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We provide a semi-classical description of the inclusive gluon induced Deep Inelastic Scattering
cross section in a way that accounts for the leading powers in both the Regge and Bjorken limits.
Our approach thus allows a systematic matching of small and moderate xBj regimes of gluon proton
structure functions. We find a new unintegrated gluon distribution with an explicit dependence on
the longitudinal momentum fraction x which entirely spans both the dipole operator and the gluonic
Parton Distribution Function. Computing this gauge invariant gluon operator on the lattice could
allow to probe the energy dependence of the saturation scale from first principles.

I. INTRODUCTION

At asymptotically short distances the proton behaves
as a collection of free quarks and gluons (partons). This
regime of QCD is probed for example in Deep Inelas-
tic Scattering (DIS) experiments such as electron-proton
collisions, where a highly virtual photon of momentum
q and virtuality Q2 = −q2 � Λ2

QCD is exchanged be-
tween the electron and the hadronic target. At small
xBj ≡ Q2/2(q · P ), where P is the 4-momentum of the
proton, the number of gluons probed in the proton rises
rapidly and it is expected to reach saturation at very
high energies due to gluon recombination effects. This
takes place at the saturation scale Qs [1, 2], which in-
creases with decreasing xBj. This remarkable yet elu-
sive emergent phenomenon is the subject of active ex-
perimental research.

The probability for a parton to carry a fraction x
of the proton momentum, known as the parton dis-
tribution function (PDF), is encompassed by the struc-
ture functions probed in DIS. PDF’s obey renormaliza-
tion group equations, the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [3], which appear in
the Bjorken limit, Q → ∞ at fixed xBj. In that limit,
an expansion in powers of 1/Q separates short-distance
physics, i.e. the hard subprocess, from the long-distance
physics encoding the non-perturbative dynamics of con-
finement in the proton via the PDF. To leading loga-
rithmic accuracy the dominant contribution arises from
diagrams that connect the target to the photon with a
strong ordering from small to large transverse momenta
µ � k⊥,1 � k⊥,2 � ... � Q, while the longitudinal
components along the dominant light cone direction of
the proton are of similar magnitude: xBjP

− ∼ k−1 ∼
k−2 ∼ ... ∼ P−, where P− is the large momentum com-
ponent of the proton. We are using light cone variables
k+ = (k0 + k3)/

√
2 and k− = (k0 − k3)/

√
2 in addition

to the transverse components k ≡ (k1, k2), in the frame

∗ rboussarie@polytechnique.edu
† mehtartani@bnl.gov

where the proton is moving in the −z direction its dom-
inant momentum component is P−.

In addition to the Bjorken limit, attention has been
given to the Regge limit, xBj → 0 at fixedQ. Here, an ex-
pansion in powers of xBj is to be performed and gluon
saturation is expected to emerge for very small values of
this variable.

In DIS, the dominant process at small xBj is that of the
virtual photon splitting into a quark-antiquark dipole
which subsequently interacts with the target by the t-
channel exchange of gluons with small longitudinal mo-
menta in the light cone direction of the photon. In this
case, the quantum mechanical time associated with the
dipole formation, (xBjP

−)−1 is much larger than the tar-
get longitudinal size of order 1/P−. This opens up a
large phase space for long lived quantum fluctuations
that are enhanced by potentially large logarithms of the
form αs log 1/xBj ∼ 1. The latter are generated by strong
ordering in the exchanged longitudinal gluon momenta
k+
i . In contrast to DGLAP evolution, the transverse

components are assumed to be of the same order, i.e.,
k⊥1 ∼ k⊥2 ∼ ... ∼ k⊥n along the cascade. This implies a
strong inverse ordering the k−i ∼ k2

i⊥/k
+
i components.

However, it was observed in Ref. [4] that the Next-
to-Leading Order (NLO) corrections (see [5–7]) to the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) [8], Balitsky-
Kovchegov (BK) [9, 10] and Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner (JIMWLK) [11]
equations that govern small-xBj physics, generate large
collinear logarithms that have to be resummed to ensure
numerical stability of the equations [12, 13].

