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Abstract

Digital twins efficiency lies in fast and representative solutions of inverse
problems to accomodate models with physical observations. The quality
of the solution of an inverse problem is conditioned by inherent features of
the latter, in particular (i) the richness of available data, (ii) the a priori
experimental and modeling knowledge that allows to regularize the ill-
posedness nature of the problem, and (iii) the complexity of the space in
which updated parameters are sought. We present in this contribution a
fully automated physics-guided model updating framework dedicated to
the correction of finite element models from low-frequency dynamics mea-
surements. The proposed methodology is based on the minimization of
a modified Constitutive Relation Error (mCRE) functional, whose basic
idea is to construct mechanical fields and identify material parameters
that are a trade-off between all available information (and associated con-
fidence) but without any further assumption. The dependency into some
expert-user’s judgment is thus avoided. Dedicated rules are provided to
automatically calibrate all mCRE internal tuning parameters as well as
a strategy to optimize the space in which parameters are sought, leading
to a fully autonomous algorithm. The performance and robustness of the
proposed model updating methodology are illustrated using synthetic
ground motion tests on a bending plate in which defects of various shapes
are identified from noisy acceleration datasets, with inherent limitations
due to richness of input loading, sensors sparsity and defect identifiability.

Keywords: Modified Constitutive Relation Error, Automated Model
Updating, Low-Frequency Dynamics, Vibration-based damage detection.
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1 Introduction

The design, analysis and prediction of dynamical systems require the con-
struction of robust numerical models. These models can be directly built from
measurements (black-boz modeling) or derived after in-depth physical descrip-
tion of the involved phenomena (white-box modeling). In each case, as most of
modern systems are now equipped with numerous sensors, those models are (at
least) assessed by comparison with experimental data to evaluate their degree
of representativeness. Indeed, the validation, enrichment and exploitation of
numerical models with experimental data are part of the digital twin paradigm,
whose applications range from simple post-processing to state prediction, con-
trol of systems, or even decision-making process [1-3]. Earthquake engineering
problems are no exception to the need of using experimental data to build,
validate and operate robust numerical models, in particular when it comes to
monitor and predict the structural state of civil engineering structures [4].

From the numerical viewpoint, the integration of a digital twin requires a
complex numerical framework including a robust model updating algorithm
able to operate in real-time. In this paper, we will address the possibilities
to perform damage detection from local data collected in an (offline) low-
frequency dynamics context, with an emphasis on the trade-off that must be
found between:

¢ the richness of available measurements,
® the complexity of the parameter space,
® the inherent model updating limitations due to the inverse problem itself.

1.1 Vibration-based damage detection at a glance

For structural health monitoring (SHM) applications, the calibration of stiff-
ness parameters from experimental data allows to identify (i.e. locate and
quantify) structural damage. Throughout the last decades, a wide panel of
damage detection methods has been proposed [4-6]. All these techniques derive
various model updating approaches and are often dedicated to the exploitation
of kinematics measurements. For the sake of conciseness, we will exclusively
focus on damage detection from sparse data (obtained from accelerometers,
strain gauges, transducers, or Bragg optic fiber measurements for example)
although dedicated approaches operating full-field measurements have also
been developed, see [7-9] to cite a few. When dealing with spatially sparse
datasets, the identification of damage in large structures is inherently difficult
because of the relatively reduced amount of available measurements, leading
to an ill-posed inverse problem [10].

Due to the fact that many SHM applications directly exploit modal data,
a parametrized model is thus not mandatory as the changes in modal fea-
tures such as eigenfrequencies, damping ratios or modeshapes can provide
direct information about the damage state of a structure. Their evolution with
time allows the user to track structural damage [11]. In particular, classical
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modal analysis techniques aim at identifying modal features through the iden-
tification of a state-space model from measurements. One of the fastest and
most accurate methods is based on stochastic subspace identification [12, 13].
Since forced vibration testing of large structures in operational conditions is
impractical, Operational Modal Analysis (OMA) techniques have been consid-
erably developed to process output-only measurements [14-18] obtained from
unknown excitations in an operational environment (i.e. wind or road traffic
for bridges).

However, Finite Element (FE) models can still be updated according to
experimental (possibly modal) data. In such a context, Bayesian approaches
(whose extended comprehensive review is available in [5]) are classically distin-
guished from deterministic methods. Among the latter, the sensitivity method
is one of the most popular techniques to solve inverse problems. Reviewed in
[19] , the sensitivity method is based upon linearization of the generally non-
linear relationship between measurable outputs and the parameters in need
of correction. As most of deterministic inverse problems, regularization tech-
niques are mandatory to prevent the ill-posedness of the problem [20]. Such
techniques, although easy to implement, provide identification results that are
strongly sensitive to the regularization term (whether it is a Ly-norm Tikhonov
or a Li-norm sparse regularization) whose definition totally depends on some
user’s a priori expertise; nevertheless, it is of crucial importance as it condi-
tions the smoothness of the obtained solution [21-23]. Besides, such approaches
may also be highly disturbed by measurement noise, with the possibility to
obtain divergent or physical-meaningless results.

An alternative consists in using the concept of modified Constitutive Rela-
tion Error (mnCRE) that exploits the reliability of information [24, 25]. This is
the main driver behind its selection as a reference method for model updating
in this paper. Initially proposed for model updating in dynamics by Ladeveze
and co-workers [26, 27], the mCRE functional is defined as a quadratic model-
to-measurements distance enriched with a term based on the concept of
Constitutive Relation Error (CRE) [28], whose enriched physical meaning and
strong mechanical content avoid the direct use of regularization terms based
on a priori expert-user knowledge. This energy-based residual offers interest-
ing advantages. First, local convexity properties are enhanced compared to
classical deterministic functionals [29]. Moreover, the CRE part of the residual
computed over the whole structure can be exploited as a spatial distribution
of the modeling error: it allows for example to restrain the updating process
to a few parameters [30], which can be computationally helpful and regulariz-
ing (in Tikhonov’s sense) when the number of parameters to update becomes
important. The relevance and robustness of the mCRE for model updating
has been emphasized in many applications. Among other works, the mCRE
was shown to be robust to highly noisy and corrupted measurements [31] and
able to perform local defect detection [25, 32, 33], or full-field material iden-
tification from dense measurements [34, 35]. It has recently been successfully
applied to Earthquake Engineering problems, with an implementation in an
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industrial FE software [36, 37]. As one can explicitly establish a link between
mCRE with other deterministic and stochastic model updating functionals, it
is also worth mentioning the comparative study between mCRE, Tikhonov-
based and Bayesian damage detection using optical fiber strain measurements
investigated in [38].

For the sake of completeness, let us finally mention damage detection tech-
niques based on neural networks and machine learning, that are getting more
and more popular due to their capability to process large amount of data
[6, 39, 40], exploiting techniques such as statistical pattern recognition that are
of growing interest in SHM [41]. However, they still lack of generality in the
sense that the learning process conditions the performance of such methods.

