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ABSTRACT

This paper presents a thorough validation study of
the transitional flow around the 6:1 prolate spheroid
at three different angles of attack and Re = 6.5 ×
106. The flow is simulated using the local-correlation
transition models γ and γ − Reθ coupled to k − ω

SST (2003) turbulence model. The transition scenario
slightly changes from Tollmien-Schlichting to crossflow
dominated for the angles of attack studied in this paper.
For crossflow transition inclusion two different criteria
are considered: the helicity He criterion proposed by
DLR coupled to γ − Reθ and a recalibrated version of
the T c1 criterion coupled to γ . The T c1 crossflow
criterion, originally proposed by Menter & Smirnov
(2014), is a local approximation of the well-known C1
criterion by Daniel Arnal (1984). The C1 criterion is
evaluated locally through auxiliary functions expressed by
the solution of the Falkner-Skan-Cooke (FSC) equations.
In the following, an original recalibration of the T c1 is
presented. A local approximation of the sweep angle
is included in the criterion formulation in order to
achieve better results on non-wing-like geometries. The
performance of both γ and γ−Reθ transition models, with
their respective crossflow transition criterion, is therefore
discussed for the 6:1 prolate spheroid highlighting
strengths and weaknesses of the transition models current
formulations.

INTRODUCTION

Understanding, predicting and controlling laminar to
turbulence transition is nowadays a main challenge in
Computational Fluid Dynamics (CFD). Indeed, there are
several practical applications that deal with low/moderate
Reynolds numbers, such as aerial and marine unmanned
vehicles, small submarines, but also wind turbines. For
these applications, transitional effects are important, if not
dominant, and Reynolds averaged Navier-Stokes (RANS)
turbulence models fail to predict transitional flow features.
In the last decade, the local-correlation transition model
(LCTM) concept by Menter & Langtry has known a huge

success. The RANS transition models γ −Reθ , Menter
and Langtry (2012), and γ , Menter et al. (2015), are today
widely used. The latter, γ , was proposed by Menter et
al. as a drastic simplification of γ − Reθ : the transport
equations for the transition variables are reduced from
two to one, because only local quantities are used in
the empirical correlations, and the model formulation is
Galilean invariant.

RANS transition models are widely preferred in
practical applications to Direct Numerical Simulations
(DNS) and Large Eddy Simulations (LES) approaches,
because of the reduced computational costs. Nevertheless,
RANS approaches are not able to provide the real
transition physics. As a matter of fact, the aim of these
transition models is not to describe transition physics, but
rather to identify the different regions of the flow and to
predict accurately the transition location. All the physics
is contained in empirical correlations, that account for
a specific transition mechanism. As initially presented,
γ and γ − Reθ models only accounted for bypass and
streamwise natural transition due to Tollmien-Schlichting
(T-S) waves. In the past years, several approaches have
been proposed by different research groups to account
for transition due to stationary crossflow (CF) waves.
These instabilities occur in three-dimensional boundary
layers and in low free-stream turbulence environments.
So far, the helicity He based criterion, proposed by Grabe
et al. (2018) as an extension of γ −Reθ , is the one that
has known the biggest success. It uses the helicity as
indicator of the crossflow strength. Indeed, crossflow
instabilities produce a system of co-rotating vortices
within the boundary layer, aligned with the local velocity
vector. The calculation of the helicity uses the local
velocity vector, thus the criterion is not Galilean invariant.
For this reason, in 2014, Menter & Smirnov proposed the
T c1 criterion, a crossflow criterion that uses the derivative
of the normalised vorticity in the wall-normal direction as
indicator of the crossflow strength. The T c1 is the local
reconstruction of the renowned C1 criterion proposed by
Arnal et al. (1984) and based on the crossflow Reynolds
number Reδ2:



Reδ2 =
U1eδ2

ν
where δ2 =−

∫
∞

0

W1

U1e

dy. (1)

U1 and W1 are the streamwise and crosswise velocity
components. U1e =

√
(U2

e +W 2
e ) is the velocity at the

edge of the boundary layer.
The C1 criterion reads as:

Reδ2

Reδ2t
= 1, (2)

where the Reynolds number value at the transition
location, Reδ2t , is not unique, but it depends on the
longitudinal shape factor H12. In a three-dimensional
boundary layer, H12 is defined as:

H12 =
δ ∗

θ
, (3)

δ
∗ =

∫
δ

0
1− U1

U1e

dy, (4)

θ =
∫

δ

0

(
1− U1

U1e

) U1

U1e

dy, (5)

where δ ∗ and θ are the displacement and momentum
thickness, respectively. Finally, the crossflow Reynolds
number at transition onset is given by the expression:

Reδ2t =

{
300
π

arctan
(

0.106
(H12−2.3)2.052

)
, for 2.3 < H12 6 2.7,

150, for H12 6 2.3.
(6)

The T c1 criterion, as formulated by Menter & Smirnov,
does not use explicitly the velocity vector. Therefore
it preserves the Galilean-invariant formulation of γ

transition model.
In the following discussion, the transition

models γ − Reθ and γ mathematical equations are
presented, as well as the respective crossflow transition
criteria, the one based on He and the T c1. Attention is
focused especially on the latter. First, the T c1 formulation
proposed by Menter & Smirnov is discussed, highlighting
its limitation. Thus, the new original re-calibration of the
T c1 is proposed, that extends the criterion application to
more complex 3D geometries.

The transition models performance is then tested
on the 6:1 prolate spheroid. This geometry serves
as simple surrogate for axisymmetric bodies, such as
airplane fuselage and submarine hulls, as well as engine
cowling on helicopters. The 6:1 prolate spheroid
at incidence is one of the most investigated, both
experimentally and numerically, test case, because it
exhibits all the complex physics associated with crossflow

separation. The complexity of crossflow separation stands
in its character: it does not originate from a unique
singularity point nor line, and it does not strongly interact
with the local flow field. Indeed, the flow is nearly
attached to the surface ahead separation. Crossflow
separation can then be identified as a boundary layer
rolling around itself and it is usually referred to as
open separation. It is characterized by an envelope of
converging streamlines, following the definition in Surana
et al. (2006), used also in Wetzel et al. (1998). An
extensive review on the 6:1 prolate spheroid can be found
in Andersson et al. (2019) and Fu (2019). Experimental
measurements can be found in Fu et al. (1994) and Wetzel
and Simpson (1998). These experiments, performed in the
1990s, were used by different groups for the assessment
of (U)RANS, DES and LES, Kim et al. (2003), Wikström
et al. (2004), Fureby and Karlsson (2009), Fureby and
Norrison (2019).

In the present context, however, the interest lies
on the characterization of the flow at the surface and the
prediction of laminar-to-turbulence transition within the
boundary layer. This is often a flow feature that is not
discussed. In fact, being the focus concentrated more on
separation than flow transition, the boundary layer is often
tripped, forcing turbulence close to the leading edge and
avoiding transitional effects. Even when the geometry
is not tripped, the majority of the experimental data in
literature are the vicinity of the separation location and/or
in the wake. So far, the only experimental database that is
exploitable1 and fully describes transition at the surface
was provided in Kreplin et al. (1985). The transition
path is reconstructed through the measurements of wall
shear stress magnitude and direction. The experimental
data from Kreplin are here used for the validation of
the two transition models with their crossflow criteria.
γ − Reθ and γ predictions are compared for the 6:1
prolate spheroid at 5◦ and 15◦ angles of attack for Re =
6.5 × 106. These two test cases were chosen within
the NATO/AVT-313 collaboration group in occasion of
the 2021 Workshop devoted to the 6:1 prolate spheroid
geometry. γ transition model with the recalibrated T c1
criterion is also tested for 30◦ angle of attack, for which
transition on the windward side is entirely dominated by
crossflow waves.

ISIS-CFD AT A GLANCE

The solver ISIS-CFD, available as a part of the
FINETM/Marine computing suite distributed by Cadence
Design Systems, Inc., is an incompressible multiphase
unsteady Reynolds-averaged Navier-Stokes (URANS)
solver, mainly devoted to marine hydrodynamics. It is

1Other experimental campaigns for crossflow transition were presented in Ahn (1992), nevertheless for the untripped geometry the effects of
gravity acting on the oil mixture did not allow to show distinct flow patterns.



based on a fully-unstructured (face-based) finite volume
discretization with specific functionalities needed for
multiphase flows and industrial applications, see Queutey
and Visonneau (2007), Leroyer and Visonneau (2005),
Wackers et al. (2012) and Wackers et al. (2017).
The method features several sophisticated turbulence
models: apart from the classical two-equation k-ε
and k-ω models, the anisotropic two-equation Explicit
Algebraic Reynolds Stress Model (EARSM), as well
as Reynolds Stress Transport Models (SSG/LRR). All
models are available with wall-function or low-Reynolds
near wall formulations. Hybrid RANS/LES turbulence
models based on Detached Eddy Simulation (DES-SST,
DDES-SST, IDDES) are also implemented and have been
validated on automotive flows characterized by large
separations, see Guilmineau et al. (2013). The two γ −
Reθ , γ transition models equipped with crossflow criteria
have been recently included and validated in Rubino
(2021). Laminar-to-turbulence transition simulations
presented in the discussion are for single fluid steady
flows. Convective fluxes of transition, turbulence and
momentum equations are discretized using AVLSMART
scheme, a NVD diagram discretization scheme, based on
the third-order QUICK scheme, Leonard (1979).

LOCAL CORRELATION TRANSITION MODELS γ

AND γ−REθ MATHEMATICAL FORMULATIONS

This section is devoted to the mathematical formulation
of the local correlation transition models (LCTM) γ−Reθ

and γ . The aim is to recall the main terms, important for
the upcoming discussion.