The origin of this problem can be traced back to the so-
called shock wave approximation which assumes that
the target longitudinal extent, as perceived by the pho-
ton, is equal to zero. For instance two successive glu-
ons with k+

1 � k+
2 should also obey the following or-

dering k−1 � k−2 . However, the transverse integrations
are not explicitly constrained through the evolution, re-
sulting in the extension of the k− phase-space in the
non-physical region k−1 > k−2 . More importantly, when
k−1 ∼ k−2 , with k+

1 � k+
2 we have k⊥1 � k⊥2, which

corresponds to the DGLAP region.
In light of these recent developments, one can reason-
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ably hope that a reformulation of small x physics may
cure this problem without resorting to an order by order
resummation of secular terms. This is the goal of the
present letter.

We will use a semi-classical approach [14] similar to
the shock wave approach [9] but we will refrain from
making assumptions about the extent of the target. The
leading powers in both the Bjorken and the Regge limits
are instead obtained by performing a gradient expan-
sion around the transverse position of quantum fluc-
tuations. In is approach, light cone time ordering be-
tween long-lived quantum fluctuations such as the pho-
ton splitting into a qq̄ dipole and the interaction of the
dipole with the target field, is always satisfied implying
an ordering in the k+ variable in addition to the k− or-
dering. This feature will obviously hold at any order in
perturbation theory.

This Letter is organized as follows. We first present

the operator definition for a novel unintegrated gluon
distribution that appears in inclusive DIS within our ap-
proach, and which interpolates between the Bjorken and
Regge limits. Then we explicitly define our scheme and
derive the general DIS cross section. We finally perform
the classical expansion to recover the interpolating ex-
pression for both kinematic limits and show how the
aforementioned gluon distribution appears in inclusive
DIS.

II. UNINTEGRATED GLUON DISTRIBUTION
FUNCTION AT SMALL X AND BEYOND: OPERATOR

DEFINITIONS

Correcting for the x dependence of the dipole scat-
tering amplitude, which naturally arises in the small-
x limit, yields a novel unintegrated gluon distribution
which shall be derived in the context of DIS in the next
section. It reads

xGij(x,k) =

∫
dξ+d2r

(2π)3P−
eixP

−ξ+−ik·r
∫ 1

0

ds

∫ 1

0

ds′ 〈P |TrU0(sr, s′r)F i−(ξ+, s′r)Ur(s′r, sr)F j−(0, sr)|P 〉 ,

(1)

where k is a transverse momentum and i, j = 1, 2 la-
bel two orthogonal transverse directions. Also, F i− =
∂iA−−∂−Ai− ig[Ai, A−] is the field strength tensor and

U0(sr, s′r) = [sr,0]0+ [0, ξ+]0[0, s′r]ξ+ ,

Ur(s′r, sr) = [s′r, r]ξ+ [ξ+, 0]r[r, sr]0+ , (2)

are two finite length staple-shaped gauge links that con-
nect F i−(ξ+, s′r) ≡ F i−(ξ+, 0−, s′r) to F i−(0+, sr) ≡
F i−(0+, 0−, sr) as depicted in Fig. 2, and where

[ξ+, 0+]r≡ P exp

[
ig

∫ ξ+

0+

dx+A−(x+, r)

]
(3)

and

[x,y]ξ+ ≡ P exp

[
−ig

∫ x

y

dz ·A(ξ+, z)

]
(4)

are path ordered Wilson lines in the − and ⊥ directions,
respectively, with z ≡ z(s) = sx+ (1− s)y.

One can readily verify that the distribution (1) encom-
passes both the gluon PDF at large x and the dipole un-
integrated distribution at small x. Integrating over k
yields a δ(r) and one recovers the gluon PDF∫

d2k xGii(x,k) = xg(x) ≡
∫

dξ+

(2π)P−
eixP

−ξ+

×〈P |Tr [0, ξ+]F i−(ξ+)[ξ+, 0]F i−(0)|P 〉 , (5)

where the gluonic operator is implicitly evaluated at
r = 0. The small xBj limit is slightly more cumbersome,

F i−(sr)

F j−(s′r)

(0+, 0)

(ξ+, r)

