
HAL Id: hal-03872207
https://hal.science/hal-03872207

Submitted on 25 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-level Colored Time Petri Nets for true concurrency
modeling in real-time software

Imane Haur, Jean-Luc Béchennec, Olivier Roux

To cite this version:
Imane Haur, Jean-Luc Béchennec, Olivier Roux. High-level Colored Time Petri Nets for
true concurrency modeling in real-time software. 2022 8th International Conference on Con-
trol, Decision and Information Technologies (CoDIT), May 2022, Istanbul, Turkey. pp.21-26,
�10.1109/CoDIT55151.2022.9803922�. �hal-03872207�

https://hal.science/hal-03872207
https://hal.archives-ouvertes.fr

High-level Colored Time Petri Nets for true
concurrency modeling in real-time software

1st Imane HAUR
École centrale de Nantes, LS2N
Huawei, Paris Research Center

Nantes, Paris, France
imane.haur@ec-nantes.fr

2nd Jean-Luc BÉCHENNEC
CNRS
LS2N

Nantes, France
jean-luc.bechennec@ls2n.fr

3rd Olivier H. ROUX
École centrale de Nantes

LS2N
Nantes, France

olivier-h.roux@ec-nantes.fr

Abstract—The control of real-time systems often requires taking
into account simultaneous access in true parallelism to shared
resources. This is particularly the case for multi-core execution
platforms. Timed automata or time Petri nets do not capture
these features directly. We propose extending time Petri Nets
with color and high-level functionality encompassing both timed
multi-enableness of transitions and sequential pseudo code. We
prove that the reachability problem is decidable for this model on
which an on-the-fly TCTL model checking algorithm is efficiently
implemented in the tool ROMÉO. We apply this approach to
modeling a multi-core real time spinlock mechanism in order
to check all possible execution paths and interleaving of service
calls.

Index Terms—Multi-core execution, High-level Colored Time
Petri Nets, Model-checking

I. INTRODUCTION

For the lack of data structures, Petri nets are unsuitable for
modeling systems where data affects the system’s behavior.
High-level Petri nets [1] have been proposed for modeling
scientific problems with complex structures allowing the de-
scription of both system data and control. The term High-level
Petri net is then used for many Petri nets [2] such as Predicate/-
Transition Nets, colored Petri nets, or hierarchical Petri nets.
However, the common point is that they allow manipulating
different types of expressions that use state variables. Input
arcs are labeled with boolean expressions specifying conditions
(guards or gates) that can also be associated with transitions.
Arc annotations are expressions that can be associated with
output arc. They can be viewed as computing systems that
operate on shared data.

1) Petri nets: Petri nets are one of the many modeling
languages used to describe distributed concurrent systems. A
place can contain any number of tokens. A marking 𝑀 of a
Petri Net is a vector representing the number of tokens of each
place. A transition is enabled (it may fire) in 𝑀 if there are
enough tokens in its input places for the consumptions to be
possible. Firing a transition t in a marking 𝑀 consumes one
token from each of its input places 𝑠, and produces one token
in each of its output places 𝑠.

2) High-level Petri nets: The precondition (guard) and
postcondition (update) over a set of variables (𝑋) are associated

with transitions. A transition is enabled (it may fire) if there are
enough tokens in its input places and if the guard is true. When
the transition fires, the corresponding updates are executed,
modifying the values of the variables. The variables take their
values in a finite state (such as bounded integer or enumerate
type...), guards are boolean expressions over 𝑋 , and updates
can be described as a sequence of imperative code expressed
in a programming language but whose execution is atomic from
the transition firing point of view.

3) Colored Petri nets: The colored extension of Petri nets
allows the distinction between tokens.

Although the set 𝑋 of High-level Petri nets presented in the
previous paragraph can be of arbitrarily complex type, places in
colored Petri nets contain tokens of one type. This type noted
𝐶 is called the color set of the place.

An arc from a place to a transition (PT) specifies the color(s)
that enabled the transition, and its firing will consume it.
An arc from a transition to a place (TP) specifies the token
color produced in that place by the firing of the transition. A
particular color called any indicates in a PT arc that any color
enabled the transition, and in a TP arc that the color consumed
in the input place will be the one produced in the output place.

A marking M of a colored Petri Net represents not only the
number of tokens in each place but also their respective colors.
That is represented either by a multiset or by a matrix.

4) Time Petri Nets: Time Petri nets (TPN) extend Petri nets
with temporal intervals associated with transitions, specifying
firing delay ranges for the transitions. Assuming transition 𝑡

became last enabled at time 𝑑 and the endpoints of its firing
interval are 𝛼 and 𝛽, then 𝑡 cannot fire earlier than 𝑑 + 𝛼 and
must fire no later than 𝑑 + 𝛽 unless disabled by the firing of
another transition. Firing a transition takes no time.

5) Colored Time Petri Nets: For real parallelism or with
interleaving semantics of timed systems, the notion of multiple
enableness is needed. It refers to the fact that a transition
is enabled at least twice in the same state, which implies a
dynamic number of timers. Multiple enableness in time Petri
nets is a natural way for modeling paradigms like multiple
servers and multiple instances of codes [3].

