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Tremor Waveform Extraction and Automatic
Location With Neural Network Interpretation

Claudia Hulbert , Romain Jolivet , Blandine Gardonio, Paul A. Johnson ,
Christopher X. Ren, and Bertrand Rouet-Leduc

Abstract— Active faults release tectonic stress imposed by plate
motion through a spectrum of slip modes, from slow, aseismic
slip, to dynamic, seismic events. Slow earthquakes are often
associated with tectonic tremor, nonimpulsive signals that can
easily be buried in seismic noise and go undetected. We present
a new methodology aimed at improving the detection and
location of tremors hidden within seismic noise. After identifying
tremors with a classic convolutional neural network (CNN),
we rely on neural network attribution to extract core tremor
signatures. We observe that the signals resulting from the neural
network attribution analysis correspond to a waveform traveling
in the Earth’s crust and mantle at wavespeeds consistent with
seismological estimates. We then use these waveforms signatures
to locate the source of tremors with standard array-based
techniques. We apply this method to the Cascadia subduction
zone, where we identify tremor patches consistent with existing
catalogs. This approach allows us to extract small signals hidden
within the noise, and to locate more tremors than in existing
catalogs.
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I. INTRODUCTION

GEODETIC and seismological observations suggest fault
slip can take place over a large range of time scales,

ranging from seconds or minutes during earthquakes to days,
weeks, months or permanently as slow slip [1]–[4]. Among
this spectrum of slip, slow displacements generated by slow
slip and creep are often accompanied by characteristic seis-
mic signals termed tremor [5]–[8]. The precise relationship
between tremor and slip remains poorly understood; proposed
explanations of tremor origins include the breakage of small
asperities as the fault displaces, fluid-driven fractures or fluid
migration, among others [9]–[11]. In general, tremor has
been associated with slow slip, as the source mechanism is
consistent with either a double couple mechanism [12] and/or
with marked geodetic displacements [5].

Since its discovery in Japan in the early 2000s [6], tectonic
tremor has been observed in many subduction zones, including
Cascadia [5], [13], Alaska [14], Mexico [13], [15], [16],
Southern Chile [13], [17], New Zealand [13], [18], and Costa
Rica [19]. Observation of tremor activity extends to strike-slip
fault systems [8], [20], [21]. Like earthquakes, tremor can
occur spontaneously but can also be triggered, either by tidal
loading [22], [23] or by quasi-static or dynamic loading from
earthquakes [20], [24].

In contrast to earthquakes that are characterized by impul-
sive P- and S-wave arrivals, tremor waveforms are not asso-
ciated with systematic, well-defined patterns. This absence of
characteristic traits makes the detection and location of tremors
challenging. While identifying an earthquake and picking its
phases on a single seismic waveform can be a relatively
easy task for an analyst, detecting tremor on a single station
is extremely difficult. For this reason, tremor identification
typically relies on a large network of seismometers: detecting a
coherent signal across the network allows one to discriminate
it from noise. Methods to locate tremors are usually based
on waveform correlation across an array of seismic stations,
through the cross correlation of tremor envelopes from which
a differential travel time between stations can be estimated.
These differential travel times can then be compared to theoret-
ical ones through grid-search [6], [8]. In some other cases, the
entire correlation functions are stacked and its maximum value
is used to estimate the associated event location [25], [26].
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Fig. 1. Extraction of tremor waveforms with neural network attribution. Raw waveforms (a) are turned into spectrograms (b) and fed to a classic CNN.
We rely on a standard network (three convolution+max pool and three dense layers). From these spectrograms, the CNN is tasked with classifying tremor from
nontremor. Once the model is trained (with tremors identified from the PNSN catalog), we rely on Integrated Gradients [41] attribution to interpret its results.
(c) Result of the positive attribution for the same waveform; the blue areas correspond to the parts of the spectrogram that carry core tremor information
according to the attribution analysis. We can then select exclusively these areas to inverse-Fourier transform, to get a clean tremor signal. (d) These cleaned
waveforms correspond to the core tremor signals, as seen by our model, and have clear structure compared to the original waveforms; our goal here is to rely
on these clean waveforms to locate tremors. (e) Architecture of the network.

In addition to envelope-based location, approaches described
in the literature include template matching [12] and the
backpropagation of seismic signals [27]. Refinements have
also been introduced to improve the precision of tremor
location, especially regarding depth, which is often poorly
resolved. These approaches include double-difference location
techniques [21], or the estimation of phase lags between P- and
S-wave timings [28].