1.2 Main contributions

A dedicated mCRE-based model updating framework has been recently devel-
oped by the authors in order to perform accurate identification of Finite
Element (FE) models from sparse data collected in low-frequency dynam-
ics [42]. Although the robustness to measurement noise of the approach was
illustrated by processing actual data from shaking table experiments, the per-
formance of the methodology remains limited by the complex setting of the
mCRE framework. To the authors’ best knowledge, the design of the parameter
space and the tuning procedure that integrates measurements of varying SNR
are still open questions in this framework, that have not been clearly addressed
in the literature. The ambition of this work is to propose a fully automated
mCRE-based model updating algorithm with the objective of identifying dam-
aged areas optimally, i.e., as accurately as possible at minimum computational
cost. More precisely, in this contribution, an automated selection of the param-
eter space is proposed based on the modeling error discrepancies. A clustering
strategy is carried out to identify in which areas model updating is of higher
importance, generalizing the above-mentioned concept of localization of most
erroneous areas. The call to the CRE as model updating indicator makes the
tuning of mCRE internal parameters crucial to design an optimal parameter
space for damage detection. Dedicated (automated) strategies are implemented
and compared for optimal calibration of the confidence in measurements.
Finally, physics-inherent model updating limitations are highlighted in this
contribution, namely the influence of the sensor placement strategy (particu-
larly when dealing with spatially sparse data) and the identifiability of defects
in problems where the strain energy distribution of the tested structure is
strongly heterogeneous.

The remainder of the paper is structured as follows. Section 2 recalls basics
on mCRE for FE stiffness model updating in low-frequency dynamics. Several
strategies regarding the full automation of the algorithm are discussed for the
calibration of internal parameters in Section 3. The tuning of the confidence
in measurements and the CRE-based design of an optimal parametrization
are particularly emphasized. A discussion tackling additional regularization
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approaches (whether in Ly or Lj metrics) is also included. In order to assess
the relevance of the proposed approach, a numerical benchmark in which sev-
eral defect shapes are identified is discussed in Section 4. Conclusions and
prospects are finally drawn in Section 5, suggesting a future implementation
of the automated model updating technique for experimental test campaigns
and data assimilation.

2 The mCRE for damage detection in
low-frequency dynamics

Updating a model is an optimization problem that consists in identifying a
set of internal model parameters § € © that enable a model M(6) to better
replicate collected data y. In a deterministic approach, in order to overcome
the ill-posedness of the inverse problem, a regularization term G is often added.
It guarantees uniqueness of the solution by enforcing local ellipticity properties
of the functional to minimize J. Without loss of generality, a deterministic
model updating problem thus reads:

9= arggéig [j(@) 2 oD (M(0),y) +G (6, 90)} (1)

The cost function J is built as the weighted sum of a data-to-model distance
term D(M(0),y) enriched with the regularization term. The weighting param-
eter « thus quantifies the reliability of the data-to-model distance D(M(0),y)
with respect to the a priori knowledge 6y included in G(6,0o). Its value may
be tuned according to several techniques as the L-curve criterion [43, 44] or
Morozov’s discrepancy principle [45, 46].

In this section, we show how the mCRE-based model updating problem
is similar in its formulation to the general case (1) and we briefly recall the
fundamentals of this model updating framework for low-frequency dynamics,
starting from a linear FE problem written in the frequency domain. Particular
attention is paid to the construction of the Constitutive Relation Error (CRE)
residual from the set of equations defining the reference mechanical problem.
Then, details about the modified Constitutive Relation Error (mCRE) are
explicitly given considering the correction of stiffness parameters. An algorithm
allowing to conduct the solution of the associated inverse problem is also given.
For additional details, the interested reader is referred to [42, 47] for extended
overviews of the mCRE-based model updating framework in the low-frequency
dynamics regime.

2.1 FE framework, measurements and stiffness
parametrization

Let us consider the general case of a damped elastic structure 2 spatially
discretized in (non-overlapping) finite elements such that Q = U, ., and
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subjected to a given dynamical loading F'. We denote by K, D, M the stiff-
ness, damping and mass FE matrices, respectively, while F, and U,, are the
Fourier transforms of nodal loading conditions and displacement field. With
these notations, the dynamic equilibrium written in the frequency domain at
a given angular frequency w reads:

[~w?M +iwD + K| U, = F, (2)

In addition to the dynamic equilibrium, a set of sensors is used to mea-
sure the magnitude of some kinematic quantities (displacement, velocity
and/or acceleration). In the frequency domain, assuming for the moment that
measurements are perfect, such information can be written without loss of
generality as:

nu, =Y, (3)

where Y, refers to the Fourier transform of measurements at angular frequency
w and IT denotes a projection matrix that allows to extract the components of
U, that are measured. Its non-zero entries are integer power of (iw).

As mentioned in the introduction, one can model damage as local stiffness
loss. Therefore, a convenient manner to parametrize a linear FE problem for
damage detection is to parametrize the FE stiffness matrix. Doing so, in this
contribution, the ny parameters § € ©® C R™ to update only affect the stiffness
matrix K. More precisely, the FE stiffness matrix is decomposed into ng non-
overlapping subdomains and parametrized as follows:

ne 9 e
K (0)= " Ky,; with K (0) = Ky ; 4
( ) ; 9071_ 0,2 ( O) Zz_; 0,2 ( )

Note that subdomains can encompass several finite elements at once, which
allows to reduce the number ngy of parameters to identify.

2.2 The modified Constitutive Relation Error: a
physics-based approach for inverse problems

The fundamental idea of the mCRE concept is to identify mechanical fields
and material parameters that are a trade-off between all available information
without adding any other a priori assumption. Originally intended to perform
model verification [28], the key idea for the construction of the CRE residual
lies into the distinction between reliable and unreliable information on the
reference mechanical problem. The mCRE concept extends this distinction
to experimental data as well, with a functional that simultaneously handles
measurement error and model uncertainty. Indeed, the redundant information
gathered in (2) and (3) means all equations cannot be exactly verified. Some
of them must be relaxed (ie considered less reliable). They will thus be only
verified at best by minimizing the so-called modified CRE functional.
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Although this distinction between reliable and unreliable equations is non-
unique and deeply relies on the case study and engineering expertise, it is
also well-known that, in most applications, constitutive relations are subject
to caution. The full separation of equations for the considered damage detec-
tion case is given in TAB. 1. Note that the damping modelling will not be
subject to caution as damping variations are secondary for damage detec-
tion. This choice could be questioned if the stiffness properties were correctly
updated. Once modeling equations have been labeled as reliable or unreliable,
two admissibility spaces are implicitly defined:

(i) a kinematic admissibility space U,q inside which any displacement field
U satisfies the reliable kinematic equations of the problem,

(ii) an auxiliary dynamically admissibility space D,q defined as the set of
displacement fields V' derived from the stress field satisfying the dynamic
equilibrium.

The distance between U,q and D,q can be measured using an energy norm -

the CRE - that estimates the relevance of a solution couple s, = (U, V,,) €
Uyq X Dyq with respect to the mechanical problem. With the above notations,
the CRE at a given angular frequency w reads:

Gl ) = 30—V KOO~ Vo) = [V~ Vol )

with O denoting the Hermitian transpose.

Reliable Unreliable

e Geometry

e Boundary conditions

e Equilibrium equations

e Dissipative constitutive relations

Model e Elastic constitutive relations

e Loading frequencies w/27m
Experiments e Sensor locations e Measured outputs Y,
e Measured inputs Fy,

Table 1: Distinction between reliable and unreliable information for damage
detection from stiffness update in dynamics.

