Evaluating the nD emission intensity

Simplification of the general expression of luminescence spectra

L(ω) = Cω 3 ∑ ke,kg
ρ ke (T )P (k g , k e )δ(E e,ke -E g,kg + ℏω)

First, we consider that C is an unknown constant as the absolute magnitude of the spectrum is difficult to obtain even experimentally, and is influenced by many measurespecific parameters.

Considering P (k g , k e ), it is by definition | ⟨k g | ⟨g| µ |e⟩ |k e ⟩ | 2 . Let's consider µ e,g = ⟨g| µ |e⟩.

The Condon approximation enables to write the following:

P (k g , k e ) = | ⟨k g | µ e,g |k e ⟩ | 2 = | ⟨k g |k e ⟩ µ e,g | 2 = | ⟨k g |k e ⟩ | 2 |µ e,g | 2 (2) 
These considerations motivate the definition of I(ω) = 1 Cω 3 |µe,g| 2 with the next expression:

I(ω) = ∑ ke,kg ρ ke (T )| ⟨k g |k e ⟩ | 2 δ(E g,kg -E e,ke + ℏω) (3) 
Now we consider that for a low enough temperature T , we can approximate ρ ke (T ) as follow:

ρ 0 (T ) = 1 ; ∀k e > 0, ρ ke (T ) = 0 (4) 
Thus:

I(ω) = ∑ kg | ⟨k g |0⟩ | 2 δ(E e,0 -E g,kg + ℏω) (5) 
| ⟨k g |0⟩ | 2 can be expressed exactly in the framework of the 1D harmonic oscillator as

e -S S k g kg!
where S is the Huang-Rhys factor. [START_REF] Henderson | Optical Spectroscopy of Inorganic Solids[END_REF] 2 Finally, in a 1D harmonic oscillator model:

E e,0 -E g,kg = E ZPL -ℏk g ω g (6)
Thus we have our simplified 1D expression:

I(ω) = ∑ kg e -S S k g k g ! δ(ℏω -E ZPL + ℏk g ω g ) (7) 

Vibronic fine structure

Starting from the nested sum form:

I(ω) = ∑ k 1 ∈N . . . ∑ kn∈N ( n ∏ j=1 e -S j S j k j k j ! ) • δ ( ω - E ZPL ℏ + n ∑ j=1 k j ω j ) (8) 
This formula is impossible to evaluate directly because of the infinite sums. A first approach would be to consider a certain value k max to limit the number of term in the sums.

However, the nested sum makes this strategy insufficient, as for a good value of k max needs to be significantly larger that S j , thus making the number of term in the sum k n still too large for any sizable system (n = 120 in the smallest supercell of our study).

Another approach described by Kubo and Toyozawa 2 is to rewrite the formula into a convolution product and then use the properties of the Fourier Transform to obtain the relevant expression.

First, we consider the following properties of the convolution product ⊛:

• δ(ω + ω 0 ) ⊛ δ(ω + ω 1 )
• For a and b constants:

a ⊛ b = a • b
From this we can see that:

( n ∏ j=1 e -S j S j k j k j ! ) • δ ( ω - E ZPL ℏ + n ∑ j=1 k j ω j ) = exp ( - n ∑ j=1 S j ) δ(ω - E ZPL ℏ ) ⊛ ( S 1 k 1 k 1 ! δ(ω + k 1 ω 1 ) ) ⊛ • • • ⊛ ( S n kn k n ! δ(ω + k n ω n ) ) (9)
Then considering the distributivity of the convolution product:

u(ω) ⊛ (v(ω) + w(ω)) = u(ω) ⊛ v(ω) + u(ω) ⊛ w(ω) (10)
We can find that:

∑ k 1 ∈N . . . ∑ kn∈N ( n ∏ j=1 e -S j S j k j k j ! ) • δ ( ω - E ZPL ℏ + n ∑ j=1 k j ω j ) = exp ( - n ∑ j=1 S j ) ∑ k 1 ∈N . . . ∑ kn∈N [ δ(ω - E ZPL ℏ ) ⊛ ( S 1 k 1 k 1 ! δ(ω + k 1 ω 1 ) ) ⊛ • • • ⊛ ( S n kn k n ! δ(ω + k n ω n ) )] = exp ( - n ∑ j=1 S j ) δ(ω - E ZPL ℏ ) ⊛ [ ∑ k∈N S 1 k k! δ(ω + kω 1 ) ] ⊛ . . . ⊛ [ ∑ k∈N S n k k! δ(ω + kω n ) ] (11) 
We now introduce the Fourier transform:

F [u](ω) = ∫ R u(t)e -iωt dt (12) 
The Dirac's distributions can be seen as Fourier transform of complex exponential:

I(ω) = exp ( - n ∑ j=1 S j ) δ(ω - E ZPL ℏ ) ⊛ [ ∑ k∈N S 1 k k! F [exp(-ikω 1 t)] ] ⊛ . . . ⊛ [ ∑ k∈N S n k k! F [exp(-ikω n t)] ] (13) 
Then we apply the linearity of the Fourier transform to include the sums:

I(ω) = exp ( - n ∑ j=1 S j ) δ(ω - E ZPL ℏ ) ⊛ F [ ∑ k∈N S 1 k k! exp(-ikω 1 t) ] ⊛ . . . ⊛ F [ ∑ k∈N S n k k! exp(-ikω n t) ] (14) 
The sums over k now have the shape of the exponential series:

I(ω) = exp ( - n ∑ j=1 S j ) δ(ω - E ZPL ℏ ) ⊛ F [exp (S 1 exp(-iω 1 t))] ⊛ . . . ⊛ F [exp (S n exp(-iω n t))] (15) 
Considering the property of Fourier Transform over convolution product

F [u] ⊛ F [v] = F [u • v],
we can gather all the terms under the same Fourier Transform:

I(ω) = exp ( - n ∑ j=1 S j ) δ(ω - E ZPL ℏ ) ⊛ F [exp (S 1 exp(-iω 1 t)) . . . exp (S n exp(-iω n t))] = exp ( - n ∑ j=1 S j ) δ(ω - E ZPL ℏ ) ⊛ F [ exp ( n ∑ j=1 S j exp(-iω j t) )] (16) 
We can now recognize that ∑ n j=1 S j = S and we can define s(t), the inverse Fourier Transform of the spectral function:

s(t) = n ∑ j=1 S j exp(-iω j t) (17)
And we are left with evaluating the following:

I(ω) = e -S δ(ω - E ZPL ℏ ) ⊛ F [e s(t) ] (18) 
The δ(ω -E ZPL ℏ ) is the theoretical line shape at 0K and results in a high frequency oscillation in time space:

I(ω) = e -S F [e s(t)-i E ZPL ℏ t ] (19) 
However, this term may be replaced with a Gaussian function or a Lorentzian function to take into account finite temperature.

Then, one computes the analytical inverse Fourier Transform, l(t), and numerically evaluates the following expression:

I(ω) = e -S F [l(t)e s(t) ] (20) 

Determination of an effective frequency

The determination of the effective frequencies for the PES are required by the evaluation of the line width of the spectrum at 0 K, W (0). The effective frequency of the ground state is expressed as follow:

Ω g eff = ∑ i d FC,i ω i ∑ i d FC,i (21) 
First, two approaches allow one to consider the broadening of the bands into the discrete formalism. The first one is to consider a single line width as previously introduced. The second is to consider that each oscillator contributes its own line width in the form of a Gaussian function g i (ω) centered around 0 and of FWHM at 0 K W i (0). This idea is to transform Equation 11 into Equation 22:

I(ω) = exp ( - n ∑ j=1 S j ) δ(ω- E ZPL ℏ )⊛ [ g 1 (ω) ⊛ ∑ k∈N S 1 k k! δ(ω + kω 1 ) ] ⊛. . .⊛ [ g n (ω) ⊛ ∑ k∈N S n k k! δ(ω + kω n ) ] (22) 
Because the convolution product is associative, we can gather the Gaussian terms to the left.

I(ω) = g 1 (ω)⊛. . .⊛g n (ω)⊛exp ( - n ∑ j=1 S j ) δ(ω- E ZPL ℏ )⊛ [ ∑ k∈N S 1 k k! δ(ω + kω 1 ) ] ⊛. . .⊛ [ ∑ k∈N S n k k! δ(ω + kω n ) ] (23) 
Now, the convolution product of Gaussian functions is also a Gaussian function and the square of its standard deviation is the sum of the square of the standard deviations of the components. As a consequence, we have a total line shape g tot defined by:

g tot = g 1 (ω) ⊛ . . . ⊛ g n (ω) (24) 
with a FWHM at 0 K, W (0), defined by:

W (0) 2 = n ∑ i=1 W i (0) 2 (25) 
Now considering that each W i (0) follows the 1D model exposed in main text, we have:

W i (0) 2 = 4 log (2)S i ω g i ω e i (ℏω g i ) 2 (26) 
Which can be rewritten as:

W i (0) 2 = 4 log (2)d FC,i ω g i ω e i ℏω g i (27)
and gathered in a sum such as:

W (0) 2 = n ∑ i=1 W i (0) 2 = 4 log (2) n ∑ i=1 d FC,i ω g i ω e i ℏω g i ( 28 
)
Now we consider that we are looking for some Ω g eff , and Ω e eff describing W (0) within a 1D model, namely:

W (0) 2 = 4 log (2)d FC Ω g eff Ω e eff ℏΩ g eff (29) 
We are thus solving:

d FC Ω g eff Ω e eff ℏΩ g eff = n ∑ i=1 d FC,i ω g i ω e i ℏω g i (30)
Which, under the approximation that ∀i, 
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