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Highlights 

 A model was developed to represent outdoors PPB mixed systems. 

 Relevant clades, metabolic routes and environmental conditions were considered. 

 The model included light and temperature dependence and aerobic conditions. 

 The model was calibrated and validated using experimental pilot data. 

 Simulations suggest optimal reactor design and working conditions/strategies. 
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Abstract 

The economic feasibility of purple phototrophic bacteria (PPB) for resource recovery relies on 

using enriched-mixed cultures and sunlight. This work presents an extended Photo-Anaerobic 

Model (ePAnM), considering: (i) the diverse metabolic capabilities of PPB, (ii) microbial 

clades interacting with PPB, and (iii) varying environmental conditions. Key kinetic and 

stoichiometric parameters were either determined experimentally (with dedicated tests), 

calculated, or gathered from literature. The model was calibrated and validated using different 

datasets from an outdoors demonstration-scale reactor, as well as results from aerobic and 

anaerobic batch tests. The ePAnM was able to predict the concentrations of key 

compounds/components (e.g., COD, volatile fatty acids, and nutrients), as well as microbial 
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communities (with anaerobic systems dominated by fermenters and PPB). The results 

underlined the importance of considering other microbial clades and varying environmental 

conditions. The model predicted a minimum hydraulic retention time of 0.5 d
-1

. A maximum 

width of 10 cm in flat plate reactors should not be exceeded. Simulations showed the potential 

of a combined day-anaerobic/night-aerobic operational strategy to allow efficient continuous 

operation. 

 

Keywords 

Resource recovery; wastewater treatment; mechanistic modelling; purple phototrophic 

bacteria 

 

Abbreviations and symbols 

a    Peak irradiance during the zenith  

ADM1   Anaerobic Digestion Model 1 

ASRB    Autotrophic sulphate reducing bacteria 

ALBAZOD  Algae, bacteria, zooplankton, and detritus mixture 

AnMBR   Anaerobic membrane bioreactor 

ASM   Activated Sludge Model 

b    Zenith hour 

BOM   Bureau of Meteorology 

c    Parameter determining the bell width 

CTMI   Cardinal temperature model with inflexion 

COD   Chemical oxygen demand 

DAF   Dissolved air flotation 

DO   Dissolved oxygen 
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ePAnM   Extended Photo-Anaerobic Model 

FIA   Flow injection analysis 

FID   Flame ionisation detector 

GC   Gas chromatography 

HOB   Hydrogen-oxidizing bacteria 

HRT   Hydraulic retention time 

HSRB   Heterotrophic sulphate reducing bacteria 

I   Light intensity 

Iave    Average light intensity in the growth media 

IIN    Limiting function for SIN 

IIP    Limiting function for SIP 

ITAN    Inhibition function for ammonia-N 

ILI   Inhibition function for suppression of heterotrophic metabolism of 

microalgae in the presence of light 

IL   Limiting function for light  

IpH  Inhibition function for pH 

IT   Inhibition function for temperature 

IWA   International Water Association 

KAC   Half saturation constant for phototrophic SAC uptake by XPB 

KL    Light intensity at which km = 0.50·kopt 

kLa    Volumetric mass transfer coefficient 

KVFA   Half saturation constant for phototrophic SVFA uptake by XPB 

KS    Saturation constant 

km    Uptake rate  

kM    Maximum specific uptake rate  
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kM,ac   Maximum photoheterotrophic SAC uptake rate for XPB 

kM,vfa   Maximum photoheterotrophic SVFA uptake rate for XPB 

kopt    Maximal uptake rate  

LED   Light-emitting diode 

NIR   Near infrared 

NXB   N content in biomass 

OD   Optical density 

OLR   Organic loading rate 

PAnM   Photo-Anaerobic Model 

PBR   Photobioreactor 

PCM1   Generalised Physicochemical Model No. 1 

PHA   Polyhydroxyalkanoate 

pHLL    Lower inhibition term 

pHUL    Upper inhibition term 

PPB   Purple phototrophic bacteria 

PXB   P content in biomass 

R
2
   Coefficient of determination 

SAC  Acetate 

SH2   Molecular hydrogen 

SI   Soluble inerts 

SIC   Inorganic carbon 

SIN   Inorganic nitrogen 

SIP   Inorganic phosphorus 

SO   Molecular oxygen 

SORG   Soluble organics 
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SS   Sulphide 

SSO4   Sulphate 

SVFA   Non-acetate VFAs 

SCP   Single-cell protein 

SCOD   Soluble chemical oxygen demand 

Tmax   Temperature above which the growth is assumed to be zero 

Tmin   Temperature below which the growth is assumed to be zero 

Topt   Temperature corresponding to the maximal uptake rate 

TCOD   Total chemical oxygen demand 

TKN   Total Kjeldahl nitrogen 

TN   Total nitrogen 

TP   Total phosphorus 

TS   Total solids 

TSS   Total suspended solids 

UV-VIS   Ultraviolet-visible 

VIS   Visible 

VFA   Volatile fatty acid 

VS   Volatile solids 

VSS  Volatile suspended solids 

XAc   Acetogenic biomass 

XAer   Aerobic heterotrophs biomass 

XAlg   Microalgae biomass 

XASRB  ASRB biomass 

XC   Composites 

XH   Acidogenic biomass 
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XHSRB   HSRB biomass 

XI   Inert solids 

XPB   PPB biomass 

XPred   Aerobic predators 

 

1. Introduction 

Resource recovery is gaining importance in the wastewater treatment sector, which is moving 

away from the traditional “removal and disposal” approach. Biological upconcentration of 

materials and energy via assimilative and/or accumulative partitioning appears as a promising 

alternative to promote this transition, reducing the dissipative removal of organics and 

nitrogen while enabling phosphorus recovery (Batstone et al., 2015). For effective 

competition with traditional technologies, these novel processes must not only provide an 

effective wastewater treatment, but also generate high value-added products (e.g., single-cell 

protein (SCP), fertilisers, hydrogen, polyhydroxyalkanoates (PHA) or pigments) than can 

balance their higher costs, which is particularly relevant for capital intense photobioreactors 

(PBRs). 

Phototrophic mediators have been gaining attention for resource recovery due to their ability 

to use light as energy source for assimilative (vs. oxidative) pollutant removal. Microalgae 

have been extensively researched for both secondary and tertiary treatment, with promising 

results in terms of nutrient (i.e., N and P) removal and recovery efficiencies (Robles et al., 

2020b). Nevertheless, if there is chemical oxygen demand (COD) in wastewaters, algae-based 

processes result in the growth of non-phototrophic flanking organisms, generating a mixed 

community commonly referred to as ALBAZOD (algae, bacteria, zooplankton, and detritus 

mixture). This reduces the COD and N recovery efficiencies (Muñoz and Guieysse, 2006), 

and frequently results in predation by aerobic grazers (Day et al., 2017). Purple phototrophic 
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bacteria (PPB) have appeared in the last decade as a promising alternative, as they are able to 

grow photoheterotrophically when illuminated with near infrared (NIR) light under anaerobic 

conditions, assimilating simultaneously COD and nutrients (Hülsen et al., 2014). 