The extension of the CRE concept to unreliable experimental data (see
TaB. 1) directly leads to the so-called modified Constitutive Relation Error
(mCRE). The CRE is completed by a data-to-model distance between the
predictions U, and the measurements Y,:

(6% 2
€0 (50,0, Vo) & Cs0,0) + S0 = Vo5, (6)

The used Mahalanobis distance between model predictions and data involves
the measurement noise covariance matrix X,. The tuning factor « € RT
enables to balance both terms by expressing more or less confidence in mea-
surements; large values can be specified when measurements are considered
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reliable whereas close-to-zero values are better suited to corrupted or noisy
recordings. The choice of « is therefore crucial for providing relevant param-
eter estimates [48, 49]. Automated techniques for its optimal tuning will be
discussed in the following.

As a remark, note that the data-to-model distance in the mCRE litera-
ture was often weighted by a matrix G that aimed to ensure that |0| ¢ is
homogeneous to (2 and equivalent in level. The choice of G was not critical
as the value of a compensates to integrate the effect of measurement noise
[30, 42, 47]. This approach, yet efficient, lacks of robustness in the perspective
of automating the mCRE-based model updating process.

The analysis of a single angular frequency is too restrictive in low-frequency
dynamics, particularly when the structure response involves several eigen-
modes. The model updating procedure must be conducted over a frequency
bandwidth D,. The mCRE functional 7 to be minimized is thus obtained by
direct integration over D,,:

6 = arg min [.7(9, Y) é/ 2(w)e2 (36, Y.,), 0, Y.,) dw (7)
ISS) D.,

where z(w) is a normalized frequency weighting function that satisfies
f D., z(w) dw = 1. It allows to modulate the importance of specific frequencies
of D,. An appropriate manner to define z(w) in low-frequency dynamics is
given in Section 3.1. We denote by 5(6, Y,,) the optimal solution in the mCRE
sense for given parameters and measurements, which is defined as

YweD,, 50,Y, = arg 63(8,9, Y,) (8)

min
[~w2M+iwD]U,+K (0)V,=F,

Introducing Lagrange multipliers A, and an augmented cost function, it is

easy to show that this constrained minimization problem is equivalent to the

solution of the following linear system:
Z(0,w) ol ¥ I

( 7w) « y (9)

“KT) 2(0,0) -

A,
U, F,

with A, = U, — V., and Z(0,w) = [K(0) +iwD —w>M]. Its size can be
drastically reduced using projection on reduced basis, e.g. a truncated modal
basis enriched with Krylov vectors [42, 47].

2.3 Solution algorithm

The minimization of the mCRE is more complex than standard determinis-
tic cost functions as it is formed of nested minimization problems addressed
on mechanical fields (8) and parameters (7). Herein, the computational bur-
den can be drastically reduced using (i) parallel computing on w € D,, and
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projection on reduced basis when solving (9), (i7) an analytical expression of
the mCRE gradient with respect to the parameters. With the above stiffness
parametrization, for a given anglular frequency w, the latter reads:

Vo, €2 (50,0, Yo) = %HAwllﬁ{o,j + R (AL Ko Vi) (10)

where $(0) denotes the extraction of real part of 0. This result directly derives
from the stationarity of the augmented cost function introduced to solve (8).
As shown in ALG. 1, typical stopping criterion of the model updating algorithm
is based on the stagnation of the updated parameters. The associated threshold
€ must be chosen as a compromise between accurate enough identification
results and reasonable computational time (e ~ 1073 — 1075 is a typical value
for the forthcoming examples). Note that, if correctly normalized, the value of
the mCRE itself can be used as complementary stopping criterion [30, 42].

The localization of most erroneous areas (in the sense of the modeling error)
is the only regularizing process in Tikhonov’s sense as the model updating is
limited to a small number of parameters. This principle will be discussed in
details regarding the full automation of the algorithm in the next section.

Algorithm 1 Pseudo-code of the mCRE-based model updating strategy.

Require: FE model including mesh and matrices K, D, M, measured outputs
y(t), subdomain decomposition and associated initial parameter guess 6y € O,
frequency bandwidth D,,, measurement error weight «, threshold ¢
Initialization:

Data preprocessing in the frequency domain: Y., V w € Dy,

Computation of the frequency weighting function z(w)

Model updating algorithm:

while [0, — 01| < €|0x_1] do
1. Mechanical fields and localization of erroneous subdomains
Solution of (9) V w € Dy
Identification of most erroneous areas from Cf,ye V(w,e) € (Dw x [1; E])
2. Correction of parameters
Minimization of 7 (#) with respect to the identified parameters: 1 < 0
(BFGS method with supplied analytical gradient)
3. Convergence test
Check parameters stagnation: |0;1+1 — 0|/ |0k|

end while
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3 Full automation of the modified CRE for
user-friendly model updating

In order to build a fully automated model updating strategy, all internal tuning
parameters must be calibrated with rigorous and systematic rules. One must
then pay attention to the setting of:

> the frequency bandwidth D,

> the frequency weighting function z(w),

> the measurement error weight «,

> the parameter space © in which parameters are sought.

As all of these parameters have a significant influence on model updating
results, a systematic tuning procedure would then be useful to handle potential
non-convincing model updating results. We will briefly recall how to automat-
ically calibrate all these influent internal parameters so as to provide relevant
model updating results without requiring any user’s a priori knowledge or
experience (once the CRE has been defined!). The selection of the parameter
space and the tuning of a are extensively discussed as no clear contribution
has been found in that sense in the literature, out of empirical studies.

3.1 Frequency bandwidth - frequency weighting

The model updating procedure is conducted on a given frequency bandwidth
D, = [Wmin; Wmaz) which contains the essential part of the mechanical energy
of the system. For seismic applications, ground motions usually have a signif-
icant frequency content up to 50 Hz, which implies that D,, C [0 Hz; 50 Hz].
Besides, the frequency step Af required for the discretization of D, must be
carefully chosen to capture the frequency content associated to the participat-
ing eigenmodes. A common engineering judgment one can recommend is to
select A f such that 3A f ~ min;(&; f;) where (&;, f;) refers to the damping ratio
and natural frequency of mode i. In the upcoming earthquake engineering-
inspired applications, with typical 5% damping ratios and first eigenfrequencies
at around 2-5 Hz, Af is thus chosen within [0.1 Hz; 0.5 Hz].

In addition, z(w) can be used as a modulation function to favor frequencies
deemed to have the largest influence on the model updating procedure. In [42],
an automated computation of z(w) from experimental datasets was proposed,
based on the fact that the essential frequency content of the measurements is
gathered around experimental natural frequencies. A normalized version of the
Complex Mode Indicator Function (CMIF) [50] on transfer functions has been
introduced to naturally emphasize experimental eigenfrequencies as it peaks
in their vicinity.
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3.2 Confidence in measurements

Historically, in addition to the specific continuation scheme proposed in [34],
several approaches related to regularization techniques were employed to define
an optimal value of . The influence of « was particularly investigated in [24,
35, 51, 52], with empirical conclusions that an equivalent confidence between
the CRE and data-to-model distance terms provided relevant model updating
results. In other words, one should tend to calibrate a such that the two terms
are of the same order of magnitude upon convergence. This idea is closely
related to the L-curve method [44].

Alternatively, another technique to choose « lies in Morozov’s discrepancy
principle [46, 53, 54]. Therefore, the latter could be used in order to integrate
the a priori knowledge on measurement noise features appropriately, as it was
done in [54, 55] to perform mCRE-based identification from imaging databases.

