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Gif-sur-Yvette, France

cIUF, Institut Universitaire de France

Abstract

Digital twins efficiency lies in fast and representative solutions of inverse problems to
accomodate models with physical observations. The quality of the solution of an inverse
problem is conditioned by inherent features of the latter, in particular (i) the richness
of available data, (ii) the a priori experimental and modeling knowledge that allows to
regularize the ill-posedness nature of the problem, and (iii) the complexity of the space in
which updated parameters are sought. We present in this contribution a fully automated
robust model updating framework dedicated to the correction of finite element models
from low-frequency dynamics measurements. The proposed methodology is based on the
minimization of a modified Constitutive Relation Error (mCRE) functional, whose basic
idea is to construct mechanical fields and identify material parameters that are a trade-off
between all available information but without any further assumptions. The dependency
into some expert-user’s judgment is thus avoided. Dedicated rules are provided to auto-
matically calibrate all mCRE internal tuning parameters as well as a strategy to optimize
the space in which parameters are sought, leading to a fully autonomous algorithm. The
performance and robustness of the proposed model updating methodology are illustrated
using synthetic ground motion tests on a bending plate in which defects of various shapes
are identified from noisy acceleration datasets, with inherent limitations due to sensors
sparsity and defect observability.
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1. Introduction

The design, analysis and prediction of dynamical systems requires the construction of
robust numerical models. These models can be directly built from measurements (black-
box modeling) or derived after in-depth physical description of the involved phenomena
(white-box modeling). In each case, as most of modern systems are now equipped with
numerous sensors, those models are (at least) assessed by comparison with experimental
data in order to define their degree of representativeness. Indeed, the validation, enrich-
ment and exploitation of numerical models with experimental data are part of the digital
twin paradigm, whose applications range from simple post-processing to state predic-
tion, control of systems, or even decision-making process [1–3]. Earthquake engineering
problems are no exception to the need of using experimental data to build, validate and
operate robust numerical models, in particular when it comes to monitor and predict the
structural state of civil engineering structures [4].

From the numerical viewpoint, the integration of a digital twin requires a complex
numerical framework including a robust model updating algorithm able to operate in real-
time. In this paper, we will address the possibilities to perform damage detection from
sparse data collected in an (offline) low-frequency dynamics context, with an emphasis on
the trade-off that must be found between:

• the richness of available measurements,

• the complexity of the parameter space,

• the inherent model updating limitations due to the inverse problem itself.

1.1. Vibration-based damage detection techniques at a glance

For structural health monitoring (SHM) applications, the calibration of stiffness pa-
rameters from experimental data allows to identify (i.e. locate and quantify) structural
damage. Throughout the last decades, a wide panel of damage detection methods has
been proposed [4–6]. All these techniques derive various model updating approaches and
are often dedicated to the exploitation of kinematics measurements. For the sake of
conciseness, we will exclusively focus on damage detection from sparse data (obtained
from accelerometers, strain gauges, transducers, or Bragg optic fiber measurements for
example) although dedicated approaches operating full-field measurements have also been
developed, see [7–9] to cite a few. When dealing with spatially sparse datasets, the iden-
tification of damage in large structures is inherently difficult because of the relatively
reduced amount of available measurements, leading to an ill-posed inverse problem [10].

Due to the fact that many SHM applications directly exploit modal data, a parametrized
model is thus not mandatory as the changes in modal features such as eigenfrequencies,
damping ratios or modeshapes can provide direct information about the damage state
of a structure. Their evolution with time allows the user to track structural damage
[11]. In particular, classical modal analysis techniques aim at identifying modal features
through the identification of a state-space model from measurements. One of the fastest
and most accurate methods is based on stochastic subspace identification [12, 13]. Since
forced vibration testing of large structures in operational conditions is impractical, Oper-
ational Modal Analysis (OMA) techniques have been considerably developed to process
output-only measurements [14–18] obtained from unknown excitations in an operational
environment (i.e. wind or road traffic for bridges).
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However, Finite Element (FE) models can still be updated according to experimental
(possibly modal) data. In such a context, Bayesian approaches (whose extended compre-
hensive review is available in [5]) are classically distinguished from deterministic methods.
Among the latter, the sensitivity method is one of the most popular techniques to solve
inverse problems. Reviewed in [19] , the sensitivity method is based upon linearization of
the generally nonlinear relationship between measurable outputs and the parameters in
need of correction. As most of deterministic inverse problems, regularization techniques
are mandatory to prevent the ill-posedness of the problem [20]. Such techniques, although
easy to implement, provide identification results that are strongly sensitive to the regular-
ization term (whether it is a L2-norm Tikhonov or a L1-norm sparse regularization) whose
definition totally depends on some user’s a priori expertise; nevertheless, it is of crucial
importance as it conditions the smoothness of the obtained solution [21–23]. Besides,
such approaches may also be highly disturbed by measurement noise, with the possibility
to obtain divergent or physical-meaningless results.

An alternative consists in using the concept of modified Constitutive Relation Error
(mCRE) that exploits the reliability of information [24, 25]. This is the main driver behind
its selection as a reference method for model updating in this paper. Initially proposed for
model updating in dynamics by Ladevèze and co-workers [26, 27], the mCRE functional is
defined as a quadratic model-to-measurements distance enriched with a term based on the
concept of Constitutive Relation Error (CRE) [28], whose enriched physical meaning and
strong mechanical content avoid the direct use of regularization terms based on a priori
expert-user knowledge. This energy-based residual offers interesting advantages. First,
local convexity properties are enhanced compared to classical deterministic functionals
[29]. Moreover, the CRE part of the residual computed over the whole structure can
be exploited as a spatial distribution of the modeling error: it allows for example to
restrain the updating process to a few parameters [30], which can be computationally
helpful and regularizing (in Tikhonov’s sense) when the number of parameters to update
becomes important. The relevance and robustness of the mCRE for model updating has
been emphasized in many applications. Among other works, the mCRE was shown to be
robust to highly noisy and corrupted measurements [31] and able to perform local defect
detection [25, 32, 33], or full-field material identification from dense measurements [34, 35].
It has recently been successfully applied to Earthquake Engineering problems, with an
implementation in an industrial FE software [36, 37]. As one can explicitly establish a
link between mCRE with other deterministic and stochastic model updating functionals,
it is also worth mentioning the comparative study between mCRE, Tikhonov-based and
Bayesian damage detection using optical fiber strain measurements investigated in [38].

For the sake of completeness, let us finally mention damage detection techniques based
on neural networks and machine learning, that are getting more and more popular due
to their capability to process large amount of data [6, 39, 40], exploiting techniques such
as statistical pattern recognition that are of growing interest in SHM [41]. However, they
still lack of generality in the sense that the learning process conditions the performance
of such methods.

1.2. Main contributions

A dedicated mCRE-based model updating framework has been recently developed by
the authors in order to perform accurate identification of Finite Element (FE) models
from sparse data collected in low-frequency dynamics [42]. Although the robustness to
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measurement noise of the approach was proved by processing data from actual shaking-
table experiments, the performance of the methodology remains limited by the complex
setting of the mCRE framework. To the authors’ best knowledge, the design of the pa-
rameter space and the tuning procedure that integrates measurements of varying SNR
are still open questions in this framework, that have not been clearly addressed in the
literature. The ambition of this work is to propose a mCRE-based fully automated model
updating algorithm with the objective of identifying damaged areas optimally, i.e., as ac-
curately as possible at minimum computational cost. More precisely, in this contribution,
an automated selection of the parameter space is proposed based on the modeling error
discrepancies. A clustering strategy is carried out to identify in which areas model up-
dating is of higher importance, generalizing the above-mentioned concept of localization
of most erroneous areas. The call to the CRE as model updating indicator makes the
tuning of mCRE internal parameters crucial to design an optimal parameter space for
damage detection. Dedicated (automated) strategies are implemented and compared for
optimal calibration of the confidence into measurements. Finally, physics-inherent model
updating limitations are highlighted in this contribution, namely the impact of the sensor
placement strategy (particularly when dealing with sparse data) and the observability of
defects in problems where the strain energy distribution of the tested structure is strongly
heterogeneous.

