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Abstract

The theoretical background of the PoPe and iPoPe verification scheme is pre-
sented. Verification is performed using the simulation output of production runs.
The computing overhead is estimated to be at most 10%. PoPe or iPoPe calculations
can be done offline provided the necessary data is stored, for example additional time
slices, or online where iPoPe is more effective. The computing overhead is mostly
that of storing the necessary data. The numerical error is determined and split into
a part proportional to the operators, which are combined to form the equations to
be solved, thus modifying their control parameters, completed by a residual error
orthogonal to these operators. The accuracy of the numerical solution is determined
by this modification of the control parameters. The PoPe and iPoPe methods are
illustrated in this paper with simulations of a simple mechanical system with chaotic
trajectories evolving into a strange attractor with sensitivity to initial conditions.
We show that the accuracy depends on the particular simulation both because the
properties of the numerical solution depend on the values of the control parameter,
and because the target accuracy will depend on the problem that is addressed. One
shows that for a case close to bifurcations between different states, the accuracy
is determined by the level of detail of the bifurcation phenomena one aims at de-
scribing. A unique verification index, the PoPe index, is proposed to characterise
the accuracy, and consequently the verification, of each production run. The PoPe
output allows one to step beyond verification and analyse for example the numerical
scheme efficiency. For the chosen example at fixed PoPe index, therefore at fixed
numerical error, one finds that the higher order integration scheme, comparing order
4 to order 2 Runge-Kutta time stepping, reduces the computation cost by a factor
4.
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1 Introduction

As numerical simulations are becoming increasingly important, and as the resources ded-
icated to these simulations have grown to be quite significant, reliability of this novel
material is a concern, and consequently verification of the numerical tools is mandatory.
This issue is not new and has always been considered, but it is more challenging and time
consuming as the numerical tools and problems to be addressed are more complex. Ac-
curacy estimate of the numerical output must also be regarded as a need when discussing
reliability (rather than solution verification that is very challenging). The PoPe method,
standing for Projection on Proper elements, has been designed in particular to address
this problem for any simulation, without modifying the code or numerical problem, and
only relying on the code output. The purpose of this paper is a general presentation of this
method, completing published papers addressing verification of plasma turbulence codes
with PoPe [9, 8, 10, 7]. To illustrate the properties of PoPe, a simple problem that can
readily be coded as been chosen. However, being non-linear and chaotic, hence generic of
many problems that require simulations, it is also challenging for standard verification.
The issue of solution verification, which remains very challenging, will also be addressed
in the paper.
When available, analytic solutions of the problem at hand are most useful for verifica-
tion purposes. However, with the growing complexity of the problems to be addressed,
numerically built solutions are implemented. The best known method with numerically
built solution is the so-called Method of Manufactured Solutions (usually referred to as
MMS) [22, 20, 19]. It is regarded as state of the art method to address complex code
verification and is now used for fusion plasma simulation tools [21, 26, 24]. The MMS
method, however elegant, suffers from two main drawbacks. First, the MMS requires that
one modifies the code to enforce that a chosen function is the effective solution and fur-
thermore, for an appropriate assessment of the accuracy, one must chose a function that
is representative of the simulations to be performed. Second, one is led to select a stable
target solution, which can prove quite restrictive. The example chosen to illustrate this
paper is chaotic, hence unstable, and does not fit this requirement. We first propose an
alternative verification scheme, akin to the MMS, which does not depend on a particular
target solution, and that we have called by analogy Method of Reverse Solution (MRS).
The latter also requires less modifications of the code but still depends on the particular
time slots retained in the verification procedure. The MMS is recalled in Appendix A.1
and the alternative MRS verification scheme is presented in Section 3.2.
A particularly useful verification procedure should be available for each production run
of the simulation effort, and ideally would provide a figure of merit of the exactness and
accuracy of any particular simulation. The PoPe method, Projection on Proper elements,
has been developed to achieve this task and to investigate the performance of reduced
models [9, 8]. It has been used to analyse the exactness and accuracy of existing simula-
tions [10, 7]. Although PoPe and the simplified iPoPe method are based on data analysis,
they follow a defined mathematical procedure because the errors to be computed and the
way to compute them are defined. This differs from advanced big data analysis based on
artificial intelligence routines [3] that can address a larger class of problems but lead to
results with a different controllability and understanding. Both PoPe and iPoPe, beyond
verification check and accuracy tests, provide a means to further analyse the numerical
scheme, identify the operators that are responsible for most of the numerical error as well
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as the operators that play a leading role on the behaviour of the particular simulation.
The PoPe method is presented in Section 2 together with a simplified alternative method
that we have named iPoPe for independent Projection on Proper elements. We consider
the equations to be solved as a linear function of the control parameters, weighted by
values of an ensemble of operators, the right hand side operators, and yielding values of
one particular operator, the left hand side operator, usually the time derivative, distinct
from those of the ensemble. The key idea is to build numerically the values of all operators
using the simulation output and project the left hand side operator on the ensemble of
operators. This yields a linear system determining the values of the control parameters
consistent with the simulation output and that can be compared to those assumed for
the particular simulation. The problem and simulations used to illustrate this paper are
presented in Section 3.1. We have chosen a simple mechanical system, namely a compass
driven by an alternating magnetic field and subject to viscous damping. The trajectory
in the 2D phase space is chaotic and, for non-vanishing damping, exhibits an attractor,
called strange attractor, with fractal dimension ranging between 0 and 2 depending on
the values of the control parameters. Chaos being generic in non-linear systems, verifi-
cation methods must be able to handle such dynamics. The MRS verification procedure
is used as reference verification and accuracy check for the chosen strange attractor in
Section 3.2. Two appendices, one dedicated to the MMS method, Appendix A, and one
addressing the scaling of the error with the MRS method, Appendix B, complete this first
part. The PoPe and iPoPe verification schemes applied to the case of the strange attractor
are presented and evaluated in Section 4. Finally, Section 5 dedicated to discussion and
conclusion closes the paper.

2 PoPe and iPoPe verification

2.1 PoPe analysis

The aim of the PoPe verification scheme is to analyse the exactness of a particular sim-
ulation using the output data of that particular simulation. The standard simulation
overhead when using this method is mostly to save more data than one would normally
consider for a production run. For example, saving additional time slices for high order
finite difference calculation of the time derivative or data at all mesh point to compute
the phase space derivatives when only a fraction is saved routinely. Most of the work is
then postponed to the post-processing stage. The weight of this additional output can
also be optimised as will be discussed in the following. The alternative, with verification
on the fly, leads to a computing overhead but with the benefit of immediate verification
and accuracy estimate of the simulation.

The problem addressed numerically can most of the time be written in the following
mathematical generic form:

O
(m)
t −

K∑
k=1

O
(m)
k = 0 (1)

where O
(m)
k are the various operators that are added to yield O

(m)
t . The superscript (m)

refers to the mathematical equation, while in the following the superscript (n) will re-
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fer to the mathematical approximation to be solved numerically and (s) for the actual
simulation realisation. In this form, the control parameters that specify the weight of
the different physical processes involved in Eq.( 1) are included in the definition of the
operators. The reference weight of each operator in Eq.( 1) is unity. A form with an
explicit dependence on the control parameters does not change the PoPe analysis. The
weights of some of the operators are then the values of the control parameters as in [8].
This is only a matter of presentation.

The problems solved numerically often take the form of an evolution, the operator Ot

then stands for a time derivative, hence the label t, governed by several effects charac-
terised by the right hand side operators Ok. We present PoPe in this rather standard
framework but the procedure holds to any problem of the form Eq.( 1). It is important
to underline that the PoPe method is very versatile and the choice and definition of the
operators is not constrained. In a standard way one follows the way these operators are
generated by the underlying physics, hence the choice of the time derivative for the oper-
ator Ot. However, this is by no means mandatory. For instance, for a system converging
towards steady state with vanishing time derivative, one will want to avoid singularities
and then use another operator instead of the time derivative to define Ot. Implementing
the PoPe method, mostly in the post-processing stage, will clearly benefit from any insight
into the processes that govern the simulation at hand.

In order to perform numerical simulations, Eq.( 1) is transformed by discretising the
operators.

O
(n)
t −

K∑
k=1

O
(n)
k = 0 (2a)

This step introduces a first set of approximations and consequently of errors, that can
be a priori determined. The two equations Eq.( 1) and Eq.( 2a) cannot hold together,
although one can enforce that the two equations exhibit the same symmetries and thus
the same conservation laws. When addressing the problem numerically, Eq.( 2a) is to be
solved so that Eq.( 1) is only solved approximately. One can then rewrite this equation
as:

O
(m)
t −

K∑
k=1

O
(m)
k = O

(n)
t −

K∑
k=1

O
(n)
k + E(n) (2b)

The system addressed numerically Eq.( 2a) departs from the target mathematical system
Eq.( 1). The numerical simulation itself further contributes to the error build-up via the
rounding errors, as well as possible errors in the implementation. The effective equation
of a given simulation is then:

O
(s)
t −

K∑
k=1

O
(s)
k = 0 (3a)

Compared to the previous forms of the equations, Eq.( 1) and Eq.( 2a), numerical noise

governs the departure of the operators O
(s)
t and O

(s)
k from that implemented in the code,
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O
(n)
t and O

(n)
k . An error is therefore generated at this step and the form of Eq.( 3a) to be

addressed is therefore:

O
(n)
t −

K∑
k=1

O
(n)
k = O

(s)
t −

K∑
k=1

O
(s)
k + E(s) (3b)

We find therefore that the equation that is consistent with the output data departs from
that considered initially due to errors with a known, potentially complicated error, E(n),
and an error E(s), which is simulation dependent and not controlled, therefore unknown.
The initial mathematical problem Eq.( 1) has therefore been changed in the simulation
process.

O
(m)
t −

K∑
k=1

O
(m)
k = E(n) + E(s) (4)

We now consider a data driven approach and assume that the simulation has been per-
formed so that the operators can be reconstructed using the output data. One then has
the relationship:

O
(r)
t −

K∑
k=1

O
(r)
k = E(r) (5)

where the superscript (r) now identifies the reconstructed operators. In the latter equation

the operators O
(r)
t and O

(r)
k are computed using the output data so that E(r) can also be

computed and is therefore known for the specific simulation and according to the specific
data saving process. Given Eq.( 5), one can also write this equation as:

O
(m)
t −

K∑
k=1

O
(m)
k = E(r) + δE(r) (6a)

δE(r) = δO
(r)
t −

K∑
k=1

δO
(r)
k (6b)

δO
(r)
t = O

(m)
t −O(r)

t (6c)

δO
(r)
k = O

(m)
k −O(r)

k (6d)

This system is not closed because the error δE(r) Eq.( 6b) is not determined and depends
on the departure between the reconstructed operators O(r) and the target mathematical
operatorsO(m) as defined in Eq.( 6c) and Eq.( 6d). However, the possible closure δE(r) = 0
can be considered whenever ||E(r) + δE(r)|| ≈ ||E(r)||. This is made possible by choosing
a reconstruction procedure in PoPe that is more accurate than that implemented in the
code. For instance using an order 4 finite difference derivative in PoPe when an order 2
is used in the code.

||δO(r)
t || � ||O

(m)
t −O(n)

t || (7a)

||δO(r)
k || � ||O

(m)
k −O(n)

k || (7b)

and therefore ||δE(r)|| � E(n). We shall assume this relation to be fulfilled in the fol-
lowing, and, in the examples of this paper, we will give numerically based evidence that
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the reconstruction scheme is consistent with this approximation. In the specific case
where some parts of the discretisation scheme have been devised with highest accuracy,
so that the reconstruction scheme can only achieve the same precision, one is led to as-
sume O(m) ≈ O(r) for those parts of the discretisation scheme compared to the remaining
ones, which are therefore assumed to generate all the error.

Since E(r) is determined by the output data, it is known for a series of points in
phase space, at times ti and at phase space locations Xi. The label i labels one point in
the extended phase space combining time t and location X. It is to be underlined that
the only constraint on the data, and therefore on the number of data-points i and their
organisation in time and phase space, is to make possible a reconstruction procedure for
the operators with better precision than the chosen discretisation procedure used for the
simulations. In this framework Eq.( 6a) is only defined for these selected data-points i.

O
(m)
t,i −

K∑
k=1

O
(m)
k,i = E

(r)
i (8)

In the following the superscripts (m) and (r) are dropped to simplify the notation. The
first step of the PoPe procedure is to build the error Ei for an ensemble of data points that
are representative of the simulation that has been performed. This data verifies Eq.( 8).
In a second stage, the error E is projected on the operators driving the evolution of the
system so that one can write:

Ei =
K∑
k=1

δckOk,i +Ri (9a)

The coefficients δck stemming from the projection do not depend on the data-point and
only depend on the operator Ok. Such a projection procedure requires that the chosen
operators are independent and not vanishingly small. Should either of these two cases
occur, one must redefine the chosen operators accordingly. However, this drawback is
compensated by the important insight one has gained on the physics of the system and
on ways to address the numerical problem and its verification. Part of the error Ei is
orthogonal to the set of operators Ok, which defines the residue Ri. Given Eq.( 9a), one
can rewrite Eq.( 8) as

Ot,i −
K∑
k=1

(
ck + δck

)
Ok,i = Ri (9b)

When choosing ck to be the control parameter associated to the operator Ok, then δck is
the absolute error made on that control parameter for the selected operator and chosen
simulation. When one considers ck = 1, as done in this paper, then δck is the relative
error made on that control parameter. Irrespective of this choice one can write Eq.( 9b)
as:

Ei −
K∑
k=1

δckOk,i = Ri (10)

This linear equation depends on the K unknowns δck so that K data points are a priori
sufficient to determine them when setting Ri = 0, which then defines the orthogonality.

7



One can then readily expect that for each set of K data points a different realisation of
the K coefficient δck is computed. Three ways to address the possible statistics can be
chosen. First, one can define the ensemble of coefficients δck for each available K-tuple
of data-points and perform statistics on these realisations. Second, one can introduce
the statistics directly in the calculation of the coefficients, for instance by computing the
coefficients with a least square method using m-tuples of data-points with m ≥ K. If
Nmax is the number of available data points, choosing m = Nmax then yields a unique
value for each coefficient δck, k ∈ [1, K]. Third, when setting K ≤ m < Nmax, a mean
square method can be used to define the projection and statistics can be performed on
the results. It is to be noted that choosing a least square method with m = K, leads
to a calculation that is quite similar to that proposed in the first item of this list. One
can then recast the three possibilities that have just been described in terms of a specific
choices of the m-tuples of data-points used in least square calculations.

• Coefficients δck are computed using the least square calculation for each available
K-tuple of data-points, and statistics are performed given these realisations, case
with m = K.

• Coefficients δck are computed using the least square calculation with m-tuple of
data-points, with m > K. When K < m < Nmax, statistics on the coefficients δck
can be performed.

• The coefficients δck are computed using the least square calculation using all avail-
able data, hence with the Nmax-tuple of data-points, m = Nmax. A single value is
generated for each coefficient.

2.2 PoPe projection defined with the least square method

Let us define di as:

di = Ei −
K∑
k=1

δckOk,i (11a)

and the distance dm:

d2m =
m∑
i=1

1
2
d2i (11b)

The least square method then generatesK-coupled linear equations defined by ∂d2/∂δck =
0, namely by setting that d2m is an extremum with respect to the variations of each δck.
These coefficients are an optimum result for the particular choice of the m-tuple. The
extremum equation obtained with respect to δck is then:

K∑
k′=1

δck′
m∑
i=1

Ok,iOk′,i =
m∑
i=1

EiOk,i (12)

When defining the scalar product 〈F |G〉 of the m-dimension vectors F and G by:

〈F |G〉 =
m∑
i=1

FiGi (13)
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Figure 1: Projection of the error E, on the plane of the operators O1 and O2, yielding the
coefficients δcO1 and δcO2 and defining the residue R in the direction orthogonal to this
plane. The projection in the plane (O1, O2) of the fluctuations of the error are indicated
by the grey region. Left hand side: sketch of the projection when O1 and O2 are near
orthogonal, the variation of the coefficients δcO1 and δcO2 are reduced. Right hand side:
sketch of the projection when O1 and O2 are nearly co-linear driving a larger uncertainty
on δcO1 and δcO2.

the extremum constraint takes the form of a projection:

K∑
k′=1

δck′ 〈Ok|Ok′〉 = 〈Ok|E〉 (14a)

this result being completed by the orthogonality of the residue:

〈Ok|R〉 =
〈
Ok

∣∣∣(E − K∑
k′=1

δck′Ok′

)〉
= 0 (14b)

The least square method therefore defines a particular projection for a code output data.
Other projections can be defined. For instance, one can specify a weight for each m-tuple
enforcing in the result a class of m-tuples. For example, in the case of K = 2 one can
define the weight as 〈O1|O1〉 〈O2|O2〉 − 〈O1|O2〉2 than ought to reduce the impact of co-
linearity.

Regarding the dimension of the phase space used to evaluate the error, the PoPe
method is reminiscent of the idea of generating a phase diagram using a time series of a
single variable [16], here Ok,j where k labels a particular vector and j the index in the
time series for a chosen time delay. The vector (Ok,j), j ∈ [j1, j1 +m] is then assumed to
define a position at time j1 in a phase space of dimension m. However, while a single time
series is used for that reconstruction, for PoPe we consider the case with several signals
generating different time series labelled here by k ≤ K. Each operator is then identified
to a function acting in a space of dimension m and requires a priori an infinite dimension
bases of function to represent it. We also introduce another difference in building the
vectors (Ok,i), 1 ≤ i ≤ m by choosing of the same set of indices i for all operators but
each set being chosen randomly. However, given the constraint Eq.( 1), we assume that
the trajectories are mostly embedded in the function-space of dimension K generated by
the K operators. A presumed small contribution exists and is transverse to that plane,
the residue R. Once a scalar product is defined, for instance that generated by the least
square method, projections can be computed and one can follow a particular simulation
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in the phase space generated according to this procedure, see Figure 1. To simplify the
situation, we sketch the problem in 2D, thus for two signals O1 and O2 generating the
time series. Two cases are then observed. When the two operators are independent, 1 left
hand side, the error E is projected in the plane (O1, O2), the coefficients δcO1 and δcO2

are well defined and their dispersion accounts for the numerical errors. However, when
the two operators are nearly co-linear, Figure 1 right hand side, large variations of δcO1

and δcO2 can occur. Increasing the dimension m of the phase space tends to reduce the
co-linearity, unless the operators O1 and O2 are ill chosen and actually co-linear (which
would be however a useful information regarding the system). Note that in Figure 1, the
numerical fluctuations are only indicated by their projection in the plane (O1, O2), the
shaded grey regions, and that, for convenience of the representation, the operators are
not shown to fluctuate. In practise, these fluctuations can govern transitions between left
and right hand side relevant geometry. Minimising the impact of the latter situations of
co-linearity by increasing the dimension m of the embedding space is performed at the
cost of reducing the description of the statistics of the fluctuations, eventually narrowing
the grey window to a single value.