For Colored Time Petri Nets, multiple enableness occurs
when several combinations of colors enable a transition at a
given time.

II. HIGH-LEVEL COLORED TIME PETRI NETS

Notations: The sets N, Q≥0, and R≥0 are respectively
the sets of natural, non-negative rational, and non-negative real
numbers. An interval 𝐼 of R≥0 is a Q-interval iff its left endpoint
↑𝐼 belongs to Q≥0 and its right endpoint 𝐼↓ belongs to Q≥0 ∪
{∞}. We denote by I(Q≥0) the set of Q-intervals of R≥0. 𝐵𝐴

stands for the set of mappings from 𝐴 to 𝐵. If 𝐴 is finite and
|𝐴| = 𝑛, an element of 𝐵𝐴 is also a vector in 𝐵𝑛. The usual
operators +,−, < and = are used on vectors of 𝐴𝑛 with 𝐴 =

N,Q,R and are the point-wise extensions of their counterparts
in 𝐴.

A. Definition and semantics

We consider a Petri Nets model, which encompasses both
color and High-level functionalities. We consider a set 𝐶 of
colors. An arc is either associated with a color of 𝐶 or can take
on a particular color called any. For the firing of a transition, all
its arcs associated with the any color must match to instantiate
any at the same color taken from 𝐶.

If several values of any allow its enabling, the transition
is multi-enabled, and in this case, many clocks are associated
with the transition, allowing several firing dates depending on
the enabling date and the time interval.

We now give the formal definition.
Definition 1 (High-level Colored Time Petri Net): A High-

level Colored Time Petri Net (HCTPN) is a tuple N =

(𝑃,𝑇, 𝑋, 𝐶, pre, post, (𝑚0, 𝑥0), 𝑔𝑢𝑎𝑟𝑑, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼) where
• 𝑃 is a finite set of places,
• 𝑇 is a finite set of transitions such that 𝑇 ∩ 𝑃 = ∅,
• 𝑋 is a finite set of variables taking their value in the finite

set X (such as bounded integer),
• 𝐶 is a finite set of colors and 𝐶𝑎𝑛𝑦 = 𝐶 ∪ {𝑎𝑛𝑦},
• pre : 𝑃×𝑇 → N𝐶𝑎𝑛𝑦 is the backward incidence mapping,
• post : 𝑃 × 𝑇 → N𝐶𝑎𝑛𝑦 is the forward incidence mapping,
• 𝑔𝑢𝑎𝑟𝑑 : 𝑇 × X𝑋 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is the guard function,
• 𝑢𝑝𝑑𝑎𝑡𝑒 : 𝑇 × X𝑋 → X𝑋 is the update function,
• (𝑚0, 𝑥0) ∈ N𝑃×𝐶 × X𝑋 → is the initial values 𝑚0 of the

marking and 𝑥0 of the variables,
• 𝐼 : 𝑇 → I(Q≥0) is the static firing interval function,
1) Discrete behavior: For a marking 𝑚 ∈ N𝑃×𝐶 , 𝑚(𝑝) is a

vector in N𝐶 and 𝑚(𝑝) [𝑐] represents a number of tokens of
color 𝑐 ∈ 𝐶 in place 𝑝 ∈ 𝑃. A valuation of the set of variables
𝑋 is noted 𝑥 ∈ X𝑋 . (𝑚, 𝑥) is a discrete state of HCTPN.

a) Enabling of a transition: An arc pre(𝑝, 𝑡) ∈ N𝐶𝑎𝑛𝑦

is a vector such that pre(𝑝, 𝑡) [𝑐] is the number of token of
color 𝑐 ∈ 𝐶 in place 𝑝 needed to enable the transition 𝑡

and pre(𝑝, 𝑡) [𝑎𝑛𝑦] > 0 represents the fact that any color can
enabled the transition. Let 𝑇𝑎𝑛𝑦 ⊆ 𝑇 the set of transitions
that can be enabled by 𝑎𝑛𝑦 color: i.e. 𝑇𝑎𝑛𝑦 = {𝑡 ∈ 𝑇, ∃𝑝 ∈
𝑃, s.t. pre(𝑝, 𝑡) [𝑎𝑛𝑦] > 0}. Moreover we define the set
𝑇𝑎𝑛𝑦 = 𝑇 \ 𝑇𝑎𝑛𝑦 .

A transition 𝑡 ∈ 𝑇 is said to be enabled by a given marking
𝑚 ∈ N𝑃×𝐶 in two cases depending on whether 𝑡 ∈ 𝑇𝑎𝑛𝑦 or not:

• if 𝑡 ∈ 𝑇𝑎𝑛𝑦 , and ∀𝑝 ∈ 𝑃 and ∀𝑐 ∈ 𝐶, 𝑚(𝑝) [𝑐] ≥
pre(𝑝, 𝑡) [𝑐]. We denote en(𝑚, 𝑡) ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, the true
value of this condition.