PPB, consisting mostly of purple sulphur and purple non-sulphur bacteria, perform 

anoxygenic photosynthesis, using light as energy source (mostly in the NIR spectra thanks to 

the presence of bacteriochlorophylls), and a range of electron donors other than water. Under 

anaerobic illuminated conditions, PPB can grow autotrophically, with inorganic compounds 

as donors (e.g., H2, H2S, S0, S2O3
2-

 or Fe
2+

) or via photoheterotrophy, using organic 

compounds such as acetate, propionate, butyrate, or malate as electron donors. PPB can also 

grow in the dark, either anaerobically via fermentation or aerobically via respiration if oxygen 

is present (Zeilstra-Ryalls et al., 1998). The main competitive advantage of PPB under non-

sterile conditions is their ability to grow photoheterotrophically. Effective and competitive 

growth is further facilitated by the uptake of electron donors with relatively low carbon 

oxidation state (e.g., acetate) (Hülsen et al., 2018). Under anaerobic illuminated conditions, 

their high photon utilisation efficiency (i.e., 6-8% vs. < 5% for microalgae (Posten and 

Schaub, 2009)) and their capability to recycle electrons (cyclic electron flow in anoxygenic 

photosynthesis) enable biomass yields around 1.0 g CODbiomass·g CODremoved
-1

 (vs. 0.5 and < 

0.2 g COD·g CODremoved
-1

 for aerobic heterotrophs and anaerobic fermenters (Batstone et al., 

2002; Henze et al., 2002)). Their capability of disposing excess electrons to maintain cell 

homeostasis by diverse mechanisms (e.g., CO2 refixation via the Calvin cycle, PHA 

accumulation or hydrogen production via nitrogenase activity) allows them to regenerate 

reduced cofactors and to grow at yields over 1.0 g C·g C
-1

, depending of the oxidation state of 

the carbon donor (Madigan et al., 2011). 

PPB have been effectively applied for the treatment of a range of wastewaters, including 

domestic (Hülsen et al., 2016b), swine (Kim et al., 2004), poultry processing, red meat, dairy 
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(Hülsen et al., 2018), and sugar refinery wastewaters (Yetis et al., 2000). The pollutant 

removal occurs due to microbial uptake, which implies that adequate COD:N:P ratios in the 

wastewater are crucial to achieve complete nutrient removal. Optimal COD:N:P uptake ratios 

around 100:6-10:1-2 have been reported (Lu et al., 2019; Puyol et al., 2017). Median COD, N 

and P removal efficiencies under illuminated-anaerobic conditions of 76%, 53% and 58% 

have been recently reported (Capson-Tojo et al., 2020a). The same review pointed out that 

most studies to date have been carried out under axenic conditions, using pure cultures and 

under artificial illumination. Although these conditions are necessary to develop a proof-of-

concept and for research purposes, outdoor studies, using mixed PPB cultures under non-

sterile conditions, are required to determine the actual performance under varying 

environmental conditions. 

Bioprocess modelling is a useful tool for the design, study, optimisation, control, and system 

analysis of wastewater treatment processes. The IWA Activated Sludge models (ASM1-3) 

and the IWA Anaerobic Digestion model no.1 (ADM1) or their commercial analogues are the 

most widely applied models for activated sludge and anaerobic digestion processes (Batstone 

et al., 2002; Henze et al., 2000). These models have been an invaluable tool for academic and 

industrial applications, and novel technologies such as PPB-based recovery processes would 

benefit immensely from mechanistic models able to represent accurately these systems. To 

date, mathematical models representing metabolic processes on a cellular level (e.g., electron 

transport chain reactions or metabolic network modelling) are available for single applications 

with individual PPB species (Hädicke et al., 2011; Klamt et al., 2008). Nevertheless, these 

models are not practical for mixed communities. Instead, mechanistic biochemical process 

modelling can be considered as a simpler option to represent functional groups on a 

community level (Batstone et al., 2019). Most mechanistic models for PPB have been directed 

towards the prediction of hydrogen production via PPB (Akbari and Mahmoodzadeh Vaziri, 
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2017; Gadhamshetty et al., 2008; Obeid et al., 2009; Zhang et al., 2015), and so far, only one 

mechanistic model exists to represent wastewater treatment and nutrient recovery by PPB: the 

Photo-anaerobic model (PAnM) developed by Puyol et al. (2017). This model (with PPB as 

single biomass component) accurately represented laboratory-scale performances in 

controlled environments (e.g., under constant artificial illumination and temperature, and fed 

with synthetic media). Nevertheless, mechanistic models applicable to future full-scale PPB-

based processes must consider the complex nature of the waste streams to be treated, the 

varying environmental conditions that the reactors will be exposed to (e.g., changing 

temperatures and light intensities, day-night cycles, etc.), and potential synergies and 

competitions with other microorganisms (non-axenic conditions must be assumed when 

treating waste streams). 

Such models do exists for other phototrophic organisms (i.e., microalgae), and they can serve 

as building body for the development of PPB models. Mixed-culture comprehensive 

mechanistic models for microalgae have been developed, particularly to consider the 

interactions between microalgae and heterotrophic bacteria (Casagli et al., 2021; Solimeno et 

al., 2019; Solimeno and García, 2017). As they represent a convenient compromise between 

prediction capabilities and simplicity, biochemical mechanistic models are the most 

commonly applied models (Darvehei et al., 2018; Shoener et al., 2019). Nevertheless, 

dedicated models have also been developed to consider other relevant factors, such as fluid 

heterogeneity in PBRs (e.g., via computational fluid dynamics (Ranganathan et al., 2022)), 

outdoors solar irradiance and light distribution throughout the culture (Acién Fernández et al., 

1997; Béchet et al., 2013), or temperature prediction in the reactors (e.g., heat transfer 

modelling (Todisco et al., 2022)). Although none of these approaches has been applied for 

PPB systems, this technology could clearly benefit from them. 

For an economically feasible application of PPB for resource recovery from wastewater, 
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outdoors operation is required, using sunlight as energy source (Capson-Tojo et al., 2020a). 

The feasibility of outdoors PPB growth in bioreactors for resource recovery from wastewater 

has been confirmed recently. Using outdoors flat plate PBRs (80-100 L of total volume) 

working in batch, removal efficiencies for soluble COD (SCOD), total nitrogen (TN), and 

total phosphorus (TP) of 20-60%, 2-30%, and 3-40% were reported, respectively (from 

poultry-processing and piggery wastewater). Biomass productivities up to 18 g·m
-2

·d
-1

 were 

achieved in those experiments, with consistent crude protein contents of 65% (Hülsen et al., 

2022a). The potential of this technology and the current stage of technological advancement 

call for the development of a mechanistic model able to assist with reactor design, operational 

strategy assessment, troubleshooting, and decision-making. 

This article presents a detailed mechanistic model applicable for mixed PPB cultures grown 

outdoors, as an extension of the PAnM model (ePAnM). Relevant microbial clades interacting 

with PPB have been included (e.g., aerobic heterotrophs, acidogenic and acetogenic 

fermenters, aerobic predators, heterotrophic and autotrophic sulphate reducing bacteria 

(HSRB and ASRB) and microalgae). PPB metabolism has been extended, including 

fermentative, aerobic chemoheterotrophic, and photoautotrophic growth. Inhibitory effects 

have been added, including the effect of oxygen or acid/basic pH values on phototrophic 

metabolism (Capson-Tojo et al., 2021, 2020a). To do so, main physico-chemical processes 

have also been considered (e.g., speciation and chemical equilibria of main species, or gas-

liquid mass transfer). The impact of varying temperatures and light intensities on PPB growth 

rates, as well as light attenuation through the culture, have also been included (Capson-Tojo et 

al., 2022). The model was calibrated and validated using data from different operational 

periods from a demonstration-scale flat plate reactor (Hülsen et al., 2022b), and with batch 

tests. 
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2. Material and methods 

This section focuses on model structure and development. Accurate descriptions of the reactor 

operation, analytical methods, and general data analysis (i.e., parameter calibration, biomass 

yields calculation, estimation of daily light distributions from average solar exposures, and 

estimation of kinetic parameters and inhibitory constants) can be found in appendices to the 

article. 

2.1. Model description and Photo-Anaerobic Model extension 

The ePAnM was developed to be compatible with the IWA ADM1 and ASM series, 

following the IWA benchmark (Batstone et al., 2002; Henze et al., 2000; Jeppsson et al., 

2006). Organics are expressed in g COD·m
-3

, nutrients are expressed in g N·m
-3

 or g P·m
-3

, 

sulphur as g S·m
-3

, and inorganic carbon in kmol C·m
-3

. Monod kinetics were chosen as rate 

equations for biological uptake processes, and first order processes for hydrolysis and decay. 