γ−Reθ Formulation

The intermittency, γ , transport equation is given by:

∂ (ργ)

∂ t
+

∂ (ρu jγ)

∂x j
= Pγ −Eγ +

∂

∂x j

[(
µ +

µt

σγ

)
∂γ

∂x j

]
,

(7)
where the intermittency production term Pγ is defined as:

Pγ = ca1FlengthρS(γFonset)0.5(1− ce1γ). (8)

S is the mean strain magnitude, ca1 and ce1 are model
constants. Pγ ∼ 0 until the local vorticity Reynolds
number ReV exceeds the critical momentum thickness
Reynolds number Reθc , as determined through the

function Fonset. The latter is built as:

ReV =
ρy2S

µ
, (9)

Fonset,1 =
ReV

2.193Reθc

, (10)

Fonset,2 = min(max(Fonset,1,F4
onset,1),2), (11)

Fonset,3 = max
(

1−
(RT

2.5

)3
,0
)
, (12)

Fonset = max(Fonset,2−Fonset,3,0), (13)

where
RT =

ρk
ωµ

(14)

is the eddy viscosity ratio. Dividing the vorticity Reynolds
number by 2.193Reθc ensures ReV to have a maximum
of one within the boundary layer. Reθc is an empirical
correlation, determined with respect to numerical flat
plate experiments. The correlation is function of the
solution of the second transport equation Reθt . Fonset,2,
Eq.(11), assures a rapid change from zero to one, as the
onset transition criterion Fonset,1 > 1 is met. Fonset,3,
Eq.(12), keeps active the production term of γ throughout
the transition process, as the eddy viscosity ratio RT
increases. Flength is an empirical correlation function
of Reθt , and it controls the transition length. The
destruction/relaminarization term Eγ is defined as:

Eγ = ca2ρΩFturbγ(ce2γ−1), (15)

where Ω is the vorticity rate magnitude, ca2 and ce2 are
constants. The function Fturb is meant to deactivate the
destruction/relaminarization term outside of the laminar
boundary layer and it depends on the eddy viscosity ratio
RT . The boundary conditions for γ are zero normal flux at
the wall and 1 at the inlet to avoid any contamination of
the free-decay of turbulence variables in the free-stream.
γ is enforced to be equal to 0.02 at the wall. This
lower bound does not impact the production of turbulence
kinetic energy in the viscous sub-layer.

The transport equation for the transition
momentum thickness Reynolds number Reθt is:

∂ (ρReθt )

∂ t
+

∂ (ρu jReθt )

∂x j
=Pθt +

∂

∂x j

[
σθt

(
µ+µt

)
∂Reθt

∂x j

]
.

(16)
The source term Pθt is defined as:

Pθt = cθt

ρ

t
(Reθt −Reθt )(1−Fθt ). (17)

Through Pθt , Reθt is forced to be equal to the local
value outside the boundary layer, Reθt , obtained from an
empirical correlation. In the boundary layer the function
Fθt is 1, such that the non-local empirical quantity Reθt is



diffused within the boundary layer from the free-stream.
The solution of this transport equation is then the local
Reynolds number Reθt . The empirical correlation for Reθt

is based on the pressure gradient parameter λθ , defined
as:

λθ =
ρθ 2

µ

dU
dS

, (18)

where dU
dS is the velocity derivative along the streamline

direction:
dU
dS

=
uiu j

U2
∂ui

∂x j
, (19)

and the turbulence intensity Tu:

Tu = 100

√
2k/3
U

. (20)

The boundary conditions for Reθt are zero flux normal
at wall. Its value at the inlet depends on the empirical
correlation for Reθt , supposing zero-pressure gradient.
The intermittency that enters in the coupling with the
chosen turbulence model is the effective intermittency
defined as :

γe f f = max(γ,γsep), (21)

where

γsep = min
(

s1 max
(

0,
(

ReV
3.235Reθc

)
−1
)

Freattach,2
)

Fθt ,

(22)
with s1 constant. This modification is needed to account
for separation-induced transition. Through Eq.(21), the
intermittency is allowed to be bigger than one when
laminar separation occurs, boosting the production of
turbulence kinetic energy downward the separation point.

The turbulence model used for the coupling is
the k−ω SST (2003), Menter et al. (2003). Hereafter,
only the modification due to the transition model coupling
are reported. The detailed turbulence model formulation
can be found in the original reference. γe f f is multiplied
by the production and destruction terms of turbulence
kinetic energy transport equation, as follows:

∂ (ρk)
∂ t

+
∂ (ρu jk)

∂x j
= P̃k− D̃k +

∂

∂x j

[(
µ +µtσk

)
∂k
∂x j

]
,

(23)

P̃k = γe f f ·Pk, (24)
D̃k = min(max(γe f f ,0.1),1)Dk. (25)

The production term Pk is computed using the
Kato-Launder modification (Pk = µtSΩ), Kato and
Launder (1993). Dk = β ∗ωk is the original destruction
term of the turbulence model. The equation for the

turbulence frequency ω rests unchanged:

∂ (ρω)

∂ t
+

∂

∂x j

(
ρU jω− (µ +σω µt)

∂ω

∂x j

)
=

γρΩ
2−βρω

2 +2(1−F1)
ρσω2

ω

∂ω

∂x j

∂k
∂x j

.

(26)

Nevertheless, the blending function F1 in Eq.(26),
responsible of the switching from k − ω to k − ε , is
reformulated. It is forced to be equal to one in the laminar
region and it is redefined as:

F1 = max(F1orig,F3), (27)

F3 = e(
Ry
120 )

8
, Ry =

ρy
√

k
µ

, (28)

where F1orig is the definition of F1 in the k−ω SST (2003)
model.

γ model
In γ transition model formulation, the transport equations
are reduced from two to one. All the empirical
correlations that enter the model are now computed using
only local quantities. The transport equation for the
intermittency reads as:

∂ (ργ)

∂ t
+

∂ (ρu jγ)

∂x j
= Pγ −Eγ +

∂

∂x j

[(
µ +

µt

σγ

)
∂γ

∂x j

]
.

(29)
The intermittency source term Pγ is constructed as:

Pγ = Fonset[Flength(ρS(1− γ)γ)], (30)

where Flength is set to the constant value 100. The
function Fonset is built as:

Fonset,1 =
ReV

2.2Reθc

, (31)

Fonset,2 = min(Fonset,1,2.0), (32)

Fonset,3 = max
(

1−
(

RT

3.5

)3

,0
)
, (33)

Fonset = max(Fonset,2−Fonset,3,0). (34)

In this formulation, Reθc in Eq.(31) is still given by an
empirical correlation, but it is function of local quantities:
the local turbulence intensity TuL and pressure gradient
parameter, λθ ,L. The turbulence intensity within the
boundary layer is expressed as:

TuL = min
(

100

√
2k/3
ωy

,100
)
, (35)

while the local pressure gradient parameter is expressed
by:

λθ ,L =−7.57 ·10−3 dv
dy

y2

ν
+0.0128, (36)



where dv
dy is the wall-normal derivative of the wall-normal

velocity component v of the velocity vector −→u . It is
computed as:

dv
dy
≡ ∇(−→n ·−→u ) ·−→n . (37)

The constant 0.0128 in Eq.(36) accounts for the fact
that dv

dy is not zero in the middle of the boundary
layer, where transition occurs, for zero-pressure gradient
flows. The use of dv

dy comes from two-dimensional flow
considerations. The relaminarization/destruction term Eγ

depends on the magnitude of the absolute vorticity rate
and it is defined as:

Eγ = ca2ρΩγFturb(ce2γ−1). (38)

Finally, in the coupling with k−ω SST (2003) turbulence
model, as for γ−Reθ , only the production and destruction
terms of k, Eq.(23), are modified. The turbulence kinetic
energy production term is given by the sum of two
different terms. A primary production term P′k is defined
as:

P′k = γPk, (39)

where Pk is also computed using Kato-Launder
modification. Then, an additional production term Plim

k
is included to account for separation-induced transition
and it is defined as:

Plim
k = 5Ck(max(γ−0.2,0))(1− γ)F lim

on (max(3CSEPµ−µt ,0))SΩ,

(40)
where

F lim
on = min

(
max

(
ReV

2.2 ·1100
−1,0

)
,3

)
, (41)

and CSEP and Ck are constants. The modified destruction
term is given by:

D′k = max(γ,0.1) ·Dk, (42)

where Dk comes from the original k − ω SST (2003)
turbulence model. The blending function between k−ω

and k− ε formulations, F1, is reformulated as in γ−Reθ .
The boundary conditions for γ are the same as for the
transport equation for the intermittency in γ−Reθ .

The transition models equations, as presented
above, account for bypass and streamwise transition,
either due to T-S waves or separation-induced.
Nevertheless, the present study aims to analyze the flow
around the 6:1 prolate spheroid at incidence, configuration
for which crossflow instabilities play a dominant role. The
two crossflow criteria chosen in this study are discussed in
the following section. In order to describe the philosophy
behind T c1 crossflow criterion and its new recalibration,
the Falkner-Skan-Cooke (FSC) equations are introduced.
This set of equations is the key link between local and
non-local quantities (Reδ2,H12, ...).

FALKNER-SKAN-COOKE (FSC) EQUATIONS

The Falkner-Skan-Cooke (FSC) are the extension of the
two-dimensional laminar boundary layer Falkner-Skan
equations by considering the spanwise velocity
component for a flow over an infinitely yawed wedge
at zero angle attack, Cooke (1950). Fig.(1) presents an
infinite swept wing geometry. Two different coordinate
systems are identified: the wing-attached (x,y,z), with x
aligned with the chordwise direction, and the reference
system (x1,y,z1), where x1 is aligned with the external
inviscid streamline. The three-dimensional boundary
layer equations system for the infinite swept wing, i.e.

the derivatives along the span is zero
(

∂

∂ z = 0
)

, are:

∂U
∂x

+
∂V
∂y

= 0, (43)

U
∂U
∂x

+V
∂U
∂y

=Ue
dUe

dx
+ν

∂ 2U
∂y2 , (44)

U
∂W
∂x

+V
∂W
∂y

= ν
∂ 2W
∂y2 . (45)

with boundary conditions:

U =V =W = 0 at y = 0, (46)
U →Ue and W →We as y→ ∞. (47)

Figure 1: Infinite swept wing reference systems used for
the formulation of the FSC equations.