• if 𝑡 ∈ 𝑇𝑎𝑛𝑦 , and ∃𝑐𝑎 ∈ 𝐶 such that ∀𝑝 ∈ 𝑃, 𝑚(𝑝) [𝑐𝑎] ≥
pre(𝑝, 𝑡) [𝑎𝑛𝑦] and ∀𝑐 ∈ 𝐶, 𝑚(𝑝) [𝑐] ≥ pre(𝑝, 𝑡) [𝑐].
The corresponding set of color 𝑐𝑎 is noted
colorSetany (𝑚, 𝑡) ⊆ 𝐶

Finally, a transition 𝑡 ∈ 𝑇 is said to be enabled by a given
marking 𝑚 ∈ N𝑃×𝐶 and a valuation 𝑥 ∈ X𝑋 if en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒

or colorSetany (𝑚, 𝑡) ≠ ∅ and 𝑔𝑢𝑎𝑟𝑑 (𝑡, 𝑥) = 𝑡𝑟𝑢𝑒.
We illustrate the enabling condition by two examples with

two colors 𝐶 = {𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑}. On the figures, a black arc means
that it is associated with the color 𝑎𝑛𝑦. For the HCTPN given
in Figure 1.a, the transition 𝑇1 ∈ 𝑇𝑎𝑛𝑦 .

We have pre(𝑇1) =
©«
𝑟𝑒𝑑 𝑏𝑙𝑢𝑒 𝑎𝑛𝑦

𝑃1 0 1 0
𝑃2 1 0 0
𝑃3 0 1 0

ª®¬ . The initial

marking is 𝑚0 =
©«
𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 1 1
𝑃2 1 0
𝑃3 0 1

ª®¬ that enables the transition

𝑇1 and en(𝑚0, 𝑇1) = 𝑡𝑟𝑢𝑒.

𝑃1 𝑃2 𝑃3

𝑇1
[2, 3]

blue red
blue

•• • •
𝑃1 𝑃2 𝑃3

𝑇1
[2, 3]

blue

•• • •

1.a: 𝑇1 ∈ 𝑇𝑎𝑛𝑦 1.b: 𝑇1 ∈ 𝑇𝑎𝑛𝑦

Fig. 1. Enabling transition

Now we consider the HCTPN given in Figure 1.b with the
same initial marking 𝑚0 but where the transition 𝑇1 ∈ 𝑇𝑎𝑛𝑦
since at least one arc (here two) is associated with the color
𝑎𝑛𝑦.

We have pre(𝑇1) =
©«
𝑟𝑒𝑑 𝑏𝑙𝑢𝑒 𝑎𝑛𝑦

𝑃1 0 0 1
𝑃2 0 0 1
𝑃3 0 1 0

ª®¬ . The tran-

sition is enabled only if 𝑎𝑛𝑦 takes the 𝑟𝑒𝑑 value then
colorSetany (𝑚0, 𝑇1) = {𝑟𝑒𝑑}. If the place 𝑃2 had two tokens
with one token per color, then the transition would be multi-
enabled by the 2 colors leading to colorSetany (𝑚0, 𝑇1) =

{𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑}.
b) Firing of a transition: An arc post(𝑝, 𝑡) ∈ N𝐶𝑎𝑛𝑦 is a

vector such that post(𝑝, 𝑡) [𝑐] is the number of token of color
𝑐 ∈ 𝐶 produced in place 𝑝 by the firing of the transition 𝑡 and
post(𝑝, 𝑡) [𝑎𝑛𝑦] gives the number of token produced in 𝑝 with
the color 𝑐 ∈ colorSetany (𝑚, 𝑡) used for the firing of 𝑡.

Firing an enabled transition 𝑡 ∈ 𝑇𝑎𝑛𝑦 from (𝑚, 𝑥) such
that en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒 and 𝑔𝑢𝑎𝑟𝑑 (𝑡, 𝑥) = 𝑡𝑟𝑢𝑒 leads to a
new marking 𝑚′ defined by ∀𝑐 ∈ 𝐶,∀𝑝 ∈ 𝑃, 𝑚′(𝑝) [𝑐] =

𝑚(𝑝) [𝑐]−pre(𝑝, 𝑡) [𝑐] +post(𝑝, 𝑡) [𝑐] and a new valuation 𝑥 ′ =
𝑢𝑝𝑑𝑎𝑡𝑒(𝑡, 𝑥). This new marking is denoted 𝑚′ = firing(𝑚, 𝑡, •)
where • denote the fact that no any color has to be instantiated
for this firing.