Figure 1. Diagrammatic depiction of the nonlocal operator that
defines the unintegrated gluon distribution in Eq. (1). The hor-
izontal and vertical lines represent path ordered Wilson lines
along the + and transverse directions, respectively.

and its derivation is written explicitly in an accompany-
ing longer article [30]. It is obtained from Eq. (1) by first
setting x = 0, and neglecting the transverse gauge links
that can be gauged away along with all Ai fields. One
can get a more symmetric form for the operator by us-
ing translational invariance and the fact that for protons
normalized as 〈P ′|P 〉 = 2P−(2π)3δ(P ′− − P−)δ2(P ′ −
P ) one has

∫
db dζ+ = (2P−)−1〈P |P 〉) to write 0 → ζ+

and 0 → b with the price of the proton normalization
in the denominator. To make contact with the dipole
amplitude in the small xBj limit one has to contract
our distribution with rirj . Heuristically, this projection
is reminiscent of the standard dipole cross-section for-
mula σ(|r|) ∝ r2xg(x, 1/|r|) [29]. In the DIS cross sec-
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tion, the projector rirj appears naturally, see the deriva-
tives acting on wave functions in momentum space,
which would become dipole sizes in coordinate space in
Eq. (17). The dipole scattering amplitude is recovered by
noticing that−ri

∫ 1

0
ds F i−(sr) = A−(r)−A−(0). These

differences ofA− terms result from taking the derivative
of the operator Tr[ξ+, ζ+]r[ζ+, ξ+]0 w.r.t. ξ+ and ζ+, re-
spectively, which allows to rewrite the whole operator
as a total differential. Upon integration over ξ+ and ζ+,
one finally obtains∫

d2k eik·r
[
rirjxGij(x,k)

]
x=0

(6)

=
2

αs

∫
d2b

(2π)2
Re〈Nc − tr

(
Ub+rU

†
r

)
〉

where Ur = [+∞,−∞]r and 〈〉 ≡ 〈P ||P 〉/〈P |P 〉. Note
that, in the absence of the phase factor eixP

−ξ+ , the in-
teractions with the target encoded in the Wilson line Ur

can take place at any light cone time and are thus not
restricted by the kinematics. This is the origin of the vi-
olation of the k+ ordering in the shock wave approxima-
tion that we alluded to in the introduction. The distribu-
tion from Eq. (1) thus spans both the gluon PDF in the
Bjorken limit and the dipole distribution in the Regge
limit. It appears in Deep Inelastic Scattering when one
interpolates between both limits, as we will prove in the
next Section. Whether it appears in other observables is
left for future studies.

III. DIS BEYOND THE SHOCK WAVE
APPROXIMATION

In this section we will demonstrate how the unin-
tegrated gluon distribution introduced in the previous
section emerges in a physical observable, namely, inclu-
sive DIS, but first let us summarize the three main ap-
proximations that will be made in the following deriva-
tion. First of all, we will only focus on gluon contribu-
tions to the cross section, since we want to improve a
small-x inspired scheme where gluons dominate. Sec-
ondly, we adopt k+ as a factorization variable between
the target fields and the quantum fluctuations which al-
lows to deal with powers of s→∞ without any further
specification on Q2. It allows to resum both collinear
and rapidity logarithms when Q2 ∼ s and Q2 � s,
respectively [18]. We will initially restrict ourselves to
these two assumptions, but eventually a classical expan-
sion in powers of an intrinsic transverse momentum in
the proton, k⊥/

√
s, will be performed.

Consider the DIS subprocess γ∗(q) + proton (P )→ X .
Owing to the optical theorem, the total cross-section is
related to the forward scattering amplitude γ∗(q) +P →
γ∗(q) + P . We shall use light cone variables (k+, k−,k),
defined by the 4-vector decomposition kµ = k+nµ +
k−n̄µ + kµ⊥ , where the light cone vectors n and n̄ sat-
isfy n2 = n̄2 = 0 and n · n̄ = 1. We choose the

q

�1 �2

γ∗

q − �1 q − �2

P P

z

z̄

k⊥

Figure 2. Diagrammatic representation of the process γ(q) +
A→ q q̄.