It is supposed that the inviscid chordwise velocity at the
boundary layer edge Ue follows a potential law in the
coordinate x, normal to the leading edge, and the spanwise
velocity (parallel to the leading edge) We is constant.
These two components can be written as:

Ue ∼U∞

( x
L

)m
, (48)

We = const, (49)



where L is the characteristic length and U∞ is the
free-stream longitudinal velocity. m is the streamwise
pressure gradient and it is expressed as:

m =
x

Ue

dUe

dx
. (50)

Once introduced the Blasius similarity variable η , defined
as:

η = y

√
U∞(m+1)

2νL

( x
L

)(m−1)/2
, (51)

and given the stream function Ψ:

Ψ =

√
2U∞νL
m+1

( x
L

)(m+1)/2
f (η), (52)

such that U = ∂Ψ

∂y , V = − ∂Ψ

∂x , the continuity equation is
automatically satisfied and Eq.(44) becomes:

f ′′′+ f f ′′+β (1− f ′2) = 0, (53)

where β is the Hartree parameter associated to m by the
relation:

β =
2m

m+1
. (54)

The dash ′ in Eq.(53) denotes the differentiation with
respect to η . On the other hand, given W = Weg(η),
Eq.(45) becomes:

g′′+ f g′ = 0. (55)

Eq.(53)-(55) are the Falkner-Skan-Cooke equations, with
boundary conditions:

f , f ′,g→ 0 for η → 0, (56)
f ′,g→ 1 for η → ∞. (57)

The solutions f ′ and g can be combined into the
dimensionless streamwise and crosswise velocity
components, non-dimensionalized with respect to the
velocity magnitude at the edge of the boundary layer
U1e . Their expression is given by:

U1/U1e = f ′ cos(φ)2 +gsin(φ)2, (58)
W1/U1e = (g− f ′)cos(φ)sin(φ), (59)

where φ is the sweep angle, i.e. the angle of the inviscid
flow direction with respect to the chordwise direction at
the edge of the boundary layer. This angle is constant
along the wall normal height of the boundary layer and it
is defined such that:

tan(φ) =
We

Ue
. (60)

According to the definition in Eq.(59), W1 = 0 for φ = 0◦

and φ = 90◦, but also for zero-pressure gradient flows,
because g− f ′ = 0. The last condition does not occur in
real physical flows, because crossflow velocity also exists
for zero-pressure gradients three-dimensional flows.

TC1 CRITERION

Arnal’s C1 criterion in Eq.(2) can be rewritten in the form:

Reδ2

f (H12)150
= 1, (61)

where f (H12)150 is the value of the crossflow Reynolds
number Reδ2t at the transition onset.

Menter and Smirnov (2014) propose to split the
C1 criterion, as expressed in Eq.(61), in three different
terms, each one accounting separately for the parameters
that affect the crossflow transition process. The criterion
can, then, be expressed as:

Reδ2

f (H12)
∼ F(H12)XRestream. (62)

The function F(H12) = 1
f (H12)

takes into account the
pressure gradient in the streamwise direction, X is a
measure of the crossflow strength and Restream accounts
for the Reynolds number effect. Based on Eq.(62), a local
approximation of the C1 criterion, here referred to as T c1,
is given by:

T c1 =
1

150

[
G ·Ψ ·ReVmax

]
, (63)

where

Ψ∼ X =
Reδ2

ReVmax

, (64)

G∼ F(H12) =
1

f (H12)
. (65)

The T c1 criterion, as formulated in Eq.(63), is
mathematically equivalent to Arnal’s C1 criterion. The
function Ψ measures the ratio of the crossflow to the
streamwise strength. As proposed by Menter & Smirnov,
it is constructed using the wall-normal change of the
normalized vorticity. Ψ is defined as:

Ψ =| −→ψ | ·y, (66)

where y is the wall normal distance. The components of
the vector −→ψ = {ψi} are given by:

ψi =
∂ωi

∂x j
n j, where ωi =

ωi

| −→ω |
. (67)

The scalar quantity Ψ can be interpreted as an indicator
of the crossflow strength, because it is proportional to the
local change of the flow angle. In addition, this quantity
describes the three-dimensionality of the boundary layer,
being Ψ = 0 for 2D flows, given that ∂

∂ z = w = 0.
The T c1 local approximation in Eq.(63) is



evaluated using the solutions of FSC equations, which
are the key to define the link between non-local and local
quantities. The aim is to understand how well the local
functions that enter the T c1 approximate the boundary
layer quantities appearing in the C1 criterion.

The FSC equations are solved in the parameters
range:

0 <β ≤ 1, (68)
0◦ <φ < 90◦. (69)

β is restricted to positive values, because crossflow
instabilities occur for accelerated flow, in a favorable
pressure gradient region. β = 1 is the case of 90◦

wedge, i.e. the 2D stagnation flow, and it is the highest
possible acceleration parameter. φ is the sweep angle, as
defined in Eq.(60). The functions appearing in Eq.(63)
are evaluated at the particular position η = ηmax in the
wall-normal direction, such that T c1(ηmax) reaches its
maximum value. Within the FSC framework, the quantity
Ψ is approximated only considering the derivatives with
respect to the normal direction η . Thus, the vorticity
components that exist are ωx and ωz, computed using the
velocities expressed in Eq.(58) and Eq.(59).

At first, the comparative ratio R(β ,φ) =
0.684Ψ/(XF(H12)) is considered and it is shown in
Fig.(2). The constant 0.684 is chosen in order to achieve
the value R∼ 1 for β → 0.

Figure 2: Ratio R(β ,φ) = 0.684Ψ/(XF(H12)), as a
function of the Hartree parameter, β , and the sweep angle,
φ .

It is observed that at the upper corners of the domain
the ratio R significantly departs from the targeted value
of 1. This behavior suggests that the crossflow indicator

Ψ does not fairly reproduce the quantity XF(H12). A
function G, that accounts for the pressure gradient in the
streamwise direction, i.e. the non-linear term F(H12), is
needed to correct the ratio R and reduce the deviation from
the targeted value R= 1. The main obstacle to construct G
is that the two independent FSC parameters, β and φ , are
not known in the local formulation. In their publication,
Menter & Smirnov propose to construct G as a function
of the dimensionless quantity dv

dy
y2

ν
, that approximates the

pressure gradient parameter λθ . G is expressed as:

g(λθ ,CF) = 8.8λ
3
θ ,CF −9.1λ

2
θ ,CF +3.7λθ ,CF +1

g(λθ ,CF) = min[max(g(λθ ,CF),1),2.3]

GMS(λθ ,CF) =
0.684

g(λθ ,CF)
,

(70)

where the cubic polynomial g(λθ ,CF) is fitted through the
clouds of points. The pressure gradient parameter λθ ,CF
is expressed as:

λθ =−dv
dy

y2

ν
, (71)

λθ ,CF = 0.1111 ·λθ +2.3, (72)
λθ ,CF = min[max(λθ ,CF ,0),0.7], (73)

where the wall-normal derivative of v in Eq.(71) is
defined as in Eq.(37).

Fig.(3) shows the uncorrected ratio R =
0.684Ψ/(XF(H12)) with the cubic polynomial
g(λθ ,CF), Fig.(3a), and the corrected R =
(GMS(λθ ,CF)Ψ)/(XF(H12)), Fig.(3b), projected onto the
plane (R,β ), where β is expressed through λθ ,CF . The
spread around the target value of 1 is reduced to around
25% for sweep angles φ lower than 60◦. This is the
upper limit for φ chosen by Menter & Smirnov for the
resolution of FSC and the calibration of their criterion.
Nevertheless, the error committed on higher angles of
attack is still important. The choice of limiting the sweep
angle φ to less than 60◦ is acceptable if one is interested in
the prediction of crossflow around wing-like geometries.
Nevertheless, this is a considerable low limit for complex
3D configurations, such as the 6:1 prolate spheroid, which
is a geometry significantly more swept compared to any
swept wing2. In order to widen the range of applications
of the T c1 criterion to more complex 3D geometries, the
strategy proposed by the authors is to include in the local
formulation of the T c1 criterion a local approximation
of the sweep angle φ . This is an important parameter
to account for, because the pressure gradient parameter
λθ strongly depends on the sweep angle φ , as shown in
Fig.(4).

2If we exclude the stagnation point, the windward symmetry plane looks like the attachment line of a swept cylinder with geometrical sweep
angle Φ = π

2 −α , where α is the angle of attack, as explained in Arnal (1987).



(a) Uncorrected indicator ratio R with g(λθ ,CF ).

(b) Corrected indicator ratio R.

Figure 3: Crossflow indicators ratio R distribution,
projected on the β -plane and plotted as a function of the
new λθ ,CF , for family of FSC profiles. Planes are colored
by the contours of the sweep angle φ . Top: uncorrected
ratio R = (0.684Ψ)/(XF(H12)), black line g(λθ ,CF).
Bottom: corrected ratio R = (GMS(λθ ,CF)Ψ)/(XF(H12)).

Figure 4: Pressure gradient parameter λθ plotted as a
function of the Hartree parameter β and the sweep angle
φ .

In the proposed original recalibration of the T c1 criterion,
the pressure gradient parameter λθ is constructed as a two
parameter function in φ and dv

dy
y2

ν
. The new λθ for the

crossflow inclusion is constructed approximately at the
middle of the boundary layer, where y = δ/2 ∼ θ . It
is a 3rd order polynomial in the two variables dv

dy
y2

ν
and

φ fitted using a least squares method. Its formulation is
referred to as λCF and it is given by:

λCF =0.0473−0.0001338 φ −0.02524
(

dv
dy

y2

ν

)
+5.493e−6

φ
2−2.148e−5

φ

(
dv
dy

y2

ν

)
+0.001067

(
dv
dy

y2

ν

)2

−4.031e−8
φ

3−2.81210−7
φ

2
(

dv
dy

y2

ν

)
+1.053e−5

φ

(
dv
dy

y2

ν

)2
+0.0002366

(
dv
dy

y2

ν

)3
.

(74)
For numerical reasons, the value of λCF is further bounded
as:

λCF = min
(

max
(

λCF ,0
)
,0.16

)
. (75)

Then, the function G, in Eq.(63), that accounts for the
streamwise pressure gradient, is constructed as the surface
Gnew(λCF ,φ). It is expressed as:

Gnew(λCF ,φ) =1.992−0.7328 φ −0.00573 λCF

+0.02344 φ
2−0.1868 φ λCF −0.08126 λ

2
CF

+0.05222 φ
3 +0.02332 φ

2
λCF

+0.04903 10−5
φ λ

2
CF +0.03326 λ

3
CF ,

(76)
where both λCF and φ are normalized with respect to their
mean value and standard deviation. For the construction
of the function Gnew, λCF is evaluated at the position ηmax
where the T c1 reaches its maximum.

The new ratio R = GnewΨ/(XF(H12)) is shown
in Fig.(5) with respect to the dependent variables λCF
and φ . It is observed that the benefit of introducing the
sweep angle φ is a considerable reduction of the spread
of the ratio R around the value of one, with a maximum
deviation of less than 10%.

