore at a lower pressure than initially expected.
In many systems, this happens when the O – O distance
becomes less than approximately 2.41Å.
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Figure 4. Transition mechanism in ice from a quantum view-
point: the horizontal lines (colors correspond to the potential en-
ergy curve at the same pressure) represent the minimum energy
for each pressure increased with the zero-point energy showing
how the e↵ective barrier is decreased, which allows the transition
at a lower pressure than in the classical case (figure 3).

The most striking e↵ect of the ZPE is therefore a sig-
nificant reduction of the transition pressure.

3.3 Why quantum physics is in practice

intractable: exponential divergence

It therefore appears that NQEs should be included, when
relevant, into simulations. The most straightforward
approach to quantum dynamics is Schrödinger’s time-
dependent equation:

i~
@ (r, t)
@t

= − ~
2

2m
∆r (r, t) + V(r)  (r, t) (4)
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The trouble with equation (4) is that the wave-function
 (r, t), the unknown function that is the solution of the
equation, is a function of t but also of r, a vector that con-
tains the coordinates of all the particles that are part of the
system under scrutiny. This means that  is an extraor-
dinarily complicated function of a tremendous number of
coordinates.

Equation (4) can indeed be solved for a small number
of degrees of freedom, but for a reasonable number from
a condensed matter physicist’s point of view (maybe 300
degrees of freedom for one hundred particles, and over a
duration of 20 ⇥ 10−12s), the computational power of the
largest computer in the world would be orders of magni-
tude below what is needed.

Approximations must therefore be made.

4 Methods

Nuclei, including hydrogen, are much heavier than e.g.
electrons so that, while introducing quantum e↵ects, we
shall mainly be interested in zero-point energy and rel-
atively modest quantum delocalization: issues connected
with exchange or interference will reasonably be left out,
in most cases, without major damage.

Several approaches were developed in the past and
are currently used. Path-integral (PI) based methods stem
from Feynman’s formalism [18] and mimic quantum delo-
calization by generating many trajectories with the correct
distribution. Generalized Langevin (GL) based methods
use a stochastic process for the same purpose. Both in-
volve modified classical equations of motion. PI is often
considered the reference method as it converges towards
exact quantum distributions as the number of trajectories
is increased with the drawback of rapidly increasing com-
putational cost. GL is a somewhat more radical approxi-
mation as it has negligible additional computation cost as
compared with classical molecular dynamics simulations.

4.1 Path-integral based methods

4.1.1 Splitting probabilities.

These methods are based on Feynman’s general path-
integral treatment of the partition function in a quantum
system [18]. Following Barker’s derivation [19], we start
with the density operator at a given temperature T :

⇢ = e−βH = e
−β
✓
− ~22m

P
i r2

i +V(r)
◆

(5)

where β = (kBT )−1 is the inverse temperature, H the
Hamiltonian operator and V(r) the potential energy. Equa-
tion (5) yields the expression for the density matrix of the
system (a key quantity from which time-independent ex-
pectation values at equilibrium can be derived) :

⇢(r, r0; β) =
X

n

e−βEn n(r) ⇤n(r0) (6)

where En represents the eigen-energies as obtained from
Schrödinger’s stationary equation, and  n(r) the corre-
sponding wave-functions. We need to evaluate ⇢ as, ne-
glecting exchange, the partition function, which is the key

to statistical mechanics, writes for a system of N particles:

Z =
1

N!

Z
⇢(r, r; β) dr (7)

Equation (6) rewrites:

⇢(r, r0; β) =
Z X

n

e−β
0En n(r) ⇤n(r00)

X

n0
e−(β−β0)En0 n0 (r00) ⇤n0 (r

0) dr00

=

Z
⇢(r, r00; β0) ⇢(r00, r0; β − β0) dr00 (8)

This is true because the wave-functions are both orthogo-
nal and normalized.

Equation (8) can be applied repeatedly, introducing
many r00 intermediates: r1 . . . rM , and inverse temperature
intermediates β1 . . . βM with βi − βi−1 = β/M. What this
means is that the integral in equation (7) can be expanded
into small pieces r1 . . . rM , β1 . . . βM . If M is large enough,
β/M can be considered small. Also, since, in equation (7),
we need ⇢(r, r; β) (not ⇢(r, r0; β)), we must have rM = r1.
Thus, the integral in equation (7) for the partition function
rewrites: Z

⇢(r1, r1; β) dr1 =

Z
· · ·
Z

⇢(r1, r2;
β

M
) . . . ⇢(rM−1, rM;

β

M
) ⇢(rM , r1;

β

M
)

dr1 . . . drM (9)