2.3 iPoPe analysis

In order to solve Eq.( 14a), one has to inverse a K ×K matrix to obtain the coefficients
δck, 1 ≤ k ≤ K. In this process, all coefficients appear on the same footing. However,
when the operators of the system do not have the same magnitude, a small error on the
calculation of a large amplitude operator can have a large impact on an operator with
comparatively smaller amplitude. There is a possibility of propagating the error from a
particular operator on the coefficients of other operators. Furthermore, inverting a large
matrix as required for the standard PoPe method can be cumbersome. However, when
the matrix is diagonal elements each coefficient is computed independently. We generalise
this property to define the iPoPe method, for independent Projection on Proper elements.
This method addresses the projection operator after operator in a staged approach and
is identical to the PoPe solution when the matrix is diagonal. Let us choose k as the first
element of the projection, then one determines the iPoPe coefficient as:

δc
(k)
k 〈Ok|Ok〉 = 〈Ok|E〉 (15a)

this result being completed by the calculation of the specific residue Rk orthogonal to Ok:

Rk = E − δc(k)k Ok (15b)

Because of the various possible choices of k out of K, one is led to using more complicated
notations. As for PoPe, the subscript of k of the coefficient δc

(k)
k refers to the operator k

and the error on its control parameter, while the superscript (k) refers to the order chosen
to determine the coefficients.
Computing δc

(k)
k is then absolutely straightforward:

δc
(k)
k = 〈Ok|E〉 / 〈Ok|Ok〉 (15c)

The coefficient δc
(k)
k that is obtained maximises the importance of the operator Ok in

generating the error since one computes δc
(k)
k as if all the error was stemming from that
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operator. In a second stage, one can compute the coefficient δc
(k,k′)
k′ and a new residue as

follows:

δc
(k,k′)
k′ 〈Ok′|Ok′〉 = 〈Ok′|Rk〉 (16a)

this result being completed by the calculation of the specific residue Rk,k′ orthogonal to
Ok′ :

Rk,k′ = Rk − δc(k,k
′)

k′ Ok′ (16b)

Step by step one can iterate the procedure until all coefficients are determined, and the

ultimate residue is computed. The values of a particular coefficient δc
(k,k′,...,`,... )
` , the error

made on the control parameter of operator O`, now depends on the order chosen for
the calculation identified by the superscript (k, k′, . . . , `, . . . ). The simplicity of iPoPe is
balanced by the number K! of different ways it can be applied. The total number of
different possible values of any given coefficient NiPoPe is not quite as big since computing
a coefficient at a given stage only depend on the various combinations prior to that
selected, on the left of ` in the sequence (k, k′, . . . , `, . . . ) and not on those to the right.

NiPoPe =
K∑
k=1

(K − 1)!

(K − k)!
(17)

A systematic use of iPoPe considering all these combinations is prohibitive whenever K is
large. The method would then only useful if a bias is introduced that defines an order in
which the coefficients are determined. One can also consider a mix of iPoPe and PoPe in
the procedure, for example giving a particular weight to a class of operators with iPoPe
and treating the remnant on equal footing with PoPe.
The most useful iPoPe procedure is restricting iPoPe to only computing the first step for
each operator 1 ≤ k ≤ K, with Eq.( 15). One then maximises the possible error measured

by δc
(k)
k for each operator. The benefit of this reduced iPoPe procedure is its simplicity,

therefore reducing the CPU cost, together with the fact that it yields the largest possible
error for each coefficient. This maximum error procedure can therefore be used to deter-
mine a figure of merit.

As a by-product of the PoPe or iPoPe verification method, one can investigate 〈Ok|Ok〉
the actual weight of the operator in the balance as well as its change in time or space.
Comparing the magnitude of the operators 〈Ok|Ok〉 for different values of k, one then
gains insight into the effective weight of each operator, and how it stands with respect
to non-linear analysis principles, such as that of critical balance [1]. The error δck also
indicates with what precision each particular operator is determined numerically. This
understanding can then be used as a guideline to improve the code accuracy, knowing
which operator has the largest weight and which exhibits the largest error.
The analysis of the error that is performed by PoPe and iPoPe indicates that the output
data would not be discernible for the reference simulation with operator Ok, with weight
1, and a simulation with weight in the range 1, 1 + δck for the same operator Ok. The
numerical solution therefore introduces an uncertainty on the effective value of the control
parameters. In most cases, the control parameters that are used as input are known
with error bars that are larger than that obtained by PoPe. However, in some cases
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the error δck can be large enough to significantly modify the control parameter. It is
then most important to know that the simulation output corresponds to a value of the
control parameter that is different from what is assumed. Depending on the situation,
one can perform a new run of the code changing the value of the control parameter to
compensate the error. Alternatively, one must improve the numerical precision to address
the particular problem with appropriate precision.
An important feature of PoPe and iPoPe is that the definition of the operators to be
addressed in the verification procedure must be guided by the physics to be addressed
by the simulation. As an example for a system that exhibits an evolution in time, the
target operator O

(m)
t in Eq.( 1) is implicitly assumed to be the time derivative. This is

appropriate in a turbulent or chaotic regime. Should the solution evolve towards a fixed
point, then such a choice is only relevant in the early phase of the transient. To address
a later stage of this transient, a different choice of O

(m)
t will be more appropriate since

the time derivative operator in the simulation is converging towards the null operator. It
is also possible to define differently the operators, for example using Ok,k′ = Ok + Ok′ .
The choice is guided by the physics insight into the simulation or a particular interest in
analysing the numerical scheme.
These various possibilities underline the versatility of PoPe for verification purposes based
on simulation output. Furthermore, one finds that the PoPe or iPoPe methods provide
an in depth analysis of the chosen simulation, both as a tool to investigate the physics
and that to identify possible shortfalls of the chosen numerical scheme.

3 Standard verification of strange attractor simula-

tions

3.1 The strange attractor model

The model we consider to present the PoPe verification method is the simple model of
a particle subject to two electrostatic waves with different pulsation and identical wave
vector and amplitude. Alternatively, it can be understood as the model for a compass
in a two component magnetic field, one fixed and the other rotating, both components
having the same amplitude. The phase space motion is thus two dimensional (2D) with
one dimension standing for the position x, either the position of the particle or the angle
of the compass, and one standing for the momentum J , either the momentum of the
particle or the angular momentum of the compass. The normalised evolution equations
for dx/dt and dJ/dt are :

dx

dt
= J (18a)

dJ

dt
= −2π B

(
sin
(
2πx

)
+ sin

(
2π(x− t)

))
− ν J (18b)

The parameter B -the normalised electric potential of the electrostatic waves or the am-
plitude of two components of the magnetic fields- is directly connected to the Chirikov
overlap parameter [11] σchir. The characteristic island width δi is δi = 2

√
B and the

chosen distance between the resonances is ∆ = 1 so that σchir = 2δi/∆ = 4
√
B. A fluid

viscosity damping term −νJ governs the contraction of the phase space volume to zero.
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Figure 2: Poincaré section of the strange attractor generated by Eqs.(18) , case a with
σchir = 7, hence B ≈ 3.0625, and ν = 0.2, left hand side, and case b with σchir = 2.3,
hence B ≈ 0.330625, and ν = 0.8 right hand side. Simulation with order 4 Runge Kutta
and 29 time steps per unit time.

For convenience, we introduce the Hamiltonian H0 of the non-dissipative evolution so
that:

H0 = 1
2
J2 −B

(
cos
(
2πx

)
+ cos

(
2π(x− t)

))
(19a)

dx

dt
=
∂H0

∂J
;

dJ

dt
= −∂H0

∂x
− ν J (19b)

The trajectory of the system is presented in a standard fashion, in the so-called Poincaré
sections, a stroboscope effect at time interval 1, which is the period of the driving force,
figure (2). Two cases will be considered in this work:

• case a with control parameters σchir = 7, hence B ≈ 3.0625, and ν = 0.2, Figure 2
left hand side

• case b with control parameters σchir = 2.3, hence B ≈ 0.330625, and ν = 0.8, Figure
2 right hand side

The simulation of the strange attractor is chosen because it combines simplicity of
the numerical integration and sensitivity to initial conditions. The latter makes verifi-
cation slightly more challenging since any error, including numerical errors, governs an
exponential separation between trajectories. The chosen numerical time stepping schemes
are order 2 and order 4 Runge Kutta (RK2 and RK4 respectively). The sensitivity to
initial conditions is governed by the Lyapunov exponent defined as the average along the
trajectory defining the strange attractor of the largest eigenvector of the tangential map
[2]. The latter is readily determined:

dδx

dt
=
[
∂2JH0(xt, Jt)

]
δJ (20a)

dδJ

dt
= −

[
∂2xH0(xt, Jt)

]
δx− ν δJ (20b)
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where xt, Jt is a phase space position belonging to the trajectory. The eigenvalues asso-
ciated to the tangential map are therefore:

λ
(±)
t = −ν

2
± ∆

1/2
t (21a)

∆t =
(ν

2

)2
− ∂2JH0(xt, Jt)∂

2
xH0(xt, Jt) (21b)

One can readily check that the phase space contraction of the strange attractor is gov-
erned by the viscosity ν since its volume shrinks exponentially in time according to

exp(
〈
λ
(+)
t + λ

(−)
t

〉
t) = exp(−νt). The global property of the strange attractor is cap-

tured by the largest Lyapunov exponent Λ assuming Λ > 0. The latter measures the
sensitivity to initial conditions and is determined numerically [2]. The eigenvalues are
sometimes referred to as the local Lyapunov exponents, which underlines the connec-
tion between the actual Lyapunov exponents and the series of eigenvalues on a chaotic
trajectory.

3.2 Method of Return Solution for the strange attractor

In this Section, we perform a verification of the simulations with the Method of return
Solution (MRS) as reference for the PoPe and iPoPe methods. One compares the results
obtained with two different integration schemes, of order 2 and 4 respectively, and when
varying N the number of integration step per unit time, from 23 to 212. Properties of
the chaotic attractors for each integration scheme and resolution are also determined and
compared.
As discussed in Appendix A, the limitation of the Method of Manufactured Solution as
implemented lies in the assumption that the generated fixed point is stable. The verifi-
cation stage then allows one to check that the numerical response exhibits a fixed point
and to determine with what precision the fixed point is recovered. Rather, than enforcing
an arbitrary fixed point, the alternative Method of Return Solution (MRS) is based on
a return to the initial condition: hence after N steps forward in time, the subsequent N
steps are performed with the opposite time step [13]. Mathematically the system must
therefore reverse to its initial position, which is therefore the fixed point. However, the
numerical errors, partly amplified by the effect of the divergence of neighbouring trajecto-
ries, will distort the trajectory and a distance dr is generated between the initial and final
positions in phase space, see Figure 3. This distance is averaged over the points belonging
to the strange attractor to yield a measure of the accuracy. The idea is therefore sim-
ilar to the standard Method of Manufactured Solution except that the chosen reference
solution is the initial condition via the backward steps in time. By analogy, we call this
verification scheme the Method of Return Solution, or MRS. However, if the return steps
are performed with the same algorithm, one cannot verify that the numerically solved
equations are properly implemented1 The MRS appears therefore better suited to evalu-
ate the numerical scheme accuracy. Another limitation is for symplectic integrators that
enforce time reversal of the numerical solution. The numerical error of such schemes is

1This issue is similar to that of the MMS where the source term ensuring that a given analytical
expression is solution of the equations must not be computed with the code that is being verified. For
the MRS, a possibility to achieve this verification stage would be to step backwards with a different and
verified code.
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Figure 3: Verification with the Method of Return Solution, sketch of the method.

– initial condition (ic) belonging to the trajectory of the system tic, xic, Jic,

– trajectory stepped forward for ∆t = 1
4
, reaches distance dx from the initial condition,

– then, trajectory stepped backward for ∆t, distance from initial condition dr.
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Figure 4: Verification with the Method of Return Solution for case a, σchir = 7 and
ν = 0.2. Left hand side: distance between phase space initial conditions and positions
after ∆t = 0.25, hence after ∆t/δt times steps, dx black dots, and distance between initial
condition and return point dr blue dots versus the position of the initial condition x.
Right hand side: same data, histograms of the distances, dx black histogram, dr blue
histogram.

.

then ”hidden” and cannot be estimated with the MRS. However, stepping back with the
same symplectic scheme but smaller time step should provide a measure of the accuracy.
This alternative for symplectic schemes has not yet been investigated. For the Runge
Kutta time integrators we address in this paper, the chaotic nature of the trajectory
plays a role in the distance dr that is observed since any error is exponentially amplified.
However, dr will be an increasing function of the effective numerical error and it provides
consequently a useful measure in the verification procedure, in particular to determine
the order of the numerical scheme.

For the strange attractor both the second and fourth order Runge Kutta schemes are
used varying the number of time steps per period from N = 23 = 8 to N = 212 = 4096.
As shown in Appendix B, one expects the error determined by MRS to scale like the order
of the time stepping scheme plus one2, hence a decrease of the error like N−3 for the order
2 Runge Kutta scheme, labelled RK2, respectively N−5 for the fourth order Runge Kutta
scheme, labelled RK4.

We first consider case a, with large Chirikov parameter, σchir = 7 and ν = 0.2, see
Figure 2 left hand side, and comparing the RK4 and RK2 schemes. For a series of points
belonging to the attractor, the evolution is stepped forward during a fourth of a period,
∆t = 0.25, the distance from the initial condition dx is then recorded, then the time step-
ping is reversed, and the trajectory therefore heads back towards the initial condition.
The distance dr between the initial and return points in phase space is then computed.
For a large time step with N = 23 steps per period, δt = 0.125, one can compare the

2This result holds when the distance dr is small enough to permit the expansion performed in Appendix
B, otherwise the scaling is determined by the time stepping as reported in Ref. [13].
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Figure 5: Verification with the Method of Return Solution for case a, σchir = 7 and ν =
0.2. Left hand side: histograms of log10(d) for various resolutions N , N = 23, 24, 25, 26, 27,
black histograms of dx black curves, histograms of dr blue curves. Right hand side:
similarity of the MRS error histograms of log10(dr) for N = 25 lower scale and N = 27

upper scale.

distribution of distances dx and dr, Figure 4 left hand side. These distances are plotted
versus the position x of the initial condition, black dots for dx and blue dots for dr. At
this low resolution one finds that dr is large typically ≈ 0.1dx with dx ≈ 2.. The maxi-
mum distance reached after a fourth of a period is comparable to the ”size” of the strange
attractor, typically up to 5, Figure 2 left hand side. One can analyse the distribution of
these distances, Figure 4, right hand side. The histograms of dr, blue curve, and dx, black
curve indicates that the distribution of dx is quite broad. Conversely, the measurement
of the error dr is characterised by a narrower histogram peaked on the smallest distance
dr = 0. The histograms of log10dx and log10dr yield more insight into the error. These
histograms for different resolutions are compared on Figure 5 left hand side. The resolu-
tion is characterised by the number of steps N per unit time, the period of the potential,
hence defining the time step δt = 1/N . On Figure 5 left hand side are compared the
simulations for N = 23, N = 24, N = 25 and N = 26, the black curves that overlay
correspond to the histogram of dx while the various histograms in blue are those of dr.
The latter shift towards smaller distances as N is increased, while the former are typically
unchanged. The histograms drawn with thick lines correspond to the resolution N = 23.
One can remark that the shift towards the smaller values of the histograms of log10(dr)
appears to be at a constant value for each increase of N by a factor 2. One thus finds
that the distance dx does not exhibit qualitative changes as the resolution is improved,
while the measure of the MRS error exhibits a decrease with the resolution. The sim-
ilarity between these various histograms of dr is more clearly shown on Figure 5 right
hand side, where the resolution N = 25, lower scale, is compared to N = 27 resolution
upper scale. Note that the scales are identical but for a shift of log10(10−3) from the
lower to the upper scale. The shaded region corresponds to the number of counts smaller
than 10. One can remark that the distribution of the distance dr appears to be nearly
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unchanged when N is varied. This distribution is broad and skewed: for N = 27, one
finds 〈dr〉 ≈ −7.875 and a standard deviation δdr ≈ 0.66 with skewness ≈ −0.66. For
each value of the resolution N , these statistics are performed with 320064 different initial
conditions chosen on the strange attractors computed with the different resolutions. The
similarity of the distribution of the error for these different resolutions underlines the fact
that the error governed by the time integration scheme is of the form f(xic, Jic, tic)δ

5
t .

Provided the change of phase space position xic, Jic at time tic is statistically identical for
each resolution, then the realisation of the function f will be identical, hence with the
same shape of its distribution function, while the dependence on δ5t will govern a shift of
the form −N log10(2).

One can then analyse the dependence of the error on the resolution N that determines
the time step δt = 2−N , Figure 6. For the reference case a, σchir = 7, ν = 0.2, one
checks that the error 〈dr〉 scales like N−5 for the order four Runge Kutta scheme, blue
open circles, and N−3 for the order two Runge Kutta scheme, black upside down triangles.
The scaling appears to hold over the whole range of values of N , but for a small departure
at N ≈ 23. For completeness, the results for case b, σchir = 2.3, ν = 0.8, are also plotted.
These simulations are performed with the fourth order Runge Kutta time stepping. One
recovers the appropriate slope associated to the order of the scheme, and, as can be
expected, one can observe that the error levels-off when the error becomes comparable to
machine precision. However, one finds that the error exhibits a quite different magnitude
when comparing case a and b. This agrees with the fact that the sensitivity to initial
conditions is characterised by a different Lyapunov exponent, which is larger in case a
than in case b. This governs a larger exponential growth of the error in case a compared
to case b. In the present examples, the difference in the MRS error is close to three
orders of magnitude. The test for one regime of parameters does not allow one to predict
the precision for another. Consequently, the accuracy test, combining verification and
analysis of the effective precision, should be made for each particular regime addressed in
the simulation effort.

When considering the phase portrait of the attractors, the eye inspection indicates
that the accuracy issue is more demanding than simply assessing the precision of the nu-
merical scheme. This is particularly noticeable with low resolution simulations, Figure 7.
With N = 23 steps per unit time, the achieved phase portrait with both RK4, Figure 7 left
hand side, and RK2, Figure 7 right hand side, depart significantly from that displayed on
Figure 2 left hand sides obtained with the same control parameters but with N = 29 and
RK4. Based on this eye inspection, these low-resolution results appear to be inaccurate
and consequently misleading. Therefore, knowing the error and checking its scaling when
changing the resolution is a verification of the numerical scheme but does not provide
a clear measure of the accuracy. The way to proceed to a correct accuracy assessment
appears to be unanswered but for the naive statement ”the smaller the error, the better”.
This quest for minimum error is naive because: (i) it relies implicitly on infinite resources,
(ii) it does not discuss the actual need in terms of precision, (iii) it cannot guaranty exact-
ness for chaotic systems since the sensitivity to initial conditions implies that any error,
however small, will be amplified to macro-scales. The alternative to the naive statement
is to focus on numerical measurements that are relevant in terms of physics. Regarding
the strange attractor, the largest Lyapunov exponent can be regarded as such a mea-
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Figure 6: Investigation of the order of the numerical scheme with the Method of Return
Solution (MRS). For case a, σchir = 7 and ν = 0.2, comparison of the Runge Kutta
schemes of order two (RK2), up-down open triangles, and four (RK4) open circles. For
case b, σchir = 2.3 and ν = 0.8, precision with the Runge Kutta schemes of order four,
closed circles. The expected scaling exponents, N−5 for RK4 and N−3 for RK2, are
recovered.

Figure 7: Strange attractor for case a, σchir = 7, ν = 0.2 and time stepping with N = 23

steps per unit time. Left hand side: fourth order Runge Kutta integration scheme. Right
hand side: second order Runge Kutta integration.
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Figure 8: Accuracy investigation for the cases a, σchir = 7, ν = 0.2, open symbols, and
b, σchir = 2.3, ν = 0.8 closed symbol with the RK4 and RK2 integration schemes, circles,
respectively head down triangles. Left hand side, calculation of the largest Lyapunov ex-
ponent Λ+. Right hand side, relative error on the value of ν determined by the calculation
of the rate of decrease of the phase space volume.

surement, Figure 8, left hand side. One can observe that the results obtained with the
RK4 scheme are characterised by a nearly constant value of the Lyapunov exponent with
not distinct trend when increasing the precision. For the simulation conditions σchir = 7,
hence B ≈ 3.0625, and ν = 0.2, the only significant change with RK4 is that between the
simulation with N = 23, with Λ+ ≈ 0.95 and the other simulations with larger values of
N where Λ+ ≈ 1.0 is observed. However, when considering the results obtained with the
RK2 integration scheme, one finds a large variation until N ≥ 28. The phase portraits
confirm the negative values of the Lyapunov exponent. They exhibit fixed points with
transient trajectories spiralling in towards them. Based on the largest Lyapunov expo-
nent one can argue that one must consider N ≥ 28 for the RK2 integration scheme, while
N ≥ 24 would suffice with the RK4 integration scheme. However, the examination of the
Lyapunov exponent for the latter does not provide a clear measure to discriminate the
accuracy. Still, considering these two critical number of steps, and since the cost of the
RK4 scheme compared to RK2 is typically a factor 2 in the number of operations to be
done, one finds a net gain of a factor 8 in computing resources by implementing the RK4
scheme rather than RK2 for this problem.