frame in which the photon and proton momenta are
aligned with the z axis. The leading contributions in
both Regge and Bjorken limits stems from gluons with
a negligible + component of their momentum. This
reflects itself in coordinate space as an expansion on
the null plane x− = 0, which implies for the target
gluon field Aµ ' Aµ(x+, 0−,x) only depends on x+

and the transverse coordinate x. This leading field is
generated by a color charge current whose only non-
vanishing component is J−(x+,x). It is straightforward
to see that the Yang-Mills equations in covariant gauge
admit the solution A−(x+,x) and A+ = Ai = 0 where
−∂2A−(x+,x) = J−(x+,x) [19]. This solution is also
common to the light cone gauge A+ = 0. A more gen-
eral solution can be obtained by an arbitrary gauge rota-
tion Ω(x+,x) which generates a transverse pure gauge
field igAi = −Ω∂iΩ−1. In the shock wave approxima-
tion, one would assume that the current is very peaked
around x+ = 0 and build effective Feynman rules by ex-
panding around this point [20, 21]. Here, we will refrain
from using this assumption from the get-go, and we will
instead perform a gradient expansion in transverse po-
sition space in the final expressions for the cross-section.

The transverse and longitudinal cross-sections are re-
lated to the hadronic tensor as follows σT (x,Q2) =
2πm
s−m2 e

2ε∗µλ Wµνε
ν
λ, with λ = ±1 and σL(x,Q2) =

2πm
s−m2 e

2ε∗µL Wµνε
ν
L . The longitudinal polarization vec-

tor may be chosen to be εµL = 1
Q

(
q+n+ Q2

2q+ n̄
)

,
while the transverse polarizations satisfy ε+1 · ε∗−1 =
0 and

∑
λ=±1 ε

µ
λ · ε∗νλ = gµν⊥ .

The first and second working assumptions, namely
considering a gluonic target boosted on the light cone,
allow us to write the hadronic tensor in the form
Tr [γµDF (`2, `1)γνDF (q − `1, q − `2)], where DF is the
Dirac propagator in the target background field A−. See
Fig. 2.

Because the background (target) field does not de-
pend on x−, its Fourier transform is proportional to
δ(k+). As a result, the + components of the quark and
antiquark momenta are conserved. This implies the fol-
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lowing Dirac decomposition for the quark propagator in
momentum space:

DF (`2, `1) =
iγ+

2`+1
(2π)4δ4(`2 − `1) +

/̀2γ
+/̀1

2`+1
Gscal(`2, `1) ,

(7)
where the scalar propagator obeys the Klein-Gordon
equation (−�x + 2igA−(x)∂+

x )Gscal(x, x0) = δ(x − x0).
The instantaneous term of the propagator, i.e. the first
term in the r.h.s. of Eq. (7), does not contribute to the
DIS cross section. We are therefore left with the scalar
propagator term.

Making use of its independence on x−, the scalar
propagator can be expressed as follows in Schwinger
notations:

Gscal(`2, `1) =
2π

2i`+1
δ(`+2 − `+1 )

∫
dξ+

1

∫
dξ+

2

×(`2|G`+1 (ξ+
2 , ξ

+
1 )|`1) ei`

−
2 ξ

+
2 −i`

−
1 ξ

+
1 . (8)

G`+1 (ξ+
2 , ξ

+
1 ) is nothing but the propagator of a non-

relativistic particle in 2+1 dimension. It satisfies the
Schrödinger equation for the final time[
i
∂

∂ξ+
2

− P̂
2

2`+
+ gA(ξ+

2 , x̂)

]
G`+(ξ+

2 , ξ
+
1 ) = iδ(ξ+

2 − ξ+
1 ) ,

(9)
and a similar equation for the initial time. Here, P̂ =
i∂ is the momentum operator. The free propagator is
recovered when setting A− = 0 in these equations, and

reads G(0)
`+ (ξ+

2 , ξ
+
1 ) = e−iP̂

2
/2`+(ξ2−ξ1)+ . For more insight

about the G operator, the reader is referred to [22].
With the help of the effective propagators, non-trivial

algebra (detailed in [30]) and multiple uses of the inte-
gral form of the Schrödinger equation, the cross section
can be cast into:

σ = 8αsαem

∑
f

q2
f Re

∫ 1

0

dz

2π

∫
dx+

2 dx+
1 d2r d2r′

×[ϕL(r)ϕ∗L(r′) +
1

2

∑
λ,λ′

ϕλ,hT (r)ϕλ
′,h∗
T (r′) ] (10)

×eiq
−(x2−x1)+

∫
d2x2 d2x1

〈P |O(x+
2 , x

+
1 ;x2,x1, r, r

′)|P 〉
〈P |P 〉 .