Firing an enabled transition 𝑡 ∈ 𝑇𝑎𝑛𝑦 from (𝑚, 𝑥) with the
any color 𝑐𝑎 ∈ colorSetany (𝑚, 𝑡) leads to a new marking
defined by ∀𝑐 ∈ 𝐶 \ {𝑐𝑎},∀𝑝 ∈ 𝑃, 𝑚′(𝑝) [𝑐] = 𝑚(𝑝) [𝑐] −
pre(𝑝, 𝑡) [𝑐] + post(𝑝, 𝑡) [𝑐] and ∀𝑝 ∈ 𝑃, 𝑚′(𝑝) [𝑐𝑎] =

𝑚(𝑝) [𝑐𝑎] − pre(𝑝, 𝑡) [𝑐𝑎] − pre(𝑝, 𝑡) [𝑎𝑛𝑦] + post(𝑝, 𝑡) [𝑐𝑎] +
post(𝑝, 𝑡) [𝑎𝑛𝑦] and a new valuation 𝑥 ′ = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑡, 𝑥). This
new marking is denoted 𝑚′ = firing(𝑚, 𝑡, 𝑐𝑎).

We denote by newen((𝑚, 𝑥), 𝑡, 𝑐) the set of transitions that
are newly enabled by the firing of 𝑡 from (𝑚, 𝑥) with the color
𝑐 (𝑐 = • if 𝑡 ∈ 𝑇𝑎𝑛𝑦).

Let us go back to the HCTPN of Figure 1.a, the firing of

𝑇1 ∈ 𝑇𝑎𝑛𝑦 from 𝑚0 leads to the marking 𝑚1 =
©«
𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 1 0
𝑃2 0 0
𝑃3 0 0

ª®¬
. It is noted 𝑚0

(𝑇1 ,•)−−−−→ 𝑚1
For the HCTPN of Figure 1.b, the firing of 𝑇1 ∈ 𝑇𝑎𝑛𝑦 is

possible only for 𝑎𝑛𝑦 = 𝑟𝑒𝑑 and leads to the marking 𝑚2 =

©«
𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 0 1
𝑃2 0 0
𝑃3 0 0

ª®¬ . It is noted 𝑚0
(𝑇1 ,𝑟𝑒𝑑)−−−−−−−→ 𝑚2.

2) Time behavior: For any 𝑡 ∈ 𝑇𝑎𝑛𝑦 , 𝑣(𝑡, 𝑐) is the valuation
of the clock associated with 𝑡 and the color 𝑐 ∈ 𝐶. i.e. it is the
time elapsed since the transition 𝑡 has been newly enabled by
𝑚 with 𝑐 ∈ colorSetany (𝑚, 𝑡). For other transitions 𝑡 ∈ 𝑇𝑎𝑛𝑦 ,
𝑣(𝑡, •) is the valuation of the clock associated with 𝑡.

0̄ is the initial valuation with ∀𝑡 ∈ 𝑇 , ∀𝑐 ∈ 𝐶 ∪ {•}, 0̄(𝑡, 𝑐) =
0.

As an example, if we keep only the useful clocks, the initial

valuation of the HCTPN of Figures 1, is 𝑣0 =
(• 𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇1 0
)

for Figure 1.a, and 𝑣0 =
(• 𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇1 0 0
)

for Figure 1.b,
A state of the net N is a tuple ((𝑚, 𝑥), 𝑣) in N𝑃×𝐶 × X𝑋 ×

R≥0
𝑇 ×𝐶 , where: 𝑚 is a marking, 𝑥 is a variable valuation and

𝑣 is a valuation of the clocks.
Definition 2 (Semantics of a HCTPN): The semantics of a

HCTPN is a timed transition system (𝑄,𝑄0,→) where:
• 𝑄 ⊆ N𝑃×𝐶 × X𝑋 × R≥0

𝑇 ×𝐶

• 𝑄0 = ((𝑚0, 𝑥0), 0̄)
• →∈ 𝑄 × ((𝑇 ×𝐶 ∪ {•}) ∪R≥0) ×𝑄 consists of two types

of transitions:
– discrete transitions (firing 𝑡 from ((𝑚, 𝑥), 𝑣)) iff:

∗ ((𝑚, 𝑥), 𝑣)
(𝑡 ∈𝑇𝑎𝑛𝑦 ,•)−−−−−−−−→ ((𝑚′, 𝑥 ′), 𝑣′) with

· en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒 and 𝑣(𝑡) ∈ 𝐼 (𝑡),
· 𝑚′ = firing(𝑚, 𝑡, •)

∗ ((𝑚, 𝑥), 𝑣)
(𝑡 ∈𝑇𝑎𝑛𝑦 ,𝑐)−−−−−−−−−→ ((𝑚′, 𝑥 ′), 𝑣′) with

· 𝑐 ∈ colorSetany (𝑚, 𝑡) and 𝑣(𝑡, 𝑐) ∈ 𝐼 (𝑡),
· 𝑚′ = firing(𝑚, 𝑡, 𝑐)

∗ 𝑔𝑢𝑎𝑟𝑑 (𝑡, 𝑥) = 𝑡𝑟𝑢𝑒 and 𝑥 ′ = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑡, 𝑥)
∗ ∀𝑡 ′ s.t. en((𝑚′, 𝑡 ′) = 𝑡𝑟𝑢𝑒)
· 𝑣′(𝑡 ′, •) = 𝑣(𝑡 ′, •) if 𝑡 ′ ∉ newen((𝑚, 𝑥), 𝑡, •),
· 𝑣′(𝑡 ′, •) = 0 otherwise

