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ABSTRACT
Real-time 3D ultrasound imaging with matrix arrays remains a challenge in Non-Destructive Test-
ing (NDT) due to the time-consuming reconstruction algorithms based on delay-and-sum operations.
Other algorithms operating in the Fourier domain have lower algorithmic complexities and therefore
higher frame rates at the cost of more storage space, which may limit the number of reconstruction
points. In this paper, we present an implementation for real-time 3D imaging of the Total Focusing
Method (TFM) and the Plane Wave Imaging (PWI), as well as of their Fourier-domain counterparts,
referred to as k-TFM and k-PWI. For both acquisition types, the Fourier-domain algorithms are used
to increase frame rates, and they are compared to the time-domain TFM and PWI in terms of image
quality, frame rates and memory requirements. In order to greatly reduce their memory requirements,
a new implementation of k-TFM and k-PWI is proposed. The four imaging methods are then evalu-
ated by imaging in real time a block of stainless steel containing a 3D network of spherical porosities
produced by additive layer manufacturing using a powder bed laser fusion process.

1. Introduction
Nowadays, real-time 2D imaging methods with lin-

ear or matrix arrays are available in most industrial Non-
Destructive Testing (NDT) systems [1, 2]. The most pop-
ular is the Total Focusing Method (TFM), which requires
the inter-element response acquisition often referred to as
Full Matrix Capture (FMC) [3]. The set of FMC signals are
focused numerically both in transmit and receive mode ev-
erywhere in the region of interest, which greatly improves
the spatial resolution compared to focused B-scan or S-scan
[4]. 2D matrix arrays offer the great advantage of allow-
ing 3D imaging without any displacement [5–7]. However,
the 3D TFM remains a challenge for real-time applications
due to time-consuming reconstructions. Indeed, the number
of signals to be processed is huge as it corresponds to the
square of the number of array elements, which is typically
equal to 256 in NDT. In addition, the number of points to be
reconstructed is generally two orders of magnitude greater
than in 2D imaging. The problem is therefore to process
this large amount of data in a short period of time. To this
end, the Plane Wave Imaging (PWI) method, initially de-
veloped for elastography in medical imaging [8], has been
adapted to various NDT inspection configurations, such as
multi-mode imaging of crack-like defects [9, 10] or imaging
under complex surfaces [11, 12]. In most cases, the trans-
mission of plane waves reduces the amount of data to be
processed while maintaining a similar image quality com-
pared to the TFM. Today the PWI method is already avail-
able in some NDT acquisition systems to speed up imaging
in 2D [13], but the principle of plane wave emissions re-
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mains still insufficient to achieve 3D real-time imaging with
current NDT systems.

The TFM and PWI reconstructions take place in the
time-domain and are based on the Delay-And-Sum (DAS)
principle, where the signals are delayed for each divergent
or plane wave emission and then coherently summed. An-
other way to compute images is to use Fourier-domain algo-
rithms that lead to a shorter computation times than the DAS
algorithms. The two best-known Fourier-domain imaging
methods are the Stolt’s migration based on the exploding re-
flector model [14, 15] and the wavenumber algorithm. The
second is more suitable in many NDT configurations be-
cause it remains valid when images are wider than the array
aperture [16] or when images of crack type defects involve
multi-mode ultrasonic paths [10]. The wavenumber algo-
rithm consists in computing the spectrum of the set of sig-
nals on a specific wavenumber grid that depends on the cho-
sen reconstruction region, and then in obtaining the image
by inverse Fourier transform. It was first used in Synthetic
Aperture Radar (SAR) imaging with a monostatic configu-
ration [17] and later with a bistatic one [18]. In the field of
NDT, Hunter et al. [19] propose to extend the method to
FMC data in order to reduce computation times in 2D imag-
ing compared to TFM. Almost at the same time, Cheng and
Lu [20] proposed a similar algorithm dedicated to 2D imag-
ing with plane wave emissions. In NDT, the performances
of the Fourier-domain algorithms are generally evaluated in
2D cases [21] where real-time frame rates can be achieved
with approaches that are more usual. Here, we propose to
study the efficiency of these algorithms for 3D applications
where real-time imaging remains a difficult task whatever
the method.

In this paper, we present an implementation of both TFM
and PWI in 3D as well as their frequency-domain coun-
terparts, referred to as k-TFM and k-PWI in the following.
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In both cases, the aforementioned frequency-domain algo-
rithms are used in order to increase frame rates. They are
compared to the time-domain TFM and PWI in terms of
image quality, frame rates and memory requirements. For
the k-TFM, the wavenumber algorithm is generalized to 3D
imaging with matrix arrays, while for the k-PWI, we follow
the same approach asMerabet et al. [16] based on the theory
developed by Cheng and Lu [20]. The four imaging algo-
rithms are implemented in a versatile Vantage system allow-
ing to perform acquisitions and reconstructions directly with
Matlab (Mathworks). The Matlab parallel computing tool-
box is used in order to launch all computations on a graphic
card. Finally, the four real-time imaging algorithms are eval-
uated on an additively manufactured stainless steel sample
containing a 3D network of equispaced spherical porosities.

The paper is organized as follows. In Section 2, the
theoretical background of 3D imaging is presented. We
first recall the mathematical formulation of the time-domain
TFM and PWI based on the DAS algorithms, and of their
frequency-domain counterparts k-TFM and k-PWI. The rela-
tionship between the image and the signal spectra is derived
for both types of acquisition. In Section 3, some technical
details and tricks to improve real-time imaging are provided.
In particular, we propose an implementation of the Fourier-
domain algorithms that greatly reduces the required memory
space. Minimum storage capacity and algorithmic complex-
ities for k-TFMand k-PWI are derived and compared to those
obtained with TFM and PWI. In Section 4, we present the
experimental setup and the results obtained from the real-
time imaging of the steel sample. The experimental results
are discussed and compared with theoretical and numerical
predictions.