The remainder of the paper is structured as follows. Section 2 recalls basics on mCRE
for FE stiffness model updating in low-frequency dynamics. Several strategies for the full-
automation of the algorithm are discussed regarding the calibration of internal parameters
in Section 3. The questions of the confidence into measurements and of the construction
of an optimal parametrization using CRE-based clustering are particularly emphasized.
A discussion tackling additional regularization approaches (whether in L2 or L1 metrics)
is also included. In order to assess the relevance of the proposed approach, a numerical
benchmark in which several defect shapes are identified is fully discussed in Section 4.
Conclusions and prospects are finally drawn in Section 5, suggesting a future implemen-
tation of the automated model updating technique for experimental test campaigns and
data assimilation.

2. The mCRE for damage detection in low-frequency dynamics

Updating a model is an optimization problem that consists in identifying a set of in-
ternal model parameters θ ∈ Θ that guarantee the relevance of model predictions M(θ)
from collected measurements y . In a deterministic approach, in order to overcome the
ill-posedness of the inverse problem, a regularization term G must be often added. It guar-
antees uniqueness of the solution by enforcing local ellipticity properties of the functional
to minimize J . Without loss of generality, a deterministic model updating problem thus
reads:

θ̂ = arg min
θ∈Θ

[
J (θ) , αD (M(θ), y) + G (θ, θ?)

]
(1)

The cost-function J is built as the weighted sum of a data-to-model distance term
D(M(θ), y) enriched with the so-called regularization term. The weighting parameter
α thus quantifies the reliability of the data-to-model distance D(M(θ), y) with respect to
the a priori knowledge θ? included in G(θ, θ?). Its value may be tuned according to several
techniques as the L-curve criterion [43, 44] or Morozov’s discrepancy principle [45, 46].
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In this section, we will show how the mCRE-based model updating problem is similar
in its formulation to the general case (1) and we will briefly recall the fundamentals of
this model updating framework for low-frequency dynamics, starting from a linear FE
problem written in the frequency domain. Particular attention is paid to the construction
of the Constitutive Relation Error (CRE) residual from the set of equations defining the
reference mechanical problem. Then, details about the modified Constitutive Relation
Error (mCRE) are explicitly given considering the correction of stiffness parameters. An
algorithm allowing to conduct the solution of the associated inverse problem is also given.
For additional details, the interested reader is referred to [42, 47] for extended overviews
of the mCRE-based model updating framework in the low-frequency dynamics regime.

2.1. FE framework, measurements and stiffness parametrization

Let us consider the general case of an elastic structure Ω spatially discretized in (non-
overlapping) finite elements such that Ω = ∪Ee=1 Ωe, and subjected to a given dynamical
excitation F . We denote by K ,D ,M the stiffness, damping and mass FE matrices,
respectively, while Fω and Uω are the frequency counterparts of nodal loading conditions
and displacement field. With these notations, the dynamic equilibrium written in the
frequency domain at a given angular frequency ω reads:[

−ω2M + iωD + K
]
Uω = Fω (2)

In addition to the dynamic equilibrium, a set of sensors is used to measure the mag-
nitude of some kinematic quantities (displacement, velocity and/or acceleration). In the
frequency domain, assuming for the moment that measurements are perfect, such infor-
mation can be written without loss of generality as:

ΠUω = Yω (3)

where Yω refers to the frequency counterpart of measurements at angular frequency ω
and Π denotes a projection matrix that allows to extract the components of Uω that are
measured. Its non-zero values are integer power of (iω).

As mentioned in the introduction, one can interpret damage as local stiffness loss.
Therefore, a convenient manner to parametrize a linear FE problem for damage detection
is to parametrize the FE stiffness matrix. Doing so, in this contribution, the nθ parameters
to update θ ∈ Θ ⊂ Rnθ only affect the stiffness matrix K . More precisely, the FE stiffness
matrix is decomposed into nθ non-overlapping subdomains and parametrized as follows:

K (θ) =

nθ∑
i=1

θi
θ0,i

K0,i with K (θ0) =

nθ∑
i=1

K0,i (4)

Note that the subdomains can perfectly match with finite elements or gather some of
them to reduce the number nθ of parameters to identify.

2.2. The modified Constitutive Relation Error: a physics-based approach for inverse prob-
lems

Originally intended to perform model verification [28, 48], the key idea for the con-
struction of the CRE residual lies into the distinction between reliable and unreliable infor-
mation on the reference mechanical problem. The mCRE concept extends this distinction
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to experimental data as well, allowing to build a functional able to handle measurement
error and model uncertainty simultaneously. Indeed, the redundant information gathered
in (2) and (3) means all equations cannot be exactly verified. Some of them must be con-
sidered less reliable, and thus relaxed as they will be only verified at best by minimizing
the so-called modified CRE functional.

In other words, the fundamental idea of the mCRE concept is to identify mechanical
fields and material parameters that are a trade-off between all available information with-
out adding any other a priori assumption. Although this distinction between reliable and
unreliable equations is non-unique and deeply relies on the case study and engineering
expertise, it is also well-known that, in most applications, constitutive relations are sub-
ject to caution. The full separation of equations for the considered damage detection case
is given in Tab. 1. Note that the damping modelling will not be subject to caution as
damping variations are secondary for damage detection. This choice could be questioned
if the stiffness properties were correctly updated. Once modeling equations have been
labeled as reliable or unreliable, two admissibility spaces are implicitly defined:

(i) a kinematic admissibility space Uad inside which any displacement field U verifies
the reliable kinematic equations of the problem,

(ii) an auxiliary dynamically admissibility space Dad defined as the set of displacement
fields V derived from the stress field verifying the dynamic equilibrium.

The reciprocity gap between Uad and Dad can be measured using an energy norm - the
CRE - that estimates the relevance of a solution couple sω = (Uω, Vω) ∈ Uad × Dad with
respect to the mechanical problem. With the above notations, the CRE at a given angular
frequency ω reads:

ζ2
ω(sω, θ) =

1

2
(Uω − Vω)HK (θ)(Uω − Vω) =

1

2

∥∥Uω − Vω∥∥2

K (θ)
(5)

with �H referring to the Hermitian transpose.

Reliable Unreliable

Model

• Geometry

• Elastic constitutive relations
• Boundary conditions
• Equilibrium equations
• Dissipative constitutive relations

Experiments
• Loading frequencies ω/2π

• Measured outputs Yω• Sensor locations
• Measured inputs Fω

Table 1: Distinction between reliable and unreliable information for damage detection from stiffness
update in dynamics.

The extension of the CRE concept to unreliable experimental data (see Tab. 1)
directly leads to the so-called modified Constitutive Relation Error (mCRE). The CRE
is completed by a data-to-model distance between the predictions Uω and the frequency
counterpart of measurements Yω :

e2
ω(sω, θ,Yω) , ζ2

ω(sω, θ) +
α

2

∥∥ΠUω − Yω

∥∥2

G
(6)
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The choice of the symmetric positive-definite matrix G is not critical as it intends to
ensure that ‖�‖G is homogeneous to ζ2

ω and equivalent in level. Herein, G is chosen
proportional to the identity matrix and weighted by the strain energy stored in the first
(involved) eigenmodes. The tuning factor α ∈ R+ enables one to give more or less
confidence into the measurements; large values can be specified when measurements are
considered reliable whereas close-to-zero values are better suited to corrupted or noisy
recordings. The choice of α is therefore crucial for providing relevant parameter estimates
[49, 50]. Automated techniques for its optimal tuning will be discussed in the following.

It turns out that the analysis of a single angular frequency is too restrictive in low-
frequency dynamics, particularly when several eigenmodes are simultaneously involved in
the structure response. The model updating procedure must be conducted on a frequency
bandwidth Dω which contains essential information about the response of the structure.
The mCRE functional J to be minimized is thus obtained by direct integration over Dω:

θ̂ = arg min
θ∈Θ

[
J (θ,Y ) ,

∫
Dω

z(ω)e2
ω(ŝ(θ,Yω), θ,Yω) dω

]
(7)

where z(ω) is a frequency weighting normalized function such that
∫
Dω
z(ω) dω = 1

allowing to modulate the importance of specific frequencies of Dω. An appropriate manner
to define z(ω) in low-frequency dynamics is given in the following (see Section 3.1). We
denote by ŝ(θ,Yω) the optimal solution in the mCRE sense for given parameters and
measurements, which is defined as

∀ ω ∈ Dω, ŝ(θ,Yω) = arg min
[−ω2M+iωD ]Uω+K (θ)Vω=Fω

e2
ω(s, θ,Yω) (8)

Introducing Lagrange multipliers Λ̂ω and an augmented cost function, it is easy to show
that this constrained minimization problem is equivalent to the solution of the following
linear system:

A

[
Λ̂ω

Ûω

]
= b with



Λ̂ω = Ûω − V̂ω

A =

[
[K (θ) + iωD − ω2M ]

H
αΠHGΠ

−KH(θ) [K (θ) + iωD − ω2M ]

]
b =

[
αΠHGYω

Fω

] (9)

whose size can be drastically reduced using projection on reduced basis, e.g. a truncated
modal basis enriched with Krylov vectors [42, 47].