∗ ∀𝑡 ′ and ∀𝑐 ∈ colorSetany (𝑚′, 𝑡 ′)
· 𝑣′(𝑡 ′, 𝑐) = 𝑣(𝑡 ′, 𝑐) if 𝑡 ′ ∉ newen((𝑚, 𝑥), 𝑡, 𝑐),
· 𝑣′(𝑡 ′, 𝑐) = 0 otherwise

– time transitions: ((𝑚, 𝑥), 𝑣) 𝑑∈R≥0−−−−−→ ((𝑚, 𝑥), 𝑣′), iff:
∗ ∀𝑡 ∈ 𝑇𝑎𝑛𝑦 s.t. en(𝑚, 𝑡) = 𝑡𝑟𝑢𝑒,
· 𝑣′(𝑡, •) ≤ 𝐼 (𝑡)↓
· 𝑣′(𝑡, •) = 𝑣(𝑡, •) + 𝑑

∗ ∀𝑡 ∈ 𝑇𝑎𝑛𝑦 and ∀𝑐 ∈ colorSetany (𝑚, 𝑡),
· 𝑣′(𝑡, 𝑐) ≤ 𝐼 (𝑡)↓
· 𝑣′(𝑡, 𝑐) = 𝑣(𝑡, 𝑐) + 𝑑

We now illustrate the main features of HCTPN in an exam-
ple. The guards are in green in the Figures and the update in
purple.

B. Examples of HCTPN

We give two examples. The first one illustrates the high-
level functionalities, and the second illustrates the notion of
color and multi-enableness.

a) Example 1: The HCTPN given in Figure 2 illustrates
time behavior and high-level manipulation of variables. This
HCTPN has only one color and a single variable 𝑐𝑝𝑡. We
assume that random(1,10) returns an integer between 1 and
10.

𝑃1

T1
[5, 7]
𝑐𝑝𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 10)

𝑃2
𝑐𝑝𝑡 <= 5

T2
[2, 3]

𝑐𝑝𝑡 = 0

𝑐𝑝𝑡 > 5
T3
[4, 6]
𝑐𝑝𝑡 = 𝑓 (𝑐𝑝𝑡)

𝑃3

•
int cpt=0;

int f(int x) {
return 2*x-1;

}

Fig. 2. HCTPN illustrating high-level manipulation of variables

A marking is written by the matrix (|𝑃 |, |𝐶 |). Since there
is only one color, the marking is a vector and the initial

marking is then 𝑚0 =
©«

𝑃1 1
𝑃2 0
𝑃3 0

ª®¬ and enables the transition 𝑇1.

The valuations of the clocks are given by the matrix (here a

vector) such that the initial valuation is 𝑣0 =
©«

𝑇1 0
𝑇2 0
𝑇3 0

ª®¬ . Since the

set of variables is 𝑋 = {𝑐𝑝𝑡}, we note a state 𝑠 = (𝑚, 𝑐𝑝𝑡, 𝑣).
The initial state is 𝑞0 = (𝑚0, 0, 𝑣0). The transition 𝑇1 can
fire after elapsing 5 time units. We now consider the run
where the random function called by the update of the firing
of 𝑇1 returned the value 7. Then the transition’s guard 𝑇2
is false, and the transition 𝑇3 is enabled. We assume that
the transition 𝑇3 took 4.6 time units for this run. The firing
of the transition 𝑇3 executes the corresponding update and
calls the function 𝑓 that returns 13. The corresponding run

is as follows:
((1

0
0

)
, 0,

(0
0
0

)) 5−→
((1

0
0

)
, 0,

(5
0
0

)) (𝑇1 ,•)−−−−−→
((0

1
0

)
, 7,

(0
0
0

)) 4.6−−→((0
1
0

)
, 7,

(0
0

4.6

)) (𝑇3 ,•)−−−−−→
((0

0
1

)
, 13,

(0
0
0

))

b) Atomicity : An update can be described as a sequence
of imperative code expressed in a programming language such
as C. This code is evaluated sequentially w.r.t. the semantics
of the C language; however, its execution is considered atomic
from the HCTPN point of view.

Hence, if 𝑥 and 𝑥 ′ are respectively the values of the variables
before and after the execution of the code of an update of a
transition 𝑡 from 𝑥, the firing of 𝑡 leads atomically to 𝑥 ′ =
𝑢𝑝𝑑𝑎𝑡𝑒(𝑡, 𝑥).

c) Example 2: The model given in Figure 3 is a HCTPN
with a set of two colors 𝐶 = {𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒}. Several combinations
of color usage, on guards and in updates, via the $𝑎𝑛𝑦 variable
are presented.

𝑃1

T1
[8, 8]

cpt[$any]==2
cpt[$any]=f($any,cpt)

𝑒𝑛𝑑

T2
[5, 5]

𝑃2

blue

red

•

•

𝑃3•

T3
[6, 6]
cpt[1]=2

blue

typedef color {red = 0, blue = 1};
int[2] cpt = {2, 1};

int f(int color, int[2] c) {
if (color == blue) {
return c[color] + 1;

}
else if (color == red) {
return c[color] * 2;

}
}

Fig. 3. HCTPN model illustrating colored multi-enableness

In the sequel a marking is written by the matrix (|𝑃 |, |𝐶 |).