If not specified otherwise, Monod inhibition functions were used in limiting or inhibitory 

expressions. 

Anaerobically, both the photoheterotrophic and photoautotrophic capabilities of PPB were 

considered, using VFAs (i.e., acetic acid or other VFA) and molecular hydrogen or hydrogen 

sulphide as electron donors, respectively. H2S (and thus S) metabolism was added due to its 

relevance when sulphate is present, such it is the case in urban wastewater streams or some 

saline effluents (Durán et al., 2020; Hülsen et al., 2019). As PPB are not able to reduce 

sulphates, two other bacterial clades capable of doing so (i.e., HSRB and ASRB) were added, 

based on Durán et al. (2020). Known intermediate S species such as thiosulphate or elemental 

sulphur have been omitted for simplicity (Egger et al., 2020). The fermentative capabilities of 

PPB were also included. In addition, both acidogenic and acetogenic bacterial clades were 

added, as their faster fermentation rates compared to PPB ensure their presence (e.g. uptake 

rates of 15-30 d
-1

 for fermenters vs. 0.074 d
-1

 for PPB) (Batstone et al., 2002; Puyol et al., 
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2017). The presence of fermentative bacteria in PPB-based processes treating complex 

wastewater has been confirmed (Alloul et al., 2021; Hülsen et al., 2022a, 2018, 2016b). 

The aerobic capabilities of PPB were also included, using VFAs and organics as carbon and 

electron sources. Aerobic heterotrophic biomass was included as main PPB competitors under 

the presence of oxygen (Capson-Tojo et al., 2021; Izu et al., 2001). Aerobic conditions were 

included for two main reasons: (i) the strong inhibition of the phototrophic capabilities of PPB 

by oxygen, and (ii) the potential relevance of alternate anaerobic/aerobic processes in PPB 

technology (Hülsen et al., 2022b). Aerobic predators (grazers) were included due to 

experimental evidence of their relevance under continuous aeration (Capson-Tojo et al., 

2021). 

Microalgae were included in the model to consider potential phototrophic competitors, as well 

as combined processes where both PPB and algae could coexist (Hülsen et al., 2022a), a 

system that arises when providing unfiltered (sun)light (Hülsen et al., 2022a). A simplified 

version of the model presented in Wágner et al. (2016) was implemented, considering directly 

the processes responsible for microalgal growth. To separate microalgae from PPB growth, 

the model considered two different light inputs, one at visible (VIS) wavelengths (400-700 

nm; allowing algae growth) and another at NIR wavelengths (>700 nm; preferable for PPB). 

The single form of electron disposal considered in the ePAnM under anaerobic conditions is 

CO2 refixation via the Calvin Cycle. This is because most wastewaters have an excess of 

nutrients, which excludes the occurrence of other electron disposal mechanisms, such as 

hydrogen production (by-product of N fixation) or PHA accumulation (modification of 

standard anabolism) (Capson-Tojo et al., 2020a; Hülsen et al., 2016b). No Poly-P 

accumulation nor any other form of P storage were considered. Nitrification and 

denitrification processes were not considered, as they are only relevant under predominantly 

aerobic conditions and long sludge retention times. Thus, the model assumes that N and P 
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removals occur due to assimilation.  

The PAnM (Puyol et al., 2017) considers PPB as single biomass, including their fermentative 

and phototrophic capabilities and assuming constant environmental conditions. The ePAnM 

considers many other biomass components, processes, inhibitory factors, and varying 

environmental factors. All are described below. 

2.1.1. Components, processes, and inhibitory factors 

The ePAnM consists of 21 components (plus 7 to consider ionic equilibria and CO2 

desorption), 30 biochemical processes, and 8 inhibition factors. The corresponding Petersen 

matrix is shown in Table 1. The soluble components considered in the ePAnM are: non-

acetate VFAs (SVFA), acetate (SAC), inorganic carbon (SIC), molecular hydrogen (SH2), 

molecular oxygen (SO), inorganic nitrogen (SIN), inorganic phosphorus (SIP), soluble organics 

(SORG), soluble inerts (SI), sulphate (SSO4) and sulphides (SS). Regarding particulate 

components, those are: PPB biomass (XPB), aerobic heterotrophs biomass (XAer), acidogenic 

biomass (XH), acetogenic biomass (XAc), aerobic predators (XPred), HSRB biomass (XHSRB), 

ASRB biomass (XASRB), microalgae biomass (XAlg), composites (XC), and inert solids (XI). 

The model includes the following processes: hydrolysis (1; in contrast with the PAnM, 

separated from fermentation via the inclusion of SORG and fermentative clades); 

photoheterotrophic uptake by XPB of SVFA and SAC (2-3); fermentation by XPB (4-5); aerobic 

uptake of SAC, SVFA and SORG by XPB (6-8); aerobic uptake of SAC, SVFA and SORG by XAer (9-

11); SORG uptake by XH (12); SVFA uptake by XAc (13); autotrophic uptake of SH2 by XPB (14); 

uptake by XPred (15-16); SAC and SVFA uptake by XHSRB (17-18); autotrophic uptake of SH2 by 

XASRB (19); autotrophic uptake of SS by XPB (20); autotrophic and heterotrophic uptake by 

XAlg (21-22); and biomass decay (23-30). 

Regarding inhibition factors, Monod inhibition functions as limiting expressions were 

considered for SIN (IIN) and SIP (IIP). Inhibitions due to ammonia-N (ITAN), oxygen (IO) or light 
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were (IL) were also considered (see Table 1). ITAN inhibition was included in the model for 

PPB uptake processes, according to Puyol et al. (2020, 2017). Considering the ammonia-N 

levels that are commonly reached in wastewater streams, and according to previous literature, 

ammonia-N inhibition was not considered for any other microbial clade (Batstone et al., 2002; 

Durán et al., 2020; Henze et al., 2000; Wágner et al., 2016). The presence of oxygen was 

considered inhibitory for all anaerobic processes (i.e., fermentation, and photoheterotrophy 

and photoautotrophy by PPB) (Batstone et al., 2002; Capson-Tojo et al., 2021; Durán et al., 

2020). An inhibition term was also included to represent the suppression of the 

chemoheterotrophic metabolism of microalgae in the presence of light (ILI) (Wágner et al., 

2016). The inhibitory terms associated to light (IL), pH (IpH) and temperature (IT) are 

discussed in Section 2.1.2. 

When available, process stoichiometry, kinetic expressions, initial kinetic parameters, and 

stoichiometric coefficients were obtained from the literature. The ASM1 was used as base for 

aerobic growth (Henze et al., 2000), and the ADM1 for acidogenic and acetogenic processes 

(Batstone et al., 2002). The work of Durán et al. (2020) was used as base to represent non-

PPB S-related processes. Different studies were used for PPB-related processes (Capson-Tojo 

et al., 2022, 2021; Egger et al., 2020; Puyol et al., 2020, 2017). Predation was modelled 

according to Ni et al. (2011) and Moussa et al. (2005), and microalgae growth according to 

Wágner et al. (2016). When no information was available, parameters were calculated 

theoretically or determined experimentally (see coming sections). Continuity equations were 

applied over COD, C, N, P and S for stoichiometric calculations. SORG was assumed to consist 

on a mixture of sugars, aminoacids, and fatty acids in equal proportions (compositions from 

Batstone et al. (2002)). SVFA was assumed to consist of 50% propionate and 50% butyrate. As 

in the ADM1, SIN and SIP stoichiometry was determined by N and P balances over each 

process, respectively. 
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Other than initial values of state variables and the corresponding numbers from the influent in 

continuous systems, the model uses as inputs: (i) the concentrations of species in equilibrium 

with acids or bases included in the pH model (i.e., anionic VFA conjugates, bicarbonate, free 

ammonia, biphosphate and bisulfide), (ii) the temperature in the reactor, (iii) the influent flow 

rate (L·d
-1

), (iv) the incident light (W·m
-2

), (v) the VIS fraction in incident light, and (vi) the 

NIR fraction in incident light. The hydraulic retention time (HRT), the volumetric mass 

transfer coefficient (kLa), and the concentrations of metallic cations/anions in the reactor 

(assumed as constant (Batstone et al., 2002)) are also values that must be specified. CO2 

liquid-gas transfer was also included due to its influence on the pH (as in the ADM1), 

assuming atmospheric pressure on the gas/liquid interface (Batstone et al., 2002). 