2.3. Solution algorithm

The minimization of the mCRE is slightly more complex than standard deterministic
cost-functions as it is formed of nested minimization problems addressed on mechanical
fields (8) and parameters (7). Herein, the computational burden can be drastically reduced
using (i) parallel computing on ω ∈ Dω and projection on reduced basis when solving (9),
(ii) an analytical expression of the mCRE gradient with respect to the parameters. With
the above stiffness parametrization, the latter reads (for a given angular frequency ω):

∇θje
2
ω(sω, θ, Yω) =

1

2

∥∥Uω−Vω∥∥2

K0,j
+<(Uω−Vω)TK0,j<(Vω)+=(Uω−Vω)TK0,j=(Vω) (10)
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where <(�) and =(�) respectively denote the extraction of real and imaginary compo-
nents. This result directly derives from the adjoint-state problem written in the frequency
domain. As shown in Alg. 1, typical stopping criteria of the model updating algorithm
are based on the value of the mCRE functional and on the stationarity of the updated
parameters. The associated thresholds (ε1, ε2) must be chosen consistently to guarantee
relevant results and reasonable computational time. Normalizing the mCRE functional
[42] allows to select (ε1, ε2) within [10−8; 10−6].

The localization of most erroneous areas (in the sense of the modeling error) is the
only regularizing process in Tikhonov’s sense as the model updating is restrained to a
limited number of parameters. This principle will be discussed in details regarding the
full automation of the algorithm in the next section.

Algorithm 1: Pseudo-code of the mCRE-based model updating strategy.
Data:
• FE model including mesh and matrices K ,D ,M
• Measured outputs y(t)
• Subdomain decomposition and associated initial parameter guess θ0 ∈ Θ
• Frequency bandwidth Dω

• Confidence into measurements scalar α
• Stopping criteria thresholds ε1, ε2

Result: Updated set of parameters θ̂.

Initialization:
Data preprocessing in the frequency domain: Yω, ∀ ω ∈ Dω;
Computation of the frequency weighting function z(ω) ;
Evaluation of the initial quality of the model: J0 = J (θ0) ;

Model updating algorithm:

while J
(
θk
)
6 ε1J0 and |θk − θk−1| 6 ε2 |θk−1| do

1. Mechanical fields and localization of erroneous areas
Solution of (9) ∀ ω ∈ Dω ;
Identification of the most erroneous subdomains after computing
ζ2ω,e ∀ (ω, e) ∈ (Dω × J1;EK) ;

2. Correction of parameters
Minimization of J (θ) with respect to the identified parameters: θk+1 ← θk

(BFGS method with supplied analytical gradient) ;

3. Convergence tests
Computation of criteria: J (θk+1) and |θk+1 − θk| / |θk| ;

end

3. Full automation of the modified CRE for user-friendly model updating

In order to build a fully automated model updating strategy, all internal tuning pa-
rameters must be calibrated with rigorous and robust rules. One must then pay attention
to the setting of:

. the frequency bandwidth Dω,

. the frequency weighting function z(ω),

. the confidence into measurements scaling coefficient α,

. the parameter space in which parameters are sought Θ.
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As all of these parameters have a significant impact on model updating results, a sys-
tematic tuning procedure would then be useful to handle potential non-convincing model
updating results. If a large part of them has been already robustly handled in former
studies, we will briefly recall how to automatically calibrate all these influent internal pa-
rameters so as to guarantee relevant model updating results without requiring any user’s
a priori knowledge or experience (once the CRE has been defined!). The selection of the
parameter space and the tuning of α are extensively discussed as no clear contribution
has been found in that sense in the literature, out of empirical studies.

3.1. Frequency bandwidth - frequency weighting

The model updating procedure is conducted on a given frequency bandwidth Dω =
[ωmin;ωmax] which contains the essential part of the mechanical energy of the system. For
seismic applications, ground motions usually have a significant frequency content up to 50
Hz, which implies that Dω ⊂ [0 Hz; 50 Hz]. In practice, the integration over Dω also re-
quires to introduce a frequency step ∆f . The latter must be carefully chosen to correctly
capture the frequency content associated to the sollicitated eigenmodes. A common engi-
neering judgment one can recommend is to choose ∆f such that the narrowest resonant
peak is described by at least three points. Considering the 3 dB cut-off frequency, a simple
rule of thumb for the choice of ∆f is 3∆f ≈ mini(ξifi) where (ξi, fi) refers to the damping
ratio and natural frequency of mode i. In the upcoming earthquake engineering-inspired
applications, with typical 5% damping ratios and first eigenfrequencies at around 2-5 Hz,
∆f is thus chosen within [0.1 Hz; 0.5 Hz].

The case of the frequency weighting z(ω) has already been handled in [42] for the
low-frequency dynamics case. Briefly, the frequency weighting function z(ω) can be used
as a modulation function to favor frequencies deemed to have the largest influence on the
model updating procedure. In [42], an automated computation of z(ω) from experimental
datasets was proposed, based on the fact that the essential frequency content of the mea-
surements is gathered around experimental natural frequencies. A normalized version of
the Complex Mode Indicator Function (CMIF) [51] on transfer functions has been intro-
duced to naturally emphasize eigenfrequencies. The transfer matrix H(ω) must be first
computed from the crossed input/output PSD matrices (SOO(ω),SOI(ω),SIO(ω),SII(ω)):

H(ω) = [SOO(ω) SOI(ω)] [SIO(ω) SII(ω)]† (11)

where •† refers to the Moore-Penrose pseudo-inverse. The dominant singular value of
H(ω) has the property of peaking in the vicinity of natural frequencies and can be ad-
vantageously used to define z(ω). This indicator based on the transfer matrix H is called
H-CMIF in what follows (owing to its similarities with classical CMIF). Finally, one
defines the frequency weighting function as

z(ω) =
H-CMIF(ω)∫

Dω

H-CMIF(ω)dω
(12)

3.2. Confidence into measurements

Historically, out of the specific continuation scheme proposed in [34], several ap-
proaches related to regularization techniques were employed to define an optimal value
of α. The influence of α was particularly investigated in [24, 35, 52, 53], with empirical
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conclusions that an equivalent confidence between the CRE and data-to-model distance
terms provided relevant model updating results. In other words, one should intend to
calibrate α such that the two terms are in the same order of magnitude. This idea is
closely related to the L-curve method [44].

Alternatively, another technique to choose α lies in Morozov’s discrepancy principle
[46, 54, 55]. Therefore, the latter could be used in order to integrate the a priori knowledge
on measurement noise features appropriately, as it was done in [55, 56] to perform mCRE-
based identification from imaging databases.

In this part, two tuning strategies based on the previously mentioned principles are
discussed. Both require a preliminary parametric study on α that can be done (at low-
cost) in preamble of the model updating procedure (see Alg. 1) and intend to avoid
a full parametric study on α that would be prohibitive in terms of CPU time. Their
performance will be assessed in Section 4.

3.2.1. A priori balance between modeling and measurement errors

As mentioned above, the (physics-based) CRE term allows to explicitly integrate mod-
eling errors into the updating process. Its relative weight with respect to the modeling
error term must be correctly set in order to guarantee relevant identification results. With-
out any additional a priori information, one can choose to calibrate α to ensure a correct
a priori balance between measurement error and modeling error. This approach, which is
close to the L-curve principle in terms of formulation, has been proposed in recent works
[35, 42] and provided relevant model updating results.

α̂ = arg min
α∈R+

∣∣∣∣∣
∫
Dω

z(ω)ζ2
ω (ŝ(θ,Yω), θ)) dω︸ ︷︷ ︸

Modeling error

−
∫
Dω

z(ω)
α

2

∥∥ΠUω − Yω

∥∥2

G
dω︸ ︷︷ ︸

Measurement error

∣∣∣∣∣ (13)

Note that this approach is non-trivial as the mechanical fields that needs to be computed
(Uω, Vω) are indirectly impacted by the value of α following (9).

3.2.2. Morozov’s discrepancy principle to integrate the knowledge of measurement noise

In most cases, it seems relevant to take advantage of the knowledge of measurement
noise features (if available) to enhance the model updating process. Morozov’s discrepancy
principle permits to calibrate α so that the measurement error term should not be lower
than the noise level, denoted δs in the following.