2. Theoretical background in 3D imaging
In this section, the 3D imaging algorithms are over-

viewed. For sake of clarity, we only present the theory for
a square matrix array and an inspection configuration where
elements are in direct contact with the sample. However,
given that inspections through a water layer are quite com-
mon in NDT, in Appendix A we derive the method account-
ing for the refraction at the fluid-solid interface.
2.1. Time-domain methods: TFM and PWI

For the FMC, the array elements are excited one by one
to transmitN divergent waves, whereN is the total number
of elements. As N signals are recorded for each transmis-
sion, the dataset to handle is composed of N2Nt samples
with Nt the number of time samples. As indicated in Fig.
1(a), v = (v1, v2, 0)T and u = (u1, u2, 0)T are the vectors
that locate respectively the transmitting and receiving ele-
ment centers. The origin of the Cartesian coordinate system
is placed at the center of thematrix and the sets of transmitter
and receiver positions are denoted  and  .

The TFM consists in focusing in transmission and re-
ception at every point in the region of interest. If s(u, v, t)
is the signal received by the element at u when the ele-
ment at v is excited by an impulse signal, the TFM image is

(a)
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Figure 1: Geometries and notations used for 3D imaging with
divergent or plane waves: (a) transmission of a spherical wave
from a single element centered at v = (v1, v2, 0)T ; (b) trans-
mission of a plane wavefront of normal vector em by time de-
layed excitations of all array elements. For both transmission
types, all the receivers of coordinates u = (u1, u2, 0)T are used
to record N signals.

built as the coherent sum of N2 analytic signals ŝ(u, v, t) =
s(u, v, t)+i{s(u, v, t)}with appropriate time delays, where denotes the Hilbert transform. Using these notations, the
image amplitude at a given voxel located by the position vec-
tor r for a Dirac excitation is defined as

ITFM(r) =
|||||
∑
u∈

∑
v∈

ŝ
(
u, v, ‖v − r‖ + ‖u − r‖

c

)|||||
, (1)

where c is the phase velocity of longitudinal or transverse
ultrasonics waves depending on the NDT application.

For the PWI method, we assume that the solid is insoni-
fied by M plane waves propagating in different directions.
As shown in Fig. 1(b), each plane wave is indexed by m
where m ∈  = [1, ... ,M] and have a wave vector equal to
kem where

em =
(
sin �m cos�m, sin �m sin�m, cos �m

)T , (2)
with (�m, �m) the pair of angles defining the direction of
propagation of the m-th plane wave and k the wavenum-
ber. If all elements are used as receivers, then the number
of samples to be stored after M transmission is MNNt.Similarly to the TFM, if sm(u, t) is the signal received by
the element at u for the m-th emission, the PWI image re-
sults from a coherent sum ofMN analytic signals ŝm(u, t) =
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sm(u, t) + j{sm(u, t)}. The image amplitude at a point r is
defined as

IPWI(r) =
|||||
∑
u∈

∑
m∈

ŝm

(
u,

r.em + ‖u − r‖
c

+ �m
)|||||
, (3)

where �m is the emission delay of one element taken as ref-
erence.

In practice, the signals s and sm are known only for times
t in a set of recorded time samples  . Thus, the acquisition
gate has to be carefully chosen to allow the image compu-
tation at all points in the region of interest. Furthermore,
in Eqs. (2) and (3), ŝ and ŝm must be interpolated to accu-
rately extract the amplitudes corresponding to the theoretical
arrival times. A nearest neighbour interpolation is a suffi-
ciently good approximation if the sampling frequency fs islarge with respect to the central frequency of the array.
2.2. Frequency-domain methods: k-TFM and

k-PWI
The general idea of the Fourier-domain imagingmethods

is to use themathematical relation between the Fourier trans-
form of the dataset and the Fourier transform of the reflector
distribution in the medium. Here, the theory of the Fourier-
domain imaging is presented in 3D: first k-TFMwhere spher-
ical waves insonify themedium, then k-PWIwith plane wave
transmissions. 3D k-TFM is an extension of the work of
Hunter et al. [19] to matrix arrays, while 3D k-PWI was
recently developed by Merabet et al. [16].
2.2.1. 3D k-TFM method

Let us consider a spherical wave transmitted by an ele-
ment located at v, backscattered by a distribution of isotropic
point-like reflectors, and received by an element located at u.
Assuming that there is no attenuation and that the elements
have omnidirectional radiation patterns, the time Fourier
transform of s may be written as

S(u, v, k) = 1
(4�)2 ∫

e−ik‖v−r‖
‖v − r‖ g(r)

e−ik‖u−r‖
‖u − r‖ dr, (4)

where g is the distribution of point-like reflectors and dr =
dxdydz. For sake of brevity, the factor in front of the in-
tegral in Eq. (4) is omitted in the following. We denote
by Ŝ the 5-D Fourier transform of s, kr = (kx, ky, kz)T ,
ku = (ku1 , ku2 , 0)

T and kv = (kv1 , kv2 , 0)
T the wave vec-

tors corresponding to r, u and v, respectively. Following the
same approach than in 2D [19], we use the Weyl identity to
decomposed each Green function in Eq. (4) as continuous
sum of plane waves [22], and the 3D Fourier transform of g
can be expressed as

Ĝ(kr) = KuKvŜ(ku,kv, k), (5)
provided that kr, ku, kv and k satisfy the relation

kr = Ku +Kv (6)
where, notingw = u or v,Kw = (kw1

, kw2
, Kw)T andKw =√

k2 − k2w1
− k2w2

.

To compute an image, we need to express ku, kv and kas a function of kr. As the problem is ill-posed with three
equations for five unknowns, we solve it by fixing kv in Eq.
(6). The solution is expressed as

⎧
⎪⎨⎪⎩

ku1 = kx − kv1
ku2 = ky − kv2
k = 1

2kz

√(
k2z + ‖kv‖2 − ‖ku‖2

)2 + 4k2z‖ku‖2
.