In this part, two tuning strategies based on the previously mentioned prin-
ciples are discussed. Both require a preliminary parametric study on « that can
be done (at low-cost) in preamble of the model updating procedure (see ALG.
1) and intend to avoid a full parametric study on « that would be prohibitive
in terms of CPU time. Their performance will be assessed in Section 4.

3.2.1 A priori balance between modeling and measurement
errors

As mentioned above, the (physics-based) CRE term allows to explicitly inte-
grate modeling errors into the updating process. Its relative weight with respect
to the modeling error term must be correctly set in order to provide relevant
identification results. Without any additional a prior: information, one can
choose to calibrate o to ensure a correct a priori balance between measure-
ment error and modeling error. This approach, which is close to the L-curve
principle in terms of formulation, has been proposed in recent works [35, 42]
and provided relevant model updating results.

Q = arg min
aE€RT

| 60 va0) do — [ st - Yol do
D, D :

w

Modeling error Measurement error
(11)
Note that this approach is non-trivial as the mechanical fields that need to be
computed (U,,, V,,) are indirectly impacted by the value of « following (9).

3.2.2 Morozov’s discrepancy principle to integrate the
knowledge of measurement noise

Morozov’s discrepancy principle permits to calibrate a so that the measure-
ment error term should not be lower than the noise level, denoted d4 in the
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following. We owe to Bonnet and co-workers the only use of Morozov’s discrep-
ancy principle from data obtained in the frequency domain within the mCRE
framework [52, 55|, although its implementation remains questionable. Indeed,
as expressed in [55], the measurement noise is assumed to be proportional to
the magnitude of measurements, meaning that during the same experiment,
sensors measuring low- or high-amplitude data do not have the same noise
level. Besides, the implementation of the criterion has only been proposed for
harmonic analysis and low-levels of noise.

In this contribution, a Morozov’s discrepancy criterion for a posteriori opti-
mal choice of o dedicated to the considered mCRE-based model updating
framework is proposed. If one (legitimately) assumes that the measurement
noise level of the N, sensors is additive and follows a zero-mean Gaussian prob-
ability density function, i.e. n(t) ~ N(0,02) V t, and if ¥, is proportional to
the identity matrix (uncorrelated noise), then one can show that the mCRE
measurement error term can be statistically approximated by:

B/ ) (o0) - Ve av) = N, (12)

as the squared modulus of a zero-mean random process follows a non-centered
x%(2) probability distribution conditioned by the its variance 42, whatever the
value of w (see Appendix A for the proof). One can thus statistically bound
the measurement error term, which directly corresponds to the adaptation of
Morozov’s discrepancy principle to the mCRE written in the frequency domain
(when all sensors are supposed uncorrelated, which is legitimate in practice).
Note that the involved mechanical field of the criterion is the one obtained
at convergence with é, as shown in ALG. 2. The value of « is tuned using a
bisection method after assessing the quality of the solution once having fully
minimized the mCRE functional [J(#). Doing so, with a few iterations, one
could hope to find a relevant value for a.

Even if Morozov’s discrepancy principle is intended to be used a posteriori,
one can also perform a cheaper a priori parametric study on « and define &
such that:

Q = arg min
a€Rt

/ 2(w)|[TU, (e, Bp) — Y.o||” dw — 62N, (13)
D,

73(@790)

Although the provided value is suboptimal, it may be sufficient to get relevant
identification results. In particular, it should be useful when one cannot afford
to perform several minimization steps to update parameters correctly when
performing model updating on-the-fly, as it is our intention in perspective of
this work [56]. Illustrations of the a priori and a posteriori choice of c following
(11), (13), and Alg. 2 will be provided in the following applications.
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Algorithm 2 A posteriori calibration of the measurement error weight
according to Morozov’s discrepancy principle.

Require: FE model including mesh and matrices K, D, M, measured outputs y(t)
and noise level of sensors ds, subdomain decomposition and associated initial
parameter guess 0y € O, frequency bandwidth D, initial value of « (recommended
to be small), threshold e
while ‘R(a, é) >e¢ do

1. Update the measurement error weight o
if R(a,0) >0 then
Increase the value of «
else if R(a,d) <0 then
Decrease the value of «
end if
2. Minimization of the mCRE functional
Minimize J(6) with the updated value of « starting from 6y using ALG. 1
3. Assessment
Compute Morozov’s discrepancy: R(«, é)

end while

3.3 CRE-based stiffness parametrization for fully
automated model updating

3.3.1 CRE-based localization of most erroneous areas

The CRE provides a direct insight regarding the validity of the model itself,
making it a relevant tool for identifying erroneous parts of the model as all
finite element contributions to CRE can be computed independently. The CRE
per subdomain S; then reads:

. 1
Viells nol, (Cilsw,0) = ; 31U = Vol 0 (14)

where K, (0) is the stiffness matrix of element e. This asset can be seen as a
Tikhonov regularization in the mCRE framework in the sense that a reduced
number of parameters can be updated [30, 47]. Indeed, defining a threshold
B € [0; 1], one can identify subdomains i € [1; ng] to update such that they
satisfy the following inequality:

o [ Ao aoz s e L [ s ah a5

1€[1; ne]

where the normalization by the size of subdomains |S;| permits to consider
subdomains of various sizes. However, if most references consider that 5 = 0.8
is a convenient value, no clear parametric study has been performed in order to
optimize the choice of S for optimal defect detection based on noisy datasets.
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Thus, if the CRE can be a convenient local model indicator, the localization
criterion (15) alone is limited to provide an automated parametrization (and
associated subdomains). In the remainder of this subsection, we present the
potentialities and inherent limitations of a CRE-based clustering technique for
automated subdomain definition.

3.3.2 CRE-based clustering of erroneous areas: key ideas

Clustering is one of the most widely used techniques for data analysis and
classification [57]. Without going into much details, clustering techniques allow
to partition a space in the sense of a given metrics: within a cluster, the
distance between objects remains small, whereas the distance between objects
of different clusters is larger. For earthquake engineering problems, they have
been essentially applied for automated modal analysis purposes [13, 17, 58].

In this work, among the wide range of clustering algorithms that have been
proposed, the fuzzy clustering algorithm developed in [13] is reinvested. Briefly,
fuzzy clustering algorithms are more effective than standard hard clustering
algorithms when dealing with not-well separated and non-spherical clusters.
Membership functions p;; are introduced: they allow to assess the degree
of belonging of a data point X; to a cluster of center C;. The centers and
membership functions are then sought according to the following constrained
minimization problem:

Bl
2

{C, u} —arggm ZZ”ZHX C;|l4  with Zu” =1Vie[l; NJ

7”]111 j=1

J(Cop; X)

(16)
where k is the number of clusters, N the amount of data points, and the expo-
nent m reflects the degree of fuzziness of the partition: m = 2 is the classical
(empirically) chosen value for fuzzy clustering applications. The constraint on
{1i;} states that the sum of cluster membership value per data point should be
exactly equal to 1. The Hermitian norm ||| 4 is defined using a positive def-
inite matrix A, identically chosen as Euclidean for all clusters in our context.