Now, the definition of φ as the angle between
the external potential flow direction, U1e , aligned
with the reference coordinate system (x1,y,z1), and
the wing-attached reference system (x,y,z), is not
CFD-compatible.



Figure 5: R = GnewΨ/(XF(H12)) vs the fitted pressure
gradient parameter λCF

(
dv
dy

y2

ν
,φ
)

and the sweep angle φ .

For this reason, following Högberg and Hennigson
(1998), the sweep angle is defined with respect to the
reference system (xp,y,zp), identified by the direction of

the pressure gradient vector at each point,
−−→
(∇p), and the

reference coordinate system (x,y,z), identified through
the velocity vector −→u = (u,v,w). In this new coordinate
system, xp is aligned with the pressure gradient, y is
normal to the surface, and zp is perpendicular to the plane
(xp,y), since, by FSC assumption, the pressure gradient is
zero in the spanwise direction. A local sweep angle φL
definition can be computed as in Choi and Kwon (2017),
as follows:

φL = arccos

( −→u wt ·
−−→
(∇p)wt

||−→u wt ||||
−−→
(∇p)wt ||

)
, φL = min[φL,π−φL].

(77)
−→u wt and

−−→
(∇p)wt are the tangential projection at the wall

of the local velocity vector and the pressure gradient.
The use of the local velocity vector is an acceptable
approximation, because the maximum value of the T c1
criterion is reached close to the boundary layer edge,
where φL recovers the original definition of φ from
Eq.(60).

This approximation of the local sweep angle
uses the local velocity vector, therefore it makes the
recalibrated T c1 criterion not Galilean invariant. In order
to restore invariance of the new formulation with respect
to Galilean transformations, it is proposed to use the
relative velocity vector −→u rel instead of the local velocity
vector in Eq.(77). It is defined as:

−→u rel =
−→u −−→u wall. (78)

This is a fair modification when dealing with
boundary-layer transition.

In ISIS-CFD, the velocity at the wall is known
throughout the simulation. From the beginning of the
simulation, for each cell center, close to a no-slip wall the
face index of its correspondent point at the wall3 is stored
in a table. This implementation has its own limitations,
because the research of the point at the wall might be
troublesome at the junctions between multiple bodies
with possibly different velocities, as the rotor blades of an
helicopter.

Once established a “Galilean-invariant” like
formulation, the T c1 criterion is finally included in
γ formulation, modifying the Fonset function in the
transport equation for the intermittency γ , Eq.(30). A
new Fonset,CF that triggers the production of γ and based
on the T c1 criterion is summed up to the Fonset function
of the original formulation. Fonset,CF is defined as:

T c1 =
Gnew Ψ ReV

c 150
, (79)

Fonset1,CF = T c1 (80)
Fonset2,CF = min[max(Fonset1,CF ,0),2], (81)

Fonset3,CF = max(1− (RT/a)3,0), (82)
Fonset,CF = max(Fonset2,CF −Fonset3,CF ,0), (83)
a = 1.5, c = 0.6. (84)

Through the proportionality constant c in Eq.(79), it is
accounted for the difference between the critical crossflow
Reynolds number, at which the intermittency starts to
increase, and the crossflow Reynolds number at transition
location. The new Fonset function in the transport
equation for the intermittency γ , Eq.(30), becomes:

Fonset = FlengthFonset+Flength,CF Fonset,CF , (85)

where Flength,CF = 5. The latter parameter has been
set considering that crossflow instabilities develop on a
longer length compared to T-S waves for which Flength=
100 . The constants, a and Flength,CF , c were obtained
from numerical calibration on the 6:1 prolate spheroid at
15◦.

HELICITY-BASED CRITERION

For the extension to crossflow transition in γ−Reθ model,
it has been considered and implemented in ISIS-CFD the
helicity-based criterion by DLR. The onset of crossflow
transition depends on the critical crosswise Reynolds
number ratio:

ReHe,max

Re+He,t
= 1, (86)

where Re+He,t at transition is given by a correlation
numerically determined. It is based on the numerical
data obtained for different configurations the ONERA D

3The point that minimizes the distance from the cell center to the wall.



profile, NLF(2)-0415, and the 6:1 prolate spheroid. Re+He,t
is expressed as a function of the shape factor H12, as
follows:

Re+He,t = max(−456.83H12 +1332.7,150). (87)

The shape factor H12 is approximated through the
pressure gradient parameter λ+, that is defined as:

λ
+ =

ρl2

µ

d|−→u e|
d−→s

, (88)

l =
1

CHe,max

2
15

y. (89)

The length scale l represents the momentum thickness
at the point where the helicity Reynolds number reaches
its maximum within the boundary layer. CHe,max is
a constant. H12 in Eq.(87) is then substituted by the
correlated H+

12 based on Cliquet’s correlation derived for
zero sweep angle flows, Cliquet et al. (2008). The
inclusion of the helicity-based crossflow criterion within
γ−Reθ formulation is achieved through the definition of
an additional Fonset,CF function that is summed up to
Fonset of Eq.(10). Fonset,CF is given by:

Fonset1,CF =
ReHe

CRe+He,t
(90)

Fonset2,CF = min[max(Fonset1,CF ,F4
onset1,CF),2] (91)

Fonset3,CF = max
(

1−
(RT

2

)3
,0
)

(92)

Fonset,CF = max(Fonset2,CF −Fonset3,CF ,0) (93)

where the constants C = 0.7 and Flength,CF = 5 result
from numerical calibration. The explicit use of the
velocity within the helicity makes the model not Galilean
invariant, nevertheless it can be opted for the use of the
relative velocity, as proposed for the recalibrated T c1
criterion.

6:1 PROLATE SPHEROID SIMULATIONS

This section is devoted to the discussion of the
computations performed with ISIS-CFD around the 6:1
prolate spheroid at incidence. As mentioned in the
introduction, it is referred to the experiments performed

by Kreplin in 1985 at DLR for the models validation.
These experiments were performed in the 3m× 3m low
speed wind tunnel at DLR Gottingen, around a 6:1 prolate
spheroid of length of 2.4m. Measurements at the surface
were obtained using surface hot film probes: the wall
shear stress magnitude is derived from the heat transfer
rates of the films of each probe. The probes are positioned
at 12 different stations along the longitudinal axis of the
specimen. The magnitude of the wall shear stress τw is
derived from the sum of the heat transfer rates of the
films of each probes. A rough estimation of the error
bound for the wall shear stress magnitude is given to be
∆τw = ±20%. This high uncertainty is related to the
fact that the hot-film probes were calibrated on flat tunnel
walls for a 2D turbulent boundary layer. Around the 6:1
prolate spheroid at incidence, the laminar region is quite
extended.

Presented computations are run for Re = 6.5×
106 and three different angles of attack. Zones of pure
crossflow are observed in the middle of the inclined
prolate spheroid and they become wider as the inclination
increases. For α = 5◦,15◦, a comparison is proposed
between γ with the recalibrated T c1, referred to as
γ + CF model, and γ − Reθ with the helicity-based
criterion, referred to as γ−Reθ +CF . Only for α = 15◦,
simulations by γ using the T c1 criterion, as published by
Menter & Smirnov, here referred to as γ +T c1MS model,
are presented. A summary of the notations used for the
different models with their respective crossflow criterion
is given in Table(1). Simulations for the angle of attack
α = 30◦ were run using only γ +CF model.

Unfortunately, no specific indication on the
free-stream conditions was given in the experimental
report. It is mentioned that Tu varies from 0.1% to 0.3%
close to the nose of the body. Not knowing the free-stream
Tu value is a big limitation, that does not allow to perform
a rigorous validation exercise. Indeed, experimental
conditions cannot be repeated with exactitude. For
the presented exercise, the free-stream conditions were
chosen in order to have a value of Tu ∼ 0.15% in the
vicinity of the leading edge. This value is obtained from:

Tu = Tuin

((
1+

3(x∗− x∗in)βTu2
inRe

2(νtin/ν)

)− β∗
β
)0.5

. (94)

Table 1: Notations for the transition models and crossflow criteria presented in the discussion.

Turbulence Model Transition Model Crossflow (CF) Criterion

γ +CF k−ω SST (2003) γ Recalibrated T c1 with φL and Gnew

γ +T c1−MS k−ω SST (2003) γ T c1MS with GMS

γ−Reθ +CF k−ω SST (2003) γ−Reθ He



β = 0.0828 and β ∗ = 0.09 are constants. Eq.(94) is
obtained by the resolution of the k − ω (2003) SST
transport equations for a uniform, steady flow, aligned
with x, and neglecting the diffusion and cross-diffusion
terms. For the presented simulations, the values imposed
at the inlet, ∗in, are reported in Table(2).

Table 2: 6:1 Prolate Spheroid: Computations details.

α Re Tuin(%) (νt/ν)in Tu(%)

5◦

15◦ 6.5×106 0.5 250 0.15

30◦

Computational Domain
The grids used for the simulations were provided by Rui
Lopes, from IST Lisbon. A set of 5 multiblock structured
grids was generated with the GridPro software, with an
O-topology encircling the spheroid. The computational
domain is a box of total length 200L and width 100L,
where L is the length of the 6:1 prolate spheroid. The
geometrical center of the body is positioned at X/L = 0
and its distance from the boundaries is approximately
100L. The incidence angles are imposed by rotating
the spheroid with respect to its center, as well as an
inner O-block around it. The flow is aligned with x-axis.
The grids are for half of the geometry, making use of a
symmetry plane. All the mesh details are given in Table(3.

hi =
∑

Ncell
i ∆Vi
Ncell

is the typical cell size, with ∆Vi the volume
of the i-th cell and Ncell is the total number of cells.

Table 3: 6:1 Prolate Spheroid: Mesh details.

Ncells Nsurface hi/h1 y+max

Grid1 42.6M 126016 1 0.4

Grid2 28.3M 95816 1.14 0.46

Grid3 17.9M 70884 1.33 0.54

Grid4 10.3M 48750 1.61 0.65

Grid5 5.3M 31504 2 0.8

The finest grid has 760 cells in the longitudinal
direction, Nx, measured along the upper side of the
surface, and 176 cells in the transversal direction,
Nφ , measured along the plane located at half of the
longitudinal length of the surface. The size of the first
near wall cell in the direction normal to the surface is
∆y ∼ 2.3× 10−6. The finest grid counts 126016 cells on
the surface of the spheroid, and a total of 42.5M volume

cells. The remaining four grids are obtained from the
finest one using the coarsening factors of 0.875, 0.75,
0.625 and 0.5. The coarsest grid from different points of
view is shown in Fig.(6)-(8).