An alternative measure to evaluate the results is to determine the exponent that
characterises the shrinking of the phase space volume, therefore for a given precision N :
Λ+ + Λ− = −νN . The benefit is that one expects the exponents νN to converge towards
ν when N is increased. The relative error |ν − νN |/ν thus appears to be a more precise
measure to evaluate the exactness of the numerical scheme. However, determining nu-
merically the exponent νN adds a cost in computing resources of about 50% and yields an
output that is known a priori but for the error in computing it. Another caveat is that this
error can also be specific of the calculation of νN and consequently not relevant to assess
the correctness of the evaluation of the Lyapunov exponent. For the three cases that have
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been analysed, one finds that the relative error |ν − νN |/ν decreases as expected when
N is increased. This gain in accuracy appears to level-off at a value of the order of 10−5

for case a σchir = 7, ν = 0.2 and 10−7 for the case b σchir = 2.3, ν = 0.8. The accuracy
of this measure is again dependent on the problem of interest. The fact that the relative
error appears to level-off also provides a possible rule to determine the reference precision
as the effective lower bound as well as the optimum value of N where the roll over occurs.
For the RK4 scheme one finds typically N ≈ 27, while for the RK2 scheme N & 29 seems
appropriate. This criterion to evaluate the exactness still indicates that using the RK4
scheme compared to RK2 yields a net gain of a factor 2 in computing resources. The
analysis of the relative error on the calculation of ν indicates that the lowest resolution
yields an error exceeding unity, which is clearly too big. Comparing the relative error to
the calculation of the Lyapunov exponent, one can determine the empirical rule that the
relative error on the calculation of ν should be smaller than 10−3.

The full analysis with the Method of Return Solution provides a verification of the
numerical scheme and yields case dependent rules to assess the exactness of the simulation.
Such an analysis must be performed and results checked for each class of simulations
of interest. However, accuracy can be investigated a priori for a particular case that
determines key trends: verification of the order of the numerical scheme and trade-off
between error and computational cost. Then for any specific simulation, the MRS method
can be used at any restart condition of a particular simulation. The actual accuracy for
the chosen simulation can then be checked. This indicates that verification at the stage
of production runs is relevant. First, because research oriented codes most often evolve
continuously and verification that the equations effectively implemented in the code are
the equations of interest cannot be done once for all. Second, because the choice of
the control parameters has an impact on the ”numerical stress” of a chosen scheme. A
particular simulation with the MRS, or a particular solution for the MMS, provide the
trends for the error but not a universal accuracy check. PoPe and iPoPe are designed to
circumvent this issue by yielding an accuracy check for any production run.

4 PoPe verification for the strange attractor

4.1 PoPe error analysis for the strange attractor

The PoPe verification is based on data mining using the output of production runs. From
the saved data, it is possible to reconstruct the values of the different operators that drive
the problem at hand. For the strange attractor, the series of values of xi, Ji and ti, where
the index i identifies the number in a time series, hence xi = x(ti) and Ji = J(ti) are
used for the verification. Provided the time series are saved with the same time step has
that used by the numerical scheme, one can proceed to verification. Rather than using
Eq.( 18), which is actually implemented in the code, we consider the equivalent second
order equation:

d2x

dt2
= −2π B

(
sin
(
2πx

)
+ sin

(
2π(x− t)

))
− ν dx

dt
(22)

One can note that in the verification procedure chosen here an equivalent but different
mathematical setting of the problem is addressed. Computing the various operators of
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Figure 9: Error Efd obtained by comparing the derivative of sin(t) to cos(t) obtained with
finite difference, order 2 blue open circles and order 4 black open squares, order 6 blue
full circles and order 8, full black squares. The error is plotted versus N the number of
time steps per unit time. The theoretical decay rates are also indicated by the dash dot
and dashed lines. The dashed black line with positive slope N1 fits the loss of accuracy
when N is too large.

Eq.( 22) using the output data is straightforward for the right hand side. For the time
derivative operators, one has to rebuild the time derivatives using alternative schemes. We
have used here finite difference up to order eight. Similarly to the Runge Kutta integration
verified in Appendix A, the finite difference derivatives are checked independently by
comparing the numerical derivative of sin(t) to the analytic value cos(t), Figure (9). The
measured errors Efd are observed to compare well with the expected orders of the finite
difference schemes until precision reaches the machine noise. The number of operations is
then too large, no precision can be gained due to the numerical scheme, but the impact
of the numerical noise, increasing with the number of steps, overwhelms the accuracy of
the schemes. This governs an increase of the error with slope 1.

For each point i, position xi at time ti of the trajectories, one can then compute the
error E

(r)
ok,i as:

E
(r)
ok,i =

[d2x
dt2

](r)
ok,i
− RHS

(r)
ok,i (23a)

RHS
(r)
ok,i = −2π B

(
sin
(
2πxi

)
+ sin

(
2π(xi − ti)

))
− ν Ji (23b)

where
[
d2x/dt2

](r)
ok,i

is the reconstructed (superscript (r)) second derivative of x with re-

spect to t, computed with finite difference schemes at order k, indicated by the subscript
ok. To simplify the notations, the superscript (r) will be dropped in the following. The

error E
(r)
ok,i then depends on that of the reconstruction scheme, but for the issues of interest

it mostly depends on the error made to generate the trajectory, typically governed by the
time step of the Runge-Kutta integration scheme and the order of the latter scheme. To
illustrate this procedure we consider case b with control parameters σchir = 2.3, ν = 0.8,
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Figure 10: PoPe error for case a σchir = 2.3, ν = 0.8, RK4 integration with N = 28

points per unit time, reconstruction with finite difference of order 6. Left hand side:
Reconstructed second order derivative of x versus the Right Hand Side (RHS) of Eq.( 22).
Right hand side: Error Eo6 versus the RHS.

integration scheme RK4 and number of steps per unit time N = 28. The second derivative
of x, reconstructed with the finite difference scheme of order 6, is plotted versus the right
hand side RHSok,i (the superscript (r) being omitted) of Eq.( 22), Figure 10 left hand side.
As expected for a computation with good accuracy, the points lie close to the diagonal.
However, one can notice for this case with a low-resolution integration that a thickness is
noticeable. Stepping to the error, hence the distance to the diagonal, Figure 10 right hand
side, one finds that the error reaches 0.1 and exhibits a structure somewhat reminiscent of
that of the strange attractor organised in self similar sheets, together with some form of
symmetry regarding the amplitude and the sign. Some properties of the error are better
seen when considering its logarithm, Figure 11 left hand side. One can notice that most
of the data of log10(|Eo6|) appears to lie in the range −2± 1, but excursions can be seen
towards small errors while there seems to be a clear upper bound. The structure in the
error is still visible, which underlines the fact that the error is not homogeneous. This is
all the more visible that the number of points used here is large: it corresponds to the
finite time integration of Nt = 104 unit times multiplied by the number of time steps per
unit time N = 28. Increasing N governs an increase of the statistics, highlighting some
details of the results. The histogram of the logarithm of the error contracts the heavy
tail effect towards the large errors while expanding the region of small error. It is to be
noted that the exponential reduction of the bin size towards the smallest errors drives
an exponential reduction of the number of counts. An exponential fall-off of the number
of counts towards the small values of log10(|Eo6|) is then indicative of a near constant
distribution of |Eo6|. The histogram of the error, Figure 11 right hand side, illustrates
these characteristic features. Towards the large errors, the histogram indicates that the
interpretation in terms of a maximum error appears to hold as highlighted by the sharp
transition from close to maximum probability to near zero probability for a small increase
of the error. Near the maximum of the histogram, a Gaussian like feature could describe
the data. Localised peaks close to the maximum, more readily noticeable for a plot of
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Figure 11: PoPe error for case a, σchir = 2.3, ν = 0.8, RK4 integration with N = 28 points
per unit time, reconstruction with finite difference of order 6. Left hand side: Left hand
side log10(|Eo6|) versus the RHS of Eq.( 22). Right hand side, histogram of this error,
the shaded area indicating the region with small statistics and consequent large relative
fluctuations. All histograms are build using 5 bins par standard deviation.

the histogram in linear scale, could be reminiscent of the observed inhomogeneity of the
error. Finally, towards the smallest errors, the histogram exhibits an exponential decay,
hence the signature of a near constant distribution when the error tends towards zero. On
the figure, the dashed region is that with reduced statistics, namely a number of counts
smaller that 10 and therefore a typical statistical error of the order of 1/

√
10.

The analysis of the error is made either by setting E as random variable or considering
logE = log10(|E|). The former is more sensitive to the large values and is sign dependent
while the latter is sensitive to the small errors, ignoring their sign. However, as recalled
above, the interpretation in terms of probability distributions is less straightforward for
the latter given the changing bin size, which must be properly taken into account. For
standard situations with small amplitude error, |E| < 1, the random variable logE is
negative. When computing the standard deviation δlogE, one can decide for either signs.
Usually it is defined as the square root of the variance, hence positive, but when comparing
its value to the mean value 〈logE〉, negative in a standard case with small errors, the con-
venient choice is the negative sign. When considering the range of values 〈logE〉 ± δlogE
the sign of δlogE is not an issue.

Of interest in the error analysis are particular dependences of the error, for instance
variations in the phase space. Such an analysis can be performed by splitting the data
according to a range of values of J = dx/dt. For each subset of the data one can deter-
mine the average 〈logE〉 and standard deviation δlogE. The normalised error function
can then be defined as (logE − 〈logE〉)/δlogE with the same meaning for each chosen
range of values of J . This procedure provides a way to investigate the inhomogeneity of
the error, Figure 12 left hand side. The data used to build this histogram is that of case
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Figure 12: PoPe error for case a, σchir = 7.0 and ν = 0.2, RK4 integration with N = 28

points per unit time, reconstruction with finite difference of order 6. Left hand side:
Histograms for different values o J and normalised statistics. Right hand side, variation
of the mean 〈logEo6〉, max and min of logEo6 as well as the characteristic width of the
distribution function determined by the standard deviation δlogEo6, namely 〈logEo6〉 ±
δlogEo6.

a with control parameters σchir = 7, ν = 0.2, with the RK4 time integration scheme and
stepping with 210 points per unit time and finally with an order 6 finite difference recon-
struction scheme. One finds that the histogram exhibits a dependence on J combining a
change in occurrences, these decreasing for larger |J | as well as a structure with double
peaking for smaller |J |. The latter can be indicative of further structure in the error,
such as a dependence on x and on time, here understood as the phase shift in the time
dependent potential. A full separation of such a 3D investigation of the error would help
determining the origin of the error and means to improve the numerical scheme. However,
for the simple problem at hand, brute force precision increase is possible and the need for
such a detailed numerical analysis is not required.
The same analysis of the dependence on J is done for the mean 〈logE〉, standard devi-
ation δlogE and maximum and minimum value, Figure 12 right hand side. The mean
and maximum of logE exhibit a comparable dependence on J with the larger values for
the larger |J |. The standard deviation is also found to vary but the change is small. The
largest variation is observed for the minimum value, which is the most sensitive to poor
sampling. However, a trend to smaller error at small |J | can also be seen regarding the
latter. In the following, the dependences on phase space location of the points used in
computing the error will not be taken into account. One has to keep in mind however that
some aspects features of the result, for instance the cut-off at large error, can be related
to an underlying inhomogeneity. As a final remark, one can remark that 〈logE〉+ δlogE,
is comparable to the maximum value that can be achieved.

In the reconstruction process, we have underlined the need to use a scheme with better
or at least equivalent precision to that of the code. This is tested by comparing different
orders of the finite difference schemes used to reconstruct the second time derivative of
x from the time trace of x provided by the code output. One can then compare the
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histograms of the error obtained for each reconstruction procedure. As shown on Figure
13 left hand side, the histograms obtained for the order 6 and order 8 reconstruction
are identical. The error is therefore checked to be generated by the code and not the
reconstruction scheme with finite difference of order 6 and 8. Conversely, for the chosen
RK4 simulation of case a, the order 4 and order 2 reconstruction schemes lead to different
histograms, these being shifted towards the large errors. In these two cases the error of
the code is less important than that of the reconstruction schemes and verification cannot
be achieved. The results of this figure have been obtained with 210 points per unit time
and are averages over the 20 points describing the J-dependence illustrated on Figure 12
left hand side. Compared to the histogram Figure 11 obtained at low resolution, one can
remark the sharp cut-off at highest error, a structure in the vicinity of the maximum and
the exponential fall-off towards the smallest errors as expected for a constant distribution
with exponential reduction of bin size.

The analysis of the error logE can also be used to recover the order of the integration
scheme of the code, Figure 13 right hand side. For case a σchir = 7, ν = 0.2 the RK4
and RK2 schemes are compared. One finds that the error logE scales with the expected
scaling, N−4 for RK4 and N−2 for RK2. Furthermore, as for the error analysis with the
Method of Return Solution Figure 6, one finds that the actual value of the error depends
on the case that is investigated. This is shown by case b σchir = 2.3, ν = 0.8 and RK4
scheme which exhibits the RK4 scaling N−4 but with a smaller error, typically by two and
three orders of magnitude. As observed in the test of the Runge Kutta schemes Figure
47 one can also notice an increase of the error at largest values of N when the error drops
to the level of machine precision. The aim of the PoPe analysis is to provide a figure of
merit in terms of accuracy of a given production simulation. The average logarithm of
the error 〈logE〉 plotted on Figure 13 right hand side can be regarded as such a figure of
merit. The smaller 〈logE〉 the more accurate the simulation. However, a crucial point is
then to provide a criterion to assess that a simulation is acceptable, which is an issue since
computer resources give access to finite accuracy simulations. One can readily consider
that 〈logE〉 & 0, hence a mean error exceeding 100%, is a criterion to reject simulations.
One then finds that for the control parameter σchir = 7, ν = 0.2 the RK4 simulation
with N = 23 and the RK2 simulations with N = 23 and N = 24 can be considered too
inaccurate and rejected on the basis of this criterion. Compared to the set of simulations
that yield a wrong Lyapunov exponent, Figure 8, and an inappropriate strange attractor
structure in phase space, Figure 7, the present chosen criterion only reject 3 out of 6
simulations identified as being with poor resolution and generating misleading results. Of
course, one could tune the threshold value for rejection, but with the likely result that
this critical value is case dependent, hence yielding a criterion without universality. There
is therefore a need for a more effective criterion. One possibility is to take into account
the features of the histogram of the error logE, Figure 14. Given the standard deviation
δlogE, which is negative since logE is related to the logarithm of the error, a more appro-
priate criterion would be to reject simulations such that 〈logE〉 + δlogE & 0. The RK2
simulation with N = 25 = 32 is then added to the previous list. For the RK2-simulation
with N = 26 = 64 one can notice that the maximum value of logE is larger than zero,
while 〈logE〉+ δlogE & −0.3, hence an error E larger than 50%. Given the sharp cut-off
towards the large values of logE, it appears reasonable to extend the rejection criterion
to this simulation. Still, one simulation with a wrong Lyapunov exponent, the RK2 run
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Figure 13: Left hand side: PoPe error for case a σchir = 7 and ν = 0.2, RK4 integration
with N = 210 points per unit time, comparison of the histograms of logE obtained with
finite difference scheme of order 2 head down triangles dashed blue curve, and order 4
head up triangles dashed black curve, order 6 black plain line and order 8 blue plain line
open blue circles. Right hand side: variation of the mean error 〈logE〉 with the number of
steps of the integration scheme for the Runge Kutta schemes of order 2, black curve head
down open triangles, and order 4, blue curves with circles and for the control parameters
of case b, σchir = 2.3 and ν = 0.8, closed symbols, and case a, σchir = 7 and ν = 0.2 open
symbols.
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Figure 14: Key features of the histogram of the error logE, the mean 〈logE〉 blue open
circles, the mean value plus the standard deviation 〈logE〉 + δlogE, blue open head-
up triangles, the mean value minus the standard deviation 〈logE〉 − δlogE, blue open
head-down triangles, and finally minimum and maximum of the distribution of logE,
respectively head-down full black triangles, and head-up full black triangles. The dashed
horizontal line locates logE ≈ −0.3 hence an error E of 50%. Left hand side: case a,
σchir = 7 and ν = 0.2 RK4 integration scheme. Right hand side: case a, σchir = 7 and
ν = 0.2, RK2 integration scheme.

with N = 27, is not excluded by this extended criterion.
We find therefore that with PoPe analysis of the error, it is possible to define a criterion
based on the magnitude of the error to exclude simulations with accuracy smaller than a
prescribed limit. However, we have found that there is not clear-cut way to assess the ex-
actness of the physics for simulations with reduced precision. The simulations with order
2 Runge Kutta integration for case a σchir = 7, ν = 0.2 exemplify this issue. While the
simulation with N = 26 exhibits a correct Lyapunov exponent and phase space portrait,
the simulation with N = 27 has a wrong Lyapunov exponent and different phase space
portrait. Characterising the accuracy with 〈logE〉 + δlogE as figure of merit, one finds
〈logE〉+ δlogE ≈ −0.30 for the former and 〈logE〉+ δlogE ≈ −0.96 for the latter.

The analysis of the PoPe error performed in this Section yields useful insight into
the accuracy of the simulations that are performed. One recovers the verification results
obtained with the MRS in Section 3.2. One also finds that the error is not homogeneous in
the phase space, being larger for large momentum J than for J ≈ 0. A similar behaviour
is observed for kinetic simulations of turbulence with larger error at large velocity [9, 10].
The statistics of the error E are found to be close to Gaussian near zero error with an
apparent sharp cut towards the larger values of |E|. At this stage, the magnitude of the
PoPe error does not appear to provide a robust and universal criterion that would allow
identifying systematically the simulations that have too poor resolution.
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4.2 Projection of the error, PoPe verification

4.2.1 Simplified PoPe analysis: 2 operator reduction

Given the computed error, the proposed way to evaluate the accuracy with PoPe is to
determine the class of equations that yield a comparable behaviour and that cannot be
discriminated. Let us rewrite the system Eq.( 23) in terms of two operators O1,2 and O3.