(7)
Thus, we can compute a spectrum Ĝ from the spectrum Ŝ
at a fixed value of kv that will be denoted Ŝkv in the fol-
lowing. Then, the spectra are added for all kv, and the final
image is obtained by the 3D inverse Fourier Transform over
dimensions ku1 ,ku2 and k, noted −1

ku,k
. Finally, the imaging

equation is

Ik-TFM(r) =
||||||
−1
ku,k

{ ∑
kv∈

KuKvŜkv (ku, k)
}||||||

, (8)

where Eq. (7) provides the required frequencies of the spec-
tra Ŝkv and where the set is the wavenumber counterpart
of  .
2.2.2. 3D k-PWI method

The imaging equation for k-PWI is derived in the same
way as previously. First, we express the time Fourier trans-
form of sm as

Sm(u, k) =
1
4� ∫ e−ikr.emg(r)e−ik‖u−r‖‖u − r‖ dr, (9)

Here, theWeyl identity needs to be used only once to replace
the Green function in Eq. (9), which leads to

Ĝ(kr) = KuŜm(ku, k), (10)
with Ŝm the 3D Fourier transform of sm and where kr, kuand k must satisfy the relation

kr = Ku + kem. (11)
From Eq. (11), ku and k can be expressed as a function of
kr. We obtain

⎧
⎪⎨⎪⎩

ku1 = kx − k sin �m cos�m
ku2 = ky − k sin �m sin�m

k =
‖kr‖2
2kr.em

. (12)

Thus, a spectrum Ĝ is calculated for each incident plane
wave. The spectra corresponding to M plane waves are
added and the final image is obtained by 3D inverse Fourier
transform. The imaging equation is

Ik-PWI(r) =
||||||
F−1
ku,k

{ ∑
m∈

KuŜm(ku, k)
}||||||

, (13)

where Eq. (12) provides the required frequencies of the
spectra Ŝm.
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3. Implementation of imaging algorithms
In this section, the implementation of the time-domain

and Fourier-domain methods is presented in detail. First, the
strategy adopted to compute the signal spectra is described.
In particular, we propose a method to compute the signal
spectra without resorting to any interpolation along the two
lateral spatial dimensions. Then, the imaging algorithms in
the time and frequency domains are compared in terms of
required memory space and complexities.
3.1. Computation of the signal spectra

The frequencies (ku, k) required for k-TFM and k-PWI
depend on the desired image frequencies kr and are defined
by Eqs. (7) and (12). However, in practice, the spectra
Ŝkv and Ŝm are computed with Discrete Fourier Transforms
(DFTs) on the wavenumber grid  × given by

⎧⎪⎪⎨⎪⎪⎩

 =
[
−
Nku1
2 + 1, ...,Nku1

2

]
2�

Nku1
p

×
[
−
Nku2
2 + 1, ...,Nku2

2

]
2�

Nku2
p × {0}

 =
[
−Nk

2 + 1, ...,Nk
2

]
2�fs
Nkc

, (14)

where p is the pitch of the matrix array and Nku1
, Nku2

and
Nk are respectively the lengths of the Fourier transforms
along the dimensions ku1 , ku2 and k. Provided that DFTs arecomputed without zero-padding,Nku1

andNku2
are equal to√

N and Nk to the number of time samples Nt. The prob-lem is to obtain the spectra on the required wavenumber grid
instead, and a classical way to do this is to interpolate the
initial spectra known on  ×  . In this paper, only the
dimension k will be treated in this way, while a method is
proposed to compute the signal spectra without any interpo-
lation along the lateral dimensions ku1 and ku2 .

In this method, the shifted signal spectra Ŝ′
kv

and Ŝ′
m are

used instead of the original signal spectra Ŝkv and Ŝm. Thesespectra are calculated applying a phase shift before the spa-
tial Fourier transform, which is written as

Ŝ′
kv
(ku, k) = u

{
Skv (u, k)eikv.u

}
(15)

and
Ŝ′
m(ku, k) = u

{
Sm(u, k)eike′m.u

}
, (16)

where u is the Fourier transform along the dimensions u1and u2. If Ŝkv and Ŝm are replaced respectively by Ŝ′
kv

and
Ŝ′
m, the expressions of the required wavenumbers ku1 and
ku2 in Eqs. (7) and (12) simplify and become ku1 = kx and
ku2 = ky. Satisfying these two relationsmeans having equal-
ity between the first two dimensions of  and the desired
lateral grid  × , where

⎧⎪⎨⎪⎩

 =
[
−Nx

2 + 1, ...,Nx
2

]
2�
Lx =

[
−Ny

2 + 1, ...,Ny
2

]
2�
Ly

. (17)

In other words, it is necessary to have equal sampling steps
as well as equal number of points for × and the first
two dimensions of  . To this end, the method comprises
two steps.

The first is zero-padded Fourier transform along the u1and u2 dimensions of the above shifted signal spectra S′
kvand S′

m. The number of pointsNku1
andNku2

are chosen so
that the wavenumber pitch is identical for the dimensions ku1and kx aswell as for the dimensions ku2 and ky. For a volume
with lateral sizes Lx and Ly, the wavenumber sampling step
along the dimensions kx and ky must be equal to 2�∕Lx and
2�∕Ly. Furthermore, the pitch p of the matrix probe along
the  and  axes imposes that the computed spectra vary
between −�∕p and �∕p. Thus, we choose

Nku1
=
[
Lx
p

]
(18)

and
Nku2

=
[Ly
p

]
. (19)

The second step is to extend the obtained discrete spec-
tra. For a given spectrum known between −�∕p and �∕p,
an extension by periodicity over any interval is possible, as
illustrated in Fig. 2 for the dimension ku1 . The lower and
upper bounds of the wavenumber grid are chosen equal to
−�Nx∕Lx and �Nx∕Lx for the dimension ku1 and equal to
−�Ny∕Ly and �Ny∕Ly for the dimension ku2 . In this way,
the amplitudes of the spectra Ŝ′

kv
and Ŝ′

m are directly ob-
tained on the desired wavenumber grid  ×  , withoutany interpolation. Note that we do not directly apply an in-
verse DFT to this extended spectrum, it is only used for the
interpolation step. This makes it possible to obtain an im-
age spectrum after interpolation having a wider support than
if zeros were added instead of extending the signal spectra,
which improves the quality of the reconstructed images.