The initial marking is then 𝑚0 =
©«
𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑃1 1 0
𝑃2 1 0
𝑃3 0 1
𝑒𝑛𝑑 0 0

ª®®¬ and enables

the transitions 𝑇1, 𝑇2 and 𝑇3. The variable 𝑐𝑝𝑡 of the model
is an array indexed by the color. Its initial value is 𝑥0 =(𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑐𝑝𝑡 2 1
)

The valuations of the clocks are given by the

matrix such that the initial valuation is 𝑣0 =
©«
• 𝑟𝑒𝑑 𝑏𝑙𝑢𝑒

𝑇1 0 0
𝑇2 0
𝑇3 0

ª®¬
(We omit the insignificant values). We note a state 𝑠 = (𝑚, 𝑥, 𝑣).
The initial state is 𝑞0 = (𝑚0, 𝑥0, 𝑣0). Since the time intervals
are points, we have an unique run:((

1 0
1 0
0 1
0 0

)
,

(
2 1

)
,

(
0 0

0
0

))
5−→

((
1 0
1 0
0 1
0 0

)
,

(
2 1

)
,

(
5 0

5
5

))
(𝑇 2,•)
−−−−−−→((

1 1
0 0
0 1
0 0

)
,

(
2 1

)
,

(
5 0

0
5

))
1−→

((
1 1
0 0
0 1
0 0

)
,

(
2 1

)
,

(
6 0

0
6

))
(𝑇 3,•)
−−−−−−→((

1 1
0 0
0 0
0 0

)
,

(
2 2

)
,

(
6 0

0
0

))
2−→

((
1 1
0 0
0 0
0 0

)
,

(
2 2

)
,

(
8 2

0
0

))
(𝑇 1,𝑟𝑒𝑑)
−−−−−−−−→((

0 1
0 0
0 0
1 0

)
,

(
4 2

)
,

(
0 2

0
0

))
6−→

((
0 1
0 0
0 0
1 0

)
,

(
4 2

)
,

(
0 8

0
0

))
(𝑇 1,𝑏𝑙𝑢𝑒)
−−−−−−−−−→((

0 0
0 0
0 0
1 1

)
,

(
4 3

)
,

(
0 0

0
0

))

The time elapses from the initial marking until reaching date
5. 𝑇2 is fired, and a blue token is dropped in the place 𝑃1. The
clock of 𝑇1 associated with the red color has reached the value
5. The clock of 𝑇1 associated with the blue color cannot start
yet because the guard is false for this color. At date 6, 𝑇3
is fired, causing a change in the variable cpt that makes the
guard of 𝑇1 true for the blue color. The clock associated with
the blue color for 𝑇1 can therefore start. Both colors enable the
transition 𝑇1, and the corresponding clocks give the time from
the two enabling. After two more time units, 𝑇1 is fired for the
red color; at this moment, the clock of 𝑇1 for the blue color has
reached 2. Finally, after 6-time units, 𝑇1 is fired for the blue
color, ending the run.

C. Decidability and complexity

Let us recall that a High-level Colored
Time Petri Net (HCTPN) is a tuple N =

(𝑃,𝑇, 𝑋, 𝐶, pre, post, (𝑚0, 𝑥0), 𝑔𝑢𝑎𝑟𝑑, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼) such that
the set 𝐶 of colors is finite and 𝑋 is a finite set of variables
taking their value in a finite set X.

Theorem 1: Reachability problem for bounded High-level
Colored Time Petri Net is decidable

Proof: From HCTPN semantics, a transition can be multi-
enableded a maximum of |𝐶 | times at a given time. Hence,
firing domains can be symbolically abstracted with state classes
using difference bound matrix (DBM) over |𝐶 | × 𝑇 variables.
As in [4], [5], the number of DBM is finite. Moreover, the
number of markings of a k-bounded Petri net is bounded by
(𝑘 + 1) |𝑃 | then the number of discrete states of a k-bounded
HCTPN is bounded by (𝑘 + 1) |𝑃 | × X𝑋 . Hence, computable
finite abstractions of the state space exist, and the reachability
problem is decidable. �

Temporal logics were introduced by Pnueli [6] as specifica-
tion languages to express the behaviors of sequential and con-
current systems and TCTL (Timed Computation Tree Logic),
introduced in [7], is a real-time extension of the branching-time
temporal logic CTL (Computation Tree Logic).

We can prove, as in [8] for bounded Time Petri Nets,
that the theoretical complexity of TCTL model-checking for
bounded High-level Colored Time Petri Nets is PSPACE-
complete. However, as for Timed Automata and Time Petri
Nets, no effective PSPACE algorithm exists in practice, and
real implementations are with exponential algorithms.