Eok,i =
[d2x
dt2

](r)
ok,i
− RHS

(r)
ok,i (24a)

RHS
(r)
ok,i = O

(r)
1,2,ok,i + O

(r)
3,ok,i + R

(r)
ok,i (24b)

O
(r)
1,2,ok,i = 2π B

(
sin
(
2πxi

)
+ sin

(
2π(xi − ti)

))
(24c)

O
(r)
3,ok,i = ν Ji (24d)

As highlighted by the notation the former operator O1,2 is in fact the sum of the operators
identified as O1 = 2π B sin

(
2πxi

)
and O2 = π B sin

(
2π(xi − ti)

)
. The reduction to two

operators and the possibility of defining the relevant operators to be addressed by the
PoPe verification scheme is part of the freedom and versatility of the method. Beyond
simplifying the presentation of the results, the choice made in splitting the operators can
be seen as governed by the properties of these operators. Indeed, both O1 and O2 are
computed analytically given xi and ti, while O3 is reconstructed with a finite difference
scheme. The label i is the index of the saved data of a given simulation, ranging typically
from 1 to Nmax. In the present subsection the reference to the order of the reconstruction
scheme, order k labelled ok and the superscript (r) are omitted to simplify the notations.
We now want to determine the coefficients δcO1,2 and δcO3 as well as the residue R defined
by:

Ei = δcO1,2O1,2,i + δcO3O3,i + Ri (25a)

E = δcO1,2O1,2 + δcO3O3 + R (25b)

In Eq.( 25a) the two coefficients δcO1,2 and δcO3 are defined as independent of the reali-
sation i of the error Ei. One can then define the vector E = {Ei} as an Nmax-dimension
vector with components Ei, similarly for O1,2, O3 and R. Equation (25b) is then the
vector form of Eq.( 25a) for each vector component. This equation can be understood as
the projection of E on the two vectors O1,2 and O3 plus the vector R which stands for
the part of E with zero projection on O1,2 and O3. Let us use the notation 〈E|O〉 for the
projection of E on O, one can then split Eq.( 25b) into:

δcO1,2 〈O1,2|O1,2〉+ δcO3 〈O3|O1,2〉 = 〈E|O1,2〉 (26a)

δcO1,2 〈O1,2|O3〉+ δcO3 〈O3|O3〉 = 〈E|O3〉 (26b)

Provided the projection is actually defined, then the system (26) is a set of two coupled
linear equations with unknowns δcO1,2 and δcO3 that can readily be solved provided the
determinant is different from zero, namely that the two vectors O1,2 and O3 are not
co-linear.

〈O1,2|O1,2〉 〈O3|O3〉 − 〈O3|O1,2〉2 6= 0 (27a)
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Given δcO1,2 and δcO3 solution of Eq.( 26), the residue is then computed as the part of
the error that is not aligned along O1,2 or O3, R = E − δcO1,2O1,2 − δcO3O3. When the
system is solved with no error, hence E = 0, one finds δcO1,2 = δcO3 = 0 and R = 0. The
two coefficients δcO1,2 , δcO3 and the residue R therefore characterise the numerical error.

One can first remark that one only needs two linear equations of the form Eq.( 25a) to
determine a set of coefficients δcO1,2 and δcO3 . Let us consider one of the possible pair (i, j)
of points belonging to the strange attractor, one can determine the coefficients δcO1,2(i, j)
and δcO3(i, j) associated to the pair (i, j). Considering several pairs (i, j) then determines
an ensemble of values for the pair (δcO1,2 , δcO3) which can be analysed statistically. This
procedure holds insofar that the points i and j are not co-linear, hence:

O1,2,iO3,j −O3,iO1,2,j 6= 0 (27b)

In practise, the issue of co-linearity can occur when the determinant is small, hence when
(O1,2,i, O3,i) is close to being co-linear to (O1,2,j, O3,j) but the error (Ei, Ej) is not aligned
on these vectors. Since this property is governed by the error, some randomness in this
difficulty can be expected. The generation of spurious values for (δcO1,2 , δcO3) is therefore
expected as a consequence of co-linearity but all the cases characterised by a small deter-
minant will not lead to large values of (δcO1,2 , δcO3) that are obviously not correct.

A means to overcome this issue is to define the projection scheme based on the method
of least square minimisation. For the present example, one defines the relative position
di as:

di = Ei − δcO1,2O1,2,i − δcO3O3,i (28a)

and one then determines the coefficients δcO1,2 , δcO3 as those minimising the distance:

1
2
d2 = 1

2

∑
i

d2i = 1
2

∑
i

[
Ei − δcO1,2O1,2,i − δcO3O3,i

]2
(28b)

Setting the derivatives of d2 with respect to δcO1,2 and δcO3 to be equal to zero, one
obtains:

δcO1,2

[∑
i

O2
1,2,i

]
+ δcO3

[∑
i

O1,2,iO3,i

]
=
[∑

i

O1,2,iEi

]
(29a)

δcO1,2

[∑
i

O1,2,iO3,i

]
+ δcO3

[∑
i

O2
3,i

]
=
[∑

i

O3,iEi

]
(29b)

If a single point is chosen the two equations Eq.( 29a) and Eq.( 29a) are identical. The
summation must therefore be made with at least two points and can be extended up
to all available points. The latter limit corresponds to the calculation with the scalar
product introduced above in an Nmax dimension space. For the other situations we define
an m-dimension space scalar product of two vectors:

〈F |G〉m =

jm∑
i=j1

FiGi (30)
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Figure 15: Nstat, the number of m-tuples used for the statistics. Two procedures are used,
a set with Nstat large enough to determine histograms, blue line with open circles, and a
series with reduced statistics to only determine the mean and standard deviation, black
head-down triangles. The latter series is completed by the calculation for m = Nmax

yielding a single value, thus equal to the mean with zero standard deviation.

The subscript m that is added in these notation stands for the number of points from j1
to jm that are used in the sum. The scalar product and the solution can also depend on
the choice that is made for the m-tuples. The latter freedom of choice will be used in
the following to make statistics on the results at given number of points m but different
choices of m-tuples. With only two points m = 2 one can show that the problem of
co-linearity is identical to that discussed above and one can expect that as m is increased,
the weight of the co-linearity generating outliers in the results will be decreasing.

We first investigate the impact of the choice of the number of points m that are used in
the summation defining the scalar product; equivalently the dimension of the space where
the vectors E, O1,2, O3 are defined. As first indicator, we consider

〈
δcO1,2

〉
m,Nstat

, hence the

average value of the coefficient δcO1,2 . In the chosen simulation, the time series is of length
Nmax such that Nmax = 5 119 993. There is therefore a very large freedom in choosing
random m-tuples in this set whenever m � Nmax. Let us define Nstat the number of
chosen m-tuples that also determines the size of the data set used for the statistics on the
error. Two different procedures have been used to fix Nstat and consequently investigate
the statistics of the coefficients δcO1,2 and δcO3 Figure 15. In a first set of verification tests
labelled ext, the number Nstat of randomly chosen m-tuples is first fixed in such a way that
m×Nstat = Nmax/4 for m ranging from 21 to 28. When m becomes large, 28 ≤ m ≤ 214,
Nstat is maintained constant, Nstat = Nmax/(4 × 28) to have a sufficiently large data set
for the statistics. In this set, the number of points involved in the calculation is first
maintained constant as m is increased, but then increases proportionally to m. This first
procedure is depicted by the points of Nstat versus m with blue open circles on Figure
15 and labelled ext. A second series of m-tuples is made with reduced statistics, and
labelled red. In this procedure only the mean and standard deviation are computed and
a reduced set of Nstat points is sufficient for such a purpose. Depending on the value of
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Figure 16: For the operator O1,2, effect of the number of m-tuples on the statistical
results, blue open circle labelled ext for extended data bases with Nstat large, black head-
down triangles labelled red for reduced data bases, hence Nstat small. Left hand side:
mean value of log10(|δcO1,2|). Right hand side: mean value of δcO1,2 and comparison to
exp(

〈
log10(|δcO1,2|)

〉
), closed blue circles.

m, different values of Nstat have been chosen. For this second series of data selection, the
points (m, Nstat) are indicated by black head-down open triangles on Figure 15. This
series is completed by the calculation for m = Nmax yielding a single value, thus equal to
the mean with zero standard deviation. One finds that either procedures to determine the
points used in the calculation lead to similar values of the mean and standard deviation.

4.2.2 PoPe verification of the drive operator O1,2

The statistics are performed both for the random variables δcO1,2(m) and log10(|δcO1,2(m)|).
The latter data is less sensitive to outliers with very large values and more sensitive to
the very small values of the coefficients. These statistics are applied to the RK2 run with
resolution N = 29 steps per unit time for case a: σchir = 7, ν = 0.2. The mean value
of δcO1,2 is first addressed, Figure 16, left hand side with statistics on log10(|δcO1,2|) and,
right hand side statistics on δcO1,2 . For both cases one readily finds a convergence of the
error as m is increased, the value for the limit m = Nmax being identical for the two
statistics since only one value is available. One can also notice that the investigation with
the reduced statistics, labelled by black head-down triangles, yields appropriate results for
large values of m, the reduced number of points for these statistics being compensated by
the large number of data points used for the least square calculation. One can also notice
that the variation of the error from m = 4 to m ≈ 28 is of the order of 30%. This variation
is observed for

〈
log10(|δcO1,2|)

〉
, Figure 16 left hand side, and for

〈
δcO1,2

〉
, Figure 16 right

hand side. Although similar, the statistic on δcO1,2 and log10(|δcO1,2|) yield different mean
values for m ≤ 28, Figure 16 right hand side. The variation of the mean values with m is
observed to become small for m > 28, and the values for the reduced and extended data
bases are found to agree. Furthermore, the obtained value in this range of m does not
seem to depend on the way the analysis is performed, both the statistics on δcO1,2 and
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Figure 17: For the operator O1,2, effect of the number of m-tuples on the standard devi-
ation, blue open circle, labelled ext Nstat large, hence large data bases, and for reduced
data bases, Nstat small, black head-down triangles labelled red. Left hand side: standard
deviation σlog.δcO1,2 of log10(|δcO1,2|) and comparison to |

〈
log10(|δcO1,2|)

〉
|, dashed black

line towards the top of the Figure. Right hand side: standard deviation σδcO1,2 of δcO1,2

and comparison to |
〈
δcO1,2

〉
| dashed black line.

log10(|δcO1,2|) leading to the same value for the mean of δcO1,2 . Finally it is important to
underline that the sign of the error on the coefficient of O1,2 is given by the statistics on
δcO1,2 and is found to be positive.

The dependence of the standard deviation on m provides a better insight into the
changes governed by increasing m, Figure 17. For log10(|δcO1,2|), Figure 17 left hand side,
one finds that |

〈
log10(|δcO1,2 |)

〉
| > σlog.δcO1,2 for all values of m and that σlog.δcO1,2 decays

exponentially with m. Here σlog.δcO1,2 is chosen positive for convenience. Regarding the
standard deviation of δcO1,2 , Figure 17 right hand side, one can also observe an exponen-
tial decay of σδcO1,2 for m ≥ 22, which coincides with the point where |

〈
δcO1,2

〉
| ≥ σδcO1,2.

Let us now complete this investigation by considering the statistical fluctuations gov-
erned by the number of samples that are used, in particular for the scheme with reduced
data sets red, Figure 18. On Figure 18 left hand side the mean value of log10(|δcO1,2|) is
plotted versus m of the m-tuples used in the least square method. The dashed region
corresponds to the high probability region of the distribution of log10(|δcO1,2|) between the
mean plus the standard deviation and the mean minus the standard deviation. One can
note the exponential narrowing of this region towards the mean value. The mean value,
blue line with closed circles, is computed with the extended data base while the region
of high probability is determined with the reduced data scheme which allows one to have
data for m ≥ 214. The same data is plotted on Figure 18 right hand side with a zoom
for m ≥ 28 and around the asymptotic value of the mean |

〈
log10(|δcO1,2 |)

〉
| ≈ −3.739,

dashed blue line. The shaded region within
〈
log10(|δcO1,2|)

〉
+ σlog.δcO1,2, closed head-up

triangles and
〈
log10(|δcO1,2|)

〉
− σlog.δcO1,2, closed head-down triangles is determined with

the reduced data base which provides data for m ≥ 214. Five different randomly chosen
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Figure 18: For the operator O1,2, effect of the number of m-tuples on the region of highest
likelihood of log10(|δcO1,2(m)|), hence between

〈
log10(|δcO1,2 |)

〉
+σlog.δcO1,2, closed head-up

triangles, and
〈
log10(|δcO1,2|)

〉
− σlog.δcO1,2, closed head-down triangle. The mean value〈

log10(|δcO1,2 |)
〉

is plotted with blue closed circle, σlog.δcO1,2 is the standard deviation
chosen positive here. Left hand side: data for the full range of m, 21 ≤ m ≤ Nmax. Right
hand side, zoom for m ≥ 28 with data from five different random choices of the m-tuples,
open symbols.

m-tuples are also plotted using different open markers.

For the operator O1,2 Eq.( 24c), one finds that when increasing the number of m-tuples
used to determine the error δcO1,2 of the coefficient cO1,2 , then δcO1,2 converges towards a
well-defined value. The standard deviation of the statistics decreases exponentially with
m. The asymptotic value is δcO1,2 = 1.824 10−4. It means that the output data for the
chosen simulation has the best agreement with the evolution equation when the weight of
the operator O1,2 is 1 + 1.824 10−4. The relative error δcO1,2 = 1.824 10−4 with respect to
the input parameter B, leads to a relative error of the Chirikov parameter of 1

2
1.824 10−4.

4.2.3 PoPe verification of the damping operator O3

For the operator O3, we first analyse the standard deviation of the relative error δcO3

on the weight of operator O3, Figure 19. Regarding log10(|δcO3|), the standard devia-
tion σlog.δcO3 exhibits a quite different behaviour from that reported for σlog.δcO1,2, Figure
17 left hand side. Indeed the standard deviation is observed to be nearly constant for
σlog.δcO3 and m ≤ 215 while it exhibits an exponential decrease over the whole range of
values of m when considering the variable log10(|δcO1,2|). For m > 215, one can observe
an exponential decrease of σlog.δcO3, Figure 17 left hand side. For the standard variable
δcO3 , one finds that σδcO3 decreases over the whole range of values of m and exhibits a
constant rate exponential decrease for 22 ≤ m ≤ 217. However, the standard deviation
then exceeds the mean for m < 213. When analysing the mean value of log10(|δcO3 |),
Figure 20 left hand side, open blue circles for the extended statistics, and black open
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Figure 19: Effect of the number of m-tuples on the standard deviation σ with the extended
statistics, ext blue open circles, and reduced statistics, red black triangles for the operator
O3. Left hand side: Statistics on log10(|δcO3|), standard deviation σlog.δcO3 versus m.
The transition from near constant standard deviation to roughly an exponential decrease
occurs for m ≈ 215. Right hand side: Statistics on δcO3 , standard deviation σδcO3 versus
m. The asymptotic value of the mean 〈δcO3〉 is plotted with a dashed black line. The
standard deviation becomes smaller than the mean value, σδcO3/ 〈δcO3〉 ≤ 1, for m ≥ 213.

Figure 20: For the operator O3, effect of the number of m-tuples on the mean value of
the coefficient using the extended statistics, ext blue open circles, and reduced statistics
red black triangles. Left hand side: Mean value 〈log10(|δcO3|)〉 and region with highest
probability between 〈log10(|δcO3|)〉+σlog.δcO3 closed head-up triangles, and 〈log10(|δcO3|)〉−
σlog.δcO3, closed head-down triangle. Right hand side: Mean value 〈δcO3〉 and region with
highest probability between 〈δcO3〉 + σδcO3 closed head-up triangles, and 〈δcO3〉 − σδcO3,
closed head-down triangle.
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Figure 21: Criterion on the required precision in determining δcO1,2 to avoid that its
fluctuations σδcO1,2 govern the error of δcO3 . This effect is more important when the
typical magnitude operator O1,2 is larger than that of operator O3, ||O3||/||O1,2|| ≈ 0.0104
in the present simulation.

triangles for the reduced statistics, one can observe first an exponential decrease as m
is increased, together with a variation of more than one order of magnitude of δcO3 for
21 ≤ m ≤ 212. The mean value 〈log10(|δcO3|)〉 is then roughly constant and equal to its
asymptotic value: 〈log10(|δcO3|)〉 = −3.837. The latter range of values corresponds to
that with decreasing standard deviation. Prior to this transition, the standard deviation
is more or less constant, see Figure 20 left hand side. The lines 〈log10(|δcO3|)〉+ σlog.δcO3,
black line head-up closed triangles, and 〈log10(|δcO3|)〉 − σlog.δcO3, black line head-down
closed triangles, are then parallel to the variation of the mean which indicates similarity
in the distribution function of the error, Figure 20 left hand side. If one now considers
the statistics of δcO3 , Figure 20 right hand side, one finds a first regime for m ≤ 24 with
large variation of 〈δcO3〉. The values then seem to settle close to the asymptotic value
〈δcO3〉 ≈ 1.455 10−4. However, when analysing the region with highest probability, hence
between 〈δcO3〉 + σδcO3 black line closed head-up triangles, and 〈δcO3〉 − σδcO3 black line
closed head-down triangles, one finds that 〈δcO3〉−σδcO3 only becomes positive form ≥ 213.

One finds that recovering converged values for the effective weight of operator O3 is
more demanding than for operator O1,2. Suitable precision for the operator O3 is only
reached when very precise values are obtained for operator O1,2.

4.2.4 Error contamination of the low amplitude operator

The error δcO3 on the weight of the damping operator O3 is typically 〈δcO3〉 ≈ 1.455 10−4.
It is found to be quite comparable to that on δcO1,2 ,

〈
δcO1,2

〉
≈ 1.824 10−4. These errors

have the same sign and comparable magnitude, which is consistent with the fact that the
error is stemming from the numerical time stepping scheme. There is a marked difference
between the coefficient δcO1,2 that stands close to the asymptotic value for all values of m,
and the coefficient δcO3 which is found to require large values of m to exhibit reasonable
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convergence. This difference in behaviour can be linked to the order of magnitude of
the two operators ||O1,2|| and ||O3|| and their effective weight in the evolution equation.
One finds that ||O1,2|| ≈ (2π)2B while ||O3|| ≈ νJ ≈ (2π)ν, therefore ||O3||/||O1,2||| ≈
ν/(2πB). We now consider a change in the error of magnitude σδcO1,2, hence characteristic
of the error on the weight δcO1,2 of operator O1,2, such that this fluctuation of the error
becomes projected on operator O3 rather than operator O1,2. The contamination of δcO3

would then be of order σδcO1,2||O1,2||/||O3||. For such a contamination to be reasonable,
one requires that σδcO1,2 to be small enough that:

〈δcO3〉 � σδcO1,2
||O1,2||
||O3||

(31a)

Taking into account that 〈δcO3〉 ≈
〈
δcO1,2

〉
one can then recast this constraint so that it

only depends on the properties of δcO1,2 .

||O3||
||O1,2||

≈ ν

2πB
� σδcO1,2〈

δcO1,2

〉 (31b)

On Figure 21 the ratio σδcO1,2/
〈
δcO1,2

〉
is plotted versus m and shown to decrease expo-

nentially as m is increased. Given ν/(2πB) ≈ 0.0104 one can then determine in threshold
in m such that the criterion Eq.( 31b) is marginally fulfilled, see shaded domain on Figure
21. Very high precision means square procedure with m ≥ 215 is therefore appears to be
required to avoid that the error in determining the coefficient of the operator with largest
magnitude overwhelms the uncertainty in determining the coefficient of the operator with
smallest amplitude.

Simulations with disparate magnitude of operators, therefore disparate magnitude of
physical effects, are not only demanding in terms of numerical resolution, they also require
enhanced precision with PoPe to properly evaluate the error and avoid contamination of
the error estimated for the low amplitude operator by the large amplitude operator. As
for the numerical implementation, a small error on the PoPe projection for the large am-
plitude operator drives a big error on low amplitude operator.

In this Section, we analyse the statistics of the error generated by PoPe. We examine
a case where two operators O1 and O2 are combined into O1,2 = O1 + O2 so that only
two operators are used in the verification, O1,2 and O3. The standard deviation of the
error distribution is observed to decrease as the number of dimension of the vectors used
for the projection is increased. With the choice of operators O1,2 and O3 we find a case
with operators that have different magnitude so that the error on the large amplitude
operator, here O1,2 can contaminate and even dominate the error on the small amplitude
operator, here O3.