The corresponding stoichiometric balance files and MATLAB codes can be found in the 

supplementary material and GitHub (https://github.com/GabrielCapson/Extended-PAnM.git). 

2.1.2. Changing environmental conditions: influence of light intensity, temperature, and pH 

The effect of varying light intensities and temperatures on phototrophic uptake rates (for both 

microalgae and PPB) was represented using uncoupled models (Béchet et al., 2013). The 

Steele’s equation was used to represent the influence of light intensity on uptake rates of algae 

(Béchet et al., 2013; Ruiz-Martínez et al., 2016; Wágner et al., 2016). For PPB, a Monod 

inhibition function was used (no photoinhibition was observed in common illumination 

ranges) (Capson-Tojo et al., 2022; Puyol et al., 2017). The general expression is as follows:  

 

𝑘𝑚 = 𝑘𝑜𝑝𝑡 · 𝐼𝐿(𝐼) = 𝑘𝑜𝑝𝑡 ·
𝐼

𝐼+𝐾𝐿

    (1) 

 

Where 𝑘𝑚 (d
-1

) is the uptake rate, 𝐼 is the light intensity (W·m
-2

), 𝑘𝑜𝑝𝑡 (d
-1

) is the maximal 

uptake rate and 𝐾𝐿 is light intensity at which 𝑘𝑚 = 0.50 ∗ 𝑘𝑜𝑝𝑡 (W·m
-2

). 
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Light attenuation through the culture was modelled using the Lambert-Beer equation, 

applying an empirical power relationship to model the effect of biomass concentration on the 

attenuation coefficients (Capson-Tojo et al., 2022). The average light intensity in the growth 

media (Iave) was used as input for biological growth (Béchet et al., 2013). 

The influence of temperature on uptake rates of phototrophic organisms was modelled using 

the cardinal temperature model with inflexion (CTMI), which has been successfully applied 

previously for indoors and outdoors microalgal cultures (Bernard and Rémond, 2012; Ruiz-

Martínez et al., 2016). The CTMI is of the form: 

 

    𝑘𝑚 {

0 𝑖𝑓 𝑇 <  𝑇𝑚𝑖𝑛

𝑘𝑜𝑝𝑡 · 𝐼𝑇(𝑇) 𝑓𝑜𝑟 𝑇𝑚𝑖𝑛 < 𝑇 <  𝑇𝑚𝑎𝑥

0 𝑖𝑓 𝑇 >  𝑇𝑚𝑎𝑥

        (2) 

𝐼𝑇(𝑇) =
(𝑇− 𝑇𝑚𝑎𝑥)·(𝑇− 𝑇𝑚𝑖𝑛)2

(𝑇𝑜𝑝𝑡− 𝑇𝑚𝑖𝑛)·[(𝑇𝑜𝑝𝑡− 𝑇𝑚𝑖𝑛)·(𝑇− 𝑇𝑜𝑝𝑡)−(𝑇𝑜𝑝𝑡− 𝑇𝑚𝑎𝑥)·(𝑇𝑜𝑝𝑡+ 𝑇𝑚𝑖𝑛−2·𝑇)]
   (3) 

 

𝑇𝑚𝑖𝑛 (°C), 𝑇𝑚𝑎𝑥 (°C) are the temperatures below and above which the growth is assumed to 

be zero. 𝑇𝑜𝑝𝑡 (°C) is the temperature corresponding to the maximal uptake rate 𝑘𝑜𝑝𝑡 (d
-1

). 

The influence of temperature on the uptake and decay rates of non-phototrophic microbial 

clades was modelled using the Arrhenius equation, via interpolation of kinetic parameters 

(Henze et al., 2000). Values of aerobic growth and decay rates were collected from Henze et 

al. (2000). Values of Arrhenius factors for hydrolysis and uptake and decay rates for 

fermenters (i.e., acidogens and acetogens), HSRB, and ASRB were taken from Durán et al. 

(2020). 

The pH was modelled via charge balance, as in the ADM1 (Batstone et al., 2002), but 

including also the H2PO4
-
/HPO4

2-
 and HS

-
/S

2-
 acid-base pairs. Due to its relevance as inhibitor 

and for correct pH calculations, non-ideal corrections were applied to calculate the 
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concentration of free ammonia nitrogen, as in Capson-Tojo et al. (2020b). The effect of 

temperature on equilibrium constants was considered via the van’t Hoff equation. The effect 

of pH over uptake rates was modelled according to an empirical lower inhibition function 

(Batstone et al., 2002): 

 

𝐼𝑝𝐻(𝑝𝐻) = {

 1 𝑖𝑓 𝑝𝐻 > 𝑝𝐻
𝑈𝐿

𝑒
−3·(

𝑝𝐻− 𝑝𝐻𝑈𝐿

𝑝𝐻𝑈𝐿−𝑝𝐻𝐿𝐿
)

2

 𝑖𝑓 𝑝𝐻 < 𝑝𝐻
𝑈𝐿

   (4) 

 

Where 𝑝𝐻𝐿𝐿 and 𝑝𝐻𝑈𝐿 are the lower and upper inhibition terms, i.e., the values where 

inhibition is complete and where there is no inhibition, respectively. 

Inhibition due to low pH was only considered for PPB, HSBR and ASBR, according to 

previous recommendations and results (Capson-Tojo et al., 2020a; Durán et al., 2020). The 

values of the respective limits can be found in Table S1, together with the stoichiometric and 

kinetic parameters used. pH inhibition for aerobic heterotrophs and acidogenic/acetogenic 

fermenters was not included due to their known robustness to relatively wide pH ranges, far 

from the values that are expected in PPB-dominated systems. Upper inhibition limits could be 

added if deemed necessarily by using an empirical upper and lower inhibition function 

(Batstone et al., 2002). 

A description of how the required batch tests were carried out can be found in Appendix A. 

2.1.3. Model limitations and other relevant assumptions 

Despite considering the growth of aerobic heterotrophs (and the potential presence of 

oxygen), nitrification and denitrification processes have been omitted. This is because the 

reactors are expected to be operated with excess organic carbon, and generally oxygen limited 

conditions (Capson-Tojo et al., 2021). Therefore, the concentrations of nitrates/nitrites are 

expected to be negligible in PPB-dominated systems (also due to short sludge retention 
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times). When treating streams rich in nitrogen oxides, denitrification/nitrification processes 

could be incorporated into the model, as in the ASM series (Henze et al., 2000). Uptake of 

nitrates and nitrites by microalgae has also been omitted, considering only ammonia-N as N 

source for algae growth. 

Most systems for outdoors PPB growth are expected to be open to the atmosphere (i.e., open 

PBRs or ponds). Nevertheless, the generation of gases other than CO2 has not been 

considered. Hydrogen production might occur to some extent when treating effluents limited 

in NH4
+
-N, but even in this situation, H2 will be rapidly consumed by PPB if light is available 

(Capson-Tojo et al., 2020a). In addition, hydrogen production by PPB is not included in the 

model, as most potential waste streams have excess nutrients (Hülsen et al., 2018, 2016b). 

The production of methane has also been omitted, as the HRTs and sludge retention times that 

are commonly applied in PPB-based reactors are much lower than those in anaerobic 

digestion systems, causing washout of slow-growing methanogens. NH3 stripping is excluded 

for the same reasons as in the ADM1 (i.e., solubility is sufficiently high at the < 5,000 mg 

N·L
-1

 range). The formation of precipitates is not considered in the ePAnM either, but could 

be included as in the IWA Generalised Physicochemical Model No. 1 (PCM1) (Batstone, 

2021). 