We owe to Bonnet and co-workers the only use of Morozov’s discrepancy principle from
data obtained in the frequency domain within the mCRE framework [53, 56], although
its implementation remains questionable. Indeed, as expressed in [56], the measurement
noise is assumed to be proportional to the magnitude of measurements, meaning that
during the same experiment, sensors measuring low- or high-amplitude data do not have
the same noise level. Besides, the implementation of the criterion has only been proposed
for harmonic analysis and from synthetic data with low noise levels (up to 5% only).

In this contribution, a Morozov’s discrepancy criterion for a posteriori optimal choice
of α dedicated to the considered mCRE-based model updating framework is proposed.
If one (legitimately) assumes that the measurement noise level is additive and follows a
zero-mean Gaussian probability density function, i.e. η(t) ∼ N (0, δ2

s) ∀ t, and if G is
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proportional to the identity matrix, i.e. G = G0I, then one can show that the mCRE
measurement error term can be statistically approximated by:

E

(∫
Dω

z(ω)

2
‖ΠUω − Yω‖2

G dω

)
=

1

2
G0δ

2
sNs (14)

as the squared modulus of a zero-mean random process follows a non-centered χ2(2) prob-
ability distribution conditioned by the its variance δ2

s , whatever the value of ω (see Ap-
pendix A for the complete proof starting from Morozov’s discrepancy main theorem). One
can thus statistically bound the measurement error term, which directly corresponds to
the adaptation of Morozov’s discrepancy principle to the mCRE written in the frequency
domain (when all sensors are supposed uncorrelated, which is legitimate in practice). The
statistical upper-bound thus depends simultaneously into the number of sensors Ns, the
measurement noise δs and the scaling matrix G, which is intuitively consistent.

Morozov’s discrepancy principle is originally intended to choose the optimal value α̂
a posteriori. In other words, one should follow an iterative scheme, where the value of α
is tuned using a bisection method after assessing the quality of the solution once having
fully minimized the mCRE functional J (θ). Doing so, in a few iterations, one could hope
to find a relevant value for α̂.

Algorithm 2: A posteriori calibration of the confidence into measurements co-
efficient according to Morozov’s discrepancy principle.

Data:
• FE model including mesh and matrices K ,D ,M
• Measured outputs y(t) and noise level of sensors δs
• Subdomain decomposition and associated initial parameter guess θ0 ∈ Θ
• Frequency bandwidth Dω

• Initial value of confidence into data α (recommended to be small)
• Threshold ε
Result: Optimal confidence into parameter coefficients α̂.

while
∣∣∣∫Dω

z(ω)‖ΠUω(α)−Yω‖2G dω −G0δ
2
sNs

∣∣∣ > ε do

1. Update the confidence into measurements α

if
∫
Dω

z(ω)‖ΠUω(α)−Yω‖2G dω > G0δ
2
sNs then

Increase the value of α ;
else if

∫
Dω

z(ω)‖ΠUω(α)−Yω‖2G dω < G0δ
2
sNs then

Decrease the value of α ;

2. Minimization of the mCRE functional
Minimization of J (θ) with the updated value of α starting from θ0 using Alg. 1 ;

3. Assessment
Compute Morozov’s discrepancy:

∫
Dω

z(ω)‖ΠUω(α)−Yω‖2G dω −G0δ
2
sNs ;

end

However, one cannot afford to perform several minimization steps to update param-
eters correctly when performing model updating on-the-fly, as it is our intention in per-
spective of this work [57]. Similarly to the a priori balance criterion (13), one can also
perform an a priori parametric study on α that directly allows to propose a value for α̂
that one should expect to be suboptimal but that should guarantee convergence of the
forthcoming minimization:

α̂ = arg min
α∈R+

∣∣∣∣∫
Dω

z(ω)
∥∥ΠUω(α)− Yω

∥∥2

G
dω −G0σ

2
sNs

∣∣∣∣ (15)

11



Illustrations of the a priori choice of α following (13) and (15) will be provided in the
following applications, once combined to all the tools discussed in this section.

3.3. CRE-based stiffness parametrization for fully automated model updating

3.3.1. CRE-based localization of most erroneous areas

The CRE provides a direct insight regarding the validity of the model itself, making it a
relevant tool for identifying erroneous parts of the model as all finite element contributions
to CRE can be computed independently. The CRE per subdomain Si then reads:

∀ i ∈ J1;nθK, ζ2
ω,i(sω, θ) =

∑
e⊂Si

1

2

∥∥Uω − Vω∥∥2

Ke(θ)
(16)

where Ke(θ) is the stiffness matrix of element e. This asset can be seen as a Tikhonov
regularization in the mCRE framework in the sense that a restrained number of param-
eters can be updated [30, 47]. Indeed, defining a threshold β ∈ [0; 1], one can identify
subdomains to update such that they satisfy the following inequality:

∀ i ∈ J1;nθK,
1

|Si|

∫
Dω

z(ω)ζ2
ω,i(sω, θ) dω > β max

i∈J1;nθK

{
1

|Si|

∫
Dω

z(ω)ζ2
ω,i(sω, θ) dω

}
(17)

where the normalization by the size of subdomains |Si| permits to consider subdomains
of various sizes. However, if most references consider that β = 0.8 is a convenient value,
no clear parametric study has been performed in order to optimize the choice of β for
optimal defect detection based on noisy datasets.

Thus, if the CRE can be a convenient local model indicator, the localization criterion
(17) alone is limited to provide an automated parametrization (and associated subdo-
mains). In the remainder of this subsection, we present the potentialities and inherent
limitations of a CRE-based clustering technique for automated subdomain definition.

3.3.2. CRE-based clustering of erroneous areas: key ideas

Clustering is one of the most widely used techniques for data analysis and classifi-
cation [58]. The objective of cluster analysis is the classification of objects according to
similarities among them, and therefore organizing datasets into groups (the so-called clus-
ters). Without going into much details, clustering techniques allow to partition a space
in the sense of a given metrics: within a cluster, the distance between objects remains
small, whereas the distance between objects of different clusters is larger. There exists
many clustering techniques: hard clustering, fuzzy clustering [59], spectral clustering [60]
to only cite a few of them. Regarding civil engineering applications, clustering algorithms
have been essentially applied for automated modal analysis purposes [13, 17, 61].

To recall algorithmic principles in a nutshell, in hard clustering techniques, the data to
classify X ∈ Rd×N is divided into distinct clusters, where each data point can only belong
to exactly one cluster. To do so, the cluster center locations {Cj}kj=1 are optimized such
that:

{C} = arg min
Cj ∈ Rd ∀ j

k∑
j=1

N∑
i=1

‖Xi − Cj‖2
2 (18)

and the data samples are then directly classified into clusters according to their distance
to centers. Although efficient, such algorithms tend to be less effective when dealing
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with not-well separated, and non-spherical clusters. This motivated the development of
fuzzy clustering (also called soft clustering) where membership functions are associated
to each data point Xi, which somehow relaxes the belonging to a given cluster. The
membership function of data point i to cluster j is denoted µij and takes values in [0; 1].
As a consequence, a data point Xi will be more likely to belong to a cluster j if µij → 1.
Using a non-necessary Euclidean norm ‖�‖A, the centers and membership functions are
sought according to the following constrained minimization problem:

{C, µ} = arg min
C, µ

k∑
j=1

N∑
i=1

µmij‖Xi − Cj‖2
A︸ ︷︷ ︸

J(C,µ;X)

with
k∑
j=1

µij = 1 ∀i ∈ J1;NK (19)

where the exponent m reflects the degree of fuzziness of the partition: if m = 1 corre-
sponds to hard clustering, m = 2 is the classical (empirically) chosen value in many ap-
plications. The Hermitian norm ‖�‖A can be defined using a positive definite matrix A,
identically chosen for all clusters. Alternatively, the metric can be defined using a k-tuple
{Aj}kj=1, with Aj a positive definite matrix. The objective function is then extended as
J(C, µ,A;X). This choice allows better identification of elliptic and overlapping clusters.
More details on that subtility can be found in [13]. In any case, the constrained mini-
mization of these methods is performed numerically using a fixed-point algorithm that
iteratively optimizes all the arguments of the functional J . When non-convex clusters
are expected to be identified, spectral clustering techniques often outperform the above-
mentioned traditional approaches by performing clustering on a transformed dataset which
hopefully provides better separated and more easily identifiable clusters. The interested
reader can find a pedagogical and detailed tutorial in [60].