The expression of k in Eqs. (7) and (12) is non-linear
with respect to kr and so, the required wavenumber grid for
k is non-uniform. Thus, the method described above is not
applicable for this dimension and, as previously mentioned,
an interpolation of the signal spectra along the k dimension
is performed. A nearest neighbour interpolation is chosen
but, knowing that the interpolation accuracy is a preponder-
ant factor for the quality of the Fourier-domain reconstruc-
tions, zero-padding is used for the time dimension before
DFT computation and Nk is chosen large enough to obtain
a satisfactory image quality. Note that different ways to con-
trol the quality of images obtained with Fourier methods are
proposed in the literature. For example, by improving the
quality of the interpolation step [23], by using a non-uniform
FFT [24, 25] or by using the interpolation-free Stolt mapping
method developed by Li et al. [26]. However, the amount
of memory required for these algorithms will be greater and
the obtained frame rate lower. For real-time 3D imaging,
the use of zero-padding and nearest neighbour interpolation
seems to be a good compromise to obtain good performance
without excessively degrading the image quality.

M. Marmonier et al.: Preprint submitted to Elsevier Page 4 of 14



Real-time 3D imaging with Fourier-domain algorithms and matrix arrays applied to non-destructive testing

(a)

ku1

k

0−�
p

�
p

1 Nku1 =
[
Lx
p

]

(b)

0
−
�Nx
Lx

�Nx
Lx

−�
p

�
p

1 Nx

Figure 2: Diagram of spectral extension principle for an image
of length Lx along the  axis: (a) initial spectrum ; (b) spec-
trum after extension. The trapezoidal area in gray represents
the support of propagative waves.

3.2. Required memory space
Regarding the real-time implementation of imaging al-

gorithms, high frame rates can be reached if all matrices
needed to reconstruct an image is computed before starting
the imaging loop. However, large enough memory space is
required to store the reconstruction algorithm matrices, in
addition to the recorded signals. This is the main constraint
for real-time imaging. In this paper, we do not make a trade-
off between frame rates and memory requirements and we
only present the fastest possible implementation and there-
fore the most memory intensive.

For TFM and PWI, the computation ofN×N andN×M
arrival times is needed for each reconstruction point in the
region of interest. For each of these times, the index of the
closest value in  is stored in the graphic card. In the same
way, for the Fourier-domain algorithms, the indices corre-
sponding to the closest values in  of the required values
of k are stored in the memory space of the graphic card. Us-
ing shifted signal spectra reduces the number of indexes to
be stored by a factor ofN for the k-TFM and k-PWI methods
because the required k in Eqs. (7) and (12) no longer depend
on ku1 and ku2 which are imposed equal to kx and ky in thiscase. The skew factorsKu andKv, as well as the phase shiftsin Eqs. (15) and (16) and those used for taking into account
a water/solid interface (see Appendix A), are also computed
and stored.

The sizes of the different storedmatrices are summarized
in Table 1 and the memory requirements corresponding to
our experimental settings are presented in Fig. 3(a). It ap-
pears that our implementation of the Fourier-domain algo-
rithms provides lower memory costs compared to those in
the time domain. This is especially valuable in the context of
3D real-time imaging where the amount of available mem-
ory in NDT systems is a huge constraint if large volumes

have to be reconstructed with high resolutions. In our exper-
iment, where N = 256, M = 33, Nt = 237, Nk = 711,
Lx = 9.9 mm, Ly = 9.9 mm and Nx = Ny = Nz∕2,k-TFM requires approximately 80 times less memory space
than TFM for 105 < Nxyz < 108 whereNxyz = NxNyNz isthe total number of voxels. In the case of plane wave emis-
sion and for the same range ofNxyz values, k-PWI has mem-
ory requirement between 2 and 60 times lower than PWI.
3.3. Algorithmic complexity analysis

For the TFM and PWI methods, the signal amplitudes
in the dataset are extracted using the indices stored in the
graphic card. This operation is a nearest neighbour interpo-
lation of the signals that comprises only memory accesses.
The results of the interpolation step is stored in a 5-D double
array of sizeNx×Ny×Nz×N×N for the TFMmethod and
Nx×Ny×Nz×N×M for the PWImethod. Each component
of those 5-D variable corresponds to an amplitude extracted
in the experimental dataset at a corresponding arrival time.
For both methods, the calculation of a single voxel requires
a double summation (see Eqs. (1) and (3)). Thus, for Nxyzvoxels, the algorithmic complexities for TFM and PWI are
respectively

TFM = NxyzN
2 (20)

and
PWI = NxyzMN. (21)

For the k-TFM algorithm, the 5-D Fourier transform of
the dataset must be computed before interpolation. As ex-
plained before, zero-padding is used for the DFT computa-
tions along the dimensions u1, u2 and t with the number of
pointsNku1

Nku2
andNk. Thus, this 5-D Fourier transform

comprises the following computation steps:
1. Zero-padded DFT along the time dimension with sup-

pression of the useless negative frequencies;
2. DFTs along the dimensions v1 and v2;
3. Application of phase shifts before zero-padded DFTs

along the dimensions u1 and u2.
Direct and inverse DFTs are computed using the
Fast Fourier Transform (FFT) and the algorithmic
complexity of the 5-D FFT is therefore equal to
NkNku1

Nku2
N log2

(
Nk

√
Nku1

Nku2
N
)
. The application

of the phase shift corresponds to a term-by-term multiplica-
tion of two 5-D arrays of size Nk

2 ×
√
N ×

√
N ×

√
N ×

√
N

which has therefore an algorithmic complexity equal to
Nk
2 N

2. After the extension of the spectrum along the
dimensions ku1 and ku2 , a nearest neighbour interpolation
is performed along the dimension k. We thus obtain a 5-D
array of sizeNx ×Ny ×Nz ×

√
N ×

√
N that we multiply

by KuKv and sum over the two last dimensions. Each of
these two operations has a complexity equal to NxyzN and
finally, an image spectrum is stored in a 3D array of size
Nx × Ny × Nz. The last operation is an inverse 3D FFT
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Table 1

Types and sizes of the variables precomputed and stored in the graphic card.