4.3 Distribution function of the error, PoPe verification

When using a least square method with fewer points than the maximum, a statistical
analysis of the projection of the error on the existing operators can be performed, yield-
ing a distribution function characterised in particular by the mean and standard devia-
tion discussed in the previous Section 4.2. The error determined with the output of the
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Figure 22: Histograms of the error coefficients log10(|δcO1,2|) in blue, and log10(|δcO3 |),
in black, the maximum value is indicated by the dotted vertical lines, the 100% error
line, log10(|δc|) = 0, by a dashed black line. Left hand side, statistics with m = 2. For
log10(|δcO3|), the vertical dash-dot lines indicate the standard deviation with respect to the
mean. The histograms are close to symmetric and an exponential decay extend towards
both small and large errors. Right hand side, same analysis for m = 3, the histograms
are not symmetric and the exponential decay mainly holds towards the small errors.

simulations of the strange attractor exhibits Gaussian like distribution with maximum
probability for a given error. When considering the logarithm of the error, some form of
cut-off is found towards the large errors together with an exponential fall-off towards the
smaller errors, Figure 13 left hand side. A characteristic error is thus obtained together
with rare events that exhibit a very small error and a maximum error slightly larger than
the mean characteristic error. In the vicinity the maximum probability of the error distri-
bution and towards the upper limit of the error, with possibly the cut-off feature, a finer
structure is apparent.

We first consider the distribution for the random variables log10(|δcO1,2|) and log10(|δcO3|)
with low dimension least square calculation, typically using 2 and 3 different points
in phase space, Figure 22. For m = 2, the probability of having co-linear vectors is
small but not negligible and values with large errors, typically log10(|δcO1,2|) ≥ 0 and
log10(|δcO3|) ≥ 0 are found, Figure 22 left hand side. For the coefficient δcO3 , black
histogram, the distribution is rather symmetric with respect to its mean 〈log10(|δcO3|)〉,
indicated by the black doted vertical line, with exponential fall-off in both directions.
The mean plus or minus the standard deviation is indicated by the vertical dash-dot
black lines. The histogram of δcO1,2 , blue line, appears in first analysis to be shifted to-
wards the smaller errors, typically by a factor 0.07, which is not too different from the
magnitude ratio between O3 and O1,2. Towards the maximum, one can observe that the
occurrence of large errors, log10(|δcO1,2|) >

〈
log10(|δcO1,2|)

〉
is smaller than that of small

errors log10(|δcO1,2|) <
〈
log10(|δcO1,2|)

〉
. This leads to a slight asymmetry between the left

(broad) and right (narrow) hand sides with respect to the maximum.
With a 3 point least square procedure, Figure 22 right hand side, the probability of having
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Figure 23: Histograms for m = 214 thick blue line, Gaussian fit dashed blue line, and
for m = 7, black line, Gaussian fit dotted black line, versus the normalised variation
(c− 〈c〉)/σc. Left hand side for c = δcO1,2 . Right hand side for c = δcO3 .

3 co-linear points out of 3 is significantly reduced compared to having 2 co-linear points
out of 2. The generation of large errors in the calculation is strongly reduced. The his-
tograms for m = 3 Figure 22 right hand side, are characterised by a loss of symmetry, the
regions on the right hand side of the mean 〈log10(|δc|)〉, hence towards the large errors,
being depleted. Conversely, little change of the histograms is observed towards the small
errors.

The statistics of δc rather than log10(|δc|), besides allowing one to determine the sign
of δc is more sensitive to the large errors. We compare the change in the distribution
functions when m is increased from m = 7 to m = 214 using the normalised variation,
namely the distance to the mean divided by the standard deviation (δc−〈δc〉)/σδc, Figure
23. This allows comparing the distribution function even when changes in the standard
deviation or in the mean value are important. For both δcO1,2 , Figure 23 left hand side,
and δcO3 , Figure 23 right hand side, the histogram for m = 214, thick blue line, is well
approximated by a Gaussian distribution function, blue dashed lines. For these very large
samples the standard deviation is small and the randomness in the choice of the m-tuples
only yields weak variation with comparable probability. The limit, when m = Nmax is
a delta function yielding a single value, the asymptotic value. For the smaller values of
m, the exponential variation that governs the distribution of the error logE = log10(|E|),
described in Section 4.3, is indicated by a black dashed line. A Gaussian fit is shown with
a black dotted line on Figure 23 right hand side. For δcO1,2 the distribution is skewed
towards the values that are larger than the mean value, while for δcO3 heavy tails are
observed for both positive and negative deviations from the mean.

The statistics on log10(|δcO1,2|) for m = 214, Figure 24 left hand side blue line his-
togram, yield the same Gaussian feature, blue dashed line, as that for δcO1,2 . Compared
to the m = 214 analysis, Figure 24 left hand side, the m = 7 analysis, black line histogram,
exhibits a heavy tail towards the small errors, Figure 24 left and right hand side. This
heavy tail, blue line histogram on Figure 24 right hand side, can be understood as the
sum of the exponential dependence of log10(|δcO1,2|) ≤

〈
log10(|δcO1,2|)

〉
, dashed black line,
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Figure 24: Left hand side: Histograms for m = 214 thick blue line, Gaussian fit dashed
blue line, and for m = 7, black line, versus the normalised variation (c − 〈c〉)/σc for
c = log10(|δcO1,2|). Right hand side: Histogram for m = 7 versus for (c − 〈c〉)/σc for
c = log10(|δcO1,2|) as on left hand side, with exponential fit towards the small errors and
Gaussian fit for the errors comparable to the mean value.

and of a Gaussian distribution near the mean
〈
log10(|δcO1,2 |)

〉
, dotted black line. The

Gaussian fit, which is adapted to the shape near the maximum of the histogram, appears
to be shifted towards the errors larger than the mean. Furthermore, the histogram in this
region appears to decrease faster than the Gaussian, which is reminiscent of the cut-off
behaviour discussed in the limit of the large errors. When increasing m, one can observe
that the amplitude of the exponential contribution decreases, and is found negligible for
m = 214, while the Gaussian contribution is roughly unchanged and shifted to the left
and close to symmetric.

For the statistics on log10(|δcO3|) , Figure 25, one finds a different behaviour. For
most of the values of m, the distribution are essentially exponential like towards the small
errors. Only at the largest values of m, here m = 214 can one split the distribution into
a sum of exponential and Gaussian distribution functions.

The projection of the error on the operators of the system to be solved exhibit a de-
parture from 1, the target value for perfect accuracy. Two random variables are used to
analyse this effect, first δc the departure from 1 of coefficient c, a direct measure of the
error, second log10(|δc|). The distribution of the error of δc is close to Gaussian, nearly
symmetric with respect to the mean value. At low number of points in the least square
method, outliers with large error generate heavy tails. As the number of points is in-
creased, the distribution gets closer to a Gaussian. The width of the Gaussian narrows
and the heavy tails shrink as the occurrence of outliers is reduced. Ultimately, when all
available points are used a δ distribution is obtained.
Apart from the sign of the error and the characteristic value of the error, this distribution
is also useful to analyse the outliers that are generated when the operators are transiently
co-linear and the error exhibits a finite amplitude. Cases where the co-linear events are
frequent indicate that the chosen operators exhibit a too strong correlation, which is an
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Figure 25: Left hand side: Histograms for m = 214 thick blue line, Gaussian fit dashed
blue line, and for m = 7, black line, versus the normalised variation (c − 〈c〉)/σc for c =
log10(|δcO3|). Right hand side: Histogram form = 7 versus (c−〈c〉)/σc for c = log10(|δcO3|)
as on left hand side with exponential fit towards the small errors and Gaussian fit for the
errors comparable to the mean value.

important information, and that a more appropriate choice of the operators should be
considered.
The distribution of the random variable log10(|δc|) provides a different information. In
the problems with relatively few points for the least square projection, one can observe a
distribution combining an exponential behaviour towards the error with small magnitude
and a Gaussian feature towards the large magnitude. As one increases the number of
points in the least square projection the Gaussian feature tends to become dominant,
thus retrieving the behaviour observed for the distribution of δc. One thus finds that the
error is characterised by a typical value with a randomly distributed departure from the
mean value leading to a Gaussian distribution feature.

In this Section, we analyse the statistics that can be addressed with the PoPe ver-
ification. When using a few points to define each element of the projection, one can
generate very large data base that tend to exhibit heavy tails in the distribution with the
occurrence of large errors generated by spurious apparent co-linearity of the operators.
As the number of points defining each element of the projection is increased, the statistics
of the error δc for each control parameter tend to Gaussian with nearly constant mean
error and narrower and narrower width. Ultimately, when all available points are used
to define each element, a single value of the error for each retained control parameter
is obtained. A key aspect when using the statistics of log10(δc) and a relatively large
number of points for each element of the projection, is that the error exhibits a Gaussian
distribution around the most probable error and together with a cut-off towards the large
errors.
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Figure 26: Dependence of the PoPe projection of the error for RK4 and RK2 integration
schemes, RK4 with blue circles and RK2 with black head-down triangles, on the number
of steps per unit time N . Left hand side for δcO1,2 . Right hand side for δcO3 . The dashed
lines indicate the scaling laws of the error proportional to N−4 for RK4 and to N−2 for
RK2.

4.4 Scaling law of the error on the weight of the operators

We consider here the actual PoPe procedure to verify the code runs, namely we compute
the coefficients δcO1,2 and δcO3 as well as the residue, using the maximum number of
points Nmax for the PoPe projection. When varying the time stepping of the integration
scheme, as well as the order of the Runge Kutta scheme itself, one can check that the
error measured by δcO1,2 and δcO3 exhibits the expected scaling law. The results are
summarised on Figure 26 and present the same trends as that previously reported for the
error. The coefficient δcO1,2 Figure 26 left hand side is found to follow the appropriate
scaling law indicated by the dashed lines for N ≥ 25 = 32, respectively N−4 and N−2 for
the RK4 and RK2 time stepping schemes. One finds that δcO1,2 is smaller than 1 for all
the values of N that have been investigated. In terms of the chosen control parameters,
an error δcO1,2 leads in fact to a relative error on the Chirikov parameter of 1

2
δcO1,2 . If

one considers that a more appropriate criterion is a 10% relative error on the Chirikov
parameter, then one finds that for case a, σchir = 7, ν = 0.2, the RK2 run with N = 25

is marginal while the RK4 run with N = 23 and the RK2 runs with N = 23 and N = 24

exceed the 10% error on the Chirikov parameter. One also recovers here that the error
is case dependent since the RK4 error on δcO1,2 for case b, σchir = 2.3, ν = 0.8 is smaller
by more than one order of magnitude than that for case a at identical time stepping
scheme. As can be expected from the prior analysis, the projection on the operator O3

with absolute error δcO3 , which is therefore an effective error made on the viscosity ν,
exhibits larger values and consequently requires higher performance numerical schemes
to achieve a comparable accuracy, Figure 26, right hand side. Using the same criterion
of a maximum relative error of 10%, the RK4 runs with N < 24 and the RK2 runs with
N < 25 exceed the 10% threshold and the RK2 case with N < 26 is marginal. For case b,
σchir = 2.3, ν = 0.8, one finds the expected trend for the scaling law of the error δcO3 with
time stepping, hence that δcO3 scales like N−4. Significant departure from the expected
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Figure 27: Sign and scaling law of the PoPe projection of the error δcO3 for given integra-
tion scheme, RK4 closed blue triangles, and RK2 open black triangles, versus the number
of steps per unit time N for case a, σchir = 7, ν = 0.2. Head-up triangles positive absolute
error, head-down triangles negative absolute error.

scaling law is found however for case a, control parameters σchir = 7, ν = 0.2, Figure 27.
When analysing the sign of δcO3 , Figure 27, one finds that the distortion with respect to

the expected scaling laws stems from a change of sign of the absolute error for both RK4
and RK2 schemes in the resolution interval 28 < N < 29, Figure 27. The sign of the error
with the RK4 and RK2 schemes is found opposite and remains opposite when the sign
changes occur Figure 27. When examining the sign of δcO1,2 one finds that it does not
depend on N for N ≥ 24. For case a, σchir = 7, ν = 0.2, the error δcO1,2 is negative with
the RK4 scheme and positive with the RK2 scheme. Conversely, for case b σchir = 2.3,
ν = 0.8, not shown on the Figure, both errors δcO1,2 and δcO3 are negative for the whole
range of values of N that have been investigated. Within the PoPe framework, and for
the particular case we investigate, the two coefficients δcO1,2 and δcO3 are determined by
the error made on the time derivatives. A change of sign of the error is then indicative
that the asymptotic regime for the error behaviour has not been reached. Should the
latter be chosen as accuracy constraint, then case a would then require a high precision
time stepping with N ≥ 29 for both the RK4 and RK2 schemes.

The PoPe procedure allows one to consider various projections. Up to this point, we
have considered the absolute error δcO1,2 for the projection on the operator O1 + O2. It
can be understood as driving an effective absolute error on the Chirikov control param-
eter, while the projection on O3, yielding δcO3 , would be the effective absolute error on
the control parameter ν. However, one can also consider the absolute error δcO1,3 for
the projection on the operator O1 +O3 and absolute error δcO2 for the projection on the
operator O2. In that case the two reference operators O1 + O3 and O2 have the same
magnitude; δcO1,3 and δcO2 should exhibit a comparable behaviour. The same analysis is
made as for the previous projection, Figure 28. One finds that the two coefficients δcO1,3

Figure 28 left and side, and δcO2 Figure 28 right and side, exhibit the same behaviour and
appropriate scaling with N . A slight departure from the expected scaling law is observed
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Figure 28: Dependence of the scaling law of the PoPe projection of the error for given
integration scheme, RK4 with blue circles and RK2 with black head-down triangles, in
terms of the number of steps per unit time N . Left hand side for δcO1,3 . Right hand side
for δcO2 . The dashed line are the scaling of the error N−4 for RK4 and N−2 for RK2.

for the RK2 integration scheme at lowest values of N , N ≤ 25. The latter feature is more
readily seen on Figure 29 where δcO1,3, δcO2 and δcO1,2 determined by the projection of
the error made with the RK2 scheme are plotted together. One finds that for N ≥ 25 the
values of these three coefficients are comparable and exhibit the expected order 2 scaling
N−2. Differences are only observed for N < 25, which also corresponds to absolute errors
exceeding 10%. Finally, for all values of N , N > 23, the signs of the coefficients δcO1,3

and δcO2 are identical.

At this stage, one finds that the results of the PoPe analysis allow one to discard
four simulations out of the six that have been identified as being misleading. These four
simulations are in fact those that already exhibit large errors using the other verification
procedures. Conversely, the two remaining simulations, both with RK2 time stepping
with N = 26 or N = 27, pose a problem since, regardless of the verification method, no
sharp criterion has been found that would discard them. It is therefore important to step
back and revisit why in first place they have been listed as faulty. In fact, there is no
measure to indicate that the simulation with RK2 and N = 26 is not correct. Indeed,
both the phase space portrait of the strange attractor and the largest Lyapunov exponent
agree with the highest resolution simulation. The issue is the next simulation in the series
with higher resolution N = 27. Indeed, this simulation exhibits a fixed point after a
chaotic transient and consequently yields a Lyapunov exponent that clearly departs from
the expected range of values, see Figure 8 left hand side.
Since the PoPe projection that yields the coefficient δcO1,2 δcO3 determines in fact the
ensemble of control parameters that yield equivalent results, one must analyse within this
uncertainty on the control parameters if all the simulations yield comparable results and
behaviour. The sensitivity of the target solution to small variations of the control pa-
rameters is an issue. In the particular example of the strange attractor, there is a known
possibility of a transition from chaotic attractor to fixed point with small variations of

44



Figure 29: PoPe projection of the error for RK2, coefficients: δcO1,3 head-down open
triangles, δcO2 head-up open triangles, and δcO1 head-down closed triangles.

the control parameters. The PoPe verification method provides a means to address this
issue. Indeed, one computes the projection of the error on the operators that govern the
evolution of the problem at hand. This yields therefore the effective control parameters of
the particular simulation. Furthermore, the residue, which is the part of the error trans-
verse to the operators that govern the evolution, is a perturbation that can be regarded
as some particular noise that is added to the dynamics by the numerical scheme. For the
strange attractor, both the shift of the actual control parameters and the properties of the
noise-like perturbation, identified as the residue, can play a role on the occurrence of fixed
point solutions as well as the duration of the chaotic transients prior to the convergence
to the fixed points.

In this Section, we use PoPe to investigate the accuracy and the scaling law of the
error δc in terms of the number N of time steps in a period. Various combinations of the
existing operators are tested that yield comparable results to that obtained with the MRS
in Section 3.2. The PoPe output is of two kinds, part of the error that can be projected
on the existing operators of the equations, and the residue, which has zero projection on
the operators of the system. Both the control parameter error and the residue amplitude
decrease when increasing the precision of the scheme. The scaling laws of the error in
step size are found to agree with order of the chosen numerical scheme.

4.5 Sensitivity to small changes of the control parameters

In order to investigate the possible sensitivity of the trajectories to small changes of the
control parameter, we first map the parameter space with 1 − 0.01 ≤ ν/νref ≤ 1 + 0.01
and 1 − 0.01 ≤ σchir/σchir,ref ≤ 1 + 0.01 for case a, therefore σchir,ref = 7 and νref = 0.02.
We use 11 values in each direction and for each pair of values of the control parame-
ters we run the same simulations in terms of initial condition and duration. Each point
of the phase portrait (ν, σchir) is characterised by the largest Lyapunov exponent Λ+,
Figures 30 and 31. The vertical and horizontal dashed lines highlight the reference val-
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Figure 30: Control parameter space in the vicinity of (νref = 0.2, σchir,ref = 7) with ±1%
variation and 11 points in each direction. Each simulation is characterised by the largest
Lyapunov exponent Λ+. Left hand side: Phase portrait for N = 26 steps per unit time
and RK2 time stepping. Right hand side: Phase portrait for N = 27 steps per unit time
and RK2 time stepping.

ues of the parameters. The values Λ+ ≈ 1 appear in yellow for the chosen colour scale
while those for the fixed points appear in dark blue for Λ+ ≤ 0. The occurrence of long
transients before converging towards the fixed points yields intermediate value typically
with Λ+ ≤ 0.5. The phase portrait is generated using the RK2 time stepping scheme for
N = 26 Figure 30 left hand side, N = 27 Figure 30 right hand side, and N = 28 Figure
31 left hand side, and using the RK4 scheme with N = 27 Figure 31 right hand side. For
the case with N = 26 steps per unit time, Figure 30 left hand side, the phase portrait
exhibits two phases, a chaotic phase Λ+ ≈ 1 for σchir ≤ 7.007, and fixed point Λ+ . 0.5
for σchir > 7.007. This phase transition is observed for all computed values of ν but for
ν ≈ 0.02012 where the chaotic region Λ+ ≈ 1 extends up to 7.021. To be rigorous in
this description of the phase portrait, one must understand by chaotic, the trajectories
that exhibit chaotic transients that are longer than the chosen duration of the simulation.
Indeed, one cannot exclude that at later times the trajectory might converge towards a
fixed point. Conversely, in the region with fixed point, the calculation of the Lyapunov
exponent includes the chaotic transients. This measure can converge towards negative
values indicative of fixed points as well as small positive Lyapunov exponent. These can
correspond either to a low dimensionality attractor or to a long transient before a fixed
point with asymptotic value Λ+ < 0.
The phase portrait for N = 26 is characterised by a phase transition, from chaotic to fixed
point, in the vicinity of the reference values of the control parameters. The latter is found
to belong to the chaotic region of the phase portrait. The relative distance along σchir
of the reference simulation to the fixed-point / chaotic-attractor of order 10−3. However,
this is an upper bound estimate constrained by the chosen meshing along σchir. This max-
imum value would correspond to an error on δO1,2 ≈ 5. 10−2. The latter is comparable
to the PoPe estimated error made on δO1,2 for N = 25, and therefore larger that made
for N = 26, typically of order 10−2. It appears possible that the resolution with N = 26

is sufficient to assess that the reference point is at a distance larger than the numerical
error from the phase transition chaotic-attractor / fixed point.
We now consider the phase portrait with higher resolution, N = 27 steps per unit time,