In this work, a fuzzy k-means clustering algorithm developed in [13] is reinvested.
Originally intended to separate the physical modes from the spurious modes produced by
a growing model-order identification algorithm in a modal analysis context, its robustness
with respect to non-convex, poorly dissociated, and heterogeneous clusters makes it a
relevant tool to define parameter distributions from the CRE map. Starting from the
initial model, the key idea is to identify a cluster of most erroneous elements through the
computation of the modeling error (CRE) map per element which naturally emphasizes
the damaged area. In other words, we perform a two-cluster distinction from

X =

{∫
Dω

z(ω)ζ2
ω,idω

}E
i=1

(20)

which allows to label each finite element as ”healthy” or ”erroneous”. Note that this is not
a computationally expensive procedure as it is a (vectorizable) post-processing operation
once mechanical fields solution of (9) has been obtained. Finally, a new parameter space

Θ̂ is defined in which all erroneous elements are updated independently whereas the
healthy elements remain unchanged. This can be interpreted as a generalization of the
localization of most erroneous areas principle that was mentioned earlier, but in a more
adaptive manner.

As a last remark, note that the absence of finite element barycentric coordinates in
X allows to simultaneously identify damaged areas at different locations. It avoids the
complex discussion about the robustness of clustering algorithms when the number of
clusters to identify changes from an application to the other.

13



3.4. A sparse-regularized modified Constitutive Relation Error

Following the developments of [35], one could also imagine adding an explicit regu-
larization term to the mCRE so as to favor some a priori knowledge on the parameter
estimates that are sought. In particular, when it comes to detect localized damage, sparse
regularization would allow to focus the model updating process to a reduced amount of
parameters. The sparse-regularized mCRE Jr reads as follows:

Jr(θ,Y , θ?, γ) =

∫
Dω

z(ω)e2
ω(ŝ(θ,Yω), θ,Yω) dω + γ‖θ − θ0‖2

1 (21)

where θ? is the a priori information one has on the parameters (healthy area stiffness value
for example), γ is the weighting parameter allowing to give more or less importance to the
regularization, and ‖�‖1 refers to the L1-norm. The minimization of this functional can
also be performed using the same algorithmic structure and mathematical developments
that have been given previously, except for the analytical gradient formulation that must
be slightly modified to integrate the regularizing term into consideration.

However, the introduction of a new a priori information goes against the philosophy
of the mCRE which intends to analyze the mechanical equations of the problem in order
to exempt the inverse problem of any expert-user’s judgment. Another disadvantage of
this technique is the arbitrary nature of the choice of a regularizing parameter γ which
impacts the smoothness of the solution [20]. Finally, one can notice that the purpose
of the clustering step and the additive sparse regularization are similar. The use of the
CRE to define an optimal parameter space seems a better integrated and more natural
approach within the mCRE framework. If one performs model updating without cluster-
ing, the effect of the sparse regularization (once well calibrated) should be beneficial on
the accuracy of the identified parameters, but it is likely that the clustering alone will
be as efficient in terms of accuracy and more robust insofar as less calibration efforts are
needed.

The impact of sparse regularization and a comparison with CRE-based clustering is
proposed in the following application section.

4. Application to damage detection from sparse accelerometer datasets

4.1. Description of the problem and objectives of the study

In this section, numerical results are presented and discussed to assess the relevance of
the automated mCRE-based model updating strategy for damage detection with typical
earthquake engineering applications. To evaluate the performance of the methodology,
academic examples are considered in which a simply supported plane rectangular floor is
subjected to a vertical low-magnitude ground acceleration input. The reference meshes
with the defects one hopes to identify are shown in Fig. 1. The optimality criterion for
α that have been previously discussed are compared and assessed, as well as the effect of
an additional sparse regularization term.

A uniform sensor placement is considered: discrete accelerometers oriented in the outer
plane direction are spread over the structure to collect data at the sampling frequency
fs = 1000 Hz. The effect of the sensors density is illustrated in the following by comparing
the sensor placement configurations shown in Fig. 2 and characterized by the distance
between sensors ds. In order to assess the robustness of the methodology with respect
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to measurement noise, a white noise of known standard deviation is added to simulated
data in order to process noisy synthetic measurements:

ÿnoisy(t) = ÿ(t) + δsη(t) (22)

δs = δ.std (üd(t)) represents the noise level with δ ∈ [0; 1] and üd the input ground
acceleration) while η(t) is a random vector normally distributed with zero mean and unit
standard deviation. Therefore, the added measurement noise standard deviation is equal
to δ.std(üd).

Two cases of damage defects are considered to assess the capability of the methodol-
ogy: (i) a Y-shape defect (representative of a propagated crack with bifurcation) that is
modeled with a local 50% Young modulus loss and (ii) a double circular inclusion prob-
lem, respectively modeled with local 50% and 70% Young’s modulus losses (see Fig. 1).
If the first case is much more representative of what could happen in actual experiments
involving crack propagation, the double inclusion case will allow to assess the robustness
of the clustering algorithm to identify several defects while the Y-shape case will permit
to assess the possibility to perform relevant clustering of non-convex defects.

Meshes and FE matrices (reference and initial guess) are built using the CEA simu-
lation sotfware Cast3M© [62] before being uploaded in a Matlab© environment [63].
In both cases, the initial model guess is made of regular quadrangular shell elements
whose homogeneous Young’s modulus is equal to the non-damaged reference, meaning
one expects to recover stiffness parameter values between 1 (healthy element) or 0 (fully
damaged element). Note that a modeling error bias is implicitly introduced as the mesh
of the updated model (regular quadrangular elements) is not compatible with the defects
to identify. The knowledge of the expected parameter estimate θ? enables to assess the
model updating accuracy using the following criteria:

η(θ, θ?) =

∫
Ω
‖θ − θ?‖2 dΩ∫
Ω
‖θ?‖2 dΩ

; ηd(θ, θ
?) =

∫
Ωd
‖θ − θ?‖2 dΩ∫

Ωd
‖θ?‖2 dΩ

(23)

which indicate the closeness of an estimate θ to the expected parameter set θ?, respectively
on the full structure Ω or on the restriction to the damaged area Ωd (see Fig. 1).

(a) Y-shape defect (propagated crack with bifurcation). (b) Double circular inclusion defects.

Figure 1: Reference FE meshes to simulate synthetic data with emphasis on the defect areas Ωd to
identify (orange elements). Locked dofs are specified with red circles.

Performing an accurate model updating from sparse and noisy data in that case is a
complex task, particularly for a non-convex defect to recover (such as the Y-shape defect).
From these typical 2D earthquake engineering academical examples, the authors’ aim is
to emphasize the main underlying issues of model updating from discrete sensors and to
validate the automated strategy presented previously. To do so, a complete numerical
study is conducted with several objectives:
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Figure 2: Three uniform sensor placement configurations with different densities (quantified by the
distance between sensors ds). Blue arrows locate the discrete accelerometers and red circles emphasize

on boundary conditions.

. illustrate the limits of the localization criteria for damage detection and emphasize
the effectiveness of the CRE-based clustering step for automated parametrization;

. assess both effectiveness and soundness of the two criteria proposed in Section 3.2
for automated calibration of α and evaluate the influence of the confidence into
measurements coefficient α on parameter estimates;

. evaluate the robustness of the automated mCRE-based model updating algorithm
with respect to measurement noise;

. illustrate the damage detection expectations from limited sensor density;

. assess the benefits of the additional sparse regularization to the mCRE functional.

For the sake of conciseness, all similar numerical results will not be shown as most
of them are redundant between the two configurations of Fig. 1 (in terms of results
analysis). As the Y-shaped defect is the most challenging application, this report will
mainly be focused on the latter, whereas the inclusion example will be used to drive
complementary discussions.

In terms of mCRE calibration, as the first eigenmode (which is the most excited) is
around 20 Hz, a frequency bandwidth Dω = [1 Hz; 30 Hz] with ∆f = 0.1 Hz has been
chosen for the computation of all forthcoming results. The call to a reduced basis made
of the first 20 eigenmodes of the structure allowed to achieve convergence in fast CPU
times (between 0.5 and 2 minutes per mCRE-minimization with CRE-based clustering)
on a personal laptop.

The remainder of this section is structured according to the (above-mentioned) major
objectives of this numerical study in order to emphasize the potentialities and limitations
of mCRE-based model updating algorithm from sparse noisy data.