Going back to equation (6), when β ! 0 (or M large
enough in β/M), we can expect ⇢ to be significant only
when r0 ' r: if β/M can be considered small, the operator
exponential ⇢(ri, ri + 1) can be expanded to second order
in β/M to yield a gaussian function ( a ‘broadened’ δ func-
tion) which Barker [19] introduces:

⇢(r, r0;
β

M
) =
 

4⇡
M
β0
!−N/2

e−M (r−r0 )2
4β0 −

β
2M [V(r)+V(r0)] (10)

where β0 =
~2

2m
β and N is the number of degrees of free-

dom. Equations (9) and (10) in practice introduce an ef-
fective (dimensionless) potential:

Ve↵(r1 . . . rM) =
X

i

M
(ri − ri+1)2

4β0
− β

M
V(ri) (11)

which can be used for simulations.

4.1.2 Simulations.

While Barker [19] uses equation (10) in a Monte-Carlo
scheme, one can use the e↵ective potential in equation (11)
[20, 21] for molecular dynamics simulations. That poten-
tial is then equivalent to that of a ring-polymer (that is, a
set of polymers, or necklace of beads, figure 5), each parti-
cle being replaced by a set of M beads driven by the e↵ec-
tive potential in equation (11). One can thus obtain quan-
tum distributions at finite temperature by e.g. a Langevin
dynamics (as briefly outlined in section 4.2.1). It is worth
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Classical

Quantum

Figure 5. Path integral necklace of beads: each classical par-
ticle is replaced by a ring of replicas connected by a harmonic
interaction.

pointing out at this stage that, within this formalism, time
has in principle no physical meaning.

This formalism has been and is used with success,
and has undergone a number of developments [7, 13, 22–
25]: its main quality is that, as the number of beads M
is increased, the results converge towards the exact quan-
tum solution. This establishes the method as a reference
method as its reliability can be thus be controlled. The
drawback is the additional computational cost: as M (de-
pending on temperature) can take values up to 50 or more,
the computational requirements can skyrocket. Although
several methods were devised to reduce these require-
ments [26–28], work is still restricted to relatively simple
and/or small systems.

4.2 The Langevin equation

4.2.1 Background

The Langevin equation was originally devised to describe
Brownian motion [29]. It is now currently used for
constant-temperature classical molecular dynamics simu-
lations. Indeed, in its generic form, it writes (in 1-D):

m
d2x
dt2 = −

dV
dx
− mγ

dx
dt
+ RT (t) (12)

The first term in the right-hand side of equation (12) sim-
ply corresponds to Newton’s usual equation of motion: ac-
celeration equals force divided by mass. If only this term
is retained, the simulation will conserve energy; however,
one usually wishes rather to control the temperature of the
system as most experiments are carried out at a given tem-
perature.

To control temperature, one thus modifies Newton’s
dynamics by introducing a temperature dependent random
term RT (t): thermal equilibrium will be reached when the
work produced by RT is compensated for by the dissipative
term −γ dx/dt. The fluctuation-dissipation theorem [30] in
classical statistical physics imposes that:

RT (t) =
p

2mγkBT"(t) (13)

where "(t) is a white noise random variable. Constant γ (a
frequency) thus represents the coupling between the sys-
tem under study and a thermal bath at temperature T . The

value of γ is chosen and should, in principle, have no in-
fluence on the results provided by the simulation. For that
reason, it can be chosen relatively large to ensure rapid
relaxation towards thermal equilibrium but when intrinsi-
cally dynamical properties are computed (e.g. vibrational
spectra) it is usually chosen as small as possible (often a
fraction of a THz) which entails slow relaxation towards
equilibrium. This choice will therefore result from a com-
promise.

4.2.2 The Quantum Thermal Bath (QTB)

Several di↵erent formalisms were developed [31–33] from
these equations to adapt them to quantum systems; the
Quantum Thermal Bath (QTB) [33] is probably the sim-
plest and will be detailed below.

Classical

Quantum Thermal Bath

Figure 6. The QTB introduces a stochastic trajectory (blue)
to account for quantum delocalization, while a classical particle
(green) will remain at the bottom of the potential well (at temper-
ature 0K). The dynamics remains formally classical but produces
a quantum correction to the positional distribution.