46



Figure 31: Control parameter space in the vicinity of (νref = 0.2, σchir,ref = 7) with ±1%
variation and 11 points in each direction. Each simulation is characterised by the largest
Lyapunov exponent Λ+. Left hand side: Phase portrait for N = 28 steps per unit time
and RK2 time stepping. Right hand side: For comparison, change of Runge Kutta scheme
to RK4 time stepping, phase portrait for N = 27 steps per unit time.

figure 30 right hand side. This phase portrait appears to be more complex. One still
recognises the chaotic phase for σchir ≤ 6.993 and the fixed point region for σchir ≥ 7.035,
but the intermediate region exhibits two stripes, one with fixed points for σchir ≈ 7. and
above a chaotic stripe for σchir ≈ 7.028. The width of these stripes appears to vary slightly
with ν. It is to be noted that the meshing of the phase portrait is a bit coarse with re-
spect to these variations since the width of these stripes in some parts is equal to one.
However, very clearly for this value of the resolution, the reference control parameters
lies in the stripes of fixed points. Further increasing the resolution to N = 28, Figure 31
left hand side, one finds new changes in the phase portrait with typically a chaotic region
for σchir ≤ 7.035 and fixed points for σchir ≥ 7.035, see figure 31 left hand side. For the
smallest values of ν and σchir ≈ 7, one finds a region of fixed point within the chaotic re-
gion of the phase portrait. The description of the phase portrait with RK4 time stepping
and resolution N = 27 points per unit time, Figure 31 right hand side is quite similar to
that obtained with RK2 time stepping and N = 28. Because of the chosen meshing of the
phase portrait, it is to be underlined that horizontal stripes of changed properties with
a width smaller than δσchir = 0.017 can escape detection. The description given to the
phase portrait has to be understood with this uncertainty. The similarity between the
two phase portraits of Figure 31 does not mean that the integration scheme has enough
accuracy that the phase portrait are identical. It means that within the precision used
to describe the phase portrait, the two sets of simulations exhibit comparable properties
up to the resolution of their mesh. Phase portrait structures finer than the mesh step
are unresolved. This aspect of the problem is illustrated on Figure 32. On Figure 32 left
hand side, the phase portrait is very similar to that of Figure 30 right hand side, namely
the case with N = 27 and RK2 time stepping. We have used different initial conditions
for this set of simulations. The phase portrait properties appear to be near identical,
although the transients towards the fixed points are different, leading to changes in the
values of the Lyapunov exponent in the range of values 0 ≤ Λ+ ≤ 0.5. The fixed point
stripe in the vicinity of σchir = 7(1 ± 0.001) exhibits the same change in width with ν
as indicated previously, with an apparent width of δσchir ≈ 2 × 7 × 0.002 for ν . 0.199.
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Figure 32: Control parameter space in the vicinity of (νref = 0.2, σchir,ref = 7) with ±1%
variation and 11 points in each direction. Each simulation is characterised by the largest
Lyapunov exponent Λ+. Left hand side: Phase portrait for N = 27 steps per unit time
and RK2 time stepping and different initial conditions. Right hand side: Zoom of the
phase portrait for N = 27 steps per unit time and RK2 time stepping.

However, with finer meshing of the phase portrait, but reduced range of values for the
Chirikov parameter σchir, and unchanged meshing for the viscosity ν, Figure 32 right
hand side, one finds that this stripe is now split into two stripes. A fixed point stripe for
σchir . 7. and a chaotic stripe for σchir . 7.010, prior to a new region of fixed points. The
latter is apparent at largest values of σchir and smallest values of ν.

This analysis of the phase portrait therefore indicates that the chosen control parame-
ter lies in a region where phase transitions occur between fixed-point and chaotic regions.
The structure of the phase portrait is complex and exhibits inter-layered chaotic and
fixed point stripes, depending on the Chirikov parameter σchir, with comparatively small
dependence on ν. The width and location of these stripes, as well as the numerical un-
certainty of the effective control parameters of the simulations thus contribute to making
impractical the evaluation of the correctness of the simulation on the basis on the largest
Lyapunov exponent. For a coarse description of the phase portrait, both RK2 simulations
with N = 26 and N = 27 can be considered to be sufficiently accurate despite the fact
that they have different local values of the Lyapunov exponent. This holds because the
phase portrait structure are observed to be comparable although the precise location of
the change of phase from fixed-point to chaotic-attractor is resolution dependent for a
given mesh of the phase portrait. Should one require finer agreement on the structure
of the phase portrait, one must step to higher accuracy of the numerical scheme, how-
ever knowing that the overall sensitivity of the phase portrait structure will exclude any
definitive conclusion.

In this particular set of a simulation performed with control parameters that lie in a
region that exhibits a strong sensitivity of the results on the precise value of the control
parameter, an alternative to evaluate the accuracy is to set the precision that one targets
in the description of the phase portrait. For the chosen examples the relative precision
with respect to both control parameters is typically ±10−3. Consistently, one should then
require that the error on the control parameters evaluated by PoPe, δcO1,2 and δcO3 , be
smaller than 2. 10−3 and 10−3 respectively, Figure 33. The difference stems from the
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Figure 33: Variation of the relative error determined by PoPe, δcO1,2 for σ2
chir, closed blue

squares, and δcO3 for ν, open black circles. The dashed, respectively dotted line indicates
the maximum error for δcO3 , respectively δcO1,2 so that the error is smaller than the mesh
size of the phase portrait of Figures 30 and 31.

square root dependence of the Chirikov parameter on the control parameter B, here akin
to cO1,2 . When plotting the PoPe error δc versus the precision N , one finds that the
accuracy increases with the N but only drops below the chosen phase portrait precision
with respect to both control parameters when N ≥ 28, Figure 33. The criterion of a
required phase portrait precision thus leads one to discarding the two simulations N = 26

and N = 27.
The present analysis therefore indicates that the accuracy and verification of the code is
case dependent, not only in terms of the chosen parameters but also in terms of the physics.
Each simulation must be evaluated according to the physics that is to be addressed. For a
rather loose description of the properties, hence retaining the two simulations RK2 N = 26

and N = 27, the Method of Return Solution presented in Section 3.2, performed for each
simulation, and the PoPe projection of the error yield comparable criteria. However, the
former has higher computing cost and requires running a different version of the code. A
finer description of the properties requires enhanced numerical precision, discarding these
RK2 N = 26 and N = 27 simulations.

Investigating the simulation accuracy and the criterion that allows identifying a simu-
lation as correct thus leads us to analyse the sensitivity on the control parameters. Indeed,
the PoPe projection determines the ensemble of control parameters that yield equivalent
simulation output given the numerical errors. In most cases, this small uncertainty has
little effect on the behaviour of the system. However, as observed with the present exam-
ple, the phase portrait of the system can be quite sensitive to the values of the control
parameters. We have observed bifurcations between fixed-points and chaotic-attractor
for changes of the control parameter that are comparable to the effective error on the
control parameters as determined by PoPe. The PoPe analysis then leads us to refine
the precision to adjust the simulation result to the accuracy one chooses as target for the
phase portrait description. In this discussion, another issue is of importance, namely the
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role of the residue, the part of the error that is orthogonal to the operators found in the
equations. The latter can be seen as a particular noise-like perturbation when following
chaotic trajectories or transients. A complete description of the effective system corre-
sponding to the simulation output is both an effective error on the control parameters and
an effective noise like perturbation added to the system and accounting for the residue.

4.6 iPoPe error analysis

The first step in the PoPe analysis, both PoPe in the previous Sections and iPoPe ad-
dressed here, is to determine the error E, namely the difference between a reconstructed
operator from the simulation output and the value obtained with the reference equation
and the elementary reconstructed operator contributing to that equation, see Section 4.3.
The error is projected on the latter operators yielding the corrections δc to the weight
of these operators. The residue R is then defined as the part of the error orthogonal to
all the elementary operators, see Eq.( 14b). As an example of this procedure we con-
sider the simulation of case a with control parameters σchir = 7, ν = 0.2 and RK2 time
stepping with 29 steps per unit time. The probability distribution function (PDF) of the
error and of the residue is shown on Figure 34 left hand side. These two distribution
function exhibit similar shapes, they are close to symmetric, peaked in the vicinity of
zero, and exhibit a cut-off, with no data for |E| & 0.247 and |R| & 0.185. One can thus
observe that these cut-off values are consistent with the expectation that the residue |R|,
the remnant error transverse to the implemented operators as obtained with PoPe, is
smaller than the error |E|. The number of counts is also observed to decrease faster for
the residue than for the error as the amplitudes of |E| and |R| are increased, Figure 34
left hand side. The distribution function for R is therefore found to be narrower than
that of E. Note that the number of counts cannot be directly compared since the bin
size of the histograms are chosen to be proportional to the standard deviation of the
data, and consequently different for E and R. The decrease of R with respect to E,
found statistically, is recovered when considering the distribution function of log10(|E|)
and log10(|R|), Figure 34 right hand side. As discussed previously one can observe that
the histograms exhibit exponential like features with the same cut-off behaviour for both
E and R. One also finds that the most probable value is shifted towards the smaller values
of log10(|R|), log10(|R|) ≈ −2.72 for the most probable value hence |R| ≈ 1.9 10−3, com-
pared to log10(|E|), log10(|E|) ≈ −2.28 for the most probable value hence |E| ≈ 5.4 10−3.
The reduction factor is therefore typically of ≈ 2.8. One thus finds that part of the error
is projected on the existing operators of the driving equation, and that the remnant error,
the residue R, has been reduced when compared to the original error E.

The iPoPe procedure is applied to the error analysis of the strange attractor now con-
sidering the three independent operators O1 = −(2π)B sin(2πx), O2 = −(2π)B sin(2π(x−
t)) and O3 = −νJ , see Eq.( 18b). The coefficients δcO1 , δcO2 and δcO3 are then determined
by 5 different ways using iPoPe, depending on the order followed in this staged approach.
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Figure 34: Left hand side: Histograms of the error E, blue line, and residue R, black
line. Right hand side: Histograms of logE = log10(|E|), blue line, and R = log10(|R|),
black line. The vertical dashed-dot lines for the latter indicate the most probable values.
Simulation with RK2 scheme time step 1/N , N = 29.

For example, when computing δcO1 , one finds the various results:

δc
(1,2,3)
O1

=
〈E|O1〉
〈O1|O1〉

= δc
(1,3,2)
O1

δc
(2,1,3)
O1

=

〈
R2

∣∣O1

〉
〈O1|O1〉

; δc
(3,1,2)
O1

=

〈
R3

∣∣O1

〉
〈O1|O1〉

δc
(2,3,1)
O1

=
〈R2,3|O1〉
〈O1|O1〉

; δc
(3,2,1)
O1

=
〈R3,2|O1〉
〈O1|O1〉

Here the three superscript labels of the coefficients indicate the order of the iPoPe pro-
jection starting from the label on the left. In the first step, for instance starting with the
projection on O1, the value of the error δc

(1,2,3)
O1

= δc
(1,3,2)
O1

because this initial step does
not depend on the subsequent projection. These expressions depend on the staged values
of the residues, which are defined by:

R2 = E − δc(2,1,3)O2
O2 ; R2,3 = E − δc(2,3,1)O2

O2 − δc(2,3,1)O3
O3

R3 = E − δc(3,1,2)O3
O3 ; R3,2 = E − δc(3,2,1)O3

O3 − δc(3,2,1)O2
O2

The five different series of values of the iPoPe coefficients δcOi
obtained for each simula-

tion can then be investigated and compared to the PoPe result. One can note that for a
routine use in production runs, a single series out of the five is sufficient to characterise
the accuracy, with the benefit of avoiding the matrix inversion required with the standard
PoPe. The five different series are only useful for a more complete analysis of the numer-
ical scheme, in particular to understand how the error made on one operator propagates
on the other operators, with particular attention to those that play a particular role in
the symmetries or bifurcation features.
We consider here simulations of case a with the RK2 time stepping scheme and use the

scaling law of the error with number of steps per unit time N to compare the different
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Figure 35: Determination of the coefficients δcO1 , left hand side, and δcO2 , right hand
side with both PoPe, black open head-up triangles, and iPoPe. The five different ways of
computing the coefficients are labelled according to the order used for the iPoPe staged
projection procedure. Each iPoPe result is characterised by the triplet indicating which
coefficient is determined first, second and third: (1, 2, 3) blue plus + marker, (2, 3, 1) blue
cross × marker, (1, 3, 2) black closed circle, (3, 1, 2) black open square, (2, 1, 3) black open
circle, (3, 2, 1) black open head down triangle. The dash-dot line indicates the order 2
scaling of the error and the dotted line indicates the relative error equal to 1. Data of
simulations of case a with RK2 time stepping.

iPoPe series of results. For both coefficients δcO1 , Figure 35 left hand side and δcO2 ,
Figure 35 right hand side, the iPoPe set of values and the PoPe value are comparable.
For N ≥ 25 one also finds that δcO1 ≈ δcO2 . Conversely, differences are observed for the
coefficient δcO3 , Figure 36 left hand side. One can notice that three out of the five possible
iPoPe series are similar to the PoPe result; those corresponding to the sequences (1, 2, 3),
(2, 1, 3) and (2, 3, 1). The sequences (3, 1, 2) and (1, 3, 2) are comparable to the other
iPoPe and PoPe results for N ≤ 27 = 128. As shown previously, the drop of the PoPe
result for N = 28 is governed by a change of sign of δcO3 that occurs for 28 < N < 29. The
sequences (1, 2, 3), (2, 1, 3) and (2, 3, 1) exhibit the sign change for 27 < N < 29, while
the sequences (3, 1, 2) and (1, 3, 2) are characterised by a sign change between N = 29

and N = 210. For the coefficient δcO3 , with RK2 time stepping, one finds that the iPoPe
depends of the order in which the staged projections are performed. Furthermore, the
scaling law of the error when changing the time step is less precisely observed compared
to the result for the other two coefficients. The analysis of the error on Figure 13 also
indicates that the error is large, of order 10−1, for N < 26. It becomes comparable to that
of the other coefficients for N ≥ 29.

The time trace of the various operators LHS, O1, O2, O3 and R normalised by the
mean value of RHS plus its standard deviation, are plotted on Figure 36 right hand side.
One finds that O1 O2 and LHS have comparable magnitude, typically two orders of mag-
nitude larger than that of O3 and four orders of magnitude larger that the residue R. The
small relative magnitude of O3 compared to that of the other operators is an issue for the
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Figure 36: Left hand side: Determination of the coefficients δcO3 with both PoPe, black
open head-up triangles, and iPoPe: (1, 2, 3) blue plus + marker, (2, 3, 1) blue cross ×
marker, (1, 3, 2) black closed circle, (3, 1, 2) black open square, (2, 1, 3) black open circle,
(3, 2, 1) black open head down triangle. The dotted line indicates the relative error equal
to 1. Right hand side: Time trace over 2 periods of the Left Hand Side (LHS) of the
evolution equation plain black line, and of the three operators that contribute to the right
hand side of Eq.( 22), O1 open blue head-up triangles, O2 open blue squares, O3 open blue
circles and the residue R, closed black head-down triangle, RK2 simulation of case a, time
step 1/N , N = 29. All operators are normalised by the mean plus standard deviation of
RHS.

Figure 37: Values of the symmetric matrix A/ 〈RHS|RHS〉, see Table 1, open symbols
diagonal elements, closed symbols off-diagonal elements, RK2 simulation of case a with
N = 29. The dotted line indicates the value of the sum of all the matrix elements, equal
to one for the normalisation by 〈RHS|RHS〉.
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Table 1: Elements of matrix A normalised by 〈RHS|RHS〉 where RHS is the Right
Hand Side of Eq.( 22) equal to the second time derivative of x, see also Figure 37. RK2
simulation of case a with N = 29.

A =

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 =

4.73 10−1 2.60 10−2 8.97 10−9

2.60 10−2 4.75 10−1 3.86 10−4

8.97 10−9 3.86 10−4 3.86 10−4



numerical resolution. In the present example, this operator controls the shrinking of the
phase space towards the strange attractor. This a major part of the physics that must
be properly addressed. One finds that the dynamics determined by Eq.( 22) are twofold:
when the time t is equal to zero modulus 1, the operators O1 and O2 add to each other
and their combined effect governs the dynamics, the phase space contraction due to O3

has a small effect. Conversely, when t = 0.5 modulus 1 the two operator O1 and O2 are
opposite and cancel out so that the evolution is only governed O3, phase space contrac-
tion is then the leading effect. To properly account for this particular behaviour, several
integration steps must take place when O3 is the leading operator, therefore in a narrow
time window of typical half width 3. 10−3. The time step for N equal to 27, 28, 29 is
typically 8. 10−3, 4. 10−3, 2. 10−3 respectively. This indicates that N ≥ 8 is the minimum
value to have several integration steps in the time window when dissipation enforced by
O3 is the main mechanism at play. The iPoPe calculation being equivalent to the PoPe
method when the matrix A with elements Ak,k′ = 〈Ok|Ok′〉 is diagonal, the comparison of
the 5 different series of values of the iPoPe coefficients δcOi

with that computed directly
with PoPe depends on the relative values of the diagonal and off-diagonal elements of the
symmetric matrix A. The calculation of the last coefficient with iPoPe, the third one
with the present example, is the same as with PoPe. Therefore, if the two first coefficients
in the present series are accurately determined the calculation of the third will also be
accurate even if the non-diagonal elements A3,1 and A3,2 are comparable to the diagonal
element A3,3. In the chosen example of RK2 simulations of case a, the matrix elements
can be computed, see table 1. In this table the elements are normalised by 〈RHS|RHS〉
where RHS = O1 +O2 +O3. The sum of all matrix elements is equal to 1 by definition.
As found in table 1 and shown on Figure 37, the leading terms are the diagonal elements

for the two first rows A1,1 ≈ A2,2 � A1,2 � A2,3 � A1,3. One could therefore expect
the observed agreement between iPoPe and PoPe results for the coefficients δc1 and δc2,
Figure 35. The calculation of δc3 leads to different results because the magnitude of oper-
ator O3 is small A3,3 � A1,1 ≈ A2,2 and because its cross product with O2 is comparable
to its magnitude A3,3 ≈ A2,3, see table 1 and Figure 37. This coupling governed by A2,3

determines the contamination of the error coefficient δc3 by any change in the calculation
of δc2. Conversely, changes in the value of δc3 have little effect on δc2 because A2,2 � A2,3.
This explains the increased precision achieved for the coefficient c3 with iPoPe, smallest
value of δc3 see Figure 36 left hand side, when its calculation precedes that of δc2.

The iPoPe calculation is an alternative to the PoPe verification, which strongly sim-
plified calculation, and therefore very efficient to analyse the accuracy at reduced cost in
computing resources. The use of iPoPe consists of a staged projection of the error on the
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various operators. The result then depends on the order chosen to proceed. Comparing
the various possibilities proves to be an indicator of possible correlation between the op-
erators or that of contamination of the error between operators with large amplitude and
those with small amplitude. An even simpler use of iPoPe is to project the total error on
each operator, thus generating the worse possible case for the error calculation of each
control parameter. The difference that is observed between PoPe and iPoPe results is
small so that iPoPe can be regarded as the most efficient means to address verification
and accuracy checks of production runs.

4.7 PoPe analysis with missing operator

In this Section, we analyse the effect of assuming the dependence on an operator that
is not present in the equations addressed by the simulations. We only use the order 6
finite difference scheme to rebuilt the time derivative from the stored data and omit the
superscript specifying the order of the reconstruction scheme. The equation that is solved
numerically has been written as:[d2x

dt2

]
= c1O1 + c2O2 + c3O3 + c4O4 +R (34)

For the actual equation to be solved one has c1 = c2 = c3 = 1 since the three operators
govern the evolution, and determine therefore the Right Hand Side (RHS) of Eq.( 34).
The operator O4 is the chosen missing operator and consequently one has c4 = 0 for the
theoretical equation. Similarly, the residual error R is equal to zero for the theoretical
equation. In practise the equation that governs the evolution determined numerically is
Eq.( 34) but where c1 = 1 + δc1, c2 = 1 + δc2, c3 = 1 + δc3, R 6= 0 and possibly c4 6= 0.
The error is then defined according to Eq.( 24a).