Variable Type
Size

TFM k-TFM PWI k-PWI

Interpolation indices uint32 NxNyNzN2 NxNyNzN NxNyNzNM NxNyNzM
Skew factors single complex NxNyNzN NxNyNzM

Signals phase shift single complex N2 NkNM∕2
Water phase shift single complex NkNxNyN∕2 NkNxNyM∕2
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Figure 3: Required memories (a) and algorithmic complexities (b) plotted as a function of the number of voxels for TFM, PWI,
k-TFM and k-PWI. The results correspond to the acquisition and reconstruction parameters used in the experiments: N = 256,
M = 33, Nt = 237, Nk = 711, Lx = 9.9 mm, Ly = 9.9 mm and Nx = Ny = Nz∕2.

with complexity equal toNxyz log2
(
Nxyz

). All these above
operations lead to an algorithmic complexity for k-TFM
equal to

k-TFM = NkNku1
Nku2

N log2
(
Nk

√
Nku1

Nku2
N
)

+
Nk
2
N2 + 2NxyzN +Nxyz log2

(
Nxyz

)
. (22)

k-PWI includes the same computation steps, which leads to
a similar algorithmic complexity :

k-PWI = NkNku1
Nku2

M log2
(
Nk

√
Nku1

Nku2

)

+
Nk
2
NM + 2NxyzM +Nxyz log2

(
Nxyz

)
. (23)

In this expression, the first term corresponds to the calcula-
tion ofM 3D FFT, one for each transmission. It is the main
difference with the algorithmic complexity expression of k-
TFMwhere the first term corresponds to a single 5-D FFT of
the entire recorded data set. The other differences are simply
due to the different numbers of transmissions for both meth-
ods. Each algorithmic complexity consists in twomains con-
tributions: the first corresponds to the Fourier transform of

the dataset and mainly depends on the number N of array
elements; and the second corresponds to the inverse Fourier
transform of the image spectrum and mainly depends on the
number of voxelsNxyz.The algorithmic complexities of the four imaging meth-
ods were estimated considering the matrix probe and the
imaging parameters used in our experiment, and are plotted
as a function of the number of voxels in Fig. 3(b). Using
the Fourier-domain algorithms leads to lower algorithmic
complexities, but only for a number of reconstructed voxels
greater than 5.103 in our configuration. As the desired num-
ber of voxels in 3D imaging typically varies between 105
and 108, the Fourier-domain algorithms are therefore use-
ful to speed up real-time 3D imaging. However, if a matrix
array with more elements is used, the imaging algorithms
will be more efficient in the time domain rather than in the
frequency domain for a larger range of number of voxels.
Indeed, the terms that mainly depend of the number of ele-
ments in the algorithmic complexities of the Fourier-domain
methods will stay preponderant for a larger number of recon-
struction points.

An analysis of (22) and (23) shows that the gains in terms
of numbers of operations for the Fourier-domain algorithms
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for 105 < Nxyz < 108 are given by
k-TFMTFM ∼

2N + log2
(
Nxyz

)

N2 (24)

and
k-PWIPWI

∼
2M + log2

(
Nxyz

)
NM

. (25)

For example, these expressions lead to approximatively 125
times less operations for k-TFM over TFM and of approx-
imatively 95 for k-PWI over PWI. Although this does not
directly give us the gain in terms of improved frame rate, it
indicates that Fourier domain algorithms are a good tool for
performing real-time imaging.

4. Real-time 3D imaging results
In the present section, an additively manufactured 316L

stainless steel block containing a set of spherical porosities
is imaged with the four imaging methods. First, the experi-
mental setup and the manufacturing additive sample are pre-
sented. Then, the obtained results are analyzed and the per-
formance of the methods are compared.
4.1. Experimental setup

The experimental setup is shown in Fig. 4. The matrix
array manufactured and distributed by Imasonic (Voray-sur-
l’Ognon, France) is composed of 16 × 16 square elements
of 1 mm2 arranged with a pitch of 1.1 mm in the  and 
directions. The elements operate at the central frequency
of 5 MHz. The sample to be imaged is a 316L stainless
steel block elaborated by additive manufacturing with a laser
powder-bed fusion process. The block includes a network of
27 porosities of 0.8 diameter organized in a cubic mesh of
4 mm period. The block is 20-mm high and is assumed to
be isotropic with longitudinal wave velocity equal to 5.74
mm.�s−1 [27]. The experiment was carried out in a wa-
ter tank and the matrix array placed 10 mm above the sam-
ple surface so that its central axis coincides with the central
porosities of the 3D network. It should be pointed out that
the printed sample was controlled by X-ray radiography to
ensure that all the defects are identical spheres and that they
are not completely filled with steel powder.

The data acquisition with divergent or plane waves were
performed using a 256-channel Vantage (Verasonics) sys-
tem and the 3D imaging codes were implemented on Matlab
2021a and were launch on a graphic card (Nvidia Geforce
RTX 3090) with 24 GB of available memory. The recorded
time window is set between 16.25 and 20.05 µs, so the
echoes from the specimen surfaces are not digitized. This
avoids imaging artifacts possibly caused by aliasing for the
Fourier-domain methods [19]. The Vantage system has a
programmable sample rate of up to 62.5 MHz. The maxi-
mum available sample rate is used, so each recorded signal
contains 237 time samples.

For the PWI and k-PWI methods, a satisfactory quality
image of the printed sample can be obtained with only 33

plane waves provided that the transmission angles (�m, �m
)

are defined as

(
�m, �m

)
=
{

(0, 0)
(2.5i, 45j) where

{
i ∈ [1, ... ,4]
j ∈ [0, ... ,7] . (26)

It should be noted that our objective is not to obtain
the best possible image by increasing the number of plane
waves, but to evaluate the benefit of a reconstruction in the
Fourier domain for a given number of planewaves. Note also
that no apodization was applied at the time of acquisition in
order to maintain a satisfactory spatial resolution.
4.2. Comparison of obtained image quality

The 3D images corresponding to TFM, k-TFM, PWI and
k-PWI are displayed in Fig. 5 in the form of isosurfaces.
The region of interest is a 10mm3 cubic volume centered on
the porosity of coordinates (0, 0, 22.1) located at the center
of the 3D network. The number of voxels is Nx × Ny ×
Nz = 24 × 24 × 50 which corresponds to voxels of sizes
close to �∕3 in the two lateral directions and close to �∕6 in
the axial direction. For each volume, different isovalues are
used depending on the depth of the porosities so that all the
echoes remain visible with similar sizes.