Array-based tremor detections and locations are unlikely to
work well for low-amplitude tremors, that may appear only
at one or two stations and not be identified as coherent signal
throughout the array. This type of approach is also particularly
challenging in the case of sparse seismic networks because
local sources of noise prohibit high correlations between
station pairs. In what follows, we propose a new methodology
for tremor location, based upon neural network attribution to
extract tremor waveforms. We find that our approach gives
results coherent with existing catalogs, and allows the location
of tremors below the noise level. This method should prove a

valuable tool for the location of small tremors, or in presence
of sparse seismic arrays.

II. METHOD

A. Extracting Tremor Waveforms With Neural Network
Attribution

A trained neural network can easily detect tremor at a
single seismic station, vastly increasing the number of detec-
tions when compared to the catalog it has been trained on
[29], [30]. Our goal here is to leverage the learned representa-
tions of a deep neural network to extract seismic waveforms,
revealing the signals that triggered the detection and locating
the corresponding tremors.

The network we rely upon is a standard CNN [see Fig. 1(b)].
Our CNN attempts to classify tremor from seismic noise. It is
trained on three components, 5-min spectrograms of approxi-
mately 165 000 examples of tremors identified from the Pacific
Northwest Seismic Network (PNSN) catalog [25], and 250 000
examples of seismic noise. The noise examples are drawn
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randomly from times when no tremor has been detected by the
PNSN. Examples of noise and tremor are drawn from several
seismic stations in Cascadia, located along the Western U.S.
coast (nearly all the stations are outside Vancouver Island, our
region of interest). The CNN attempts to classify tremor from
single, three-component examples of spectrograms, thereby
building a single-station detector. We train the classifier on
examples from August 2009 to June 2016. Examples for June
2016 to December 2018 are used for validation and test,
with the first half corresponding to the validation set, and the
second half to the test set. The performance of our classifier
in testing, as measured by the receiver operator characteristic-
area under curve (ROC-AUC) score, is of 0.913. We leverage
adversarial training to further improve the generalization of
our model and the interpretability of its gradients [31]. Details
regarding the database used for training, the training and
testing procedures, and the performance of the model can be
found in the Supplementary Material.

This kind of single station tremor classification tends to
generalize well to other areas [29]: a model trained on wave-
form spectrograms from a single seismic station in Vancouver
Island, Canada, generalizes to other nearby seismic stations,
and even to data from Japan—suggesting that tremor wave-
forms carry some kind of universal signature.

To probe the classifier for tremor signature patterns, we rely
on neural network attribution tools. Neural networks are often
considered as black-box models; however, there has been
considerable effort over the recent years to develop their
interpretability. Among these approaches, several attempts at
interpretation focused on visualization throughout the hidden
layers of the network: 1) either by considering all neurons
in a given layer as a whole [32], or 2) by considering each
neuron individually, often based on the activation value of
each unit [33]–[35]. A parallel area of research is to analyze
network attribution, i.e., the connection between input features
and the prediction of the network [36]–[42].

We rely on a recent approach for network attribution, using
the integrated gradients methodology [41]. Gradients are often
used as a basis of attribution techniques, as they can be consid-
ered as the coefficients associated with a network’s features,
and their analysis can therefore inform on important feature
contributions. Consider a deep network N : R

n → [0, 1], and
an input datapoint x = (x1, . . . , xn). The attribution problem
consists in analyzing the contribution of each individual xi to
the prediction of the network, N(x). For example in image
analysis, it would correspond to analyzing the contribution of
individual pixels to the prediction of the model.

The integrated gradients correspond to a path integral along
a straight line connecting a baseline vector to the input vector x

IGi (x) = (
xi − x ′

i

) ∫ 1

α=0

∂ N
(
x′ + α

(
x − x′))

∂xi
dα

where x′ corresponds to the baseline vector, and (∂ N(x)/∂xi)
correspond to the gradient of the network along the i th
dimension. The baseline vector x′ can be taken for example as
a black image or a zero embedding vector. Because gradients
are integrated in this way, the method is robust to plateaus in

the network’s response and areas of local gradient instability
such as saddle points.