(a) Full Computational Domain. (b) O-block.

Figure 6: 6:1 prolate spheroid: α = 15◦. Full domain
and close up on the O-block surrounding the body for the
coarsest mesh.

Figure 7: 6:1 prolate spheroid: α = 15◦. Coarsest mesh
in the wall normal direction at the section X/L = 0.

Figure 8: 6:1 prolate spheroid. Coarsest mesh at α = 15◦,
closed up on the first half of the spheroid: surface mesh
(black), mesh at the symmetry plane (red).



All the computations around the 6:1 prolate spheroid were
run on national HPC resources. Only for α = 15◦ it has
been performed a mesh convergence study. For each grid,
the interpolated solution from its correspondent “one level
coarser” grid is used as initial solution. Convergence
is controlled by a gain of minimum four orders of the
normalized residuals for all the turbulence and transition
variables and also by forces convergence. Computations
by γ +CF on the coarsest grid, Grid5, were run on 280
processors,∼ 9000 CPU hours of simulation were needed
up to convergence. On the same grid and for the same
number of processors, simulations using γ − Reθ +CF
required ∼ 13000 CPU hours to converge. Such long
simulations time are due to the fact that the convergence of
the non-linear residuals in L2 norm is very noisy, because
of the presence of several min, max limiters in the original
γ and γ −Reθ formulations. The faster convergence of
γ with respect to γ − Reθ is due to the discard of the
transport equation for Reθ in γ formulation. Nevertheless,
it is worthwhile to mention that γ model is more sensitive
to the mesh density than γ − Reθ , see Rubino (2021).
Simulations on finer meshes were run on higher numbers
of processors, up to a maximum of 784.

Results: α = 15◦

Results for γ +CF and γ −Reθ +CF were computed on
all the five grids. The results of the grid convergence of
the friction and pressure drag coefficients are shown in
Fig.(9) and (10). It is observed that an estimated order
p = 2 on the friction component is obtained, while the
pressure drag presents a quasi-2nd order of convergence
with respect to the grid refinement. The behavior of the
pressure is most probably related to the noisy convergence
of the non-linear residuals on such fine meshes.
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Figure 9: 6:1 Prolate Spheroid: α = 15◦. Convergence
of pressure and viscous drag for γ + CF formulation
with grid refinement. p is the estimated convergence
order of the discretization error, relying on Richardson
extrapolation.

h
i
/h

1

0 0.5 1 1.5 2
8.5

8.6

8.7

8.8

8.9

9

C
d,f

p=2

(a) Cd, f .
h

i
/h

1

0 0.5 1 1.5 2
9

9.1

9.2

9.3

9.4

9.5

C
d,p

p=0.78

(b) Cd,p.

Figure 10: 6:1 Prolate Spheroid: α = 15◦. Convergence
of pressure and viscous drag for γ−Reθ +CF formulation
with grid refinement. p is the estimated convergence
order of the discretization error, relying on Richardson
extrapolation.

It is also noticed that Cd, f increases with the grid
refinement for γ−Reθ +CF results, in contrast to γ +CF
results, for which Cd, f decreases. The behavior of γ +
CF is related to the overestimation of the intermittency
on coarser grids. This behavior relies on the original
formulation of γ transition model (for two dimensional
transition mechanisms), notably on the use of local
quantities in the boundary layer in the formulation of
Fonset,1, Eq.(31), that cause the transition to stall on coarse
grids. These results show the higher dependency of γ +
CF on the spatial discretization compared to γ−Reθ +CF
model.

The numerical results shown in the following for
15◦ are computed on Grid1. The skin friction coefficient
C f distributions, measured and predicted, are shown in
Fig.(11). The experimental C f contours are presented in
Fig.(11a) in the X/L−φ plane, where φ is the azimuthal
angle. φ = 0◦ corresponds to the windward symmetry
plane, while φ = 180◦ to the leeward one. For this angle
of attack and Reynolds number, a zone of CF-dominated
transition is observed in correspondence of the middle of
prolate spheroid. The kink at about 20% of the length
of the spheroid and φ ∼ 130◦ marks the change of the
transition process. Indeed, the transition process on the
leeward side is driven by T-S waves. The numerical skin
friction contours computed by γ +CF are presented in
Fig.(11d), compared to the predictions by γ −Reθ +CF ,
Fig.(11b).

For what concerns the γ + T c1 − MS, no
information were given in the publication by Menter &
Smirnov about the criterion inclusion in γ formulation,
except from their definition of the T c1, here referred to
as T c1MS. The latter is given by:

T c1MS =
GMSΨReV

150
. (95)

In Eq.(95), GMS formulationis given by Eq.(70), using the



λθ approximation of Eq.(71)-(73). In T c1MS no constant
c was foreseen to account for the difference between the
critical Reynolds number and the one at transition onset,
as in Eq.(79). Finally, the Fonset,CF in γ+T c1−MS model
formulation used in the presented computations is given
by:

Fonset1,CF = T c1MS (96)
Fonset2,CF = min[max(Fonset1,CF ,0),2], (97)

Fonset3,CF = max(1− (RT/a)3,0), (98)
Fonset,CF = max(Fonset2,CF −Fonset3,CF ,0), (99)

a = 1.5. (100)

The final Fonset that enters the intermittency production
term is given by Eq.(34), as for the presented variant
γ+CF . The C f distribution as computed by γ+T c1−MS
model is shown in Fig.(11c).

(a) Measured C f . (b) Predicted C f by γ−Reθ +CF .

(c) Predicted C f by γ +T c1−MS. (d) Predicted C f by γ +CF .

Figure 11: 6:1 Prolate Spheroid: α = 15◦. Measured
and predicted skin friction C f distributions in the X/L−φ

plane. Numerical results are computed using γ +CF
and γ − Reθ +CF models. The results obtained with
γ+T c1−MS, with the T c1 version of Menter & Smirnov,
the T c1MS, are also shown.

The predictions by γ +CF are in very good agreement
with the measurements within the range 30◦ < φ <
120◦. It is observed that proposed original recalibration
considerably enhances the performance of the T c1
criterion, see Fig.(11c) vs Fig.(11d). A considerable
fuller transition front is predicted, pushed downward to
the windward symmetry plane. With the inclusion of

the sweep angle, it is accounted for its impact on the
overall transition process and that makes a huge difference
when dealing with non-wing-like geometries. Focusing
on the comparison between γ +CF and γ−Reθ +CF , the
two transition models with their respective CF criterion
perform very similarly, with few exceptions.

γ − Reθ +CF is able to predict the upper side
kink, that marks the change of the transition process,
which is on the contrary absent in C f contours by γ +CF .
This difference is clearly visible from the predicted C f
girthwise distributions at the sections X/L = 0.139 and
X/L = 0.223, Fig.(12a) and Fig.(12b). Actually, the kink
is observed in the experiments at the section X/L= 0.223,
Fig.(12b), which is downward the kink location predicted
by γ −Reθ +CF . γ +CF predicts an uniform transition
front. This behavior is due to the fact that C1-based
criteria have the tendency to predict transition upstream
when associated with T-S criteria, Bégou (2018). In
general, both γ−Reθ +CF and γ +CF predict transition
upstream with respect to the experiments. Close to the
leeward symmetry plane, independently of the transition
model, it can be observed a tongue of delayed transition.
The laminar tongue appears at section X/L = 0.223 and
it is visible until half of the prolate spheroid length,
Fig.(12c) and Fig.(12d). This is a mesh effect, rather than
an erroneous prediction. Indeed, some crossflow occurs
close to the vertical symmetry plane, but, because of
the symmetry plane, the streamlines are forced to follow
the gridlines, delaying numerically crossflow transition.
This laminar tongue is grid dependent and it becomes
shorter on coarser grids. Over all, the predicted C f by
γ +CF and γ −Reθ +CF is noticeably lower than what
predicted in the experiments. Only from the central
section of the spheroid, the quantitative deviation in
the skin friction magnitude between experiments and
predictions is justified by the experimental uncertainties.
The underestimation of the C f is mainly due to the fact
that, at this angle of attack, interaction between T-S and
CF waves is expected and none of the two formulations
really accounts for the modes interaction. The sum of the
Fonset and Fonset,CF functions, is not enough to account
for the two modes interactions.

Approaching the trailing edge of the body, none
of the two models is able to predict flow transition for
φ < 40◦. The flow close to the windward symmetry
plane remains laminar until the rear side of the spheroid.
Measurements and predictions start deviating at the
section X/L = 0.652, Fig.(12e), up to the last section
X/L = 0.936, Fig.(12f). None of the crossflow criteria,
the recalibrated T c1 nor the He-based, is active in this
region of the prolate spheroid.

At least at the windward symmetry plane,
transition is hardly due to pure crossflow. Actually, at
the symmetry plane, no crossflow transition can happen,



because the crossflow component of the velocity is zero.
The incorrect flow prediction at the windward side is due
to the fact that γ +CF or γ−Reθ +CF , as here presented,
do not account for any transition mechanisms other than
T-S waves and CF instabilities.

(a) X/L = 0.139. (b) X/L = 0.223.

(c) X/L = 0.309. (d) X/L = 0.480.

(e) X/L = 0.652. (f) X/L = 0.936.

Figure 12: 6:1 Prolate Spheroid: α = 15◦. Experimental
and numerical girthwise distribution of the C f coefficient
at different sections. Numerical results are computed with
γ +CF and γ −Reθ +CF . At each validation point, the
experimental uncertainty is reported.

The possible missing mechanisms are attachment
line instabilities, traveling crossflow modes, and the
non-linear interaction between T-S waves and crossflow
instabilities. Indeed, on the 6:1 prolate spheroid, for
the treated angle of attack, some interaction between
T-S and CF is expected. Neglecting the interaction of
these two modes, not only affects the transition front
closer to the windward symmetry plane, but also the
skin friction values are considerably underestimated. A
possible strategy to account for T-S and CF interaction

would be to use the local sweep angle φL as a measure of
the two modes interaction, as proposed in Choi and Kwon
(2017). The idea is to weigh up the sum of the Fonset
and Fonset,CF functions with respect to φL, knowing that
the interaction is stronger for φL = 90◦ and it weakens
as the sweep angle decreases. This has not been tested
yet in ISIS-CFD, but further studies are going on in this
direction.