Extreme climates may need further corrections to consider the influence of temperature on 

uptake and decay rates for non-phototrophic clades. As an interpolation, the Arrhenius 

coefficients are most accurate between the temperature range that has been used for their 

calculation. As example, the coefficients from Durán et al. (2020) were determined via 

dynamic calibration with experimental data from an anaerobic membrane bioreactor 

(AnMBR) working between 14 and 33 ºC. Therefore, the application of those coefficients out 

of this range might lead to over/underestimations of the uptake rates. In addition, microbial 

shifts due to adaptation to different temperatures have not been considered. Re-calibration 
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might be needed in this case. 

The current model is not applicable to nutrient-limited streams where hydrogen production or 

PHA accumulation will occur to relevant extents. These processes can be added easily, as 

readily models representing both PHA accumulation (Henze et al., 2000) and hydrogen 

production via photofermentation already exist (Akbari and Mahmoodzadeh Vaziri, 2017; 

Gadhamshetty et al., 2008; Obeid et al., 2009; Zhang et al., 2015). 

The photoheterotrophic uptake of sugars or alcohols by PPB is much slower than the 

fermentation kinetics of these organic compounds by acidogenic/acetogenic clades. Therefore, 

the uptake of sugars/alcohols via photoheterotrophy has not been considered in the model, as 

the occurrence of this process is expected to be minimal in enriched cultures. If needed, the 

concentration of these compounds could be lumped with that of SVFA, as presented in the 

PAnM. 

The presence of hydrogen-oxidizing bacteria (HOB) has been omitted for three main reasons: 

(i) they will only be present when hydrogen and oxygen are available simultaneously under 

non-illuminated conditions (situation not likely to occur); (ii) microbial analysis have shown 

that HOB are not present in PPB systems in significant proportions (Hülsen et al., 2022b, 

2018, 2016b); (iii) hydrogen transfer into the gas phase is not considered in the model, so 

significant COD losses via this route are not accounted for. 

2.2. Model calibration and validation using data from a demonstration-scale outdoors flat 

plate photobioreactor 

The ePAnM was calibrated using data from a demonstration-scale PBR treating fermented 

poultry-processing wastewater outdoors (see Figure S1 for a simplified schematic of the 

plant) (Hülsen et al., 2022b). These data were chosen because they are representative of 

outdoors upscaled systems treating complex waste matrixes under varying environmental 

conditions (temperatures of 9.2-25 ºC and peak daily solar irradiances of 325-788 W·m
-2

). 
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Therefore, this dataset was ideal to assess the accuracy of the ePAnM to represent outdoor 

PPB systems. Data from daily cycle studies (samples every 2-4 h during over 24 h) was used 

for calibration to ensure an accurate representation of the daily fluctuations occurring in the 

plant. The description of the demonstration-scale PBR and its operation can be found in 

Appendices B and C. Appendix D describes the processes followed for parameter calibration 

and uncertainty analysis. 

Data from a different operational period from the PBR was used for validation, as well as 

results from different batch tests under both anaerobic and aerobic conditions. The description 

of the operational conditions of the PBR and the batch tests can be found in Appendix C, and 

the characteristics of the treated wastewater in Table S2. 

2.3. Simulating different scenarios: optimal operational conditions and day-anaerobic/night-

aerobic continuous operation 

The resulting model was used to simulate scenarios to estimate optimal operational conditions 

(i.e., HRT) and design parameters (i.e., reactor width). In addition, a potential scenario where 

a continuous-outdoors process can be maintained by combining anaerobic-photosynthetic 

growth during daytime and aerobic-chemoheterotrophic growth during night hours was 

simulated. The precise conditions assumed for each simulation are described in Appendix E.  

 

3. Results and discussion 

3.1. Parameter estimation and model calibration 

3.1.1. Estimation of kinetic parameters at different temperatures 

The specific acetate uptake rates corresponding to the experiments at different temperatures 

are shown in Figure 1, together with the resulting CTMI curve. The corresponding COD 

consumption/production curves can be found in Figure S2. 

The selected model was able to accurately describe the effect of temperature on the acetate 
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uptake rates by PPB (R
2
 of 0.97). The resulting maximum kM (2.68 g COD·g COD

-1
·d

-1
) is in 

agreement with previous reported values (Capson-Tojo et al., 2021; Puyol et al., 2017), which 

further confirms the validity of the results. The resulting temperature parameters given by the 

CTMI were 8.41 ℃ for Tmin, 30.2 ℃ for Topt, and 52.0 ℃ for Tmax. An optimal growth 

temperature around 30 ℃ is common for bacteria present in mesophilic environments 

(Batstone et al., 2002; Henze et al., 2000). Nevertheless, the wide range between the 

minimum and maximum values for the obtained CTMI and the high value of Tmax is far less 

common (see Bernard and Rémond (2012) for examples for microalgae). Indeed, previous 

studies have shown efficient operation of PPB reactors at peak temperatures over 50 ℃ 

(Hülsen et al., 2022b, 2022a). Similarly, studies at low temperatures have proven that PPB 

can efficiently treat wastewater even at temperatures below the Tmin reported here, although at 

lower uptake rates (Dalaei et al., 2019; Hülsen et al., 2016a). As explained previously, 

adaptation of microbes to extreme environments has not been considered in this work, and the 

provided parameters must be recalibrated when working under conditions far from the ones 

applied here (as for mesophilic and thermophilic temperatures ranges in the ADM1). 

Despite the acute nature of the tests performed (without allowing for microbial adaptation), 

the obtained results underline the remarkable resilience of PPB to temperature changes, with 

uptake rates practically unchanged between 20 to 40 ℃, and showing a wide survival range. 

3.1.2. Model calibration using pilot data 

To account for diurnal and nocturnal variations, data from a daily cycle study carried out in 

the demonstration-scale PBR was used for model calibration. Table 2 shows the resulting 

values of the kinetic parameters related to PPB phototrophic uptake and biomass 

compositions, which were calibrated to fit the experimental results (i.e., concentrations of 

SAC, SVFA, SIN, and SIP). The corresponding plots, including modelled and experimental data, 

are shown in Figure 2, as well as the 95% confidence intervals. The complete parameter set 
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can be found in Table S1. 

The calibrated model was able to predict the dynamics of both organic matter and nutrients, 

maintaining reasonable confidence intervals. The obtained parameters were well in line with 

those previously reported in the literature (see Table 2; (Capson-Tojo et al., 2022; Puyol et al., 

2017)), although the kM values were slightly higher than those presented in the PAnM. The 

confidence intervals of kM,ac were mostly within 95% confidence regions (Figure S3), further 

confirming the applicability of the parameters and their importance for accurate predictions. 

Regarding KS values, the value of KAC was similar to widely accepted numbers. In the case of 

KVFA, several calibration attempts at different initial points showed that the solution was 

insensitive to its value. That is the reason why KVFA was set to a default value (arbitrarily low 

(Puyol et al., 2017)) and kM,vfa was calibrated. In agreement with previous literature, these 

results show that acetate uptake is faster than for other VFAs, but also has a higher KS. 

Regarding biomass composition, the resulting values were similar to those from the literature. 

The small confidence intervals (particularly for NXB) confirm the relevance of properly 

determining these values for an accurate prediction of the nutrient concentrations. 

The corresponding parity plots (R
2
 of 0.97-0.99; Figure S4) further confirm the validity of the 

model and parameters. Small confidence intervals also serve to identify the related processes 

as highly relevant. 

3.2. Model validation 

3.2.1. Application of the model to predict batch reactors: anaerobic vs. aerobic 

To validate the calibrated ePAnM, data from batch reactors under both anaerobic and aerobic 

conditions were used. Figure 3 shows the corresponding experimental and modelling results. 