Then, from a given parameter set 6, the objective is to identify a subset
of most erroneous elements through the computation of the modeling error
(CRE) map. In other words, we perform a two-cluster distinction from the
normalized CRE map:

{x- i 0x }}”9

i€[1; nol

X = wax (%] - min {X} X; = / wl (8w, 0)dw (17)
i€[1; ne] i€[l; n
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which allows to label each finite element as "healthy” or "erroneous”. A new

parameter space O is then defined in which all erroneous elements are updated
independently whereas the healthy elements remain unchanged, as concluded
in Alg. 3.

If the overall model (in the healthy area) is accurate, this procedure will
allow to (at least coarsely) localize the damaged area. This process can be inter-
preted as a generalization of the localization of most erroneous areas principle
that was mentioned earlier, but in a more adaptive manner.

Algorithm 3 Fuzzy clustering algorithm for CRE-based determination of
EITONEOUS areas.

Inputs:

Normalized CRE map X € R™ from (17), initial centers {C?,C8} = {1,0},
euclidean cluster metric A = I, m = 2, threshold ¢g

Fixed-point algorithm:

while J(C, u; X) > ¢ do

P = (X =Gl
Compute membership functions p;; = Z T

Z\ X =Gl
X;
Update centers positions Cj = %
Zz 1 ’U/lj
Compute the cost function J(C, p; X Z Z pis |1 X — C; ||A
i=1j=1

end while

Clusters identification:

Separate data points i € [1; ng] in clusters according to membership values: X;
belongs to cluster j if u;; > 0.5.

The cluster storing the highest normalized CRE values is the cluster of erroneous
elements to which model updating actions should be focused.

Let us point out several subtleties in the approach:

> Computing the CRE map is not an expensive procedure as it is a (vec-
torizable) post-processing operation once mechanical fields solution of (9)
has been obtained.

> In standard fuzzy clustering, it is recommended to initialize cluster centers
randomly. As one expects that elements having close-to-zero normalized
CRE values should not be updated (resp. elements with close to one
values should be updated), the location of centers can be initialized at
(C1,Cs) = (1,0). Note that doing so also avoids the undesired case of
equal partitioning.

> The choice not to consider FE barycentric coordinates in X allows to
identify damaged areas at different locations simultaneously. It avoids the
complex discussion on the robustness of clustering algorithms when the
number of clusters to identify changes from one application to the other
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[59]. Besides, as the damage pattern in a structure may not be convex,
particularly when several damaged areas have to be identified, it avoids
the need for spectral clustering [60].

> The metric A of each cluster has been chosen Euclidean in Alg. 3, but in
practice one can imagine going a step further by recalibrating the metric
of each cluster in the fixed-point algorithm, along with center positions
and membership functions. In particular, this would enable clusters of
elliptic shape to be better dissociated in multidimensional problems - see
[13] for more details.

3.4 A sparsity-promoting regularization of the mCRE

Following the developments of [35], one could also imagine adding an explicit
Tikhonov regularization term to the mCRE so as to favor some a priori
knowledge on the parameter estimates that are sought. In particular, when
it comes to detect localized damage, sparse regularization would allow to
focus the model updating process to a reduced amount of parameters. The
sparsity-promoting regularization of the mCRE 7, reads as follows:

J.(0,Y,0%,7) = / SW)EA(3(0, Y.),0, Vo) dw+ 70— Oolli  (18)
D,

where 6* is the a priori information on parameters, 7 is the weighting param-
eter allowing to give more or less importance to the regularization, and ||d||;
refers to the Li-norm. The minimization of this functional can also be per-
formed using the same algorithmic structure and mathematical developments
that have been given previously, except for the analytical gradient formulation
that must be slightly modified to integrate the regularization term into consid-
eration. However, the introduction of a new a priori information goes against
the philosophy of the mCRE which aims to remove any expert-user’s judg-
ment. Another disadvantage of this technique is the additional tuning of the
weighting parameter v which affects the quality of the solution [20]. The ben-
efits of sparsity-promoting regularization are assessed in the following section
that gathers numerical experiments.

4 Application to damage detection from
accelerometer datasets

4.1 Problem setting and objectives of the study

In this section, numerical results are presented and discussed to assess the rel-
evance of the automated mCRE-based model updating strategy for damage
detection with typical earthquake engineering applications. Academic exam-
ples are considered in which a cantilevered plane wall is subjected to a 60 s-long
random ground acceleration input in the outer plane direction (0.1g maximum
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acceleration). The reference mesh with the defects one hopes to identify is
shown in F1G. 1. Two cases of damage defects are considered to assess the per-
formance of the model updating algorithm (see F1G. 1): (i) a Y-shape defect
(representative of a propagated crack with bifurcation) that is modeled with
a local 50% Young modulus loss and (ii) a double circular inclusion problem,
respectively modeled with local 50% and 30% Young’s modulus losses!. If the
first case is much more representative of what could happen in actual experi-
ments involving crack propagation, the second example will allow to emphasize
the capability of the clustering algorithm to identify several defects, in areas
having heterogeneous sensitivity.

A uniform sensor placement is considered: discrete accelerometers oriented
in the outer plane direction are spread over the structure and collect data
at the sampling frequency fs = 1000 Hz. The effect of the sensors density is
illustrated in the following by modifying the sensor grid cell size ds. In order to
assess the robustness of the methodology with respect to measurement noise,
a white noise of known standard deviation is added to simulated data:

ynoisy (t) = y(t) + 5577(t) (19)

ds = d.std (iig(t)) represents the noise level with 6 € [0; 1] and iy the input
ground acceleration, while 7(t) is a random vector normally distributed with
zero mean and unit standard deviation. Therefore, the added measurement
noise standard deviation is equal to d.std ().
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(a) Y-shape defect. (b) Double inclusion. (¢) Model updating mesh.

Fig. 1: Reference FE meshes to simulate synthetic data with emphasis on
the defect areas 24 to identify (blue elements) and FE mesh used for model
updating. Locked DOFs are specified with red circles. A possible sensor grid
is shown with yellow DOFs.

Mn practice, the following material properties values have been used: p = 3000 kg/m37 E =20
GPa in healthy areas, v = 0.2. The dimensions of the geometry are L = 2 m, h = 1 m. The wall
thickness is equal to 0.07 m.
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Before performing any model updating action, it is worth noticing that
the input considered herein will limit the accuracy of model updating results
as it will only sollicitate the first eigenmodes and the low-frequency domain.
Of course, one may imagine setting an appropriate input signal (frequency
content, location, duration,...) in order to get accurate parameter estimates.
However, as it is the case for all inverse problems, the richness of the inputs
directly impacts the quality of model updating results.

In practice, meshes and FE matrices (reference and initial guess) are built
using the CEA simulation sotfware CAST3M®© before being uploaded in a
MATLAB® environment. In both cases, the initial model guess is made of
regular quadrangular shell elements whose homogeneous Young’s modulus is
equal to the non-damaged reference. The knowledge of the expected parameter
estimate 0* enables to assess the model updating accuracy using the following
reconstruction errors:

Jo ll6 —6*]|* dQ2 Jo, 16 — 6> dQ2

n0,0%) = | =5 ; 14(0,0%) = (20)
Jo, 16712 a0 I Jo,, 1672 d©2

which indicate the closeness of an estimate 6 to the expected parameter set
0*, respectively on the full structure §2 or on the restriction to the damaged
area g (see F1G. 1).