The other transition mechanism that could
play an important role are traveling crossflow waves.
Indeed, the level of turbulence intensity reported in the
experimental report by Kreplin is in a range for which
traveling modes might be important. As shown in
the classic experiments in Deyhle and Bippes (1996),
traveling crossflow waves prevail over stationary modes
in the transition process for a turbulence level Tu >
0.2% and on smooth surface, as it is the case of the
6:1 prolate spheroid studied by DLR. Nevertheless, nor
the recalibrated T c1 criterion nor the helicity-based can
predict transition due to traveling crossflow, because the
two criteria are built with respect to experiments run in
a very low free-stream turbulence environment, where
stationary crossflow waves are expected to be dominant
in the transition process. In addition, both criteria do not
explicitly depend on the turbulence level intensity, which
is the parameter that plays the major role in transition
due to traveling crossflow, making them unsuitable, as
currently formulated, for this transition mechanism.

Finally, along the windward symmetry plane,
leading edge instabilities may cause transition, as well.
These instabilities are related to 2D boundary layer
developing at the attachment-line and they can cause the
flow to become turbulent along the longitudinal direction.
The windward symmetry plane is a typical case where
transition is dominated by streamwise instabilities, but
the streamwise criterion Reθ -based cannot predict it. As
explained in Arnal (1987), for complex 3D flows, where
the streamlines are far from parallel, there is no implicit
relation between Reθ and the physical distance along
which the instabilities propagate. For this reason, criteria
which involve boundary layer parameters fail to predict
transition at the attachment lines, explaining both models
failure along this symmetry plane.

Skin friction lines predicted by γ+CF are shown
in Fig.(13). A very similar topology is obtained using γ−
Reθ +CF . The model predicts an envelope of converging
wall streamlines on the top of the spheroid coming from
the windward and leeward sides, which is representative
of an open-separation, according to the definition in
Surana et al. (2006).

The following two sections are devoted to the
analysis of the flow around the 6:1 prolate spheroid for
α = 5◦,30◦. Attention is focused on the results obtained
by γ +CF , using the recalibrated T c1 crossflow criterion



introduced above. The presented computations were
computed on Grid3 of Table(3). Indeed, considering the
predicted transition front, computations on this grid are
sufficiently accurate.
For α = 5◦ predictions by γ + CF model are also
compared to the results obtained with γ − Reθ +CF .
Hereafter, the results computed with the original criterion
by Menter & Smirnov, γ + T c1 − MS, are no more
considered.

Figure 13: 6:1 Prolate Spheroid: α = 15◦. Skin friction
lines as computed by γ +CF model seen from different
points of view, leeward (LW), top and windward (WW)
sides.

Results: α = 5◦

The 6:1 prolate spheroid at α = 5◦ undergoes a slightly
different transition process than α = 15◦. Nevertheless,
the conclusions on the transition models γ + CF and
γ−Reθ +CF performances are very similar. At the lowest
angle of attack considered, the zone of pure crossflow
transition is considerably reduced and it is concentrated
in the middle of the spheroid. Transition on the windward
side is due to the strong non-linear interaction between
T-S and CF instabilities. As mentioned above, this is
a physical feature that the new γ +CF variant does not
account for, nor γ − Reθ +CF . The experimental C f
contours in the X/L− φ plane are shown in Fig.(14a).
Predictions by γ +CF are shown in Fig.(14c) and γ −
Reθ +CF in Fig.(14b). The inclusion of a crossflow
criterion contributes to move upward the transition front
in the region included in the range 70◦ < φ < 160◦,
nevertheless transition on the windward side is still not
predicted. The flow is laminar down to the rearward
extremity of the prolate spheroid. Compared to α = 15◦,
the flow starts transitioning considerably downward. It is
laminar until approximately the section X/L = 0.395. At
this location, both transition models predict the transition
onset, promoted by the respective crossflow transition
criteria. Indeed, at this position, the flow should be still

laminar, according to the experimental results. Similar
behavior has been already observed at α = 15◦. The
transition front is pushed towards the leeward symmetry
plane by γ +CF when compared γ−Reθ +CF , Fig.(15a).
Results by γ −Reθ +CF model are in better agreement
with the experimental transition front at the next section
X/L = 0.480, Fig.(15b). Transition close to the symmetry
plane at the leeward side is triggered by the T-S onset
criteria of the two models, respectively.

As similarly observed for α = 15◦, from the
section X/L = 0.652 on, Fig.(15c), the experimental
measurements deviate considerably from the numerical
predictions. Towards the trailing edge, Fig.(15d), the
transition front predicted by γ +CF is slightly fuller than
γ−Reθ +CF , inverting the trend observed at the previous
sections, Fig.(15c). Both transition models, predict higher
values of skin friction in the turbulent region.

(a) Measured C f .

(b) Predicted C f by γ−Reθ +CF . (c) Predicted C f distribution by γ +
CF .

Figure 14: 6:1 Prolate Spheroid: α = 5◦. Measured and
predicted skin friction C f distributions in the X/L− φ

plane. Numerical results are computed using γ +CF and
γ−Reθ +CF models.

(a) X/L = 0.395. (b) X/L = 0.480.



(c) X/L = 0.652. (d) X/L = 0.936.

Figure 15: 6:1 Prolate Spheroid: α = 5◦. Experimental
and numerical girthwise distribution of the C f coefficient
at different section. Numerical results are computed with
γ +CF and γ − Reθ +CF models. At each validation
point, the experimental uncertainty is reported.

In Fig.(16), the skin friction lines as computed by γ +CF
are plotted. Results for γ − Reθ +CF are very similar
and therefore omitted. The wall streamlines curvature in
the first-half of the spheroid confirm that the crossflow
is considerably weaker, when compared to α = 15◦. No
characteristic topological sign of separation is observed
and the flow detaches at the end of the body, as indicated
by the minimum of C f .

Figure 16: 6:1 Prolate Spheroid: α = 5◦. Skin friction
lines as computed by γ +CF model seen from different
points of view, leeward (LW), top and windward (WW)
sides.

Results: α = 30◦

The 6:1 prolate spheroid series is concluded with the angle
of incidence α = 30◦, for which crossflow instabilities
dominate the flow transition on a large portion of the
prolate spheroid. No computations for γ−Reθ +CF were
computed for this test case and only the simulations by
γ +CF are discussed. The experimental C f contours are
shown in Fig.(17a). Taking as a reference the section of

the 6:1 prolate spheroid of maximum width, X/L = 0.5,
the flow starts transitioning on the windward side at φ ∼
50◦ and transition completes at φ ∼ 70◦.

On the leeward side, the situation appears
slightly more complicated. A laminar separation bubble
occurs near the nose of the spheroid: the flow separates
and then rapidly reattaches. This separation-induced
transition promotes the appearance of T-S waves on
the leeward side of the spheroid that cause the flow to
transition downstream.

The large skin friction values on the leeward
side result from the induced velocities due to the
separated vortex flow coming from the windward side,
as mentioned in Kreplin. The numerical C f predictions
by γ +CF are shown in Fig.(17b). The recalibrated
T c1 crossflow criterion performs very well on the
windward side and transition predictions are in good
agreement with experiments. In spite of the lower skin
friction contours predicted by the transition model, the
quantitative deviation between measured and predicted C f
is justified by the experimental uncertainties, as shown
in Fig.(18). The high value of skin friction close to
the transition front, as observed experimentally, might be
related to the experimental value of Tu in the freestream.
In the experiments, it is mentioned that Tu could be up to
0.3%, while the value imposed in the simulations is lower,
i.e. Tu = 0.15%.

(a) Measured C f . (b) Predicted C f by γ +CF .

Figure 17: 6:1 Prolate Spheroid: α = 30◦. Measured and
predicted skin friction C f distribution on the 6:1 prolate
spheroid. Numerical results are computed using γ +CF
model.

Despite the good performance at the windward side,
γ + CF model fails to predict the correct transition
features on the leeward side. The measured laminar
separation bubble, right after the nose of the spheroid,
is not reproduced in the simulations. The positive
peak of C f at φ ∼ 150◦ in Fig(18a) and (18b) roughly
indicates the transition location within the bubble. This
is not visible in γ +CF results. This discrepancy is
related to γ model original formulation. The criterion
that accounts for separation-induced transition is the



additional production term in Eq.(40). ReV in the first
20% of the spheroid length does not exceed the limiting
value of 2200 to activate the additional production term
of turbulence kinetic energy, Eq.(41). This behavior
might be related to the diverging streamlines predicted at
the leeward symmetry plane, close to the leading edge,
Fig.(19), that cause the failure of the streamwise criterion,
i.e. the differences between the physical distance along
which the waves propagate and the distance along which
the characteristic boundary layer thickness grows. The
unpredicted laminar separation bubble pollutes further
downstream the numerical solution. The flow at the
leeward side numerically starts transitioning around
X/L = 0.139, but the skin friction is systematically
underestimated with respect to measurements, Fig.(18c)
to Fig.(18f).

(a) X/L = 0.053. (b) X/L = 0.139.

(c) X/L = 0.395. (d) X/L = 0.565.

(e) X/L = 0.738. (f) X/L = 0.936.

Figure 18: 6:1 Prolate Spheroid: α = 30◦. Experimental
and numerical girthwise distribution of C f at different
sections. Numerical results are computed with γ +
CF model. At each validation point, the experimental
uncertainty is reported.

Two different envelopes of converging skin-friction lines
are observed on the surface, one close to the middle of
the spheroid, the other on the leeward side, as shown
in Fig.(19). The separation line for the flow coming
from the leeward side, which is the attracting portion
of the skin friction line, can be roughly identified with
respect to the minimum of the magnitude of the wall
shear stress, according to Simpson (1996). This is a
fair approximation because the skin friction lines are
converging from different sides of the prolate spheroid.

The second separation location occurs at the
leeward side approximately around X/L ∼ 0.55, but
predicted skin friction lines are converging further
downstream. The separation might be pushed downward
because of the underpredicted laminar-to-turbulence
transition within the boundary layer on the leeward side.
The local maximum peak of C f at X/L = 0.565 at φ ∼
130◦, Fig.(18d), due to the velocity fluctuations induced
by the separated vortex flow, is considerably pushed
downward at the rear side of the spheroid.