4.2. Limits of the localization criterion for optimal damage detection

First, a parametric study on the localization parameter β defined in (17) has been made
in order to assess the capabilities of classical mCRE-based model updating to perform
optimal damage detection, i.e., accurate identification at low computational cost. It
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considers the most convenient model updating setting: large amount of data (sensor
placement (a) from Fig. 2) and perfect measurements (δ = 0%) which yield a high
confidence into measurements.

The criteria (23) are computed for each parameter estimate identified at convergence
and stored in Tab. 2. Two typical model updating results are plotted in Fig. 3 and 4.
One can observe that mCRE-based model updating with strong localization (Fig. 3) is
accurate at the full structure scale as it does not correct many parameters (letting most
of the undamaged area unchanged). However, the few parameters that are corrected do
not permit to obtain an accurate defect shape. On the contrary, with a lower localization
value (Fig. 4), the defect shape is accurately described, but unexpected corrections occur
in the undamaged area, which leads to parameter estimates that are not optimal in the
sense of η. Besides, note that the CPU time increases for low values of β as a (too) large
amount of parameters is updated at once. Finally, one should notice that iterative model
updating approaches with a high value of β do not improve identification results as they
take more CPU time and often fall into equivalent solutions (at the specimen scale) that
do not describe the defect accurately.

Therefore, the localization of most erroneous areas principle, which regularizes the
model updating algorithm in the Tikhonov sense [30], is not sufficient to perform accurate
damage detection from sparse data in reasonable computational times. Comparative
results obtained with CRE-based clustering are given in Fig. 5 for the same model
updating context. As observed, only a restrained group of finite elements is corrected (60
among 480). This group of elements correctly matches with the shape of the damaged
area because of its CRE-based construction and permits to obtain an accurate estimate,
as shown in Tab. 2. Besides, the comparison of modeling error (CRE) map before and
after model updating confirms the efficiency of the proposed approach.

Localization parameter β η(θ̂, θ?) ηd(θ̂, θ
?) CPU time [s]

0.2 0.00859 1.897 > 5000
0.3 0.00880 1.829 1670
0.4 0.00932 1.794 526.2
0.5 0.01212 1.833 171.9
0.6 0.01041 1.966 192.5
0.7 0.01783 2.168 33.8
0.8 0.04982 2.431 39.6

with CRE-based clustering 0.00955 1.641 100.3

Table 2: Emphasis on the limitations of the
localization of most erroneous areas for accurate

and efficient damage detection in the most
favorable damage detection case (non-noisy data -

rich sensor placement).
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Figure 4: θ̂ for β = 0.4 -
25% of elements are

individually updated.

4.3. Automated confidence into measurements

One of the objectives of this study is to check the validity of the criteria allowing
to automatically define an optimal confidence into measurements parameter α̂. As a
reminder, a first criterion defines α̂1 such that the a priori balance between model and
measurement error is guaranteed (13). The second criterion lies on the a priori use of
Morozov’s discrepancy principle and chooses α̂2 in accordance with the noise level (15).

Using the most favorable (i.e., the richest) sensor placement configuration and a given
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(d) Residual CRE map.

Figure 5: Fully automated mCRE-based model updating results obtained with sensor placement of
Fig. 2a and non-noisy data.

random input acceleration signal of 0.1g standard deviation, we show in Fig. 6 the
natural decrease of confidence parameters (α̂1, α̂2) with respect to the measurement noise
level δ. Both criteria thus react as expected to measurement noise: the more measurement
noise, the less confidence into experimental data.
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Figure 6: Automated choice of confidence into measurements coefficient: comparison of L-curve (a
priori balance) and Morozov’s discrepancy criteria for several noise levels δ.

δ[%]
Sensor config. (a) Sensor config. (b) Sensor config. (c)

ds = 0.1 m ds = 0.2 m ds = 0.3 m
α̂1 α̂2 α̂1 α̂2 α̂1 α̂2

0 962040 108 284 108 570 108

5 70.589 452.34 358 1444.32 908 2297.9
10 27.885 70.589 112 225.393 226 452.33
15 13.895 3.4497 70 11.0158 141 44.369
20 8.7386 1.3628 44 5.48903 70.58 13.895

Table 3: Values α̂1 (L-curve) and α̂2 (Morozov) of the confidence into measurements parameter with
respect to noise level. The numerical values are implicitly conditionned by the choice for G .

Although similar trends in the evolution of α̂ with respect to measurement noise are
observed, the values given by both criteria are quite different, and yet one cannot conclude
about their validity so far. To assess which of the criteria is the most appropriate to use, a
full parametric study on the joint influence of α and δ on the identified estimates has been
conducted. Associated results are given in Fig. 7 where criteria η and ηd are plotted as
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Figure 7: Automated mCRE-based model updating algorithm - Quality assessment of parameter
estimates using η (left side) and ηd (right side) according to α, δ and the sensor plans shown in Fig. 2.
The positions of α̂1 (L-curve criterion - in blue) and α̂2 (Morozov’s criterion - in red) are also given to

evaluate the relevance of the automated methodology. Colormaps are identical in each column to
compare the effect of sensors density more easily.
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a function of δ and α for the three considered sensor placement configurations previously
displayed in Fig. 2. The colormaps (that are identical for subfigures a-c-e and b-d-f)
allow to appreciate more clearly the combined effects of sensor density, noise level and
confidence into measurements on the values of η and ηd.

The location of α̂1 and α̂2 compared to the optimal α values in the sense of η or ηd
suggests that both criteria do not provide the optimal value of α for damage detection in
the considered case. They can thus be considered too ”conservative” as they systemati-
cally underestimate the optimal confidence one should put into data. If one has to choose
between them, the criterion based on Morozov’s discrepancy principle should be preferred
as it integrates additional information about the measurement noise.

In practice, the ”conservative” choice of α should also be seen as a way to guarantee
robustness of the algorithm: excessive confidence into measurements could lead to diverg-
ing results (with non-physical negative values of stiffness parameters - see Fig. 8). The
automated calibration of α using L-curve-type or Morozov’s discrepancy criteria allows to
avoid such issues, at the cost of suboptimal identification results. Indeed, the ”conserva-
tive” feature of α̂1 and α̂2 directly impacts the quality of identification: the sub-optimal
choices in the sense of η and ηd lead to less accurate identification results, with a cluster
of false-labeled elements larger than the defect to describe (see Fig. 9). However, the
obtained results still remain consistent with the location of the defect whatever the sensor
density.

As a last remark, please note that the values of α are indirectly depending on the
value given to G = G0I, showing once again how this scaling matrix is not that crucial if
α is afterwards well tuned.
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The model updating
algorithm converges

The model updating
algorithm diverges (b3 < 0)

Figure 8: Convergence assessment of the automated mCRE-based model updating algorithm. If the
algorithm converges most of the time (white area), overexcessive confidence into data can lead to

non-physical results (dark area, where some estimated parameters have negative values). The
automated calibrated values of α̂1 and α̂2 systematically lead to convergent model updating results.

4.4. Impact of sensor placement on damage detection performance

As one could have expected, the more sensors are scattered, the more accurate iden-
tification results are. However, for real industrial applications, the amount of available
sensors is constrained by instrumentation constraints and economic restrictions. What is
thus interesting to observe from the identification results displayed in Fig. 10 is that
one can coarsely identify damage locations from a restricted amount of sensors. It also
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Figure 9: Automated mCRE-based model updating algorithm - Impact of α on clustering and
parameter estimates. Results obtained for sensor placement Fig. 2.a with δ = 10%.

emphasizes the fact that inverse problem parametrizations should be made in accordance
with the associated sensor placement configuration. These results also highlight that op-
timal sensor placement strategies should be applied in such cases in order to get the most
relevant information from a restricted amount of data.

As a remark, please note that very similar results have been obtained when identifying
the two inclusions of Fig. 1, but as they remain convex-shaped defects, reducing the
amount of sensors has less effects on the parameter estimate accuracy.
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Figure 10: Automated mCRE-based model updating algorithm - Impact of the sensor placement
configuration on parameter estimates. Results obtained for sensor placement Fig. 2 with δ = 10% with

the optimal value of α in the sense of ηd.