In terms of mCRE calibration, as the first three eigenmodes (whose are the
most sollicitated eigenmodes in the response to random ground motion) have
frequencies below 50 Hz?), a frequency bandwidth D, = [1 Hz; 50 Hz| with
Af = 0.1 Hz has been chosen for the computation of all forthcoming results.
The call to a reduced basis made of the first 20 eigenmodes of the structure
allowed to achieve convergence in fast CPU times (between 0.5 and 2 minutes
per mCRE-minimization with CRE-based clustering) on a personal laptop.

From these typical 2D earthquake engineering academical examples, the
aim is to emphasize the main underlying issues of model updating from discrete
sensors and to validate the automated strategy that has been presented above.
To do so, a complete numerical study is conducted with several objectives:

> illustrate the limits of the localization criteria for damage detection
and the effectiveness of the CRE-based clustering step for automated
parametrization;

> assess both effectiveness and soundness of the criteria proposed in Section
3.2 for automated calibration of a and evaluate the influence of o on
parameter estimates;

> evaluate the robustness of the automated mCRE-based model updating
algorithm with respect to measurement noise;

2With the chosen material parameter values, the first eigenfrequencies of the initial modeling
guess (non-damaged structure) are then equal to {7.37,32.46,45.89} Hz.
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> illustrate the damage detection expectations from limited sensor density
with typical earthquake engineering inputs;

> assess the benefits of additional sparsity-promoting regularization to the
mCRE functional.

For the sake of conciseness, as the Y-shaped defect is the most challenging
application, the analysis will mainly be focused on the latter, whereas the
inclusion example will be used to drive complementary discussions.

4.2 Limits of the localization criterion for optimal
damage detection

First, a parametric study on the localization parameter 8 defined in (15) allows
to assess the capabilities of classical mCRE-based model updating to perform
optimal damage detection, i.e., accurate identification at low computational
cost. A favorable model updating setting is considered: large amount of sensors
(ds = 0.1 m), almost noise-free data (§ = 0.1%). The indicators defined in
(20) are computed for each parameter estimate identified at convergence and
stored in TAB. 2. Typical model updating results are plotted in Fi1G. 2.

Localization parameter 8 n(6,6%) 14(8,6*) CPU time [s]

0 (full) 0.1415 1.9578 82.3
0.2 0.1413 1.9589 34.3
0.4 0.1493 1.5645 22.9
0.6 0.1528 2.1865 16.3
0.8 0.1857 4.0000 2.7
with CRE-based clustering  0.1364 1.7147 30.2

Table 2: Emphasis on the limitations of the localization of most erroneous
areas for accurate and efficient damage detection in the most favorable damage
detection case (noise-free data, dense sensor placement).

One can observe that mCRE-based model updating with a low localiza-
tion value (assuming the initial guess to be well calibrated) allows to capture
accurately the defect shape. However, unexpected corrections occur, mostly
overestimations at the boundary between damaged and non-damaged areas,
which leads to suboptimal results with respect to n. With high values for f3,
the CPU time is drastically reduced as very few parameters are updated (the
updated area is smaller than the defect shape). The model updating algo-
rithm sometimes overcompensates and diverges by proposing non-acceptable
negative stiffness values.

Therefore, the localization of most erroneous areas principle seems to be
not sufficient to perform accurate damage detection, as the value of 5 must
be carefully chosen to get acceptable results. A comparison with CRE-based
clustering is given in FIG. 3 in the same model updating context. Only a
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Fig. 2: Limit of the localization of most erroneous areas principle for accurate
damage detection - results obtained with a dense sensor placement (d; =
0.1 m) and 0.1% noisy data. The reference defect contour is plotted in black.

reduced group of finite elements is corrected at each iteration according to the
modeling error distribution. This group of elements matches with the shape
of the damaged area and permits to obtain an accurate estimate, as shown
in TAB. 2. Besides, the decrease of the modeling error, from 1072 to 1076,
confirms the efficiency of the proposed approach.

4.3 Automated confidence into measurements

One of the objectives of this study is to check the validity of the criteria
allowing to automatically define an optimal confidence into measurements
parameter &. As a reminder, three approaches are compared:

¢ & such that the a priori model and measurement error are balanced (11),

¢ a5 such that Morozov’s discrepancy principle is satisfied a priori (13),

® a3 such that Morozov’s discrepancy principle is satisfied a posteriori
following ALG. 2 with a dichotomic strategy.

We show in FIG. 4 the natural decrease of measurement error weights
(a1, asg, as) with respect to the noise level. This result seems intuitive as the
more measurement noise, the less confidence in data. Note that the z-axis
of FIG. 4 is weighted by ¥, ! as it is included in the mCRE data-to-model
distance, and thus implicitly conditions the value of a.

Although similar trends in the evolution of & with respect to measurement
noise are observed, the values given by both criteria are quite different, and
yet one cannot conclude about their validity so far. To assess which of the
criteria is the most appropriate to use, a full parametric study of the joint
influence of a and § on the identified estimates is conducted. Associated results
are given in F1a. 5 where the accuracy indicators n and 7ny are plotted as a



Springer Nature 2021 ETEX template

Automated mCRE-based model updating framework for damage detection 21

x107 . x1074
2 2
9
8
- 15 15
6
5 1 1
4
3
0.5 0.5
2
1
0
0 0.5 1
(a) CRE map at step 1. (b) CRE map at step 2.
2 2 2
1.2 1.2 14
12
15 1 15 1 1.5
1
0.8 0.8
1 1 1 08
0.6 0.6
0.6
0.5 e 0.4 0.5 FH 0.4 0.5 jEE o4
/.
0.2 0.2 0.2
[EEEEEEEEE |EEEEEEEEEE] NN
0\\\\\\\\\\ 0\\\| 0\\\\
0 0.5 1 0 0.5 1 0 0.5 1
(d) @ at step 1. (e) 6 at step 2. (f) 6 at convergence.

Fig. 3: Fully automated mCRE-based model updating results obtained from
noise-free data (ds = 0.2 m). CRE maps and parameter estimates at steps 1,
2 and at convergence (12 iterations are required here) are plotted.

function of § and «. It allows to appreciate the combined effects of noise level
and confidence in measurements on the values of 1 and 7y for a given sensor
placement (ds = 0.1 m). Besides, the values of a7, a2, a3 are stored in TAB.
3 in order to compare them to the optimal values of a in the sense of the
reconstruction errors (denoted a(n) and a@(ng)).

Their comparison suggests that one should select the a posteriori Morozov
discrepancy principle to calibrate « as its values are much closer to the opti-
mal ones given in the sense of the reconstruction errors. On the contrary, the
a priori criteria on « do not provide optimal values for damage detection in
the considered case. They can be considered too ”conservative” as they sys-
tematically underestimate the measurement error weight one should choose
in the sense of 7 or ny. Although, suboptimal, the ”conservative” choice of
« avoids the algorithm to diverge as excessive measurement weight may lead
to non-acceptable results (with negative stiffness parameter values). However,
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(a) L-curve and a priori Morozov criteria for the choice of . Each value of criteria
value at given « is obtained after evaluating the mCRE functional a priori.
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(b) Morozov’s discrepancy for the a posteriori choice of . Each value of this criterion
is obtained after performing the full mCRE-based model updating procedure.