The integrated gradient approach solves two main issues
encountered by several other attribution techniques proposed
in the literature: 1) it avoids flat, zero gradient regions
(plateaus in the output of the network with respect to a region
in the input space) that can cause the attribution method to
focus on nonrelevant features and 2) functionally equivalent
networks (that associate the same inputs to the same outputs)
return the same attribution, avoiding the attribution to focus
on unimportant characteristics of the classifier. Furthermore,
this approach is fast to compute.

We analyze our input spectrograms with the integrated
gradient approach, identifying which parts of the spectrograms
carry the core of the tremor information. Positive attribution
results for a sample waveform is shown in Fig. 1(a), third
panel. In this plot, the blue areas correspond to the parts of
the spectrogram that were crucial for the algorithm to label
a waveform as tremor. As expected, the dominant frequency
band lies between 2 and 7 Hz, with some smaller contribution
from higher frequencies. Note that this analysis is very dif-
ferent from a simple bandpass filter within tremor frequency
bands (see Fig. 3), because of the temporal distribution of
seismic energy in the attribution spectrogram. Indeed, the
waveform extraction analysis emphasizes times where tremor
signals are likely to occur, and is therefore akin to a time-
dependent filter; in contrast, a bandpass filter treats all times in
an equal manner. We then multiply the original amplitude val-
ues by the attribution spectrogram, and perform the associated
inverse Fourier transform. This analysis yields waveforms with
clear structure compared to the original signals [see Fig. 1(a)]
(right). It is likely that the attribution analysis identifies some
of the individual low-frequency earthquakes (LFEs) contained
within the tremor signals.

An enlarged figure showing the original and extracted
waveforms can be found in the Supplementary Material. Note
that our algorithm identifies core tremor patterns in the raw
spectrograms, that are backprojected in the time domain. These
core patterns do not necessarily correspond to the entire tremor
signals, and therefore the extracted waveforms may not capture
the entire energy of the underlying tremor. This explains
why we choose to normalize the amplitudes in the extracted
waveforms, such as shown in Fig. 1 (right). However, as long
as the same patterns are identified independently at multiple
stations, we show in the following that these can be used to
locate the origin of these signals.

B. Reconstructed Waveforms Are the Signature of Traveling
Waves

Because seismic energy in the attribution spectrograms is
intermittent in time, extracted waveforms have a much more
impulsive structure than the original signals. As illustrated
by the example in Fig. 2, raw waveforms (even filtered
between 1 and 8 Hz) often exhibit weak and emergent sig-
nals, which appear much more impulsive once extracted as
described above. Importantly, the reconstructed waveforms
show impulsive signals that are coherent between stations.
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Fig. 2. Application to an array of seismometers. (a) Raw waveforms
bandpassed between 1 and 8 Hz. (b) Result of the neural network attribution
analysis to denoise the waveforms (in blue). The extraction procedure is
performed on each station independently. Clean move-out patterns can be
seen across the network, which can be compared to shear wave theoret-
ical travel times (red line). The move-outs match theoretical wave speed
to first order. Note that in order to visualize the moveout, waveforms
are ordered according to the epicenter of one particular tremor (occurring
at 50 s).

An enlarged figure showing this moveout can be found in the
Supplementary Material.

We can compare the travel times of the reconstructed signals
to the arrival time predictions from a simple 1-D velocity
model for S-waves. When performing the attribution analysis
independently on each station, the observed travel times match
the theoretical ones to first order, suggesting envelope cross
correlation location should be possible. The quality of the
reconstructed waveforms decays with distance to the source,
which is expected and consistent with seismic source radiation
patterns. This spatio-temporal propagation provides a strong
validation that the reconstructed waveforms indeed correspond
to signals of seismological interest (here tectonic tremors),
extracted from noisy time series. Because the attribution
analysis does not return a waveform corresponding to the full
tremor energy, the identified feature representations may vary
at different stations. In such cases, the extracted waveforms
would not reach the correlation threshold, and the correlation
functions would not coalesce into a single point in space,
leading us to miss some tremor occurrences. While this is
unlikely for nearby stations, it could occur for networks spread
out over large distances.

The conservation of travel times in the reconstructed wave-
forms is also supported by the fact that binary classifica-
tion results from a CNN are not station dependent. Indeed,
applying the same model to other stations, even in different
tectonic regions, yields good performance [29]. Therefore,
we expect that tremor signatures are shared across stations,
and, if detected, these should consequentially align across a
seismic network according to true move-out patterns.