4.5. Multiple defect detection

Although the convex shape of the inclusions makes their identification easier compared
to the Y-shape defect, the fact that there are two defects to identify simultaneously is an
interesting challenge to face with CRE-based clustering to perform optimal parametriza-
tion. We present in Fig. 11 and Fig. 12 the initial CRE maps and identification results
obtained from both unnoisy and noisy measurements using the sensor placement of Fig.
2.b. The expected parameter value of the small bottom left inclusion and of the larger top
right inclusion have been respectively chosen at 0.5 and 0.7. These results thus illustrate
the robustness of the methodology to identify accurately multiple defects at once with an
optimal parametrization, as attested by the emphasis of the CRE map on the defects, even

21



with a significant level of measurement noise and model bias. As mentioned previously,
performing clustering without considering the barycentric coordinates of finite elements
allows to avoid the (iterative) process on the optimal number of clusters to distinguish.
Note that the value of α had to be divided by 100 between non-noisy and 10% noisy data
to obtain these results, highlighting once again the crucial role handled by the coefficient
of confidence into measurements to get relevant identification results.

0 0.5 1 1.5 2

x

0

0.2

0.4

0.6

y

0

0.5

1

0 0.5 1 1.5 2

x

0

0.2

0.4

0.6

y

0.4

0.6

0.8

1

1.2

Figure 11: Identification of the two circular inclusions from non-noisy sparse accelerometer data. The
initial CRE map used for clustering is plotted on the left. The parameter estimate is plotted on the

right with the exact defects shapes on it to qualitatively assess its accuracy.
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Figure 12: Identification of the two circular inclusions from 10% noisy sparse accelerometer data. The
initial CRE map used for clustering is plotted on the left. The parameter estimate is plotted on the

right with the exact defects shapes on it to qualitatively assess its accuracy.

4.6. Effects of additional sparse regularisation

As written above, the addition of a sparse regularization term to the mCRE should
be seen as a backup to the method for identifying localized defects more accurately.
Identification results using sparse regularization with variable weighing γ and fixed a
priori knowledge θ0 = 1 are shown in Fig. 13. Several parameter estimates obtained
from the same 10%-noisy measurements are plotted in the latter.

One can observe that the sparse regularization term permits to provide more accurate
results only if the weighting is correctly calibrated. In this example, the weighting γ =
10−4 has been identified after several tests as a close-to-optimal value. The comparison of
parameter estimates obtained with γ = 10−4 and γ = 10−3 illustrates how the calibration
of the sparse regularization term is sensitive when it is employed. Besides, the reader
should keep in mind that, in this academic example, the initial guess perfectly matches
with the expected parameter value on non-damaged areas, thus making the chosen a
priori value θ0 = 1 highly relevant. This may not be the case for other applications, in
particular considering industrial applications where the stiffness distribution might not
be homogeneous.

As one can remark from Fig. 13 as well, the use of the automated CRE-based
clustering step makes the effect of the additional sparse regularization less relevant as
corrections are already focused on parameters in need of correcting actions.

In spite of these limitations, the additional sparse regularization term, if well cali-
brated, can be beneficial for getting more accurate parameter estimates. However, due to
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Figure 13: Effect of the sparse regularization effect over the identification of two inclusions from sparse
10% noisy acceleration datasets, with comparison to CRE-based clustering and direct mCRE-based

model updating.

the fact it necessitates some a priori knowledge, this regularization should be seen as an
option that can be considered and calibrated in a case-by-case approach.

4.7. Remark on the unobservability issue

If the model updating algorithm has been able to identify defects so far, it should
be noted that it is because the sensor placement and the input sollicitation allowed their
observability. If these conditions are not met, then one should not hope to identify defects
with high accuracy. Actually, this remark has to be made for all inverse problem strategies.

As the mCRE is strongly related to strain energy, one could not expect to identify
accurately field parameters in areas where little strain energy is present. To illustrate the
observability concept on an academical example, let us consider the case of a cantilevered
wall containing two rectangular defects submitted to a plane ground motion (see Fig. 14)
on which accelerometers oriented in the outer plane direction are scattered. This structure
has a highly heterogeneous strain energy distribution. Indeed, most of it is stored at the
bottom of the structure, making the identification of the top defect impossible. In practice,
the CRE map would be totally insensitive to the top defect, even if sensors are present.
To confirm this claim, we plotted in Fig. 15 the mCRE functional surface assuming that
both damaged areas have been correctly identified. The identification of the top area is
not feasible, as the mCRE totally lacks of sensitivity into the associated parameters.

The authors thus recommend future mCRE users to plot relative confidence intervals
at convergence [30]. This low-cost operation will allow to assess (at least) the possible
difficulties in identifying some parameters.
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Figure 14: Cantilevered wall subjected
to random ground motion with two

damage defects to recover.
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Figure 15: Evidence of the
unobservability issue: areas storing few
strain energy are less prone to relevant
mCRE-based accurate identification.

4.8. Conclusions on the fully automated mCRE-based model updating algorithm

From the previously obtained results, we would like to sum up the main advantages
and limitations of the methodology presented in this paper:

3 CRE-based clustering generalizes and extends the concept of localization of most
erroneous areas. It facilitates damage detection as it strongly restrains the number
of parameters to update from the same number of sparse measurements. This is
particularly well suited for damage detection as such defects are supposed to appear
locally (at the structural scale).

3 The proposed model updating strategy is fully autonomous with all the implemented
procedures for its automation. As the selection of α, the computation of the CRE
map and the clustering steps are fast operations, significant CPU time savings are
made without loosing accuracy. The robustness with respect to measurement noise
has also been illustrated, particularly due to the selection of α̂.

3 Sparse regularization may be helpful for getting for more accurate results in cases
defects are strongly localized, but requires some a priori knowledge and dedicated
calibration. Its effect is less significant if combined to CRE-based clustering.

7 The performance of the clustering step and of the model updating process is con-
ditioned by the quantity and quality of available sensors. This limitation has to be
kept in mind when trying to identify damage from sparse datasets.

7 Due to the energy-based definition of the mCRE, the observability of defects will
be difficult in non-sensitive or heterogeneous areas (in the sense of the strain energy
distribution). This problem-dependent issue should not be decisive for the case of
damage detection from ground motion testings, but it could be the case when trying
to identify inherent defects, e.g. due to material uncertainty.

If the core of the model updating algorithm remains the same as the one presented
in [42], the automated setting of all the internal tuning parameters without any addi-
tional a priori engineering judgment and the low computational resources required by the
algorithm make it an interesting tool for robust model updating problems in dynamics.

However, the ingredients for the full automation of the methodology do not lead to
optimal results, regarding in particular the selection of α̂1 and α̂2 in Fig. 7. We thus
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provide several recommandations on the application of the model updating algorithm
according to the context of use:

. If real-time constraints exist or if the model updating is exploited for data assimila-
tion, a first precalibration test (with a typical low-magnitude random input) should
be made to calibrate all mCRE internal parameters at best. Besides, the initial
model guess would be already well calibrated regarding the initial damage state of
the specimen under study. This way, the MDKF developed in [57] could integrate all
the proposed improvements. The obtained results will not be optimal (as evidenced
before), but they should be relevant enough to provide accurate results in real-time.

. If there is no particular time constraint, i.e. if the algorithm is only exploited as
a post-processing tool, then one can afford running several mCRE minimizations
around the suboptimal values of α̂ to find optimal results. Indeed, all the mini-
mizations performed in this contribution lasted less than 2 minutes on a personal
laptop.

5. Conclusions and prospects

In this paper, a fully automated physics-based model updating algorithm has been
proposed and assessed for vibration-based damage detection. It is based on the modi-
fied Constitutive Relation Error functional, whose potentialities for model updating have
been shown in the last 30 years. We addressed in this work a complex inverse problem
framework, where field parameters were to be identified at best from sparse noisy data.
The main contributions of this study rely in (i) the full-analysis of the calibration of the
confidence into measurements coefficient, that is crucial for guaranteeing relevant results;
(ii) the original automated manner to exploit at best the modeling error map to design
the parameter space before identification.

Although optimal results for damage detection have not been systematically obtained,
the methodology has proven robustness through the automated choice of tuning param-
eters and numerical efficiency as one completed model updating (including data prepro-
cessing) in a couple of minutes on a personal laptop. Those two aspects are essential in
the perspective of proposing an efficient model updating toolbox for digital twin appli-
cations. Finally, clear inherent limitations of mCRE-based model updating performance
have been highlighted due to the problem setting itself.

The optimal definition of the parameter space could be easily integrated in an iterative
process where the growth of damage could be observed at minimal computational effort.
We refer here to a new data assimilation algorithm called Modified Dual Kalman Filter
(MDKF) [57] that incorporates mCRE into a Dual Kalman Filter. The latter could benefit
from an optimal evolutive parametrization that would adapt to damage growth.