Moreover, HCTPN can be extended with stopwatches allow-
ing the modeling of preemptive scheduling as in [9]. In the
stopwatch setting, the reachability problem is undecidable but
efficient semi-algorithms are implemented in ROMÉO [10] that
converges for almost all practical cases.

III. APPLICATION

The application chosen as an example is the modeling of the
spinlocks mechanism present in the PowerPC MPC5643L dual-
core microcontroller from NXP [11] and used to build critical
sections for parallel program executions. This mechanism is
based on a hardware unit, the SEMA4 for Semaphore Unit.
For the software, this unit is materialized as an array of 16
registers implementing 16 locks. The exclusive access to the

bus regulates the concurrent accesses to one of these registers.
If a register contains the value 0, the lock is available, and it is
possible to write to it. If the value contained is different from 0,
the lock is occupied, and it is only possible to write the value
0 to it, and writing any other value has no effect. Therefore,
getting a lock consists in writing a value different from 0 and
releasing it consists in writing 0. Thus, using this unit requires
respect of a protocol, and an example of implementation is
given on page 1322 of [11]. Algorithm 1 reproduces it.

Algorithm 1 Lock acquisition protocol. 𝑔𝑎𝑡𝑒 is one of the
hardware registers of the SEMA4 unit.

𝑐𝑛← core_number ⊲ (1 .. N)
do

𝑙𝑜𝑐𝑘 ← 𝑔𝑎𝑡𝑒

while 𝑙𝑜𝑐𝑘 ≠ 0
do

𝑔𝑎𝑡𝑒 ← 𝑐𝑛

𝑙𝑜𝑐𝑘 ← 𝑔𝑎𝑡𝑒

while 𝑙𝑜𝑐𝑘 ≠ 𝑐𝑛

A. Modeling the spinlocks mechanism

The modeling takes advantage of the possibilities of the
HCTPN. The hardware part, which by virtue of the exclusive
access to the bus allows operations that are intrinsically atomic,
is modeled using functions. To simplify the presentation, only
one register of the SEMA4 unit, gate, is modeled but the
model could just as well use an array to accurately model the
hardware. The listing 1 shows this part of the model. gate is
initialized to the UNLOCKED state (line 2) and is accessible
through three functions. lock (line 4) mimics the behavior of
the hardware by only allowing writing to gate if its value is
UNLOCKED. The core number corresponding to a color and a
color among N being coded by an integer from 0 to N-1, a core
locks by writing 𝑐𝑜𝑙𝑜𝑟+1 in gate. unlock (line 10) simply writes
the value UNLOCKED into gate. isLocked (line 14 returns 1 if
the gate is locked, 0 otherwise). Finally, isLockedBy (line 22)
returns 1 if core holds the lock and returns 0 otherwise.

Each function of the software is modeled by an HCTPN
reproducing the control flow graph of the function. Two
HCTPNs model the functions GetSpinLock and RelSpinLock
(see Figure 4). GetSpinLock corresponds to the algorithm 1
and $any allows to represent on which core the function is
executed. The call of a function modeled by a HCTPN is done
by dropping a token of the core color in the initial place. Thus,
“calling” the function GetSpinLock is performed by the update
GetSpinLock[color] = 1 on a transition of the HCTPN of
the calling function. This is identical to drawing an arc of the
corresponding color between the transition and the initial place
of GetSpinLock. The function return requires a synchronization.
This one is implemented by a variable of type array and of size
equal to the number of colors and indexed by the color, i.e. the
core on which the function call is made. We have therefore
for our two function models the two variables endOfGSL and
endOfRSL, see listing 2.

Listing 1. Modeling of the SEMA4 hardware

1 const int UNLOCKED = 0;
2 int gate = UNLOCKED;
3
4 void lock(int core, int &ioGate) {
5 if (ioGate == UNLOCKED) {
6 ioGate = core + 1;
7 }
8 }
9

10 void unlock(int &ioGate) {
11 ioGate = UNLOCKED;
12 }
13
14 int isLocked(int &inGate) {
15 if (inGate == UNLOCKED) {
16 return 0;
17 } else {
18 return 1;
19 }
20 }
21
22 int isLockedBy(int core, int &inGate) {
23 if (inGate == core + 1) {
24 return 1;
25 } else {
26 return 0;
27 }
28 }

B. Verification of the system

The spinlock model is completed by an application model.
Two tasks, 𝜏0, running on core 0 (red color) and 𝜏1, running
on core 1 (blue color), are modeled as shown in Figure 5. The
task 𝜏0 takes then releases the spinlock while the task 𝜏1 has the
possibility to take it, as 𝜏0 does, or to reach the final state with-
out taking the spinlock. We want to check that 𝜏0 and 𝜏1 cannot
occupy simultaneously and respectively the places P12 and P22
by the CTL formula 𝐴�(¬(P12 [0] == 1∧P22 [1] == 1)). Here
P12 [0] denotes the marking of P12 for the red color and P22 [1]
denotes the marking of P22 for the blue color. ROMÉO answers
true for this CTL formula.