E =
[d2x
dt2

]
−
(
O1 +O2 +O3

)
(35a)

and therefore:

E = δc1O1 + δc2O2 + δc3O3 + c4O4 +R (35b)

where we further assume that the projection of R on O1, O2, O3 and O4 is equal to zero.
One can note that when defining E, the role given to O4 is quite different from that of
the two operators. This can be regarded as a bias in the analysis. To show that this is
not the case lest us define another error function EO3 such that:

EO3 =
[d2x
dt2

]
−
(
O1 +O2

)
(36a)

so that:

EO3 = δc1O1 + δc2O2 + c3O3 + c4O4 +RO3 (36b)

In this last case we allow the residual error RO3 to be slightly different from R. We shall
see that the PoPe analysis readily handles this difference and provides the appropriate
weight for the operator O3 with both definitions of the error. The choice of O4 is quite
arbitrary. For this example, we choose:

O4 = 2π B cos
(
2π(x− t)

)
(37)

55



Figure 38: Histogram for case a simulations with RK2 time stepping and time step 1/29.
Left hand side: Histogram of coefficients c3, black histogram, and c4, blue histogram,
computed with EO3, Eq.( 36a). Right hand side: top scale, blue histogram coefficient
c3 computed with the error EO3, Eq.( 36a), lower scale, black histogram, coefficient δc3
computed with the standard expression of the error Eq.( 35a).

Regarding O4 defined in Eq.( 37), we analyse the projection of the error on this operator
and how this modifies the values of the other coefficients, in particular δc3.

For the first step of this analysis we use error EO3 Eq.( 36a) to determine c3 and c4,
Figure 38 left hand side. One then finds that the histogram of c3 is centred on the value 1
as it should given the evolution equation while c4 is centred on 0 clearly indicating that the
operator O4 is not present on the right hand side of the evolution equation implemented
for the simulation. One also readily notices that the width of the histogram of c3 is much
larger than that of c4. The zero value of c4 is recovered with better precision than the
1 value of c3. For this calculation and the others of this Section, eight randomly chosen
times of the output are used for the least square calculation of the coefficients, and a
sample of 220 (≈ 106) is used for the statistics. For the same simulation, we also compare
the statistics of c3 using error EO3 Eq.( 36a) and δc3 given by E Eq.( 35a), Figure 38 right
hand side. With this more precise scale, the coefficient c3 blue histogram top scale, is
clearly centred on 1. The Gaussian fit, dashed black line, yields the average 1 + 2.8 10−4

with standard deviation 7.6 10−4. For the coefficient δc3 lower scale, black histogram,
the statistics obtained with different samples, are near identical but shifted to zero, the
average value is 2.8 10−4 about half the standard deviation 7.6 10−4. The theoretical
relation c3 = 1 + δc3 is perfectly recovered here.
We find therefore that PoPe clearly discriminates the case of operator O3, that contributes
to the RHS of the evolution equation of the simulation, from operator O4 that is not
implemented. Furthermore, the calculation of c3 and δc3 match perfectly showing that
either form of the error yield the same result.
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Figure 39: Histogram for case a simulations with RK2 compared to RK4 time stepping
and time step 1/29. Left hand side: Histogram of coefficients δc3, black histogram top
scale with RK2 time stepping, blue histogram bottom scale with RK4 time stepping.
Right hand side: Histogram of coefficients c4, black histogram top scale with RK2 time
stepping, blue histogram bottom scale with RK4 time stepping.

Let us now compare the statistics of δc3 and c4 obtained with simulations with RK2 and
RK4 time stepping and the same time step 1/29. For δc3 one finds rather similar statistics
with the two integration schemes, typically Gaussian centred on 0 with symmetric close
to exponential heavy wings. The most significant difference is a reduction by a factor
≈ 2. 104 of the histogram width obtained with RK4 compared to RK2 simulations, Figure
39 left hand side. A similar result is obtained for c4, same shape and same ratio of the
distributions, Figure 39 right hand side. However for these statistics the symmetric, close
to exponential heavy tails feature is more pronounced than the Gaussian feature near the
distribution maximum. One can also notice in Table 2 that the values for c4 are typically
50 times smaller than for δc3 and that the mean values are typically 30 times smaller than
the standard deviation except for c4 with the RK4 scheme where this ratio increases to
nearly 50. The coefficient c4 thus appears to be closer to zero than δc3 with smaller mean
values and reduced standard deviation. As side remark, one finds that the mean value of
both δc3 and c4 changes sign when changing the integration scheme from RK2 to RK4,
which is not too surprising since the expressions of the error that can be computed are
different.

The statistics of the coefficient δc1 and log10(|δc1|) are shown on Figure 40 left hand
side for δc1, right hand side for log10(|δc1|). The data for RK2 time stepping, top scale
with black PDF is compared to that of RK4 simulations, bottom scale blue PDF. For the
latter a distribution departing from a Gaussian is observed for δc1, Figure 40 left hand
side. In this case, the negative values seem to exhibit features that are reminiscent of
a Log-normal distribution. This appears to be superimposed to a broader distribution
generating in particular a heavy tail towards the positive values. The Gaussian fit is
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Table 2: PoPe coefficients δc3 and c4 of the strange attractor simulation of case a with
RK2 and RK4 integration and N = 29 steps per unit time. First line mean value of the
histograms Figure 39, second line ”std”, the standard deviation for the same data.

δc3 (RK2) c4 (RK2) δc3(RK4) c4 (RK4)
mean 2.0 10−4 −4.7 10−6 −8.1 10−9 1.2 10−10

std 6.0 10−3 1.3 10−4 2.8 10−7 5.8 10−9

Figure 40: PDF to compare data from RK2 simulation, top scale black PDF, and data
from RK4 simulation, bottom scale blue PDF. Left hand side: PDF of δc1. Right hand
side : PDF of log10(|δc1|). All simulations of case a with time step 1/29 and setting c4 = 0
in the PoPe analysis.

rather poor even close to the maximum, dashed line on Figure 40 left hand side. For
the simulation with RK2 time stepping a closer to Gaussian symmetry is found, black
PDF, Figure 41 left hand side. The statistics of log10(|δc1|), Figure 41 right hand side,
allow one to recover these features. Towards the small errors, one finds the exponential
dependence indicating that a near constant value of the PDF towards vanishing values. In
the vicinity of the most probable event log10(|δc1|) exhibits a broader Gaussian behaviour
with the RK4 data, bottom scale blue PDF, than with the RK2 data, top scale black
PDF. For this data, the top and bottom scales are shifted with respect to one another by
4.3, which corresponds to a decrease of the error by typically 5. 10−5. It is to be noted
that these PoPe results are obtained when setting c4 = 0, thus ignoring the possibility of
a dependence on the missing operator O4.

The statistics of the coefficients δc1 and δc2, Figure 41 left hand side black histogram
for δc1, blue histogram for δc2, are found to be remarkably similar. For the chosen RK4
time stepping, the departure from a Gaussian feature is observed for both coefficients. As
for the previous results, the missing operator O4 is ignored in this PoPe analysis. These
statistics indicate that as expected the operators O1 and O2 play a comparable role in the
structure of the error, while a different behaviour is found for O3.
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Figure 41: Left hand side: Histograms of δc1 and δc2 setting c4 = 0 in the PoPe analysis.
Right hand side: Histogram of the coefficient δc1, blue histogram setting c4 = 0 and when
determining c4 with PoPe, black histogram. All simulations of case a with RK4 and time
step 1/29.

When allowing the missing operator O4 in the PoPe analysis, one can observe changes in
the heavy tails of the PDFs of all coefficients, Figure 41 right hand side for δc1 and Figure
42 left hand side for δc2 and right hand side for δc3. For all three coefficients one finds
that the bulk of the PDFs are close to constant with (c4 = 0 and blue PDF) or without
(c4 6= 0 and black PDF) the missing operator O4 in the PoPe analysis. Conversely the
heavy tail part of the PDFs are systematically broader for c4 6= 0 compared to c4 = 0.

In this Section, we have analysed the projection of the data on an operator that is
not found in the equations solved numerically, operator O4 in this example. The PoPe
analysis very clearly identifies that there is no signature of this operator in the data
generated by the simulation, consequently the weight of the operator is found to be close
to zero, clearly different from the other operators with weight close to 1. The distribution
of the error in the vicinity of these values is observed to depend on both the operators
and the order of the time stepping scheme. For the present example, the error is typically
Gaussian for the coefficients c3 and c4 while a Log-normal feature can be identified for c1
and c2 at high precision with RK4 integration. One also finds that trying to identify the
operator O4 tends to broaden the heavy tail part of the distribution of the error for all
three coefficients c1, c2 and c3, thus yielding a larger error for these coefficients and not
an improved accuracy. All these results confirm that the operator O4 is not present in
the equation solved numerically while the other three operators are present as expected
with the appropriate weight. This exemplifies the verification by PoPe of production
simulations.
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Figure 42: Compared PDF with and without operator O4 in the PoPe analysis, blue PDF
c4 = 0, black PDF c4 6= 0 determined by PoPe. Left hand side: PDF of δc2. Right hand
side: PDF of δc3. Simulations of case a with RK4 and time step 1/29.

4.8 PoPe simulation index

In this Section, we analyse and revisit the results obtained with the PoPe verification
scheme. The first step is determining an error, here the difference between the effective and
expected value of d2x/dt2, Eq.( 22). The effective value is determined using the simulation
output and ”recomputing” this LHS with higher accuracy than achieved during the
simulation. Here an order 6 finite difference scheme yields higher precision than both
the RK2 and RK4 time stepping scheme used in the simulations. The expected value of
d2x/dt2 is recomputed using the same simulation data to determine the right hand side
RHS of the evolution equation Eq.( 22). The difference between LHS and RHS then
defines an error E. The relative value of the error E/RHS is the first indicator of the
verification procedure. For the chosen example of the strange attractor, these values are
obtained for nearly all points of the computed trajectories (the end and initial points are
not computed with the chosen centred finite difference scheme). The projection of the
error on the operators that contribute to the right hand side RHS correlates the error
E to any particular operator. The coefficient δck, the correlation between the error E
and operator Ok, is the absolute error made for the contribution of operator Ok to RHS.
When all coefficients δck of the chosen splitting of the right hand side RHS into a sum of
operators Ok are small one can consider that the code is verified, the simulation output
is consistent with the equations to be solved.
The simulation accuracy is determined by statistics on the error E, the set of the different
coefficients δc, the residue R and the difference δE = E −R.

E = δc1O1 + δc2O2 + δc3O3 +R (38a)

δE = δc1O1 + δc2O2 + δc3O3 (38b)

For the simulation of case a with RK2 integration scheme and N = 29 steps per unit time,
the coefficients δc are given in Table 3 and the statistics on E and R are illustrated on
Figure 34. All three coefficients are of order 10−4. These indicate that the relative value
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Table 3: The three PoPe coefficients δc1, δc2 and δc3 of the strange attractor simulation
of case a with RK2 integration and N = 29 steps per unit time.

δc1 δc2 δc3
1.827 10−4 1.822 10−4 1.453 10−4

Figure 43: Left hand side: E black dots and δE blues quasi-aligned dots plotted versus
RHS, data at t = 0 modulus 1. Right hand side: time trace of δE/RHS for the same
data showing that the ratio is nearly constant but not actually constant. Both figures
RK2 simulation of case a with N = 29.

of the control parameters in Eq.( 22) can be changed by δc ≈ 1.8 10−4 without inducing
noticeable changes to the simulation output. This holds provided the phase portrait does
not exhibit a bifurcation like transitions between different regimes for such a specific range
of values of the control parameter, see discussion Section Sensitivity to control parameter
small variation. In such a particular example, the simulation precision must therefore be
adapted to the sensitivity to the control parameters one wants to address.
For the present cases, having δc1 ≈ δc2 ≈ δc3 leads to δE Eq.( 38b) close to proportional
to RHS = O1 +O2 +O3. When considering the values of the error E compared to that of
the right hand side RHS taken at t = 0 modulus 1, Figure 43 left hand side black dots,
one finds that the error E is typically proportional to RHS. There is some scatter in the
proportionality factor together with a roll-over of the error towards smaller magnitude at
the largest magnitude of RHS. On the same graph, the values of δE are plotted, close to
aligned blue dots. These appear to be proportional to RHS as expected from the values
of δc1, δc2 and δc3 Table 3. In fact the time trace of the ratio δE/RHS indicates that
δE/RHS is close to being constant ≈ 1.8 10−4 but exhibits a pattern which exhibits a
clear departure from a constant line.

One can now consider the residue R, see Figure 44. The data for t = 0 modulus 1 is
clearly the combination of E and δE Figure 43 so that the amplitude of R is slightly
reduced and more importantly that the values of R at the largest values of |RHS| are
closer to being symmetric with respect to zero that when considering E. These features
can be observed on the histograms Figure 34. The cut-off at the largest values does not
change much as shown by the comparison of the linear distribution of E and R, Figure
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Figure 44: Value of the residue R versus RHS, data at t = 0 modulus 1 of the RK2
simulation of case a with N = 29.

34 left hand side, however the distribution of R is narrower than that of E so that one
can notice a shift in the distribution of log10(R) from that of log10(E) indicating a fac-
tor 2.8 reduction of the value at maximum occurrence, Figure 34 right hand side. One
finds therefore that about half of the error can be understood in terms of a multiplicative
up-shift of order 2. 10−4 of the control parameter while the other half is the residue R.
This residue still exhibits a structure, Figure 44. With the PoPe verification method, it
is built to be orthogonal to O1, O2 and O3, alternatively there is no correlation of R with
either operators O1, O2 and O3. In that respect R can be regarded as a low amplitude
noise-like perturbation, of order 2. 10−4, added to the evolution equation Eq.( 22). If
one investigates precise features in a system that exhibits bifurcations between different
solutions, this noise-like contribution as well as the small change in the control parame-
ters must be accounted for. In most situations, one addresses more robust properties and
one can expect that this small noise-like contribution and the small error on the control
parameters will have a weak effect on the simulation results.

The PoPe analysis that has been performed in this paper can be simplified by defining
a figure of merit for each simulation. We first define δcmax the maximum of all the δc
values obtained with the PoPe analysis; the worst error generates the largest value of
δcmax. We then define the PoPe index as −log10(δcmax). The smallest values of the PoPe
index characterise the worst error, 0 stands for a relative error of 100%, and the upper
bound, a PoPe index of order 14 for an accuracy close to machine precision. To illustrate,
the PoPe index, we have determined its value for two series of simulations of case a, with
RK2 and RK4 integration scheme and number of steps per unit time ranging from N = 23

to N = 212. In order to compare the PoPe index for these two series of simulation we
define Nrhs as the number of calculations of the RHS performed per reference time scale.
For the RK2 scheme one then has Nrhs = 2×N and for the RK4 scheme Nrhs = 4×N .
The PoPe index for each of these 20 simulations is plotted on Figure 45. As expected
the PoPe index increases twice faster for the RK4 scheme closed blue circles, than for the
RK2 scheme closed black triangles, as the number of operation Nrhs is increased when N
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Figure 45: Value of the PoPe index versus the number Nrhs of operations to integrate the
equations over one time unit. Data obtained with the RK2 integration scheme closed black
triangles and with the RK4 integration scheme requiring twice the number of operation
per step compared to RK2, closed blue circles. The vertical dash-dot line for 210 operations
during one unit time integration indicates the gain in precision achieved by the order 4
scheme at given computing resources. Conversely, the horizontal dashed region with PoPe
index comprised between 3 and 4, indicated the gain in performance when using the high
order scheme at comparable simulation accuracy.

is scanned. Let us impose the constraint of the number of operation per unit time to be
Nrhs = 210 dash-dot vertical black line, hence N = 29 for the RK2 scheme and N = 28

for the RK4 scheme. One then finds that the PoPe index of the RK2 simulation is ≈ 3.7
while that of the RK4 simulation is significantly higher ≈ 7.0. Conversely, setting as
target that the PoPe index should stand between 3 and 4, shaded horizontal region on
Figure 45, one finds that the RK4 numerical cost is typically Nrhs ≈ 28 for a PoPe index
of 3.7, while the numerical cost with RK2 is Nrhs ≈ 210 for a comparable PoPe index of
3.7. At prescribed accuracy increasing the order of the numerical scheme leads for this
example to a factor 4 gain in run time.
Producing such a PoPe index for all simulation provides a figure of merit for each simu-
lation. A PoPe index larger than 1 gives an estimate of the accuracy of the simulation,
while a value close to zero or negative is most likely indicative that the accuracy and
eventually the verification of the simulation could be an issue.

5 Discussion and conclusion

We have presented in this paper the PoPe and iPoPe verification methods. We have shown
that these two novel verification schemes also allow addressing the simulation accuracy.
Furthermore, in the course of the verification procedure specific features of the numerical
scheme used for the simulation are identified as well as some key properties of the physics
addressed by the simulation. PoPe and iPoPe are very similar verification methods based
on Big Data analysis of the simulation output. The highlight of these methods is that
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the verification process is applied directly to production simulations and not to modified
numerical tools designed for the sake of verification. Furthermore, the verification can
and should be applied to all production simulations, either as a post-treatment, as for
the examples chosen in this paper, or on the fly during the simulation. Statistics are
generated by PoPe and iPoPe. These drive the overhead in terms of computing resources
when applying PoPe or iPoPe on the fly. Alternatively, necessary data for verification
must be saved during the simulation for PoPe post-treatment. For a rather standard case
with large statistics, the typical overhead has been estimated to be less than 10% of the
simulation cost [9, 8, 10, 7], either to save extra data or to perform on the fly calcula-
tions. It can be scaled down by reducing the statistics. We have not addressed possible
optimisation of such verification processes that is most likely case dependent.