Fig. 4: Comparison of the criteria for automated tuning of the measurement
error weight a. Optimal values a, are located at the minimum point of each
curve. The a prior: criteria are plotted together to emphasize that they provide
significantly different values.

the identification results still remain consistent with the location of the defect
and naturally lose accuracy with measurement noise, as shown in FiG. 6-7.

4.4 Influence of sensor density on damage detection
performance

From the identification results presented in F1G. 8, we observe that the damage
detection performance is directly related to the sensor density. As one could
have expected, the more sensors are scattered, the more accurate identification
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Fig. 5: Accuracy of the automated mCRE-based model updating algorithm
using n and 74 according to «, § at dg = 0.1 m.

Noise level [%] 0.1 1 10
a5yt 8.36.10* 1.05.10> 9.44.10"
arxyt 3.79.107  2.38.10*  5.98.10°
a3yt 8.53.10° 1.08.10° 7.27.10°
am)zy ! 3.50.10"7  2.94.107 2.38.10°
a(na)Sy ! 5.58.107 5.92.107  4.96.10°

Table 3: Optimal values for aX 1in the sense of the proposed criteria (L-
curve, Morozov’s discrepancy a priori, Morozov’s discrepancy a posteriori)
compared to the optimal values in the sense of the reconstruction errors 7, 74.
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Fig. 6: Influence of a on parameter estimates provided by the automated
mCRE-based model updating algorithm with 1% noisy data and ds = 0.1 m.

results are. Note that the parameter estimates have been obtained with «
calibrated according to Morozov’s discrepancy principle a posteriori.

It emphasizes the fact that inverse problem parametrizations should be
chosen in accordance with the associated sensor placement configuration.
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Fig. 7: Influence of a on parameter estimates provided by the automated
mCRE-based model updating algorithm with 10% noisy data and d; = 0.1 m.
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Fig. 8: Automated mCRE-based model updating algorithm - Influence of
sensor density on parameter estimates. Results obtained with 6 = 1% and the
optimal value of as. Sensor locations are specified with black dots.

These results also highlight that optimal sensor placement strategies should be
applied in order to get the most relevant information from a restricted amount
of data. We refer to our recent work [61] for more details on that feature.

As a remark, please note that very similar results have been obtained when
identifying the two inclusions of F1G. 1, but as they remain individually convex
and that the size of the defects is not locally thinner than the updated element
size, reducing the amount of sensors has less effect on parameter estimates
accuracy.

4.5 Multiple defect detection

Although the shape of the inclusions makes their identification easier compared
to the Y-shape defect, mostly because the size of the defects is not locally
thinner than the size of updated elements, the fact that there are two defects
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to identify simultaneously is an interesting challenge to face with CRE-based
clustering to perform optimal parametrization. The expected parameter values
of the inclusions located at y = 0.5 m and at y = 1.4 m have been respectively
chosen at 0.5 and 0.7. We present in F1G. 9 and F1G. 10 identification results
obtained from both noise-free and noisy data with a sensor grid such that
ds = 0.2 m. The automated procedure with « calibrated a posteriori has been
used.
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(a) CRE map (log-scale) (b) CRE map (log-scale) (c) Parameter estimate.
before model updating. after model updating.

Fig. 9: Identification of the two circular inclusions from noise-free accelerom-
eter data. CRE maps are plotted in log-scale to highlight the heterogeneous
sensitivity of inclusions due to their location.
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(a) CRE map (log-scale) (b) Parameter estimate.

before model updating.

Fig. 10: Identification of the two circular inclusions from 10% noisy accelerom-
eter data. The initial CRE map is already almost uniform due to the presence
of measurement noise, making the clustering approach less efficient.
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These results illustrate how the methodology is able to identify accurately
multiple defects simultaneously, as attested by the emphasis of the initial CRE
map on the defects. As mentioned previously, performing clustering without
considering the barycentric coordinates of finite elements allows to avoid the
(iterative) process on the optimal number of clusters to distinguish. However,
when the signal-to-noise ratio is too low (see F1G. 10), the CRE map does not
allow the CRE-based clustering to restrict the model updating to damaged
areas®.

If the model updating algorithm has been able to identify defects so far,
it is worth noticing that the top defect stiffness parameter has not been accu-
rately recovered (0.9 instead of 0.7 for noise-free data, not captured at all
with 10% measurement noise). If the presence of measurement noise naturally
disrupts the identification, this issue is also related to inherent sensitivity fea-
tures: as the mCRE is strongly related to strain energy, one could not expect
to identify accurately field parameters in areas where little strain energy is
present. Considering the fact that the structure is cantilevered, most of the
strain energy is stored in the bottom part, and it is harder to properly identify
defects in the upper half of the structure. It clearly appears on the CRE map
computed before performing model updating, which has been plotted in log-
scale to observe that the top defect appears as secondary for the first iteration
of the model updating process.

Therefore, it should be kept in mind that the identification is feasible
because of the sensor placement, the input sollicitation, and the boundary con-
ditions make the updated parameters sensitive enough to the model updating
functional. If these conditions are not met, then one should not hope to identify
defects with high accuracy. Actually, this remark has to be made for all inverse
problem strategies. The authors thus recommend mCRE users to plot relative
confidence intervals at convergence [30]. This low-cost operation will allow to
assess (at least) the possible difficulties in identifying some parameters.

4.6 Effects of additional sparsity-promoting
regularization

Several parameter estimates obtained from the same 10%-noisy measurements
are plotted in F1G. 11 to observe the effect of sparsity-promoting regularization
on parameter estimates. The a priori knowledge is set to 8y = 1. The weighting
parameter « is calibrated with Morozov’s discrepancy principle.

As written above, the addition of a sparse regularization term to the mCRE
should be seen as a backup to the method for identifying localized defects more
accurately. One can observe that it permits to provide slightly more accurate
results when the weighting parameter ~y is well calibrated. It is more visible for
the bottom inclusion to which the model updating functional is more sensitive.

3Note that the classical localization of most erroneous areas method would not be more efficient
either in this situation.
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Fig. 11: Effect of sparsity-promoting regularization on the identification of the
two inclusions from 10% noisy accelerometer data. Reference results without
sparse regularization are given. The combined effect with CRE-based clustering
is also considered.

Taking into account CRE-based clustering naturally impacts the optimal value
of v, i.e. the one that allows to describe the inclusions without spurious effects
in the healthy area. Besides, note that the initial guess perfectly matches with
the expected parameter value on non-damaged areas here, thus making the
chosen a priori value 6y = 1 highly relevant. This may not be the case for
other applications, in particular considering industrial applications where the
stiffness distribution might not be homogeneous.

As one can remark from F1G. 11 as well, the use of the CRE-based cluster-
ing step makes the effect of the additional sparse regularization less relevant
as correcting actions are already focused on sensitive and erroneous areas.

In spite of these limitations, the additional sparsity-promoting regular-
ization term, if well calibrated, can be beneficial for getting more accurate
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parameter estimates. However, due to the fact it requires some a priori knowl-
edge, this regularization should be seen as an option that can be considered
and calibrated in a case-by-case approach.

5 Conclusions and prospects

In this paper, a model updating framework based on the modified Constitutive
Relation Error has been proposed and assessed for vibration-based damage
detection. It has the particularity to be fully automated with several guidelines
provided for (i) the calibration of the data-to-model distance relative weight
and, (ii) the CRE-based design of the parameter space.