The Quantum Thermal Bath simply replaces the ran-
dom term RT with another random term with a quantum
distribution so that it comprises both zero-point energy and
thermal e↵ects (figure 6). The stochastic term, provided
it is well chosen, will force the particle to move around,
mimic quantum delocalization and hopefully generate the
correct quantum distributions. In practice, the new prob-
ability distribution for the random term is frequency-
dependent. Therefore, instead of a ‘white’ noise (all fre-
quencies have the same weight), a ‘colored’ (some fre-
quencies weigh more) or correlated in the time domain
noise is introduced. This means the spectrum in the fre-
quency domain of R is now the average thermal energy
of an harmonic oscillator of angular frequency !, which
writes:

ĈQ
RR(!) = 2mγ ⇥Q

T (!) (14)

where ⇥Q
T (!) writes:

⇥
Q
T (!) = ~!

 
1
2
+

1

e
~!

kBT − 1

!
(15)
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Figure 7. ⇥Q
T (!) (equation (15)) as a function of temperature

for several frequencies. The classical counterpart kBT , which
does not depend on frequency, is also shown (dashed line) for
comparison.

The sampling obtained from equation (15) is strictly valid
only for a harmonic oscillator.

The behavior of ⇥Q
T (!) is shown on figure 7. The clas-

sical counterpart is simply kBT , linear with temperature
and non frequency-dependent. Figure 7 clearly shows,
firstly, large high-frequency contributions and, secondly,
the ZPE contribution at low temperature.

The computational load for the colored random term
generation is negligible, so that the QTB involves no sig-
nificant additional cost with respect to classical simula-
tions. An additional advantage is that it easily allows to
compute vibrational spectra which can be compared to, for
instance, infra-red absorbtion experiments. Anharmonic
features will be enhanced, as they should [34], by the large
high-frequency contributions in the random force (see fig-
ure 7).

A drawback is that convergence towards the exact
quantum distributions cannot be checked as with PI simu-
lations. An ideal procedure, when possible, would there-
fore be to do short (but expensive) PI simulations to serve
as a reference since convergence can be checked, and then
run QTB simulations, check the results with those of the
PI simulation (and incidentally with known experimental
data). Then gather the required data using the capability of
the QTB to carry out large simulations and explore several
situations, for instance, di↵erent isotopes, pressures and
temperatures.

4.2.3 Successes. . .

LiH and LiD.

One of the first successes of the QTB was to account
for the di↵erent lattice constants and their behavior up to
600K in LiH and LiD [35]: this was done using the QTB
associated with force calculations within the DFT. Such
isotope e↵ects cannot be accessed classically, as explained
in section 3.1.

Pure and salty ice at high-pressure.

The case of high-pressure ice is exposed in section 3.2.
NQEs were first pointed out by PI simulations [7], but

the QTB [8] confirmed these e↵ects at a much lesser cost
and, in addition, provided vibrational spectra that were in
excellent accordance with Infra-Red and Raman experi-
ments. The efficiency of the QTB allowed to study and
explain the e↵ect of introducing a small amount of dif-
ferent salts (HCl, LiCl and NaCl) [36] with very di↵erent
behaviors but the same final result: the increase of the VII
to X symmetrization transition pressure by 30 GPa.

In Earth’s mantle.

It seems that Earth’s mantle contains about as much wa-
ter as the oceans. AlOOH in its δ phase is one of the
major vectors thereof. The QTB allowed to establish the
quantum-driven transition mechanism to the symmetrized
δ0 phase [37] at pressures present in the mantle.

4.2.4 And problems: the Zero-Point Energy Leakage

(ZPEL) and the adaptive Quantum Thermal Bath

(adQTB)

Energy leaks!

Several authors [38–40] have pointed out the contradiction
of trying to impose a quantum distribution on a fundamen-
tally classical system. Indeed, Langevin’s equation (12)
remains a classical equation of motion even when the ran-
dom term is not a standard white noise. The consequence
is that the classical dynamics will tend to distribute energy
equally between all degrees of freedom. The QTB pumps
more energy at high frequencies than at low frequencies
and, due to anharmonic coupling between modes, that ex-
cess energy on the high frequency modes tends to flow, or
“leak” on to the low energy modes (figure 8). Excessive
energy on the low frequency vibrations tends to destabi-
lize the system, alters velocity and positional distributions
and eventually will melt the simulated system well below
its actual melting temperature. The successes exhibited in
section 4.2.3 were mainly obtained at high-pressures that
tend to inhibit such dramatic outcomes.