The backbone of the method is to define numerically various operators, these being
combined in the equations solved numerically. For a set of K operators, m ≥ K sets of
data points can be used to determine the relative weight of these operators in the equa-
tions. For m > K a least square method can be used, reducing the statistical scatter of
the weight. We show that this least square procedure defines a scalar product and that
increasing m reduces the weight of the occurrence of transient co-linearity between the
operators. It ensures that the operators tend to become orthogonal. We have found that
for K = 2, setting m = 3 with the least square method is enough to significantly reduce
the effect of co-linearity and to generate numerous values of the coefficients, and conse-
quently investigate the statistics of these errors. One also finds that taking m equal to
the number of all available points is also possible, presumably yielding the best estimate
of the error, but without giving insight into the statistics of the error.
The PoPe verification and accuracy analysis proceeds in three steps. In a first step the
numerical error is determined. The data then gives directly insight into possible verifi-
cation issues. This would occur in particular when the order of magnitude of the error
is too large, or when the scaling law of the error does not match the order chosen for
the numerical scheme. Conversely, we also show that when correct, the scaling law of
the error (for instance with the time step) gives a first insight into the accuracy of the
simulations as determined by PoPe. The second step is the projection of the error on the
existing operators of the system at hand. There the PoPe and iPoPe methods depart. The
PoPe method requires a matrix inversion, which can be cumbersome when the number of
operators is large. It can be replaced by the iPoPe method, with a staged resolution of the
linear system and possibly a dependence on the order chosen for this staged resolution. In
most cases that have been analysed the difference between the PoPe and iPoPe output is
small and either ways lead to comparable verification results. This projection step yields
the relative error made on each coefficient of the operators that contribute to the system.
One thus finds that an infinite set of control parameters, in the vicinity of that determined
by the PoPe or iPoPe projection, would yield comparable simulation data. There is here
a common feature with the problem on uncertainty propagation. We find with PoPe or
iPoPe which uncertainty of the coefficients cannot be identified by the simulation output.
Finally, the third step is to determine the residual error, transverse to the operators used
in the equations.
The actual verification can be split into two different parts. The crucial one is to assess
that one is actually solving numerically the equations that are claimed to be solved. How-
ever, when this part is completed arises the second part, namely the question of accuracy
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of the numerical resolution. This becomes a matter of trade-off between perfect accuracy,
which requires infinite computing resources, and very poor accuracy, which can be an
issue for the validity of the simulations. When addressing this issue, we have found two
different cases. The high accuracy simulations that are readily considered to be on the
safe side and those belonging to the grey zone when the relative error is larger than 1%,
of order of 10% and up to 100%. The problem is then to establish criteria that allow dis-
criminating the safe from the unsafe simulations. We have found that some aspects of the
simulation output are quite robust and recovered even when the error is large [10, 7]. We
show here that specific simulations, close to bifurcation points, can be more demanding,
moving the safe zone towards much higher accuracy. This underlines that the verification
procedure is case dependent and each simulation will have different verification proper-
ties. Then depending on the sensitivity of the problem that is addressed, the simulation
accuracy can be considered to be sufficient, thus on the safe side, or can fall short leading
to possibly misleading results.
In this work, we present the interesting case of projecting the error on an operator that
does not appear in the equation actually solved numerically. This corresponds to two
different problems. First, the operator ought to have been part of the equations but for
some reason is by-passed by the numerical scheme. Then the PoPe verification indicates
that the operator has a weight 0 and not 1 as it should. The numerical scheme is not
verified. Second, using a spurious operator with respect to the equations allows one to
test whether this operator can describe part of the information generating the residue.
This would yield some understanding of the residue and how the problem that one aims
at solving can be modified by the numerical error. Rather generally, the residue being
orthogonal to the operators that govern the numerical simulation, one can consider the
residue to be in some ways a bit like a noise added to the system. This is the case when
numerical errors are assumed to introduce a spurious diffusion so that the effective diffu-
sion in the simulation is the sum of the controlled diffusion implemented in the equations
and an uncontrolled diffusion governed by the numerical scheme. Two issues can then
occur, the controlled diffusion can be dwarfed by the spurious diffusion and consequently
ineffective, or bifurcation properties can be modified driving a completely different be-
haviour of the system. However, we have shown that for our chosen example the residue
exhibits a structure that can potentially be captured, and therefore generated by an oper-
ator. Identifying approximately the form taken by the residue can be valuable for a better
understanding of the problem effectively solved numerically. It also indicates means to
reduce the residual error.
Another important issue arises when discussing the case of an operator that appears to
have an amplitude comparable to the numerical error but that plays a crucial role, for
instance in symmetry breaking. This is the case of the viscous dissipation operator in the
simulations used here to exemplify the PoPe and iPoPe verification. For the dynamical
system used in this paper, the viscous damping is critical since it governs the phase space
contraction towards the strange attractor. However, the amplitude of this term is compa-
rable to the error made on the larger amplitude operators. We then argue that this term
will still play a leading role in the dynamics in the time windows where the amplitude
of all the other operators is small. Indeed, in our example, the other operators cancel
out during periodic time windows. There is a therefore a difference regarding the effect
between short, medium and long time contributions to the error.
In all cases addressed in this paper, the mean value of the error is always small compared
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to standard deviation. The PoPe and iPoPe analysis then allows splitting the error into
a structured part that is determined by evaluating the effective values of the control pa-
rameters, and a contribution that is less structured and defines the residue. The small
operator can then contribute via a long-term additive effect that can dominate over terms
that exhibit short term fluctuations akin to randomness. However, one cannot exclude
at this stage that the structure in the residue, which can indeed be observed, does not
build-up to generate long-term effects. This question thus leads to considering a more in
depth analysis of the error [9], including the slow dynamics that can occur in the simula-
tions compared to the long-term effect of the error.

We also propose a unique index that would characterise the accuracy of the simula-
tion. It is typically given by the opposite of the base 10 logarithm of the error. A PoPe
index equal to zero indicates a 100 % error in the simulation output, and the PoPe index
increases as the accuracy is improved to level off at machine precision typically between
12 and 14. Negative values are possible and most likely are a concern for the simulation.
The PoPe criterion thus gives a figure of merit that allows discussing where the simulation
stands with respect to accuracy that one believes to be required.

The PoPe and iPoPe verification methods have been used for several codes addressing
plasma turbulence. The verification of the code TOKAM2D [9, 8], a pseudo-spectral 2D
code of plasma turbulence with fluid equations in the boundary layer of magnetically con-
fined plasmas was first performed [12, 17, 23]. The physics of the interchange instability
at play is very similar to the Rayleigh-Bénard instability [18]. The TOKAM2D code veri-
fication demonstrated no error in the implemented equations as well as very high accuracy
of the numerical scheme so that the diffusive coefficients in the equations can be scanned
over a broad range of values, in particular towards the small values. A finite volume
version of this code was written to alleviate the problem of periodicity in all directions.
For this version, the PoPe verification spotted an error in the computation of the diffusive
terms, leading to a correction of the code. It also showed that numerical diffusion was
significant and overwhelming when the diffusion coefficients are too small, levelling-off
the effective diffusion process in the simulations. This work has not been published. For
a TOKAM2D simulation, the PoPe method was also used to project the relaxation phe-
nomena on a reduced predator prey model [9]. PoPe has also been used to address codes
addressing kinetic equations of plasma turbulence. The TERESA code [9, 6, 8] is a 4D
kinetic code for Trapped Ion Modes [25]. The physics of the TERESA code can be viewed
as that of Rayleigh-Bénard convection addressed in a kinetic framework. The TERESA
code is a reduced version of the GYSELA 5D code [15, 14] using a semi-Lagrangian scheme
for time stepping and cubic spline interpolation and derivatives. For the TERESA code
verification [9, 8], the equations have been found to be properly implemented but numer-
ical diffusion was observed, which breaks the symmetry of the Vlasov equation by adding
a physics akin to collisional diffusion. Another kinetic code, the VOICE code addressing
1D-1V kinetic physics [4] has been verified with PoPe and iPoPe in an Eulerian version
using Fourier fast transforms in the velocity direction by enforcing periodicity in that
direction [10]. Very high accuracy of the plasma wave interaction is achieved but gradual
numerical pollution is observed to propagate slowly from the high velocity region of the
phase space towards the bulk velocities. This has led to using order 4 finite differences
velocity derivatives rather than Fourier velocity space in subsequent versions of the code.
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For these Eulerian versions of the VOICE code, the projection with iPoPe of the error on
a diffusion operator in velocity space was found to be negligible. However, despite this
problem for the medium duration runs, the physics of the short term Landau damping was
found quite robust to numerical errors [10]. Finally, the verification with iPoPe of the edge
plasma turbulence code TOKAM3X [26] with fluid equations exemplified the robustness
of the physics even for marginal resolution [7], a further incentive for improving the reso-
lution as achieved since, in particular in SOLEDGE3X [5], the renewed version of the code.

The PoPe and iPoPe verification methods thus provide a comprehensive verification
tool that allows addressing the verification and accuracy of production runs and conse-
quently of simulations of interest. This big data based analysis provides an in depth
analysis of the simulation and numerical scheme. For the latter it will identify which
operator governs the numerical error and the effective order of the resolution. This un-
derstanding can help solving some numerical issues. The analysis will also indicate which
operators are small contributing to the calculation with terms that are small and that
can be comparable to the error. The analysis will also be quite sensitive to operators that
are close to co-linear, either requiring different definitions of the operators to be handled
in the verification process or suggesting alternative ways of addressing the problem nu-
merically. The PoPe method is quite versatile and can be used in many different ways
to assess the verification of the simulation and its accuracy. Finally, this method can be
used to investigate model reduction, as presented in [8] or methods to filter the simulation
output to reduce contamination of the solution by the residual error.
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A Standard Method of Manufactured Solution

In this Appendix we present the Method of Manufactured Solution in Section A.1 and its
application, first to the case of the strange attractor in Section A.1, then for the verification
of the Runge Kutta integration schemes in Section A.2. The calculation necessary to use
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the MMS for the strange attractor is presented in Section A.3.

A.1 Method of Manufactured Solution for the strange attractor

Let us consider the characteristic problem:

dX

dt
= F (X) (39a)

The standard Method of Manufactured Solution consists of selection a particular function
X0, time independent for simplicity, and modifying the initial equation Eq.( 39a) so that
X0 is a steady state solution, typically:

dX

dt
= F (X)− F (X0) (39b)

For a complex system, the operator F implemented in the code is used to determine
F (X0) so that Eq.( 39b) yields exactly dX0/dt = 0 both theoretically and numerically.
One can then perform the numerical test that X0 is indeed a steady state solution, usually
by ensuring that the slightly perturbed solution X0 + δX converges back to X0. Such a
procedure is elegant but has two drawbacks: first it assumes that the system of interest
is such that the fixed point X = X0 of Eq.( 39b) is stable, second one must modify the
code to solve both Eq.( 39a) of interest and Eq.( 39b) for the test. Third, one furthermore
assumes that the chosen solution X0 is representative of the solutions of interest. Given
the evolution equation Eq.( 39b) one can readily see that the eigenvalues are unchanged
when stepping from the strange attractor evolution equation to the MMS evolution sys-
tem. When the real part of the largest eigenvalue of the fixed point is positive, the fixed
point is unstable. Furthermore, due to the explicit time dependence of the potential even
a fixed point at initial time will exhibit a positive real part of the largest eigenvalue after
an evolution time shorter than 0.5. One can thus expect that in most cases, disturbing
the initial condition away from the fixed point X0 in Eq.( 39b) will not drive a relaxation
trajectory back to the fixed point. Using the form derived in A.3, one can investigate
numerically these features. The modified evolution equation for the Method of Manufac-
tured Solution does yield trajectories of particular interest. Cases that have been tested
start from a chosen fixed point −0.5 ≤ x ≤ 0.5 and J0 = 0 since it is shown in A.3 that
all possible values of J0 can be investigated using a change of variable and J0 = 0. An
initial distance from the fixed point is chosen d0 = 10−8. The evolution appears to lead to
large values of J , either negative or positive and consequently rapid rotation of the phase
x, Figure 46 left hand side. As expected and discussed above, in all cases that have been
investigated, the trajectories depart from the fixed point as exemplified by the growth of
the distance d from the fixed point, Figure 46 right hand side. This standard use of the
Method of Manufactured Solution is therefore not fit for the chosen problem that exhibits
chaotic trajectories. Since the latter situation is generic, and of particular relevance for
complex systems, those which require in particular numerical simulation support, one is
led to conclude that this method is of restricted relevance for verification purposes.

A.2 Manufactured Solution testing of the PoPe operators

We verify here the integration schemes used in the simulations of the strange attractor,
namely the Runge Kutta schemes, RK4 and RK2 with a standard method, akin to the
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Figure 46: For case a, σchir = 7 and ν = 0.2, investigation of the fixed point stability
for the standard Method of Manufactured Solution, trajectory with chosen fixed point
X = x0 = −0.17, J = 0 and initial distance from this fixed point d0 = 10−8. Left hand
side: trace of x (blue dotted curve) and J (black curve). Right hand side: variation of the
distance d from the fixed point, initial value d0 = 10−8 with rapid growth to macroscopic
values, d ≈ 1 on a time scale of δt ≈ 2.

.

Method of Manufactured Solutions. We consider a problem with known solution analytic
so that one can measure the error. We thus consider the equation

dJ

dt
= − sin

(
2 ∗ πt

)
(40)

with known solution J(t) = cos(t) for initial conditions J = −1 at t = −π. One can
then compute the error ERKi(N) = max(|JRKi(N, t) − JM(t)|)t where JRKi is the value
of J computed with the Runge Kutta scheme of order i, and JM the known analytical
solution. We retain here the largest error taken over one period of the solution. Changing
the number of steps per period according to N = 2n with 3 ≤ n ≤ 25, hence the step 1/N ,
allows one to check the implementation of the Runge Kutta schemes, Figure (47). One
can thus observe that the error behaves with the appropriate order until the number of
steps is so large that the numerical noise, typically proportional to the number of steps N
becomes larger than the error governed by the numerical scheme. One can thus state that
this check is a verification of the Runge Kutta schemes used to determine numerically
the trajectories that generate the strange attractors. However, as discussed in Section
A.1, this verification gives no information regarding the accuracy: (i) because the chosen
solution has different characteristic properties compared to the problem to be addressed,
(ii) because a criterion must be defined to be able to discuss the accuracy.
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Figure 47: Error ERK obtained with the Manufactured Method Solution for the Runga
Kutta schemes, order 2 blue open circles and order 4 black open squares. Dash dot lines,
respectively blue for order 2 and black for order 4, indicate the corresponding slopes for
order 2 and order 4 error. The dashed black line is indicative of the slope N1 which fits
the loss of accuracy when N is too large.

A.3 Strange attractor MMS evolution equations

The Method of Manufactured Solution leads to a modification of the right hand side of
the evolution equations to generate known fixed points (x0, J0):

dx

dt
= J − J0 (41a)

dJ

dt
= −2π B

(
sin
(
2πx

)
+ sin

(
2π(x− t)

))
− ν J

+ 2π B
(

sin
(
2πx0

)
+ sin

(
2π(x0 − t)

))
+ ν J0 (41b)

Given sin(A) − sin(B) = 2 cos(a) sin(b) where a = (A + B)/2 and b = (A − B)/2, one
then obtains:

dx

dt
= 2Z (42a)

dJ

dt
= −4π B sin

(
2π
(
X − x0

))[
sin
(

2πX
)

+ sin
(

2π
(
X − t

))]
− ν 2Z (42b)

where Z = (J − J0)/2 and X = (x+ x0)/2 + 1/4 and therefore:

dX

dt
= Z (43a)

dZ

dt
= −2π B sin

(
2π
(
X − x0 − 1

4

))[
sin
(

2πX
)

+ sin
(

2π
(
X − t

))]
− ν Z (43b)

One can readily see that (X = x0 + 1
4
, Z = 0), and therefore (x = x0, J = J0), is the

chosen fixed point. The system used for the MMS is therefore close but not identical to
that generating the strange attractor since one has to multiply the potential amplitude
B by the space dependent function sin(2π(X − x0 − 1

4
)).
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B Scaling of MRS error

B.1 Forward and backward transforms

Let us consider a time integration with initial condition x0, stored with a time step h
generating a trajectory (x0, x1, x2, . . . , xn−1, xn) at t = 0, t = h, t = 2 h . . . t = (n− 1) h,
t = n h. We define an approximate trajectory (y0, y1, y2, . . . , yn−1, yn) generated by a
time integration scheme of order 2α and note F the time derivative of x generating the
trajectory and G the function of x to recover the exact trajectory.

xk = xk−1 + h F (xk−1) + h2α+1G(xk−1) (44a)

yk = yk−1 + h F (yk−1) (44b)

Reversing time to step back towards the initial condition we generate the backward tra-
jectories (x̃n, x̃n−1, . . . , x̃2, . . . , x̃1, x̃0) and (ỹn, ỹn−1, . . . , ỹ2, . . . , ỹ1, ỹ0) with transform:

x̃k−1 = x̃k − h F (x̃k)− h2α+1 G(x̃k) (45a)

ỹk−1 = ỹk − h G(ỹk) (45b)

We can now proceed to defining the n step return transforms made of n step forwards
followed by n steps backwards.

B.2 Distance between initial and return point

We are interested in the distance between the upward and downward computed trajecto-
ries typically dk = ỹy − yk. We want to relate dk to dk+1 to determine a series. We split
the contribution to dk into two terms, introducing the distance to the exact trajectory,
and reversible, trajectory xk = x̃k.

dk = ỹk − yk = ỹk − x̃k + xk − yk (46a)

ỹk − x̃k = ỹk+1 − x̃k+1 − h
(
F (ỹk+1)− F (x̃k+1)

)
+ h2α+1G(x̃k+1) (46b)

yk+1 − xk+1 = yk − xk + h
(
F (yk)− F (xk)

)
− h2α+1G(xk) (46c)

One then expands the difference F (ỹk+1)− F (x̃k+1) so that:

F (ỹk+1)− F (x̃k+1) =
(
ỹk+1 − x̃k+1

)
F ′(x̃k+1) (47a)

Similarly, one can expand F (yk)− F (xk):

F (yk)− F (xk) =
(
yk − xk

)
F ′(xk) (47b)

One can then rewrite Eq.( 46b) and Eq.( 46c).

ỹk − x̃k =
(
ỹk+1 − x̃k+1

)(
1− hF ′(x̃k+1)

)
+ h2α+1G(x̃k+1) (48a)

yk+1 − xk+1 =
(
yk − xk

)(
1 + hF ′(xk)

)
− h2α+1G(xk) (48b)

One then obtains the two contributions to the distance dk.

ỹk − x̃k =
(
ỹk+1 − x̃k+1

)(
1− hF ′(x̃k+1)

)
+ h2α+1G(x̃k+1) (49a)(

xk − yk
)(

1 + hF ′(xk)
)

= xk+1 − yk+1 − h2α+1G(xk) (49b)
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At this stage, the assumption h|F ′(xk)| � 1 considerably simplifies the calculation, so
that:

ỹk − x̃k = ỹk+1 − x̃k+1 + h2α+1G(x̃k+1) (50a)

xk − yk = xk+1 − yk+1 − h2α+1G(xk) (50b)

We then obtain the recurrence relationship between the distances dk and dk+1.

dk = dk+1 + bk,k+1 (51a)

bk,k+1 = h2α+1
(
G(x̃k+1)−G(xk)

)
(51b)

Without the previous assumption, the recurrence would also be geometrical, making the
final result a bit more complicated.

d0 = dn +
n−1∑
k=0

bk,k+1 (52)

For a return after n steps one enforces dn = 0 removing the contribution of the purely
geometrical recurrence. In the general case this leaves various contributions from the
coefficients bk,k+1, which are all proportional to h2α+1, hence of the order determined by
the integration scheme. One can then note that:

bk,k+1 = h2α+1
(
G(xk+1)−G(xk)

)
(53a)

n−1∑
k=0

bk,k+1 = h2α+1
(
G(xn)−G(x0)

)
(53b)

Two cases are then found if n is not too large, one can expand G(xn) so that:

d0 =
n−1∑
k=0

bk,k+1 ≈ h2α+1
(
xn − x0

)
G′(x0) ≈ h2α+2

( n−1∑
k=0

F (xk)
)
G′(x0) (54)

In this case the distance d0 scales like h2α+2. In the other case, when n is too large, one
obtains a scaling h2α+1.
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étude du processus de transition et caractérisation des états chaotiques. PhD thesis,
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Global full- f gyrokinetic simulations of plasma turbulence. Plasma Physics and
Controlled Fusion, 49(12B):B173, 2007.

[16] B. Malraison, P. Atten, P. Berge, and M. Dubois. Dimension of strange attractors: an
experimental determination for the chaotic regime of two convective systems. Journal
de Physique lettres, 44:897–902, 1983.

[17] A. V. Nedospasov. The enhancement of edge turbulence in tokamaks by a limiter
current. Physics of Fluids B: Plasma Physics, 5(9):3191–3194, 1993.

[18] Christiane Normand, Yves Pomeau, and Manuel G. Velarde. Convective instability:
A physicist’s approach. Review of Modern Physics, 49:581–624, Jul 1977.

[19] William L. Oberkampf and Christopher J. Roy. Verification and Validation in Sci-
entific Computing. Cambridge University Press, USA, 1st edition, 2010.

[20] William L. Oberkampf and Timothy G. Trucano. Verification and validation in
computational fluid dynamics. Progress in Aerospace Sciences, 38(3):209–272, 2002.

[21] Fabio Riva, Paolo Ricci, Federico D. Halpern, Sébastien Jolliet, Joaquim Loizu, and
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