Due to the large separation, which the flow
undergoes at such an high angle of attack, it cannot
be excluded that the RANS turbulence model does not
affect the overall results at separation. Indeed, RANS
turbulence models typically fail in massively separated
region. A possible strategy would be to use Hybrid
RANS/LES, that uses RANS transition models within
the boundary layer and LES in the separated region.
To this matter, efforts have been going on to combine
transitional RANS model into an hybrid RANS-LES
method, for instance in Hodara (2016). Nevertheless,
as for turbulence models, the key issues for hybrid
RANS/LES transition models is the location of the RANS
to LES switch. Indeed, a switch to LES within the
boundary layer or close to its edge can strongly affect
the numerical results leading to nonphysical results at
the surface, such as the relaminarization of the boundary
layer. The boundary layer should be shielded in order to
avoid the contamination of the transition process because
of the change of turbulence quantities in LES region, i.e.
decay of the modeled turbulence kinetic energy within the
grey region.

CONCLUSION AND FUTURE WORKS

This work was devoted to the analysis of the local
correlation transition models γ and γ−Reθ performances
on the 6:1 prolate spheroid at incidence. For the chosen
test cases, crossflow instabilities play a fundamental role
in the flow transition. In order to account for it, an original
model variant of γ model is presented, the so-called
γ +CF model, that includes the T c1 crossflow criterion.
This criterion, originally published by Menter & Smirnov,
is based on the C1 criterion by Daniel Arnal.



Figure 19: 6:1 Prolate Spheroid: α = 30◦. Skin friction
lines as computed by γ +CF model seen from different
points of view, leeward (LW), top and windward (WW)
sides.

In the present discussion, a recalibration of the T c1 is
proposed, that uses a CFD-compatible formulation of the
local sweep angle. The inclusion of the latter extends the
criterion to crossflow transition predictions on complex
three-dimensional geometries. γ +CF variant is proven
to perform very well on the 6:1 prolate spheroid at the
different angles of attack. Indeed, within the newly
re-calibrated T c1, it is accounted for the variation of the
pressure gradient parameter in the streamwise direction
with respect to the local sweep angle and its influence on
the overall crossflow transition process. This modification
strongly enhances the original T c1 (T c1MS) by Menter &
Smirnov, as shown for α = 15◦.

For the angles of attack α = 5◦,15◦, γ +CF
is also compared to γ − Reθ model coupled to the
DLR helicity-based criterion for crossflow transition,
the so-called γ − Reθ + CF model. Over all, the
two transition models crossflow variants, γ +CF and
γ −Reθ +CF , perform very similarly. Their predictions
are quite satisfactory for α = 15◦, at which transition is
dominated by crossflow modes. Nevertheless, deviation
from experiments becomes important at lower incidence,
as at α = 5◦. In fact, none of the transition models
variant predicts the flow transition at the windward
side, close to the symmetry plane, as expected in the
experimental results. This unpredicted flow feature is
due to missing physics within the transition models
formulations. Transition close to the windward symmetry
plane is hardly due to solely crossflow waves. Physical
mechanisms that are not accounted for and might play
an important role are non-linear interactions between
crossflow and T-S waves, attachment line instabilities,
and traveling crossflow instabilities.
In spite of their similar performance for the treated
test cases, the philosophy behind the two crossflow

criteria used for these simulations is considerably
different. The T c1 coupled to γ is constructed using
Falkner-Skan-Cooke solutions, while the helicity-based
He crossflow criterion, coupled to γ−Reθ , is constructed
numerically. A FSC-based calibration, despite the
stringent hypothesis of this set of equations, i.e.
zero-spanwise gradients, allows the inclusion of
additional physical parameters within the criteria in lack
of detailed experimental results and this is the reason why
the authors have devoted their efforts in the recalibration
of this criterion. Indeed, it is important to highlight that
the presented transition models are still in a validation
phase. The strategy to improve their performance is
to include more transition physics within the models
correlations, needed to trigger the different transition
processes. For example, the inclusion of the local sweep
angles not only enhances the T c1 performance, but it also
paves the way to the further inclusion of a correlation that
accounts for T-S/CF modes interaction. As proposed in
Choi et al., φ can also be an indicator of the intensity of
the modes interaction and it might be used to weigh up
the sum of the different Fonset functions. This is one of the
possible developments in the coming future.

In general, there is big room for the improvement
of the current transition models. However, the main
roadblock is the lack of new detailed experimental data.
Experiments are needed not only to define new criteria for
the different transition mechanisms, but also to improve
the correlations that the current models already have,
i.e. a streamwise criterion that does not depend on
θ and crossflow criteria that also account for surface
roughness and turbulence intensity. The two latter
parameters strongly affect the transition process. For
instance, the role of traveling crossflow in transition,
vis-à-vis stationary crossflow vortices, is determined
by the receptivity mechanisms, i.e. the combination
of free-stream Tu levels and roughness, as a first level
approximation.

It is the authors belief that new experimental
results around the 6:1 prolate spheroid are fundamental
and could provide data that Kreplin’s experiment did not.
Repeated transition measurements on the 6:1 prolate
spheroid at different levels of free-stream turbulence
intensity would help characterizing the sensitivity of the
transition behavior to Tu. This might be accomplished by
selective removal/addition of turbulence screens ahead of
the body. In addition, if a model front half with different
levels of surface finish is used, surface roughness effects
can be evaluated as well. The visualization of the flow
pattern would also be very helpful in determining the
transition mechanism. Sublimating chemicals, such as
naphthalene based flow visualization, can be typically
employed to visualize it. Additional surface-based
instrumentation, as microphones, can be also used



to provide unsteady measurements that would give
additional information about the frequency contents. Also
knowing the orientation of the waves, via suitable clusters
of sensors, would help determine whether unsteady
Tollmien-Schlichting waves or traveling crossflow modes
are the important ones ahead of the transition front. Skin
friction and pressure distributions are the needed data
to validate transition models. However, comparison
between measured and predicted forces and moments
would also allow a more rigorous validation, especially
for those configurations where transition is accompanied
by important flow separation. This is the minimum
physics that needs to be included in a useful data set to be
a benchmark of quality for further numerical simulations.
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DISCUSSION

Discusser: Rickard Bensow, Dept. Mechanics and
Maritime Sciences, Chalmers University of Technology,
412 96 Göteborg, Sweden, rickard.bensow@chalmers.se

The paper gives detailed and rather thorough
description of the transition models used and developed;
although then by necessity quite technical and brief it is
still appreciated to allow for reimplementation. However,
the origin of some empirical correlations/fits are unclear
or not referenced (e.g. Eq 74); it would be appreciated if
the authors could review and complement the paper for a
final version. Similarly, the expression (94) is just briefly
explained. I assume it is a way to compute appropriate
inlet turbulence levels to achieve a certain level at the
body. Is there a reference for this expression?

Question 1. If I understand it correctly, the finest
grid uses 176 cells in the circumferential direction for
half the body, i.e. approximately 1◦ in resolution. Do you
conclude, based on your experience, that this is sufficient
to capture transition and separation, or would a higher
surface resolution be desirable?

Question 2. You only briefly touch upon
the difficulties in converging the simulations with the
transition models. Did you note any difference in
convergence between the models that is worthwhile to
take into consideration in choosing between them?

Question 3. In many aspects, the recalibrated
model behaves very well, while in others it is clear
the flow physics is too complex. You did a good job
in describing the behavior and give explanations for
the shortcomings. You mention a few items for future
work, primarily related to trying to include the interaction
between the transition mechanisms. Do you thus feel that
the current model is good enough for each mechanisms on
its own, or are there still improvements that are needed?

Question 4. Finally, what kind of experimental
data would be needed to help the model development to
move forward?

AUTHOR’S REPLY

As observed by the reviewer, some of the correlations
mentioned in the paper were not referenced. This choice
was dictated by the context and the limited number of
pages at the authors’ disposal, nevertheless, a detailed
description of all the empirical correlations, used in
the original models’ formulation, as well as for the
recalibrated crossflow criterion, can be found in Rubino,
Rubino (2021).
Regarding both λCF (Eq.(74)), and Gnew (Eq.(76)), these
two correlations were obtained using a linear least-squares

based fitting. The results of the fitting process are the
estimate of the model coefficients, i.e. the coefficients of
the polynomial function that fits the data.
By steps, the pressure gradient parameter λθ and the
quantity dv

dy
y2

ν
, used as an approximation of β , are

computed in the FSC solver, evaluated at the middle of
the boundary layer and stored in a table. Then, the dv

dy
y2

ν
,

solution of the FSC equations, and the sweep angle φ ,
which varies in the range [0◦,90◦], are the variables used
in the construction of the correlation λCF , that best fits
the surface λθ (Fig.(4)). The same approach is used for
the definition of Gnew, the function that accounts for the
streamwise pressure gradient effect. Gnew is constructed
as a function of the variables φ and λCF , where the latter
is evaluated at the wall-normal position, ηmax, where the
T c1 criterion, as reconstructed in the FSC frame, reaches
its maximum value.
The value of Tu close to the body, as expressed in Eq.(94),
is obtained by the resolution of the transport equation of
k and ω in a uniform flow, i.e. only the destruction terms
of k and omega exist, and manipulation of the solution for
k. k and ω transport equations of the k−ω SST (2003)
model for an incompressible and steady flow reduce to:

U j
∂k
∂x j

= νtS2−β
∗
ωk+

∂

∂xi

(
(ν +σkνt)

∂k
∂xi

)
, (101)

U j
∂ω

∂x j
= γΩ

2−βω
2 +

∂

∂xi

(
(ν +σω νt)

∂ω

∂xi

)
+CDkω ,

(102)

where the constants are β = 0.0828 and β ∗ = 0.09. If
the flow is uniform and aligned with x, neglecting the
diffusion and cross-diffusion term, the equations simplify
to:

dk∗

dx∗
=−β

∗k∗ω∗, (103)

dω∗

dx∗
=−β (ω∗)2. (104)

The superscript ∗ indicates the dimensionless variables,
k∗ = k/U2

∞, ω∗ = ωL/U∞, where U = U∞, and x∗ = x/L.
The analytical solutions of Eq.(103) and (104) are given
by:

k∗ = k∗in(1+β (x∗− x∗in)ω
∗
in)
−β∗

β , (105)

ω
∗ = ω

∗
in(1+β (x∗− x∗in)ω

∗
in)
−1, (106)

where the subscript in indicates the quantity value at
the inlet of the computational domain, positioned at xin.
Rewriting the specific turbulence dissipation rate at the
inlet as

ω
∗
in = k∗in

ν

νtin
Re, (107)



substituting Eq.(107) in Eq.(105), given that Tu =
√

( 2k∗
3 ,

Eq.(94) is obtained by manipulation.