C. Location Procedure

If indeed our reconstructed waveforms preserve the tremors’
move-out patterns, it should be possible to use them to locate
the source of the tremor. Once all waveforms of interest
are reconstructed as described above, we rely on traditional
array-based methods to locate tremors. We begin by running a
classic short term average/long term average (STA/LTA) picker
through the cleaned waveforms. The fact that these waveforms
are more impulsive and structured than the original signals
makes the picking procedure more effective, resulting in many
picks identified. These waveforms are then sliced around each
pick, using a window size based upon the maximum theoretical
travel time that can be observed across the array.

We then measure the correlation of the envelopes of the
sliced waveforms, for each pair of stations within the array.
The envelopes are computed as the smoothed rms of the
denoised waveforms, in a manner similar to [43]. Each enve-
lope correlation value is associated with a time lag between
the two station waveforms, which can be compared with
shear wave theoretical time differences between station pairs.
A regional 1-D velocity model is used to estimate travel
times [44]. For each station, both horizontal components
are used for the analysis. We keep the entire correlation
functions to locate the events [25], [26]; these correlation
functions are stacked for all pairs of stations that display a
high envelope correlation (see below). The point in the spatial
grid corresponding to the maximum stacked correlation is then
returned as the source location for one particular tremor.

Fig. 3 shows a stacked correlation function over our region
of interest. The maximum of the stacked correlation corre-
sponds to the tremor’s location. Because we rely on envelope
cross correlation, depth is not well constrained. Note that if the
reconstructed waveforms were not consistent with the speed
of S-wave in Earth, the stacked correlation would not coalesce
to a maximum, as it does for example in Fig. 3.

Besides enabling the location of signals of interest, the cross
correlation of the extracted waveforms is also very useful to
filter out false positives. In cases where noise signals are
wrongly classified as tremor and return positive attribution
values, they will only be selected by the algorithm if their
propagation throughout the network matches the speed of
S-waves. Signals that fool the model but do not travel at the
speed of local velocity estimates will be discarded.

We use several selection criteria to improve confidence in
a tremor’s location as follows.

1) We only locate the source of waveforms that the neural
network model classifies as tremor above a fixed “confi-
dence” threshold (softmax ≥ 0.7, on a minimum of two
stations). For comparison, decision thresholds used for
tremor or LFE detection tend to be included within the
[0.5, 0.75] interval [29], [45].

2) To focus the analysis on informative stations, a station
pair is only considered if its maximum correlation value
reaches a given threshold. In line with the literature,
we set a minimum correlation threshold of 0.7 [25],
[43]. At least five station pairs must reach this minimum
threshold. The stacked correlation values are weighted
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Fig. 3. Tremor location and robustness. (Left) Example tremor location. We compute the envelope of the cleaned signals; these envelopes are then sliced
around each identified STA/LTA pick, and cross-correlated for all station pairs. This figure shows the stacked correlation plotted over the lat/lon grid for one
tremor. If a number of criteria are met (see below), the maximum of the stacked correlation function is returned as the tremor’s location. (Right) Impact
of noise on located signals. We overlay input tremor waveforms with seismic noise at different coefficients. We then perform the attribution analysis of the
original and corrupted signals, and compare both extracted waveforms by computing their (top right) envelope correlation. We also compute the associated
(bottom right) model prediction. In both plots, the blue line corresponds to the average value computed from approximately 5000 examples. When strong
levels of noise are added, both the model’s prediction and the envelope correlation decay. Because we only try to locate signals above a “confidence” threshold
of 0.7 (red line in bottom), our algorithm would not attempt to locate signals for which the added noise has strongly impacted the attribution analysis.

according to the maximum correlation measured for
each station pair - as station pairs with higher waveform
correlations are likely to be closer to the event source,
or to exhibit a higher signal-to-noise ratio.

3) To ensure that the stacked correlation maximum is well
defined, we compute the ratio between the maximum
stacked correlation value and the median absolute devi-
ation (MAD) of the correlation function. For tremor
identification, in line with [12] we only keep events with
an MAD ratio above 8 and discard the others.

4) To limit the locations’ spatial uncertainty, we use an
approach similar to [25]. We randomly remove a subset
of 10% of the stations pairs by bootstrapping, over
a number of iterations. We discard signals for which
the bootstrapped locations are not consistent spatially
(outside a 5-km radius around the initial location).