As the selection of «a, the computation of the CRE map and the cluster-
ing steps are fast operations, significant CPU time savings are made without
loosing accuracy. The robustness with respect to measurement noise has also
been illustrated, particularly due to the selection of @. CRE-based clustering
generalizes and extends the concept of localization of most erroneous areas. It
facilitates damage detection as it strongly restrains the number of parameters
to update from the same amount of measurements. This is particularly well
suited for damage detection as such defects are supposed to appear locally (at
the structural scale). Additional sparse regularization has been integrated to
increase damage detection accuracy, but requires some a priori knowledge and
dedicated calibration. Its effect is less significant when combined to CRE-based
clustering.

When assessing the proposed approach on academic earthquake
engineering-inspired examples, it appeared that the automated procedure does
not systematically lead to optimal results, in particular regarding the selec-
tion of @, the density of sensing devices and the sensitivity of parameters with
respect to the mCRE functional. We thus provide several recommendations on
the application of the model updating algorithm according to the context of
use:

> Before model updating, users should perform a sensitivity analysis so
as to observe which areas will be prone to correcting actions. After
model updating, confidence intervals should be plotted to analyze which
parameters are most uncertain. Due to the energy-based definition of the
mCRE, the identification of defects will be difficult in non-sensitive or
heterogeneous areas (in the sense of the strain energy distribution). This
problem-dependent issue should not be decisive for the case of damage
detection from ground motion testings, but it could be the case when
trying to identify inherent defects, e.g. due to material uncertainty.

> If real-time constraints exist or if the model updating is exploited for
data assimilation, a first precalibration test (with a typical low-magnitude
random input) should be made to calibrate all mCRE internal parameters
at best. Besides, the initial model guess would be already well calibrated
regarding the initial damage state of the specimen under study. This way,
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the mCRE-based data assimilation framework developed in [56] could
integrate all the proposed improvements. The obtained results will not
be optimal (as evidenced before), but they should be relevant enough to
provide accurate results in real-time.

> If there is no particular time constraint, i.e. if the algorithm is only
exploited as a post-processing tool, then one can afford running sev-
eral mCRE minimizations around the suboptimal values of & to look for
optimal results.

As it has been evidenced that sensor placements are critical in the accuracy
of identification results, dedicated studies dealing with optimal sensor place-
ment [61] and the influence of uncertain sensor locations are currently being
conducted. Other current investigations of the authors deal with mCRE-based
model updating using full-field (digital image correlation) or locally rich (optic
fibers) measurements. In such a context, not all the available data can be pro-
cessed at once due to computational limitations. The updated model could then
be progressively enriched to integrate data and refine the parameter space only
where needed, whether using model selection or mesh adaptation techniques.
Coupling the automated model updating algorithm with mesh adaptation and
model selection techniques is a promising idea, that will require dedicated
efforts in a long-term perspective of this work.

Appendix A Morozov’s discrepancy principle
for the mCRE framework -
mathematical developments

In order to go through technical details without carrying a burden due to nota-
tion complexity, please note that the notations used in the following appendices
are not necessarly consistent with the ones of the contribution.

A.1 Morozov’s discrepancy principle

Let us consider an inverse problem F'(z) = y with its associated regularized
cost function J = a||F(z) — y°||?> + R(x), R being the regularization function
(in Tikhonov’s sense). As explained in [46], assuming that a scalar ¢ quantifies
measurement noise such that noisy data y satisfies

[F(x) = yl* < 6% < |ly? (A1)
and that R is strictly convex, non-negative, weakly coercive and weakly-lower
semi-continuous, then there exists an optimal weighting a(d) associated to an

inverse problem solution x% such that

IF(23) = yl* = 6 (A2)
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In other words, it is possible to calibrate the weighting coefficient o according
to the noise level quantifier .

A.2 Adaptation to the mCRE-based model updating
framework

As all the conditions on R are met by the modeling error term of the mCRE
functional, some attention must be paid to the definition of the upper bound
of the data-to-model distance. Let us start from the fact that time-histories
can be legitimately modeled such that:

Y(t) = yea (t) +n(t) (A3)

where y.(t) is the exact measurement time-series that would have been
obtained without any measurement noise and 7(t) is a white-noise signal, whose
value at each acquisition time step follows a standard Gaussian random vari-
able: n(t) ~ N(0,62) V t with § the noise amplitude (standard deviation of
measurement noise). Then, the frequency domain pre-processing step requires
to take the (discrete) Fourier transform of measurements. Focusing on the fre-
quency range D, and using the linearity property of the Fourier transform,
one has:

Yo=Y+ Hy, Ywe D, (A4)
where H,, is the Fourier transform of the random process 7(t). From here, one

can properly introduce the mCRE measurement error by replacing Y., ., with
11U, :

MU, — YWHQEﬂ = ||HwH22*17 Vwe D, (A5)

Zl\w Z\w
> [ o - v ae= [ 2 e e
Dy, b D ;

w

If one knows the statistics of the square modulus of the discrete Fourier
transform of a random process || H,, ||?, then the § scalar of the Morozov discrep-
ancy theorem would be explicitely made available in a formulation dedicated
to the mCRE.

To do so, one can first start from the fact that the discrete Fourier trans-
form of a Gaussian random process is also a random variate whose pdf is a
multivariate Gaussian law, both its real and imaginary parts taken alone are
zero-mean Gaussian random variables of standard deviation o+/N/2, where N
is the number of sampling points. Therefore, the Fourier transform of R(H,,)
and $(H,,) are random variable following a centered Gaussian pdf of standard

deviation v/2/(6,v/'N).

Remark: the dependency on the number of sampling points N seems intu-
itively logical as the more data points, the more accurate a Fourier transform
of a white noise. This dependency can be canceled by normalizing the discrete
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Fourier transform by 1/+/N, which is done numerically in the MATLAB® fft
function.

As |H,|? = R(H,,)? + S(H,,)?, one can identify that the pdf of ||H,,|>?
results from the sum of squared independent Gaussian random variables.
Owing to the fact that the squared norm of vector storing d independent cen-
tered Gaussian random variables follows a x? distribution of degree d, one can
deduce that the pdf of 2N /02| H,,||? is a non-centered x? distribution of degree
2. After variable change, one finally obtains an analytical formulation for the
pdf of ||H,,||?:
e~/ (63/N)

02/N

Remark: The real and imaginary components of a Fourier transform indeed
correspond to the individual Fourier transforms even and odd components of
the time domain function. As all functions can be decomposed as a sum of an
even and odd function and since the Fourier transform is a one-to-one mapping
between the time and frequency domains, the lack of correlation between even
and odd parts in the time domain would imply a lack of correlation in the
frequency domain too. As we deal with a zero-mean white-noise time series,
the real and imaginary parts of its Fourier transform are thus uncorrelated.

(A7)

T2 () =

Therefore, the squared modulus of a zero-mean random process ||H, |
follows a non-centered x?(2) probability distribution conditioned by the mea-
surement noise variance 62, whatever the value of w. In particular, one can
note that

E (|| Ho|?) = o7 (A8)
where E () is the mathematical expectation operator. Assuming E;l =621,
i.e. noise is uncorrelated, then one recovers (12), which is the adaptation of
Morozov’s discrepancy principle to the mCRE framework (in the frequency
domain).
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