This expression involves the longitudinal and trans-
verse photon wave functions, respectively (see e.g. [23]):

ϕL(r) = 2zz̄QK0(
√
zz̄Q2r2), (11)

and

ϕλ,hT (r) = iQ
√
zz̄(z − z̄ + 2λh)

(ελT · r)

|r| K1(
√
zz̄Q2r2),

(12)
where z = `+1 /q

+ is the loop quark’s longitudinal mo-
mentum fraction, z̄ = 1 − z, and h = ±1/2 is the quark
helicity. In the present scheme, the complicated depen-
dence of the t-channel operator has the consequence
that the wave functions are evaluated a different dipole
sizes, contrary to what the dipole or shock wave frame-
work would have led to. The operator in Eq. (10) reads:

O(x+
2 , x

+
1 ;x2,x1, r, r

′) = tr
{

(x2|Gzq+(x+
2 , x

+
1 )|x1)[A−(x+

1 ,x1 + r)−A−(x+
1 ,x1)] (13)

× (x1 + r|G−z̄q+(x+
1 , x

+
2 )|x2 + r′)[A−(x+

2 ,x2 + r′)−A−(x+
2 ,x2)]

}
.

It describes the Brownian motion in the external field
between the first and last interactions with the target.
Each of these interactions can occur on the quark or on
the antiquark, hence the four terms. One contribution is
depicted in Fig. 3. Using

A−(x+ r)−A−(x) = −ri
∫ 1

0

ds F i−(x+ sr) , (14)

allows to combine and simplify all contributions.
It is worth noting that the wave functions are unmod-
ified by the inclusion of presumably 1/

√
s-suppressed

terms into the shock wave picture. The notion of the
perceived extent of the target is very natural here: it
can be understood as the time difference between the
first and the last interaction. In the shock wave approx-
imation, this difference would be assumed to be close
to 0 and an expansion around that point would be per-
formed [20, 21].

Let us turn now to our third approximation, the mod-
ified shock wave. When considering quantum diffusion
in the external field, the propagator between interac-
tions at points xi, xj is a Gaussian with the exponent
−i`+1 x2

ij/(2x
+
ij), where double subscripts denote differ-

ences, e.g. xij ≡ xi−xj . Parametrically, x+
ij ∼ 1/P− and

`+ ∼ q+, which means x2
ij ∼ xBj/Q

2. In other words,
the main contribution for the Brownian motion through
the external field conserves the transverse position, up
to corrections which are xBj-suppressed in the Regge
limit and 1/Q2-suppressed in the Bjorken limit. We can
thus perform part of the classical expansion from [20] in
a way which is consistent for both small and large xBj.
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r r′

x1 x2

x+1 x+2

Figure 3. One contribution to the operator from Eq. (14). The
quark and the antiquark undergo the propagation in the exter-
nal field between their first and final interaction, respectively
at times x−1 and x2−, here both on the quark at respective
transverse positions x1 and x2.

We readily find

(x2|Gzq+(x+
2 , x

+
1 )|x1) = (15)

G(0)
zq+(x+

21,x21)[x+
2 , x

+
1 ]b +O(|x21|/|b|)

(x1 + r|G−z̄q+(x+
1 , x

+
2 )|x2 + r′) = (16)

G(0)
−z̄q+(x+

12,v)[x+
1 , x

+
2 ]b+R +O(|v|/|b+R|).