Besides, the impact of sensors placement has been evidenced as critical in the quality
of the obtained identification results. Current investigations are conducted to perform
optimal sensor placement dedicated to mCRE-based model updating. The integration of
the mCRE within the information entropy concept seems a natural approach to do so as
one can recover the mCRE in the Bayesian inference framework assuming the decoupling
of modeling and measurement errors.

Finally, the authors intend to perform mCRE-based model updating using full-field
(digital image correlation) or locally rich (optic fibers) measurements. In such a context,
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not all the available data can be processed at once due to the computational limitations.
The updated model could then be progressively enriched to integrate data and refine the
parameter space only where needed, whether using model selection or mesh adaptation
techniques. Coupling the automated model updating algorithm with mesh adaptation
and model selection techniques is a promising idea, that will require dedicated efforts in
a long-term perspective of this work.

Appendix A. Morozov’s discrepancy principle for the mCRE framework -
mathematical developments

In order to go through technical details without carrying a burden due to notation com-
plexity, please note that the notations used in the following appendices are not necessarly
consistent with the ones of the contribution.

A.1 Theorem: Morozov’s discrepancy principle [54]

Let us consider an inverse problem F (x) = y with its associated regularized cost-
function J = α‖F (x)− yδ‖2 + R(x), R being the regularization function (in Tikhonov’s
sense). Assuming that a scalar δ quantifies measurement noise such that noisy data y
satisfies

‖F (x)− y‖2 6 δ2 6 ‖y‖2 (A.1)

and that R is strictly convex, non-negative, weakly coercive and weakly-lower semi-
continuous, then there exists an optimal weighting α̂(δ) associated to an inverse problem
solution xδα̂ such that

‖F (xδα̂)− y‖2 = δ2 (A.2)

In other words, it is possible to calibrate the weighting coefficient α according to the noise
level quantifier δ.

A.2 Adaptation to the mCRE-based model updating framework

As all the conditions on R are met by the modeling error term of the mCRE functional,
some attention must be paid to the definition of the upper bound of the data-to-model
distance. Let us start from the fact that time-histories can be legitimately modeled such
that:

y(t) = yex(t) + η(t) (A.3)

where yex(t) is the exact measurement time-series that would have been obtained without
any measurement noise and η(t) is a white-noise signal, whose value at each acquisition
time step follows a standard Gaussian random variable: η(t) ∼ N (0, δ2

s) ∀ t with δs the
noise amplitude (standard deviation of measurement noise). Then, the frequency domain
pre-processing step requires to take the (discrete) Fourier transform of measurements.
Focusing on the frequency range Dω, and using the linearity property of the Fourier
transform, one has:

Yω = Yex,ω +Hω, ∀ ω ∈ Dω (A.4)

where Hω is the Fourier transform of the random process η(t). From here, one can properly
introduce the mCRE measurement error by replacing Yex,ω with ΠUω :

‖ΠUω − Yω‖2
G = ‖Hω‖2

G , ∀ ω ∈ Dω (A.5)
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⇒
∫
Dω

z(ω)

2
‖ΠUω − Yω‖2

G dω =

∫
Dω

z(ω)

2
‖Hω‖2

G dω (A.6)

If one knows the statistics of the ‖Hω‖2 square modulus of the discrete Fourier trans-
form of a random process, then the δ scalar of the Morozov discrepancy theorem would
be explicitely made available in a formulation dedicated to the mCRE.

A.2.1 Probability distribution function (pdf) of a random process

Hω is the amplitude of the discrete Fourier transform of {η(tn) = ηn}N−1
n=0 at angular

frequency ω. Mathematically, it means that:

Hω , F
(
{ηn}N−1

n=0 , ω
)

=
N−1∑
n=0

ηne
−2iπωn/N (A.7)

Focusing on the real part of Hω denoted <(Hω), one has:

<(Hω) =
N−1∑
n=0

ηn cos (2πωn/N) (A.8)

Denoting yn = ηn cos (2πωn/N), it implies that the pdf of yn verifies:

πyn(y) =
1

cos (2πωn/N)
πηn

(
y

cos (2πωn/N)

)
(A.9)

In other words, yn ∼ N (0, δ2
s cos (2πωn/N)2). For the sake of conciseness, we will ab-

breviate cos (2πωn/N)) ≡ cω,n. With such a notation, one has yn ∼ N (0, δ2
sc

2
ω,n) ∀ n ∈

J0;N − 1K.
The pdf of <(Hω) is the convolution of all the random variables yn (that have to be

summed in the discrete Fourier transform).

π<(Hω)(x) =
N−1⊗
n=0

πyn(x) (A.10)

Taking the Fourier transform of the last equation allows to simplify the convolutional
product:

F
(
π<(Hω), k

)
=

N−1∏
n=0

F (πyn , k) (A.11)

Knowing that the Fourier transform of a Gaussian function of standard deviation σ is
also a Gaussian of standard deviation 1/σ, one can write

F
(
π<(Hω), k

)
∝ exp

[
−−k

2δ2
s

2

N−1∑
n=0

cos (2πωn/N)2

]
= exp

[
−−k

2δ2
sN

4

]
(A.12)

Therefore, one finally gets that the Fourier transform of <(Hω) is a random variable
following a centered Gaussian pdf of standard deviation

√
2/(δs

√
N). One can conclude

that <(Hω) ∼ N (0, δ2
sN/2). The same conclusion holds for the imaginary part of Hω

denoted =(Hω).

We have thus proved that the discrete Fourier transform of a Gaussian random process
is also a random variate whose pdf is a multivariate Gaussian law, both its real and
imaginary parts taken alone being zero-mean Gaussian random variables of standard
deviation σ

√
N/2. From this result, it is worth mentioning that:
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• the measurement noise level directly impacts the value of Hω;

• there is no dependency on the considered angular frequency ω, which is consistent
with the well-known constant Power Spectral Density (PSD) of a white-noise signal;

• the dependency on the number of sampling points in the time domain N seems
intuitively logical as the more data points, the more accurate a Fourier transform of
a white noise. This dependency can be cancelled by normalizing the discrete Fourier
transform by 1/

√
N , which is done numerically in the Matlab© fft function.

A.2.2 Probability distribution function of the squared modulus of a random process

Now that the distribution of Hω is known, to identify which law follows ‖Hω‖2, we
can exploit the following theorem:

Be [X1; . . . ;Xd] a vector of d random variables such that Xi ∼ N (0, 1) ∀i ∈ J1; dK and
all couples of random variables (Xi, Xj), i 6= j are independent. Then the squared norm
of vector [X1; . . . ;Xd], denoted Y , follows a chi-squared distribution of degree d. In other
words:

Y =
d∑
i=0

X2
i ∼ χ2(d) with πY (y) =

(1/2)d/2

Γ(d/2)
yd/2−1e−y/2

where Γ : d 7→
∫
R+ t

d−1e−t dt is the Gamma function.

The real and imaginary components of a Fourier transform indeed correspond to the
individual Fourier transforms even and odd components of the time domain function. As
all functions can be decomposed as a sum of an even and odd function and since the
Fourier transform is a one-to-one mapping between the time and frequency domains, the
lack of correlation between even and odd parts in the time domain would imply a lack of
correlation in the frequency domain too. As we deal with a zero-mean white-noise time
series, the real and imaginary parts of its Fourier transform are thus uncorrelated.

As <(Hω) and =(Hω) both are centered Gaussian random variables of standard devi-
ation δs

√
N/2, one can deduce that the pdf of 2N/σ2‖Hω‖2 is a noncentered chi-squared

distribution of degree 2 with λ = 0. After variable change, one finally obtains an analytical
formulation for the pdf of ‖Hω‖2:

π‖Hω‖2(x) =
e−x/(δ

2
s/N)

δ2
s/N

(A.13)

As mentioned in the remarks of the previous paragraph, a 1/
√
N normalization of the

Fourier transforms allows to take off the dependency into the number of time points N .

Therefore, the squared modulus of a zero-mean random process ‖Hω‖2 follows a non-
centered χ2(2) probability distribution conditioned by the measurement noise variance δ2

s ,
whatever the value of ω. In particular, one can note that

E
(
‖Hω‖2

)
= δ2

s (A.14)

where E (�) is the mathematical expectation operator. Assuming G is proportional to
the identity matrix, i.e. G = G0I, then one recovers (14), which is the adaptation of
Morozov’s discrepancy principle to the mCRE framework (in the frequency domain).
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