Tremor signals are emergent, can overlap and/or last for
a time potentially longer than our selected window duration.
Therefore, there is always a risk that our algorithm could either
identify a single tremor as two different ones, or miss an occur-
rence. The location algorithm considers 30-s long waveforms,
and we rely on the two following criteria to minimize these
potential issues: 1) we do not allow our algorithm to locate two
tremors within a short time window (3 s, which corresponds to
a minimum time separation) and 2) after a tremor is located,
we wait for the envelope correlation function to drop below
the afore-mentioned threshold before trying to locate another
signal (criterion in practice for separating potential signals
of interest). Once the correlation function has dropped and
if it rises again, we consider that we are likely observing
a new tremor. We tested the robustness of our approach by
overlaying tremor waveforms with noise [see Fig. 3 (right)
and the Supplementary Material]. We find that adding noise
to tremor waveforms affects both the performance of the
model and the attribution results. Strong noise amplitudes

Fig. 4. Area analyzed and seismic array used. (Left) Map of the Southern
Vancouver Island, Canada, analyzed in this study. (Right) Seismic array. The
black triangles correspond to seismic stations used to locate tremors.

can generate artifacts in the extracted waveforms. However,
because the associated signals are not classified as tremor by
the model, our algorithm would not try to locate them, which
suggests that the method is robust to strong noise amplitudes.

III. RESULTS

A. Area Analyzed

To test the performance of our location methodology,
we apply it to the 2018 Cascadia slow slip. We focus on
Southern Victoria Island, Canada, where clear tremor activity
is typically recorded [5], [25]. In this region, the Cascadia
subduction zone experiences an ETS approximately every
14 months, which typically lasts for one or two months.
According to the PNSN tremor logs, the 2018 event started in
early May, and paused for a while before resuming in mid-June
and continuing until mid-July 2018. We, therefore, analyze
three months of data (May, June and July 2018). Applying
our method to a well-studied area allows us to validate it by
comparing our results to existing tremor catalogs.

We rely on an array of 21 seismometers for locating the
tremors, from the Canadian National Seismograph Network
(CNSN) [46] and plate boundary observatory (PBO) [47]
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Fig. 5. Example location. Tremor locations (in red) for three consecutive days with consistent, local tremor patches, during the 2018 SSE.

seismic networks. About a third of the stations are borehole
instruments. Fig. 4 shows a map of the area analyzed, as well
as the seismic array used. We discretize the area with a regular
(100 × 100 × 25) (lat, lon, dep) grid, with grid points of
(2.87 × 2.96 × 2.4) km.

B. Application to the 2018 Cascadia ETS
In Fig. 5, we illustrate our results by showing tremor loca-

tions for three consecutive days during the 2018 slow slip event
(SSE). For comparison, the PNSN reported 223 tremors in this
patch on May 3rd, 0 on May 4th, and 7 on May 5th. We chose
to display these three days in particular because they contain
consistent tremor patches, located around the same area. The
fact that we identify consistent tremor activity in the same
area over the three days suggests that our additional detections
are likely to be accurate. Furthermore, local tremor patches
as shown here are a better test to validate our methodology,
as they are less forgiving regarding the location of false
positives, or mislocations of real events. Most of the outliers
to the main patches are relatively close to each other, which
suggests that they may correspond to smaller, weaker tremor
patches. Individual tremors that are far from each other may
correspond to mislocated signals or false positives.

Overall, we find our locations to be consistent with tremor
locations in existing catalogs [25], even for days character-
ized by small, local patches such as those displayed above.
Figs. S1–S3 in the Supplementary Material show the distrib-
ution of tremor locations for all days analyzed, with compar-
isons to locations from the PNSN catalog. Note that running
the exact same analysis with simple bandpassed waveforms
(instead of waveforms extracted with integrated gradients)
leads to only a small number of tremors to be cataloged (1500
versus 66 000). However, this striking difference is not simply
the consequence of using an attribution scheme to clean the
waveforms, and is likely to be mostly due to our reliance on
STA/LTA analysis to identify a potential signal of interest.
Running an STA/LTA analysis on bandpassed waveforms will
only return a small number of picks, due to the fact that tremor
signals are very emergent. It is, therefore, better to compare
our results with other existing catalogs, that do not rely on
picks to identify signals of interest.