Starting with the anaerobic conditions (Figures 3A, 3C, and 3E), the model was able to 

accurately represent the dynamics of both organic matter (as SCOD) and nutrients (for both N 

and P). This confirms that the calibrated parameters shown in Table 2 can be used to predict, 
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not only the dynamics in anaerobic batch PPB reactors, but also the nutrient composition of 

the resulting biomass. The slightly lower predicted final nutrient concentrations (particularly 

for N) might be related to the release of N from particulates present in the inoculum (not 

accounted for in the simulation). The TCOD concentrations were also accurately predicted, 

indicating that the model was able to reproduce biomass growth (Figure S5). 

The calibrated model was also able to represent the faster uptake kinetics under aerobic 

conditions (Figures 3B, 3D, and 3F), and the lower biomass yields due to respiration (see 

Figure S5 for TCOD and DO concentrations). We note that the DO profiles were not a fit 

target. We simply wanted to provide enough oxygen to ensure aerobic conditions. If needed, 

kLa values could be dynamically calibrated to improve the DO predictions. The slightly higher 

differences between the modelled and the experimental data for nutrient consumption 

(particularly for P uptake) might be related to the change in growth mode, i.e., aerobic vs. 

anaerobic, as different metabolisms might differ in nutrient uptake ratios. As the model was 

calibrated using data from an anaerobic reactor, this might lead to small errors under aerobic 

conditions. If needed, the parameters corresponding to the biomass composition grown under 

aerobic conditions could be recalibrated. This would result in more accurate predictions of the 

nutrient profiles under aerobic conditions.  

The accurate prediction of the fast nutrient release after total SCOD consumption (around 0.5 

d), indicates that the model was able to account for the relevance of predators under aerobic 

conditions (Figure 3). This agrees with previous results obtained aerating PPB enriched 

cultures (Capson-Tojo et al., 2021). 

The model also predicted the predominant clades under the tested conditions, accounting for 

wash-out and out-competition. On the one hand, anaerobic-illuminated conditions resulted in 

growth of PPB, together with fermenters generating the VFAs that PPB consumed. On the 

other, aerobic conditions resulted in PPB outcompetition by aerobic heterotrophs due to the 
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faster growth rates of the later (Figure S6), and eventually lead to the development of aerobic 

grazers. These results agree with those obtained experimentally (Capson-Tojo et al., 2021).  

Altogether, the results confirm that the proposed model can be applied to accurately represent 

the performance of PPB-enriched cultures under both aerobic and anaerobic conditions in 

batch reactors. This is highly relevant, not only to represent these systems separately, but also 

to account for competition between PPB and aerobic heterotrophs in open cultivations system, 

which might be exposed to oxygen via diffusion (e.g., open ponds). These results further put 

the controversy around the option of non-sterile aerobic PPB cultivation to rest. 

3.2.2. Model validation using pilot data 

Long-term validation was done on a separate data set from the outdoors demonstration-scale 

PBR fed with poultry-processing wastewater. During the modelled period, the temperature 

ranged between 9.2 ºC and 25 ºC, and the peak light intensity between 325 W·m
-2

 and 788 

W·m
-2

. The OLR also varied considerably, according to the COD concentration in the 

influent, ranging from 448 to 1,807 mg COD·L
-1

·d
-1

 (see Figure S7 for environmental 

conditions and substrate loads; see Appendix D.3 for the calculation of the daily light 

distributions). 

Despite these wide variations in environmental conditions and influent characteristics, the 

model was able to represent the COD and nutrient concentrations in the PBR (Figure 4; see 

Figure S8 for XC, XI, and SI concentrations in the reactor and the corresponding modelled 

results). The overall concentrations of SCOD and TCOD were accurately predicted. Despite 

their generally low values, the daily variations in SAC and SVFA concentrations were also 

predicted reasonably well (although the sampling frequency did not allow to assess daily 

fluctuations). The model was able to simulate the almost complete consumption of SAC during 

most of the modelled period, caused by the availability of light at the time of sampling (10 

am-12 pm). In addition, the SAC and SVFA increases during periods of low availability (i.e., 
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early morning and late afternoon) were also represented accurately. It is important to consider 

that feeding only occurred during daytime. The few unmatching points showing slightly 

higher VFA concentrations can be explained by transient mixing issues in the reactor, which 

lead to temporary VFA peaks due to solids accumulation, which the model could not predict. 

Finally, the SIN and SIP profiles were accurately predicted, confirming the applicability of the 

calibrated biomass compositions under anaerobic conditions in flat plate PBRs (Table 2). 

The accurate predictions of the COD and nutrient concentrations indicate that the model was 

also able to predict the reactor performance in terms of removal efficiencies and biomass 

productivities. The latter are shown in Figure S9. The obtained values (13-28 g COD·m
-2

·d
-1

 

considering only volatile solids) are in agreement with those commonly estimated from 

SCOD removal values (Hülsen et al., 2022b). These predicted productivities are difficult to 

determine experimentally if the wastewater has high solid contents, as additional 

measurements (e.g., pigments contents) are required to differentiate between solids as 

biomass and solids remaining from the influent (Hülsen et al., 2020). Therefore, the model 

predictions can be used to estimate the actual biomass fraction in the harvested solids, which 

in turn can be used to estimate the biomass composition and thus its final value (e.g., crude 

protein and ash contents when considering its application as SCP). The model can also predict 

overall productivities, including inert fractions. This is extremely useful, as it can be used to 

forecast if a waste stream will result in a profitable product or not (see Figure S10 for the 

modelled volatile/total solid ratio (VS/TS) and the biomass yields). 

Other than the overall biomass productivities, the model also predicted the structure of the 

microbial communities (always considering that correlations between biomass decay and 

yield values exist). The modelled period (under anaerobic-illuminated conditions) resulted in 

predominant PPB growth, accompanied by fast-growing fermenters that generated VFAs from 

the complex organics entering the PBR (Figure S9). This symbiotic relationship, where 
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fermenters produce VFAs and PPB consume them, has been previously reported in processes 

treating wastewater using PPB enriched cultures (Hülsen et al., 2022b, 2022a, 2016b). 

Considering the microbial complexity of these systems, including bacterial clades other than 

PPB in the model is crucial to obtain an accurate prediction of the behaviour of these 

processes. This is not only useful to represent the process dynamics, but also to estimate the 

composition of the obtained biomass, and, most importantly, to troubleshoot and predict 

working/design parameters and situations where PPB might be outcompeted by other 

microorganisms. Further work should focus on the validation of these results using different 

reactor configurations (e.g., open ponds). 

3.3. Simulation of different scenarios 

3.3.1. Predicting optimal operational conditions and reactor design in flat plate PBRs 

The presented ePAnM was used to estimate potential optimal operational and design 

parameters in PPB flat plate PBRs, namely the HRT and the reactor width (varied 

independently). The corresponding VFA removal efficiencies at steady state (used as 

performance criteria) are shown in Figure 5. 

Starting with the HRT (Figure 5A), minimum values of 0.5 d must be kept if PPB biomass 

washout is to be avoided, thus keeping an efficient process performance. This implies that in 

semicontinuous outdoors flat plate reactors fed only during daytime, an overall HRT of 1 d 

must be kept, which agrees with previous limits presented in the literature (Hülsen et al., 

2022b). 