A first observation is that all porosities are properly im-
aged. The different used isovalues used suggest that the re-
constructed porosity amplitudes decrease faster as a func-
tion of the distance from the array for both Fourier-domain
reconstructions. For a quantitative comparison, the ampli-
tudes along the vertical central axis of the matrix are plotted
in Fig. 6. The amplitude gaps between the top porosity at = 20 mm and the bottom porosity at  = 28 mm are 7.9
dB for TFM and 13 dB for k-TFM. For PWI and k-PWI, the
amplitude gaps correspond to 5.4 and 11.5 dB, respectively.
As expected, the amplitudes decrease more rapidly for TFM
and k-TFM compared to PWI and k-PWI due to the attenua-
tion by spherical spreading.

The horizontal cross sections are displayed in Fig. 7
for depths  = 18.1 mm ,  = 22.1 mm and  = 26.1
mm where the image amplitude is maximum. They corre-
spond to the top of the spherical defects. For the Fourier-
domain methods, we observe that the spatial resolution of
the upper plane is better and the image quality degradesmore
rapidly with depth than the time-domain methods. This is
particularly clear for k-TFM. In order to compare the qual-
ity of the reconstructions, two metrics are used: the Signal-
to-Noise Ratio (SNR) and the Array Performance Indicator
(API) [28]. The SNR measures the detectability of a defect
in the presence of noise and can be expressed as

SNR =
Aecho
�noise

, (27)

where Aecho is the maximum amplitude of a defect echo and
�noise is the standard deviation of the noise at the same depth.
In our experiment, �noise was measured by moving the probe
over a defect-free region. The API is introduced to quantify
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Figure 4: Experimental setup with a matrix array and a stainless steel block immersed in water (a). The block was elaborated
by additive manufacturing and contains 27 porosities of 0.8 mm diameter arranged in a 3D network of 4 mm period: side view
with a water column heigth of 10 mm (b); 3D view (c).

the spatial resolution of an imaging method and can be ex-
pressed as

API = N−6dBDxDyDz

�3
, (28)

whereDx,Dy andDz are the dimensions of the voxels along
the  ,  and  axes, and N−6dB is the number of voxels
with amplitudes greater than the−6 dB thresholdwhere 0 dB
corresponds to the maximum reconstructed amplitude of the
defect. The SNR and API values measured around the posi-
tions of the central porosities are presented in Table 2. The
Fourier-domain imaging results in lower SNR values com-
pared to the time-domain reconstructions, and this SNR de-
cay with depth is similar for the TFM and PWImethods. For
the upper porosity, Fourier-domain and time-domain imag-
ing provide similar API. However, the API degrades more
rapidly with depth for the Fourier-domain imaging.

Following the approach taken by Velichko et al. [29] and
Merabet et al. [16], the differences observed experimentally
between the 3D images computed in the time and frequency
domains can be justified theoretically using asymptotic ex-
pansions of the integral expressions of the reflector distribu-
tions. The analytical demonstration leading to the imaging
equations is summarized in Appendix B. In the simplified
case where the array elements are directly in contact with
the sample, the imaging equations for TFM and k-TFM can
be put into the following integral forms:

gTFM(r) = ∭ GTFM(r,u, v, k) dudvdk (29)

and

gk-TFM(r) ∼
kz→∞

A2∭ k4 cos2 �(r,u) cos2 �(r, v)
‖r − u‖‖r − v‖

GTFM(r,u, v, k) dudvdk, (30)

where GTFM(r,u, v, k) = S(u, v, k)eik(‖r−v‖+‖r−u‖), A is a
complex constant and, noting w = u or v, �(r,w) is the an-
gle at which a point located at r is seen from the element
positioned at w. For the PWI method, the expressions ob-
tained for a single plane wave emission are

gPWI(r) = ∬ GPWI(r,u, k) dudk (31)

and

gk-PWI(r) ∼
kz→∞

A∬ k2 cos2 �(r,u)
‖r − u‖
GPWI(r,u, v, k) dudk, (32)

where GPWI(r,u, k) = Sm(u, k)eik(r.em+‖r−u‖). For the
frequency-domain methods k-TFM and k-PWI, the terms
GTFM(r,u, v, k) and GPWI(r,u, k) are multiplied by a func-
tion that acts as a space-time filter. The effects of this filters
can be summarized in three points:

1. The factors ‖r − w‖−1 theoretically confirm that the
echo amplitudes decrease faster with the distance to
the array when images are computed in the frequency
domain;

2. The factors �(r,w) show that the Fourier-domain
imaging penalizes the detection of defects located out-
side of the matrix aperture;

3. The factors in the form of powers of k shift the spec-
tral content towards the higher frequencies, which in-
proves the resolution of images in the Fourier domain
but can also increases the noise sensitivity.

For the first point, the experimental observations are in
perfect agreement with the theory since the porosity echoes
in the k-TFM and k-PWI images decrease more rapidly with
depth compared to what is observed in the TFM and PWI
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Depth (mm) TFM k-TFM PWI k-PWI

17.6 − 18.6 −12 −12 −8 −8
21.6 − 22.6 −14 −16 −10 −12
25.6 − 26.6 −16 −20 −12 −16

Figure 5: Experimental 3D images of the network of 27 spherical porosities shown in the form of isosurfaces: (a) TFM; (b)
k-TFM; (c) PWI; (d) k-PWI. The 0 dB reference level corresponds to the maximum over amplitude measured in the whole
volume, and the isovalues chosen to display the three horizontal networks of 9 porosities are indicated in dB in the table below.
(a) TFM. (b) k-TFM. (c) PWI. (d) k-PWI.

images. As the porosities are all located below the matrix
aperture, we cannot make a comparison in relation to the
second point. Concerning the third point, our previous study
in 3D imaging with simulated echoes confirmed that a better
spatial resolution is obtained for the reconstructed images in
the Fourier domain in the absence of noise [16]. Looking at
the API values, it seems that the greater noise sensitivity of

these methods does not allow to find the same results with
the experimental data except for the highest central porosity
where the k-PWI obtains a better API than the PWI. Fur-
thermore, in the presence of experimental noise, the SNR
obtained with the Fourier domain algorithms is lower than
for the time domain.
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Table 2

SNR and API values measured around the positions of the central porosities at  = 18.1
mm,  = 22.1 mm and  = 26.1 mm.