IV. CONCLUSION

This paper has presented High-level Colored Time Petri
Nets. This formalism allows to model complex systems and is
well adapted to multi-core hardware and software modeling,
as shown in the case study. The high-level features allow
the modeling of the software, the timed transitions model the
execution times, and the colors specify the hardware where
the software is executed. A timed transition enabled by more
than one color allows true concurrency modeling. The model
checking of this formalism is implemented in the ROMÉO
tool. Future work will focus on using this formalism for the
certification of an OSEK and AUTOSAR compliant embedded
OS.

Listing 2. Synchronization variables for the function return

1 int[2] endOfGSL = {0, 0};
2 int[2] endOfRSL = {0, 0};

GetSpinLockT1
[1, 1]

isLocked(gate)
T2
[1, 1]
! isLocked(gate)

P2

T3
[1, 1]
lock($any, gate)

P3

T4
[1, 1]

isLockedBy($any, gate) == 0
T5
[1, 1]
isLockedBy($any, gate) == 1
endOfGSL[$any] = 1;

RelSpinLock

T8
[1, 1]
unlock(gate);

P7

T3
[1, 1]
endOfRSL[$any] = 1;

Fig. 4. The GetSpinLock and RelSpinLock function models

𝜏0
•

T11
[2, 4]
GetSpinLock[red] = 1;

P11

T12
[0, 0]
endOfGSL[red] == 1;
endOfGSL[red] = 0;

P12

T13
[1, 5]
ReleaseSpinLock[red] = 1;

P13

T13
[0, 0]
endOfRSL[red] == 1;
endOfRSL[red] = 0;

P14

red

red

red

red

red

red

red

red

𝜏1
•

T21
[1, 4]
GetSpinLock[blue] = 1;

P21

T22
[0, 0]
endOfGSL[blue] == 1;
endOfGSL[blue] = 0;

P22

T23
[2, 2]
ReleaseSpinLock[blue] = 1;

P23

T23
[0, 0]
endOfRSL[blue] == 1;
endOfRSL[blue] = 0;

P24

T25
[1, 1]

blue

blue

blue

blue

blue

blue

blue

blue

blue

blue

Fig. 5. The tasks models

REFERENCES

[1] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves, “Pn standardisation: A
survey,” in Formal Techniques for Networked and Distributed Systems
- FORTE 2006, ser. Lecture Notes in Computer Science, vol. 4229.
Springer Berlin Heidelberg, 2006, pp. 307–322.

[2] E. Kindler and L. Petrucci, “A framework for the definition of variants of
high-level petri nets,” in Proceedings of the Tenth Workshop and Tutorial
on Practical Use of Coloured Petri Nets and CPN Tools (CPN ’09), 2009,
pp. 121–137.

[3] M. Boyer and M. Diaz, “Multiple enabledness of transitions in petri
nets with time,” in Proceedings of the 9th International Workshop on
Petri Nets and Performance Models, PNPM 2001, Aachen, Germany,

September 11-14, 2001, R. German and B. R. Haverkort, Eds. IEEE
Computer Society, 2001, pp. 219–228.

[4] B. Berthomieu and M. Menasche, “An enumerative approach for analyz-
ing time petri nets,” in Information Processing: proceedings of the IFIP
congress 1983, ser. IFIP congress series, R. E. A. Mason, Ed., vol. 9.
Elsevier Science Publishers, Amsterdam, 1983, pp. 41–46.

[5] B. Berthomieu and M. Diaz, “Modeling and verification of time de-
pendent systems using time petri nets,” IEEE transactions on software
engineering, vol. 17, no. 3, pp. 259–273, March 1991.

[6] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA.
IEEE Computer Society, 1977, pp. 46–57.

[7] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense real-
time,” Information and Computation, vol. 104, no. 1, pp. 2–34, 1993.

[8] H. Boucheneb, G. Gardey, and O. H. Roux, “TCTL model checking of
time Petri nets,” Journal of Logic and Computation, vol. 19, no. 6, pp.
1509–1540, Dec. 2009.

[9] I. Haur, J.-L. Béchennec, and O. H. Roux, “Formal schedulability
analysis based on multi-core rtos model,” in 29th International
Conference on Real-Time Networks and Systems, ser. RTNS’2021. New
York, NY, USA: Association for Computing Machinery, 2021, pp.
216–225. [Online]. Available: https://doi.org/10.1145/3453417.3453437

[10] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez, “Romeo: A para-
metric model-checker for petri nets with stopwatches,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2009, pp. 54–57.

[11] Freescale Semiconductor, MPC5643L Microcontroller Reference Manual,
rev. 10 ed., NXP, High Tech Campus 60, 5656 AG Eindhoven, The
Netherlands, June 2013.

https://doi.org/10.1145/3453417.3453437

	Introduction
	Petri nets
	High-level Petri nets
	Colored Petri nets
	Time Petri Nets
	Colored Time Petri Nets

	High-level colored Time Petri Nets
	Definition and semantics
	Discrete behavior
	Time behavior

	Examples of HCTPN
	Decidability and complexity

	Application
	Modeling the spinlocks mechanism
	Verification of the system

	Conclusion
	References