Figure 5B shows the VFA removal performance at different widths of a flat plate PBR at 

common averages daily light intensities (150 W·m
-2

) and influent COD concentrations (1,500 

mg COD·L
-1

) (using the attenuation parameters from Capson-Tojo et al. (2022)). The 

performance fell drastically at widths over 10-20 cm, due to light attenuation through the 

reactor, mostly caused by light absorption by pigmented biomass (Capson-Tojo et al., 2022). 
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It must be considered that this dimension limit will vary according to many factors, such as 

the PPB biomass concentration, or the material used to build the reactor and the width of the 

walls themselves. These factors can potentially have a significant effect on light attenuation 

by the reactor walls (e.g., via light reflection and refraction), and must therefore be 

considered. To allow for a comparison with open systems, and according to previous results 

using similar materials (Capson-Tojo et al., 2022), these simulations were carried out 

considering that no light was lost when passing through the reactor walls. In addition, it was 

assumed that light was equally received at both sides of the reactor, and that no solids other 

than biomass were present in the reactor. Therefore, these results represent an ideal situation 

for a flat plate system, and the provided dimension limit (reactor width of 10-20 cm) is likely 

to be more constrained in reality, especially when only illuminated from one side (or the 

reactor top).  

Simulations at different OLRs (Figure S11A) suggest that, provided that the total HRT values 

are above 0.5 d, and that the pH is maintained within non-inhibitory ranges (achieved in the 

simulations via high N contents in the wastewater), the OLR limit will be given by the 

maximum biomass concentration allowing efficient light distribution in the reactor. Therefore, 

no substrate-induced inhibition due to excessive OLRs is expected when considering common 

COD concentrations in most wastewaters. Nevertheless, for proper nutrient recovery, the 

COD:N:P ratio in the wastewater is crucial to avoid reactor overloading and acidification. In 

this case, if the N and P contents are too low for a given COD concentration, the fermenters in 

the reactor will generate VFAs, which will not be consumed by PPB because nutrient 

deficiency will limit effective phototrophic growth. A sufficient N concentration is crucial, as 

it is not only needed for growth, but it also helps to keep the pH above acidifying values, as 

NH3-N is generated during fermentation. This effect can be observed in simulations carried 

out at different COD:N ratios (Figure S11B). Obviously, the alkalinity of the media and 
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potential buffering pairs present will also impact this phenomenon. It is interesting to consider 

that some of the electron disposal mechanisms of PPB occurring at low N contents (e.g., 

nitrogenase-derived H2 production or PHA accumulation) might alleviate the acidification 

effect at high COD:N ratios. Nevertheless, the slow kinetics of these processes compared to 

VFA generation by heterotrophic fermenters will reduce their potential impact on the pH via 

VFA consumption. 

3.3.2. Simulating day-anaerobic/night-aerobic continuous operation 

To predict the effects of continuous day and night feeding in 12 h intervals of anaerobic-

illuminated and aerobic-dark conditions (recently proposed in the literature (Hülsen et al., 

2022b)), simulations of this day-anaerobic/night-aerobic combined approach at different 

HRTs (1 and 2 d) were performed. The resulting concentrations of VFAs, nutrients (e.g., N 

and P), and PPB biomass are shown in Figure 6. For comparison purposes, the corresponding 

results from fully aerated and fully anaerobic equivalent reactors are also presented. 

Starting with the fully aerated reactor, the results at any tested HRTs show that, while this 

option can provide an effective removal of COD, the corresponding nutrient removal is much 

lower than in the other options (i.e., intermittent aeration of fully anaerobic). This is a 

consequence of the predominant aerobic conditions, that result in PPB outcompetition by 

aerobic heterotrophs (see Figure 6; Figure S12 for concentrations of aerobes), with lower 

biomass yields. For the same reason (and due to growth of aerobic predators), biomass 

productivities were also significantly reduced in the fully aerated reactor (Figure S12). 

Basically, under full aeration the PBR is effectively transformed into an expensive high-rate 

activated sludge reactor. 

The fully anaerobic system showed a typical behaviour in PPB-dominated reactors. During 

daytime, light enabled photoheterotrophic PPB growth, efficiently removing both COD and 

nutrients at biomass productivities over 15 g VS·m
-2

·d
-1

 (vs. 6 g VS·m
-2

·d
-1

 in the fully 
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aerated system, VS being volatile solids). Nevertheless, during night hours no effective 

growth occurred, which resulted in accumulation of organics and nutrients. At lower HRTs, 

this accumulation phenomenon was more pronounced, resulting in higher VFA and nutrient 

peaks. Because of this reduced treatment performance, lowering the HRT did not result in 

considerably higher productivities (Figure S12), with average values even slightly higher at an 

HRT of 2 d. 

The combined day-anaerobic/night-aerobic process was able to exploit the benefits of both 

redox conditions. As in the fully aerated system, the combined process was able to maintain 

negligible VFA concentrations in the reactor at all times, meaning that night aeration was able 

to efficiently remove organics during the hours lacking sunlight. Regarding nutrients, the 

predominance of aerobic metabolism at night resulted in a lower average nutrient removal 

than in the fully anaerobic system. Nevertheless, this effect can be minimised by maintaining 

low HRTs (see Figure 6). This positive effect of low HRTs can be attributed to the washout of 

aerobic grazers/predators (they have lower growth rates compared to both PPB and aerobic 

heterotrophs), as well as to regular aerobic/anaerobic interval changes inhibiting the growth of 

predators during daytime. The predatory effect can also be observed when looking at the PPB 

concentrations, which are higher at an HRT of 1 d (Figure 6E). Therefore, low HRTs avoided 

the nutrient release caused by predation. Indeed, the average nutrient concentrations (and thus 

removal efficiencies) in the combined and the fully anaerobic reactors at 1 d HRT were 

almost equal. Interestingly, simulation results show that PPB were responsible, not only for 

treatment during daytime, but also during night hours. This indicates that PPB performed 

efficient heterotrophic growth during the night, which resulted in overall outcompetition of 

aerobic heterotrophs thanks to the higher concentrations of PPB biomass in the reactor 

(resulting from the anaerobic-illuminated periods). This can be confirmed by the high 

concentrations of PPB biomass in the reactor (Figure 6) and by the low concentrations or 
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aerobes (Figure S12). The average biomass productivities in the combined process (of around 

12-13 g VS·m
-2

·d
-1

) were also similar to those achieved in the fully anaerobic reactor at an 

HRT of 1. 

Applying this combined aerobic/anaerobic process, Hülsen et al. (2022b) observed the 

emergence of aerobic bacteria (e.g., Brachymonas sp.) in the PBR, which was likely caused 

by over aeration and long HRT. Here, we confirm the general applicability (theoretically) of 

this concept. Nevertheless, additional experiments, including the effects of aerobic/anaerobic 

intervals on the growth of common aerobic grazers, are needed to study and confirm the 

feasibility of the proposed day-anaerobic/night-aerobic continuous operation. The presented 

results show that this approach has a great potential to improve the performance of PPB 

outdoors PBRs, which would extend the wastewater treatment from semi-continuous to 

continuous day and night operation (highly relevant for various industries). 

3.4. Implications for industrial application and further development 

The presented model is the first mechanistic model that can be applied for simulation of PPB-

enriched cultures grown outdoors, considering the main bacterial clades involved in these 

systems and varying environmental conditions. The obtained results show that, after 

calibration, the model was able to represent both batch and semicontinuous processes in batch 

(flasks) and flat plate reactors. Varying environmental conditions did not affect the prediction 

capabilities of the model.  

The model can be directly applied to estimate the operational costs and the benefits of PPB 

outdoors reactors under the aforementioned configurations and different operational 

conditions. Recalibration and validation might be needed for other reactor types (e.g., open 

ponds, bubble columns, or packed bed reactors). The model was able to predict the biomass 

productivities (including microbial communities and thus protein contents) and the effluent 

characteristics, which could be directly applied to estimate the revenues from the SCP-rich 
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product and the discharge costs savings. In addition, the model could also be applied to 

predict the amount of extra COD that could be necessary to further eliminate the N and P 

concentrations in the effluent (as in Puyol et al. (2017)), allowing to further detail the 

economic feasibility of this approach, even when using different COD sources. 