Fig. 6 summarizes the comparison between our results and
the tremor locations from the PNSN catalog for the 2018 SSE.
In particular, Fig. 6(a) shows the number of tremors detected

by both approaches, for all days during the analysis. Variations
in the number of detections are consistent, with a higher
number of tremors detected between the 18th of June and the
11th of July. Overall our algorithm identifies six times more
tremors than the PNSN catalog (67 000 versus 11 000 tremors
over the period and the region analyzed). Part of this increase
in detection numbers can be attributed to methodological
differences between the approaches: the PNSN classifies 30 s
of waveforms as tremor, whereas our algorithm looks at
individual picks in the waveforms, and can therefore go below
30 s. However, a portion of the additional detections are likely
to arise from the ability of our methodology to capture small
signals below the noise level. This hypothesis is supported
by the fact that for many days, such as the 4th of May
shown above, our methodology finds a relatively high number
of tremors (more than a hundred), while the PNSN reports
no tremor activity. Note that both algorithms use the same
correlation threshold as criterion for considering station pairs
(0.7), and therefore the higher number of located tremors in
our analysis is not related to the choice of a smaller threshold.
As these particular tremors did not generate a coherent (stan-
dard) envelope cross correlation throughout the array, they are
likely to be contaminated by noise, and therefore to correspond
to low-amplitude signals below or close to the noise level.

Fig. 6(b) shows how close the identified tremor patches in
both catalogs are, on a daily basis. We compute the density
center of daily tremor distribution, for all days with tremor
activity underneath Vancouver Island according to the PNSN
catalog (when ten or more tremors are detected). We then
compute how far our daily tremor density centers are compared
to the tremor density centers reported in the PNSN catalog. For
a few days characterized by several tremor patches, we rely
on spectral clustering to separate the patches and compare
individual patches (see the Supplementary Material).

For most days, distances between tremor patches identified
in both catalogs are small, on the order of a few km. The
median distance over the period analyzed is 4.42 km (less
than one grid point offset), showing that indeed daily tremors
are identified at very similar locations. However, for two
particular days (9th of May and 21st of June), the distances
are large, on the order of several dozens of km. These two
days correspond to times when identified tremor patches in
the PNSN catalog are small and located in the North-West and
the South-East, at the edge or outside of our seismic array.
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Fig. 6. Comparison with the PNSN catalog. (a) (Top left) Number of tremors detected by our algorithm (dark blue), compared to the number of detected
tremors in the PNSN catalog (light blue). The timing of detections is consistent between both catalogs, with a high number of tremors detected between
June 18th and July 11th. (Bottom left) Distance between daily tremor patches detected by our algorithm and by the PNSN catalog. For most days, the patches
have similar locations (with a median distance of 4.42 km). The two days where the distance is high correspond to patches in the PNSN catalog that are
on the border or outside of our seismic array. (b) Evolution of the center of daily tremor patches over the period analyzed, in (top right) PNSN catalog and
(bottom right) in our analysis. Tremor migration patterns are similar with both algorithms.

This makes location difficult for our algorithm, as fewer
stations are likely to see the tremors and reach a high cor-
relation value. To overcome this issue in the future, we will
work on locating events with overlapping subarrays, which
should alleviate the issue associated with the borders of the
network. On one day (July 17th), our algorithm also misses a
tremor patch identified by the PNSN. As there are not enough
datapoints in our catalog to compute a density center for July
17th, compared locations for this day can be found in the
Supplementary Material.

IV. CONCLUSION

In contrast to earthquakes, tremor waveforms are emergent
which makes arrivals extremely difficult to identify and pick.
Therefore, traditional location techniques tend to break down,
and coherent envelope signals observed across an array are
often used instead for location. This makes tremor location
particularly vulnerable to local sources of noise, that can
impact drastically the correlation values observed between
station pairs. Furthermore, for the same reason, sparse arrays
are likely to be able to locate only tremors of high amplitude,
that would remain correlated across the seismic network.

We developed a new tremor location approach, that is more
robust to seismic noise. We show that waveform reconstruction
through neural network attribution is a powerful tool for
the detection and location of small tremors. We find that
the reconstructed waveforms are the signatures of traveling
waves, consistent with S-waves theoretical travel times. Our
methodology is validated by the analysis of the 2018 slow slip
events in Vancouver Island.

This methodology will be particularly helpful in areas with
sparse seismic arrays, for which local noise sources are likely

to mask signals of interest and prevent the successful cross
correlation of tremor envelopes. Finally, our approach is fully
automatic and can be deployed as a systematic tool for tremor
detection and location with minimal human intervention.
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