Depth (mm)
SNR (dB) API

TFM k-TFM PWI k-PWI TFM k-TFM PWI k-PWI

18.1 39 33 16 11 0.43 0.53 0.81 0.7
22.1 41 33 15 8 0.48 0.86 1.2 1.34
26.1 35 28 18 9 1.2 1.9 1.3 2.1
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Time-domain imaging
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Figure 6: Amplitudes of the 3D images extracted along the
vertical central axis of the matrix array: (a) TFM and k-TFM;
(b) PWI and k-PWI.

4.3. Comparison of obtained frame rates
The frame rates obtained with the four real-time imag-

ing methods are given in Table 3 for voxel numbers ranging
from 3.5 × 103 to 1.3 × 107. Due to the limited available
memory in the graphic card, some algorithms cannot be ap-
plied to the larger number of voxels. Our implementation
of the algorithms in the Fourier domain allows us to gain a
factor 46 on the maximum number of voxels for the TFM
and a factor 59 for the PWI. Furthermore, as expected from
the analysis of algorithmic complexities, better frame rates
are obtained with the Fourier-domain imaging beyond a cer-
tain number of voxels, approximatively 104 voxels for the
k-TFM method and 105 voxels for the k-PWI method. For
an image containing 24×24×48 voxels, the obtained frame
rate is approximately 4 times greater with k-TFM compared
to TFM, and for an image formed of 48 × 48 × 96 voxels
the frame rate is approximately 11 times higher with k-PWI
than with PWI. The larger the number of voxels, the more
useful the Fourier-domain algorithms. Thus, a low memory

cost implementation of these algorithms makes it possible to
overcome the difficulties of 3D real-time imaging.

5. Conclusion
In this paper, we have presented a way to perform fast

and memory-efficient 3D imaging with matrix arrays. Two
types of acquisition have been investigated: the first consists
in the transmission of spherical waves by exciting the ele-
ments one by one, and the second uses incident plane waves
where the elements are all excited in parallel with delay laws.
In each case, we have presented the theory of the imaging
method in the Fourier domain and demonstrated a signif-
icant decrease of the algorithmic complexity compared to
the equivalent method operating in the time domain. In ad-
dition, the Fourier-domain methods have been improved in
terms of required memory space, which makes it possible to
compute 3D images with many more voxels in comparison
with the implementation usually adopted in the literature.

The four methods, namely TFM, k-TFM, PWI and k-
PWI, have been evaluated experimentally using a 256-
channel Vantage (Verasonics) system and thanks to parallel
computations on graphic card. The solid sample is a stain-
less steel block elaborated by additive manufacturing and
containing a 3D network of porosities of 0.8 mm diameter,
and 3D images are produced with a 16×16matrix array at 5
MHz. In terms of required memory space, it has been shown
that for an image composed of 108 voxels, the k-TFM algo-
rithm requires 80 times less memory than TFMwhile k-PWI
60 times less than PWI.

The gain in frame rate depends strongly on the number of
voxels. For an image with 2.2×105 voxels, it has been shown
that the frame rate is 10 times higher for k-PWI compared to
PWI. For k-TFM, the frame rate is 4 times higher compared
to TFM for an image with 2.8 × 104 voxels. These results
show that the use of imaging algorithms in the Fourier do-
main is a relevant approach for real-time 3D imaging. In par-
ticular, the performances obtained with the k-PWImethod in
terms of frame rate and maximum number of voxels greatly
exceed those of the industrial imaging systems used nowa-
days for on-site inspections.

From a qualitative point of view, the experimental com-
parison of the 3D images formed with time and frequency-
domain algorithms confirmed the theory: the faster ampli-
tude decay with depth and the greater sensitivity to noise of
the Fourier-domain algorithms lead to lower values of SNR
compared to time-domain methods, in particular for defects
far from the array. However in case of electronic noise, it
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Figure 7: Horizontal cross sections of reconstructed volumes at  = 18.1 mm,  = 22.1 mm and  = 26.1 mm. (a) TFM. (b)
k-TFM. (c) PWI. (d) k-PWI. Level limits are adapted to noise and therefore TFM images are displayed between 0 and −30 dB
and PWI ones between 0 and −20 dB.
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Table 3

Frame rates expressed in frames-per-second reached with the di�erent imaging algorithms
as a function of the number of voxels. A cross indicates that reconstruction is not feasible
due to lack of memory in the graphic card. A star indicates that the associated recon-
struction is performed with the maximum possible number of voxels.

Nx ×Ny ×Nz Total voxels TFM k-TFM PWI k-PWI

12 × 12 × 24 3.5 × 103 17 13 115 83
24 × 24 × 48 2.8 × 104 3∗ 13 115 81
48 × 48 × 96 2.2 × 105 × 6 6∗ 69
88 × 88 × 176 1.3 × 106 × 1∗ × 52
188 × 188 × 376 1.3 × 107 × × × 2∗

should be noted that since the frame rates are higher, the im-
ages obtained with k-TFM and k-PWI could be improved by
averaging several reconstructed images by choosing a com-
promise between frame rate and image quality. Provided ac-
quisition time is small compared to image computation time,
is should be also possible to increase signal to noise ratio by
averaging the acquired signals. This is the case when the
number of emissions is reduced by using plane wave emis-
sions, for example, and when the region of interest is close to
the probe, which allows for a short signal digitisation time.
Reducing noise in the data in this way specifically improves
the quality of images reconstructed with k-TFM and k-PWI
beingmore noise sensitivemethods than TFM and PWI. Fur-
ther theoretical and experimental work is needed to better
understand the origin of this attenuation and sensitivity to
noise, which is specific to Fourier domain algorithms. Fu-
ture work will focus on finding methods to correct these ef-
fects using specific spatio-temporal filters for example.
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Appendix A
Imaging equation for a water-steel interface
The theoretical background presented in the paper con-

siders a matrix array directly in contact with the specimen.
It is common to carry out an "immersion" control where the
probe is placed in water at a certain distance above the sam-
ple. The water height, noted ℎ, is taken into account differ-
ently depending on the type of algorithm used.