The simulations show that PPB can withstand high substrate loads, provided that the 

illuminated HRT is maintained above 0.5-0.6 d
-1

, avoiding PPB washout. The OLR by itself 

might not be a limitation, but the resulting high biomass concentrations at high loads will 

surely cause light availability issues, limiting the applicable OLR. In an analogous situation to 

that commonly occurring in anaerobic digesters, PPB reactors might be acidified, which will 

stop the process due to VFA accumulation and the consequent pH drop. High COD 

concentrations in the influent might result in VFA build-up when the COD:N ratios are too 

high, as VFA cannot be used for microbial growth. In terms of reactor design, model 

predictions show that reactor widths around 10 cm provide optimal treatment capabilities (for 

flat plate PBRs), which is in agreement with the literature on these reactors (Capson-Tojo et 

al., 2022).  

PPB process can be operated at low HRTs and elevated OLRs (due to their relatively fast 

growth rates), which is a clear advantage when compared to other options for resource 

recovery. Compared to other phototrophic alternatives, such as microalgae, PBRs/ponds based 

on the latter are commonly operated at HRTs around 6 d, resulting in large reactor volumes, 

with high capital costs and/or large areal requirements (Robles et al., 2020a). Nevertheless, a 

potential drawback of PPB processes compared to microalgae is the lower light penetration in 

PPB reactors, which eventually results in smaller reactor widths or pond depths. However, 

this could be partly compensated by the generally lower light requirements of PPB. 

Microalgal ponds are commonly around 30 cm deep (Robles et al., 2020a), a value that should 

likely be reduced to 10-15 cm in PPB systems if an efficient VFA removal is to be 
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maintained. This might limit the performance of PPB ponds (also due to continuous oxygen 

diffusion), restricting their design possibilities and favouring more expensive PBRs. Further 

experimental research should be carried out to confirm optimal spacing. If the ePAnM is to be 

used for ponds, dedicated validations (and probably recalibrations), should be performed. 

The model also predicted that, while continuous aeration results in PPB outcompetition (in 

agreement with the literature (Capson-Tojo et al., 2021)), the combined day-anaerobic/night-

aerobic continuous operation is a potential strategy to improve the performance of outdoors 

PPB reactors, particularly at low HRTs. Other approaches, such as a combined NIR/VIS 

illuminated reactors, where PPB grow photoheterotrophically and algae further polish the 

effluent, could also be tested. Experiments should be carried out to evaluate these options.  

Further modelling developments should focus on predicting the product profile depending on 

influent characteristics and operational parameters, simulating the concentrations and 

production rates of other products (e.g., hydrogen, PHA, or carotenoids). This could allow the 

prediction of the most suitable product (or combinations of) based on the influent 

characteristics, while optimising the working conditions to maximise the desired 

productivities. The development of a combined metabolic-mechanistic model (as in Santos et 

al. (2020)) would be an interesting approach for this purpose. The calibration of the model 

under different conditions/configurations would also allow to extend the model applicability 

and accuracy, validating its utilization in other reactor types. Similarly, estimation of kinetic 

parameters with different substrates and temperatures ranges, and particularly at extremely 

low and high light intensities, should also be performed. While a lumped parameter 

implementation (mixed tank) has been shown to be suitable for both flat plate and batch 

reactors here, this can be applied in a distributed parameter configuration to optimise light 

delivery, particularly relevant for non-incident light. Models developed during years of 

microalgae research could be translated to suit PPB reactors (Acién Fernández et al., 1997; 
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Béchet et al., 2013). Other modelling approaches previously applied for microalgae and not 

evaluated here, such as computational fluid dynamics (Ranganathan et al., 2022) or heat 

transfer modelling (Todisco et al., 2022) could also be adapted for PPB reactors, aiding in 

reactor design and process optimization. 

 

4. Conclusions 

The ePAnM accurately predicted the experimental data and showed the relevance of 

considering varying environmental conditions and other microbial clades. Results suggest that 

a minimum HRT of 0.5-0.6 d
-1

 should be kept, and that high COD:N ratios can lead to 

acidification. The width of flat plate reactors should not exceed 10 cm. Simulations showed 

the potential of a day-anaerobic/night-aerobic approach in outdoor systems, which could 

enable efficient and continuous wastewater treatment, while maintaining high biomass 

productivities in a PPB dominated reactor. Future research and model development should be 

directed towards the prediction of product distribution in PPB. 
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Figure 1. Maximum phototrophic specific uptake rates at different temperatures for enriched 

purple phototrophic bacteria cultures, and corresponding cardinal temperature model with 

inflexion curve. The error bars represent 95% confidence intervals. 
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Figure 2. Experimental values from the cycle study used for model calibration and modelling 

results (including 95% prediction confidences) for (A) acetate (SAC), (B) other volatile fatty 

acids (SVFA), (C) inorganic nitrogen (SIN), and (D) inorganic phosphorus (SIP).  
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Figure 3. Experimental and modelled concentrations of soluble COD (SCOD), inorganic N 

(SIN), and inorganic P (SIP) from the batch reactors used for model validation: (A, C, E) 

anaerobic and (B, D, F) aerobic conditions. Dashed lines indicate 95% confidence intervals. 
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Figure 4. Experimental values and modelling results for the period from the demonstration 

flat plate reactor used for model validation. The concentrations of (A) soluble COD (SCOD), 

(B) total COD (TCOD), (C) acetate (SAC), (D) other volatile fatty acids (SVFA), (E) inorganic 

N (SIN), and (F) inorganic P (SIP) are shown. 

 

Figure 5. Simulation results showing the total volatile fatty acid (VFA) removal efficiencies 

in a flat plate reactor at different (A) hydraulic retention times (HRTs), and (B) reactor 

widths. Anaerobic, continuously illuminated conditions were assumed, with a filtered near 

infra-red fraction of 100%. Continuous feeding was provided, with an influent total VFAs 

concentration of 600-1,500 mg COD·L
-1

. The simulation time was 30 d. 
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Figure 6. Simulation results showing the concentrations of (A) acetate (SAC), (B) other 

volatile fatty acids (SVFA), (C) inorganic nitrogen (SIN), (D) inorganic phosphorus (SIP), and 

(E) purple phototrophic bacteria biomass (XPB) in an outdoors flat plate reactor working at a 

hydraulic retention time of (A1-E1) 1 d, and of (A2-E2) 2 d. Three aeration strategies are 

compared: no aeration, intermittent aeration during night-time, and continuous aeration. The 

reactor was continuously fed with an influent containing 600 mg COD·L
-1

 of volatile fatty 

acids. A natural illumination profile was assumed, with an incident near infra-red fraction in 

the reactor of 100%. 
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Table 1. Petersen matrix of the ePAnM. S represents soluble compounds, X particulates and the subscripts i and j denote compound and process.
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* See section 2.1.2 
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Table 2. Parameters calibrated to fit the experimental results from the cycle study carried out 

in the demonstration-scale flat plate PBR.  

Symbol Parameter Value 
Confidence 
interval 

Units 
Reference 
value

1 

Kinetic parameters related to PPB phototrophic uptake  

kM,ac Maximum photoheterotrophic 
SAC uptake rate for XPB 

2.735 (1.709 -3.760) mg COD· mg 
COD

-1
·d

-1
 

2.4 

kM,vfa Maximum photoheterotrophic 
SVFA uptake rate for XPB 

1.680 (1.349-2.010) mg COD· mg 
COD

-1
·d

-1
 

1.4 

KAC Half saturation constant for 
phototrophic SAC uptake by XPB 

17.80 (16.83-18.77) mg COD·L
-1

 20 

KVFA Half saturation constant for 
phototrophic SVFA uptake by XPB 

0.5 - mg COD·L
-1

 0.5 

Composition of biomass  

NXB Nitrogen content in biomass 0.0932 (0.067-
0.1195) 

mg N·mg 
COD

-1
 

0.086 

PXB Phosphorus content in biomass 0.0147 (0.002- 
0.027) 

mg P·mg 
COD

-1
 

0.015 

1. From the PAnM presented in Puyol et al. (2017). 
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