Energy transfer

High frequency mode

Low frequency vibration

ZPEL

Figure 8. The mechanism of Zero-Point Energy Leakage: the
QTB pumps more energy into high frequency modes than into
low frequency modes, but the simulation, being classical in prac-
tice, will tend to enforce energy equipartition and induce an en-
ergy flow from high to low frequency motions. In this this figure
the light hydrogen atom (white) vibrate at a high frequency: en-
ergy is thus transfered to the low frequency lattice modes mainly
involving heavier oxygen (red). This can considerably alter the
structure of the system and yield useless results.
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The damping coefficient γ in Langevin’s equation (12)
has the dimension of a frequency, but, as it appears both
in the damping and the random terms, it plays the role of
a coupling of the system with the thermal bath, whether
quantum or not. Strengthening that coupling will force
the system closer to quantum distributions, while weaken-
ing it will let it remain classical [41]. The choice of that
coefficient is therefore not insignificant at all: strong cou-
pling will force the correct distributions but considerably
alter the dynamics, as low frequency modes may end up
overdamped, weak coupling will let energy pour over low
frequency modes and destroy the sample!

A cure must therefore be found, unless it is accepted
that only high-pressure studies can be done.

A diagnosis.

The challenge here is to translate Kubo’s celebrated
fluctuation-dissipation theorem (FDT) [30] into a usable
form. Doing this [42] yields that the Fourier transform of
the velocity-random force correlation function is related to
the Fourier transform of the velocity-velocity correlation
function:

Re
h
ĈQ
vR(!)

i
= mγ ĈQ

vv(!) (16)

If the FDT holds, the ratio of these two quantities should
equal 1. These quantities can easily be computed during
a simulation run for all frequencies, and whenever the ra-
tio deviates from 1, ZPEL occurs: a convenient tool for a
diagnosis is thus available.

And a cure.

The point now is to enforce equation (16) at all frequen-
cies. Several strategies can be devised: the simplest one is
to separate the coupling coefficent γ in Langevin’s equa-
tion (12) into two parts: firstly, in the actual damping
term γ is a constant, but secondly in the random term,
the Fourier transform of γ, instead of being a constant
becomes frequency-dependent γ̂R(!) and can be adapted
on-the-fly, for each frequency !, to enforce equation (16).
How well (16) is actually enforced can be monitored to
ensure that the adaptation is working properly.

The adaptive-QTB (adQTB) was first tested on a sys-
tem of Ne13 clusters [42] and was proven to prevent the
spurious melting of the sample, that the original QTB in-
evitably produced. An attempt on room-temperature water
was also successfully conducted [43] and correctly cap-
tured the balance between the quantum-induced strength-
ening of the hydrogen-bonds by the O – H stretching vi-
brations and their, also quantum-induced, weakening by
the O – H bending modes.

5 Final remarks.

Although the problem of the toxicity of heavy water that
was mentioned in the introduction section 1, is not solved
in the present paper, the study of NQEs is now entering
maturity as practical methods and software exist.

Isotope e↵ects are now of course within reach, but
NQEs have many surprises in store for physicists. An ex-
ample is provided with salty ice at high-pressure [36]: it

had been found experimentally [44] that the quantum char-
acteristics of the already mentioned (sect. 3.2) VII-X tran-
sition in ice are significantly diminished by the introduc-
tion of a small quantity of salt. The initial interpretation
was that the introduction of an impurity locally distorts
the lattice and therefore inhibits tunneling. QTB simu-
lations introducing NaCl, LiCl or HCl then showed that
the cations have very di↵erent behaviors: sodium, being
relatively bulky, doesn’t move much, while lithium mi-
grates to various sites, and hydrogen clings to the near-
est oxygen atom. . . , the transition inhibition remaining
exactly the same for the three. Lattice distortion being
cation-dependent could not explain such an uniform re-
sult. Finally, the realization arose that Na+Cl– , Li+Cl–

and H+Cl– all carry the same strong dipolar moment, and
that the hydrogen atoms of ice are therefore submitted to,
not only the interacton with other water molecules, but
also to that dipolar field. That field being slowly decaying
with distance has a relatively long range, allowing even a
small concentration to make the potential in figures 3 and
4 asymmetric thereore strongly inhibiting tunneling tun-
neling.

Whenever quantum mechanics is involved, non-
intuitive e↵ects arise!

Research is currently pursued both in studying com-
pounds of interest and trying to devise new methods. On
the one side, the path integral formulation is devised for
the time-independent density matrix, and its extension to
time-dependent quantities involves some non straightfor-
ward approximations; on the other side, the QTB and its
advanced version (the adaptative quantum thermal bath)
consider the time evolution of classical quantities under
the influence of a bath that reproduces the exact quantum
features only for harmonic or mildy anharmonic systems.
Time-dependent phenomena thus remain a challenge as
the time-dependence of both the QTB (a stochastic pro-
cess) and the PI (time is rather arbitrary) still is to a large
extent an open question [23, 34, 45, 46].
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