For the time-domain algorithms, the calculation of the
delay corresponding to the direct path of the wave is adapted.
For TFM, the image amplitude can be expressed as

ITFM(r) =
|||||
∑
u∈

∑
v∈

s
(
u, v,

‖hv − r‖ + ‖hu − r‖
c

+
‖v − hv‖ + ‖u − hu‖

c̃

)|||||
(33)

where c̃ is the phase velocity in water and the vectors hv and
hu locate the impact points on the surface for the incident
path and outgoing path, respectively [9]. The vectors hv and
hu are computed by minimising the time of flight while re-
specting Fermat’s principle. Likewise, the image amplitude
for PWI is expressed as

IPWI(r) =
|||||
∑
u∈

∑
m∈

sm

(
u,

(r − hm).em + ‖hu − r‖
c

+
hm.ẽm + ‖hu − r‖

c̃
+ �m

)|||||
(34)

where

hm =
⎛⎜⎜⎝

x − (z − ℎ) tan �m cos�m
y − (z − ℎ) tan �m sin�m

ℎ

⎞⎟⎟⎠
,

locates the impact point on the surface of the incident plane
wave and

ẽm =
(
sin �̃m cos�m, sin �̃m sin�m, cos �̃m

)T

with �̃m = arcsin
(
c̃
c sin �m

)
is the normal vector of the

plane wavefront in water.
For the Fourier-domain algorithms, we use an idea de-

veloped by Skjelvareid et al. [30]. The spectra which can
be obtained with a control in direct contact are extrapo-
lated from the spectra obtained in immersion. This allows
to apply the Fourier-domain algorithms presented in this pa-
per without any modification. The idea is to apply a phase
shift to the spectra of recorded signals corresponding to
the inverse propagation in water. For k-TFM, we multiply
Ŝ by the phase factor exp

(
iℎ
(√

k̃ − kv +
√
k̃ − ku

))
,

where k̃ = !∕c̃ is the wavenumber corresponding to
the propagation in water. The term exp

(
iℎ
√
k̃ − kv

)

corresponds to the first propagation in water, just after
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emission, and the term exp
(
iℎ
√
k̃ − kv

)
corresponds to

the second propagation in water of form the surface to
the receivers. For k-PWI, we multiply Ŝm by the phase
factor exp

(
iℎ
(
k̃ cos �̂m +

√
k̃ − ku

))
where the term

exp
(iℎ k̃ cos �̂m

) corresponds to the propagation in water of
the plane wave. These operations provide a good approxima-
tion of the recorded data spectra that wewould have obtained
with a contact control.

Appendix B
Derivation of the reflector distributions
In the following, the expressions of the distribution of

point-like reflectors are derived for the four imagingmethods
following the idea proposed in[29] for the divergent waves
emissions and adapted in [16] to plane waves emissions. The
objective is to obtain expressions in the form of integral over
the same variables for both types of acquisition in order to
compare the theoretical image amplitudes.

The isotropic point-like reflector distribution obtained
with TFM at the point r is expressed as

gTFM(r) = ∭ GTFM(r,u, v, k) dudvdk. (35)

where GTFM(r,u, v, k) = S(u, v, k)eik(‖r−v‖+‖r−u‖). Using
Eq. (5), the reflector distribution at the point r obtained for
k-TFM can be expressed as

gk-TFM(r) = ∫ ⋯∫ KuKvei(ku.(r−u)+kv.(r−v)+(Ku+Kv)z)
S(u, v, k) dkudkvdudvdk. (36)

To obtain an expression comparable to Eq. (35), the integral

J (r,w, k) = ∫ Kwei(kw.(r−w)+Kwz) dkw (37)

must be calculated. An asymptotic expression of the inte-
grals of the form

L (�) = ∬ f
(
k1, k2

) ei�q(k1,k2) dk1dk2 (38)

can be derived for � → ∞ using the stationary phase method
[31, 32]. The result is given by

L (�) ∼
�→∞

2�ei
(
�q

(
k∗1 ,k

∗
2

)
+� �4

)

�
√|||det

(Q (
k∗1, k

∗
2
))|||

f
(
k∗1, k

∗
2
)
, (39)

where (
k∗1, k

∗
2
) is a stationary point of q, i.e., satisfy-

ing ∇q
(
k∗1, k

∗
2
)

= 0, Q is the Hessian matrix of q and

� = sign (det (Q (
k∗1, k

∗
2
))). Thus, by setting � = kz,

f
(
kw1

, kw2

)
= Kw and

q
(
kw1

, kw2

)
=
kw1

(
x −w1

)
+ kw2

(
y −w2

)

kz
+
Kw
k
, (40)

an asymptotic expression of integral in Eq. (37) can be ob-
tained for kz → ∞, which is given by

J (r,w, k) ∼
kz→∞

A k2z2

‖r − w‖3 e
ik‖r−w‖ (41)

with A a complex constant. The integrals over ku and kv inEq. (36) can be evaluated for kz→ ∞ using the result given
in Eq. (41). The corresponding asymptotic expression is
given by

gk-TFM(r) ∼
kz→∞

A2∭ k4 cos2 �(r,u) cos2 �(r, v)
‖r − u‖‖r − v‖

GTFM(r,u, v, k) dudvdk (42)

with �(r,w) = arccos
(

z
‖r−w‖

)
the angle at which the point

r is seen from the element positioned at w. This expression
is valid for the points r sufficiently far away from the array,
i.e. for z ≫ �.

The reflector distribution obtained with PWI for one
plane wave emitted in the direction em at the point r is ex-
pressed as

gPWI(r) = ∬ GPWI(r,u, k) dudk. (43)

where GPWI(r,u, k) = Sm(u, k)eik(r.em+‖r−u‖). Using Eq.
(10), the reflector distribution obtained for k-PWI at the
point r is expressed as

gk-PWI(r) = ∭ Kuei(kr.em+ku.(r−u)+Kuz)

S(u, v, k) dkududvdk. (44)
In the same way than for k-TFM, the integral over ku in Eq.
(44) can be evaluated for kz → ∞ using result in Eq. (41)
to obtain the following expression

gk-PWI(r) ∼
kz→∞

A∬ k2 cos2 �(r,u)
‖r − u‖ GPWI(r,u, v, k) dudk.

(45)
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