Here, b = (x1 + x2)/2, v = x12 + r − r′ and R = (r +
r′)/2. For the same parametric reasons, we can expand
the arguments of the gluon fields around x1 ' x2 ' b,
r ' r′ ' R. Going to momentum space and integrating
out b and R yields our final result for the cross section,
for photon helicity λ = L,+1,−1:

σλ(xBj, Q
2) = 4αemαs

∑
f

q2
f

∫ 1

0

dx

2π

∫ 1

0

dz

2π

∫
d2k d2` ∂iφλ

(
`− k

2

)
∂jφ∗λ

(
`+

k

2

)
δ

[
x− xBj

(
1 +

`2

Q2

)]
xGij(x,k),

(17)

where the unintegrated gluon distribution is defined
in Eq. (1) and the wave functions φλ are the Fourier
transforms of the ϕλ functions from Eq. (11), Eq. (12).
Note the derivatives acting of the wave functions, which
would yield powers of the dipole size rirj in the small
xBj limit, see Eq. (6). These powers of the dipole sizes
stem from the integral in Eq. (14). In terms of the origi-
nal variables, k = `2−`1 and ` = (`2 +`1)/2. This equa-
tion is exact up to corrections of relative order p⊥/

√
s,

where p⊥ is an intrinsic transverse momentum in the
proton. Such corrections are suppressed in the Bjorken
regime as well as in the Regge limit. The explicit x de-
pendence in Eqs. (17) and (10) results in a non-locality in
transverse dipole sizes which is not compatible with the
dipole model as previously noted in [24]. Only when x
is neglected do we get δ(r − r′). Eq. (17) together with
Eq. (1) is our main result.

Finally, it is worth noting that when |k| � |`|, Eq. (17)
reproduces the DGLAP logarithm associated with the
creation of the quark (resp. antiquark) from the split-
ting of a collinear gluon in the target. This limit is
achieved for z ' 0 (resp. z ' 1). Integrating over
z = y/(1 − y)`2/Q2 using the delta function in Eq. (17)
with y = xBj/x and neglecting k in the wave func-
tions one recovers the gluon PDF upon integration over
k, multiplied by the Altarelli-Parisi splitting function

Pqg(y) ∼ y2 + (1 − y)2 and
∫ Q2

µ2 d`2/`2 = logQ2/µ2.
See [30] for the explicit proof.

IV. SUMMARY AND OUTLOOK

By investigating the small-x-inspired semi-classical
description of an observable beyond the “naive” high

energy limit, aka the shock wave approximation, we
found an unintegrated gluon distribution with explicit
dependence on the longitudinal fraction which spans
both the collinear and the small x limits. This distribu-
tion, remarkably, does not involve infinite-length Wil-
son lines, hence its evaluation on the Euclidean Lat-
tice [25] may be simplified when compared to the usual
small-x distributions. Such a lattice evaluation would
directly confirm or infirm the existence and energy de-
pendence [16, 26] of the saturation scale from first prin-
ciples. Until we overcome the great numerical challenge
of calculating parton distributions at small x, it will be
interesting to investigate the transverse momentum de-
pendence of this gluon distribution at currently accessi-
ble x values.

Phenomenology for semi-classical small-x physics
at NLL accuracy has revealed a consistency issue
with the standard scheme [4]. Colossal efforts were
made in order to address it, mostly by modifying
the evolution equation without changing the evolved
quantity [12, 13]. The origin of this inconsistency is
easy to identify in Eq. (17). Indeed, it is widely believed
that the smallness of xBj leads to the smallness of the
longitudinal fraction x. This fraction can however be
enhanced by loop integrals even at small values of xBj:
the z → 0, 1 limits in Eq. (17) yield the full DGLAP
logarithms when ` � k. By implicitly requiring
x ' xBj ' 0, the shock wave approximation leads to
an inconsistent treatment of such collinear logarithms.
This is entirely due to the absence of light cone time
ordering in the strict x = 0 limit, while this ordering
and thus an ordering in longitudinal momenta are
restored in our classical picture. Studying the quantum
evolution of the new distribution derived in this article
should provide an alternative to the BK equation and
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solve this conundrum in a natural way.
In a similar fashion, the limit x ' 0 tends to suppress
target spin effects [27, 28]. We can actually conclude
from the present analysis that spin effects can occur
even in the small xBj limit because of the collinear
corner of the phase space where x� xBj.
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