1. It is commonly accepted that transition
models are extremely sensitive to mesh density.
Unfortunately, no general mesh requirements can be
outlined.
For the present exercise, a set of five topologically similar
grids was used for the simulations. The results presented
for α = 15◦ are computed on the finest structured
mesh Grid1, which has a maximum of 176 cells in
the circumferential direction, i.e. at the middle of the
spheroid. Nevertheless, results were also computed
on coarser meshes, those presented in Table(3), the
coarsest of which had a maximum of 140 cells in the
circumferential direction. During the grid refinement
study, the authors noticed that transition results were
strongly affected by the mesh density in the streamwise
direction rather than in the circumferential one. For
instance, it was noted that at coarser grid resolution,
predictions were spuriously exhibiting transition at or near
the windward symmetry plane depending on the mesh
resolution along the streamwise direction and keeping
unchanged the mesh resolution in the circumferential
direction. As mesh refinement was increased and
the solution approached grid independence, laminar
flow emerged on the windward side of the model.
The explanation for premature transition at coarser
mesh refinement levels is accepted to be the fortuitous
cancellation of numerical and modeling errors due to
mesh density.
While a clear dependence of the transition prediction
on the circumferential mesh density was not noted
on this specific set of meshes, the resolution in
the circumferential direction might affect separation.
Unfortunately, separation was not considered in this
exercise, and no further indications can be given.

2. Compared to turbulence models, both
transition models demand an elevated number of
non-linear iterations. This behavior is expected because
of the most complicated physics that has to be resolved.
In addition, the coupling between the transition and
turbulence equations introduces additional difficulties
in converging the flow solution. In particular, on
grids as dense as those used for this exercise, the
solution requires a long time to converge. These very
dense grids in the wall-normal direction are needed
to accurately capture transition in the boundary layer,
i.e. the large gradients of the intermittency γ . This
constraint results in highly stretched grids with high
aspect ratio cells in the vicinity of the walls, which affects
negatively the convergence of the turbulence quantities
in the boundary layer. In addition, the use of such

fine grids for laminar flows, which do not require such
spatial resolution, affects negatively the robustness of
the solver and the overall convergence rate. The high
number of non-linear iterations is also associated with
a noisy iterative convergence: the normalized residuals
decrease rapidly at the beginning of the simulation, then
start oscillating and stall. The iterative convergence is
disturbed by the presence of the several min and max
limiters within the transition models’ formulation. These
functions are continuous, but not smooth, and do not
promote stability. Although the comparison between
the two transition models’ behavior, as well as iterative
convergence, strongly depends on the selected flow solver,
the one-equation γ tends to be easier to converge than the
two-equation γ − Reθ model. However, the numerical
robustness of the γ model degrades significantly on
coarse grids. This behavior is related to the fact that
in γ formulation all the correlations are locally computed
in the middle of the boundary layer. On a mesh coarse
both in the wall-normal and/or streamwise directions, it
is observed what can be defined as an “hysteresis effect”:
once turbulence is installed, numerically the model is
not able to destroy it in favor of laminar/transitional
flow, because of the discretization errors committed on
under-resolved meshes. Such kind of behavior is not
observed when using γ−Reθ . In conclusion, the authors
believe that γ is very promising, but at the current stage of
transition models validation, if there are no experiments
to compare with, γ−Reθ might be more reliable.

3-4. The authors believe that none of the
discussed criteria is good enough and there is still a
huge room for improvement. Unfortunately, this is not
possible without any further experiments, that would help
to have additional insight into the different transition
mechanisms. For instance, many of the correlations
used in the LCTM methods originate from correlations
derived on a flat plate, with adverse/favorable pressure
gradients generated by the shape of the outer wall of
the test section. This is a notably different physical
setup from the geometries we are interested in. It was
also raised the problem that streamwise criteria based
on characteristic boundary layer thickness might fail
on complex three-dimensional configurations where the
streamlines are not parallel, as is the case for the flow at
the symmetry plane at the windward side of the 6:1 prolate
spheroid.
Additional data may also provide more insight to better
characterize the mechanism for transition. Measurements
of velocity profile, pressure distribution, actual turbulence
intensity, and surface roughness would be useful
quantities to both identify the transition mechanism,
to further improve the existing transition criteria,
and provide validation data. Furthermore, better



quantification of the experimental uncertainty may
recontextualize the perceived accuracy of the CFD results.
To this matter, an additional paragraph was added to
the conclusions to outline possible useful experiments
around the 6:1 prolate spheroid that could help developers
improve transition models. At the end, the authors
stress the possibility of including the interaction between
the transition mechanisms, as it is one of the few
problems that might be resolved soon, without any
specific additional experiments.

DISCUSSION

Discusser: Mark Bettle, Defence Scientist, Defence
Research and Development Canada (DRDC)

This is a well-written and thorough paper that
presents an improved model for predicting crossflow
transition on complex three-dimensional bodies. The
authors’ enhancement of Menter and Smirnov’s Tc1
crossflow criterion has significantly improved the
crossflow transition prediction for the 6:1 prolate spheroid
at an angle of attack. The geometry and flow conditions
are relevant to unmanned underwater vehicles so the
improved model is of practical value to the naval
hydrodynamics community. The authors should be
congratulated for this valuable contribution. As the
authors mention, not many past experiments with the 6:1
prolate spheroid have focused on the laminar-to-turbulent
transition. Only the database of Kreplin et al. from
1985 was found to be suitable for the model validation.
Unfortunately, there is a large uncertainty in the
experimental free-stream turbulence intensity, Tu, which
is an important parameter for transition. It was mentioned
that Tu varies from 0.1% to 0.3% close to the nose of
the body in the experiment and the authors selected a
leading-edge Tu of 0.15% for the computations.

Question 1. How sensitive is the transition
location and the skin friction to free-stream turbulence
for this case, in the experimental uncertainty range of
0.1% 6 Tu 6 0.3%? Have the authors considered varying
the free-stream turbulence intensity in the computations
to the see the sensitivity of the model prediction? As
the free-stream turbulence is increased, will the model
eventually predict the transition on the windward side
that was seen in the experiments but missing in the
computations, and could this occur within the bound of
experimental uncertainty (i.e., Tu 6 0.3%)?

Question 2. The authors identify several
additional physical transition mechanisms that are
currently not included in the transition models that
could explain the failure to predict transition on the

windward side. Do the authors have suggestions for future
experiments that could help further the development of
transition models?

Question 3. Finally, it is mentioned that iterative
convergence is challenging for the simulations. Compared
to RANS computations without transition, it looks like a
large number of CPU hours are needed. Did the authors’
modifications to the Tc1 criterion affect computational
cost significantly? Do the authors have any ideas
for ways to improve iterative convergence and reduce
computational cost?

AUTHOR’S REPLY

1. The value Tu = 0.15% was chosen within the AVT-313
group in occasion of the workshop dedicated to the
6:1 prolate spheroid at incidence. It corresponds to the
turbulence intensity at which the critical N factor for T-S
waves, NT S, is encountered, as computed in the stability
diagram used by DLR for their eN computations around
the 6:1 prolate spheroid at 15◦ incidence. While DLR eN

method gives very good results for this initial condition
this is not the case for any LCTM models which are not
able to predict transition near the windward symmetry
plane. This non-predicted flow feature is hardly due to
the the turbulence level used in the computations and it
is generally accepted that an higher value of turbulence
intensity would not lead to the transition prediction on
the windward side of the prolate spheroid. To this matter,
only one simulation for an higher turbulence level, i.e.
Tu = 0.3%, was run using γ−Reθ model in ISIS (results
are not shown hereafter). No significant change was
observed in the transition front position, other than a
local higher value of the skin friction coefficient. These
higher values, however, do not reflect the real physics of
the problem. Indeed, the higher C f is due to the LCTM
T-S criterion, rather than the crossflow ones. In fact, none
of the transition criteria used in this research depends on
the turbulence intensity level in the boundary layer, as
they are meant to predict stationary crossflow waves, that
are not really sensitive to this parameter.
In the present context, the observation about the
inconsistency between numerical and experimental
set-ups goes beyond the presented quantitatively
comparisons. Indeed, the problem is that for higher
values of incoming turbulence intensities the transition
mechanisms might differ from those considered in
the research, see traveling crossflow, for instance.
The unknown experimental conditions do not allow
performing of a rigorous validation exercise, complicating
the identification of the prediction errors sources.

2. The authors added some suggestions for



future experiments for the improvement of the transition
models at the end of “Conclusions”.

3. In general, as for two-dimensional
simulations, γ converges faster than γ − Reθ .
Nevertheless, the computation of the hessian of the
velocity degrades to some extent γ model convergence.
This 2nd derivative of the velocity is computed as it
follows: each entrance of the Hessian matrix is built
through a least squares 3rd order accurate interpolation.
The evaluation of the hessian of a scalar quantity in a the
center of the cell C0 makes use of n points that provide
the centers of the neighboring cells Ci=1,...,n. As a first set
of neighbors cells (C1)i the volumes which share a vertex
with the cell C0 are taken. As a second set of neighbors the
volumes (C2)i which share a face with (C1)i are chosen.
This approximation is fairly good for 2nd derivatives
calculated at the edge of the boundary layer, which is
region were the criterion activates.
The calculation of a 2nd derivative within the boundary
layer is troublesome and requires a mesh enough refined
in both streamwise and spanwise directions. Nevertheless,
these stringent requirements on the mesh resolution are
the same demanded by the transition models for accurate
predictions with negligible discretization error. At the
end, in terms of computational time, the CPU needed by
γ +T c1, despite the computation of the velocity hessian,
are still less than γ − Reθ +CF , i.e. 9000 CPU vs.
13000 CPU, as added in the paragraph “Computational
Domain”.
Undoubtedly, considering the cost of these simulations
in terms of both wall-clock time and computational
resources, some effort should be directed to determining
what are the actual requirements on mesh resolution for
obtaining accurate results. It is possible that grids of
40-50 million cells are not really needed to accurately
capture the transition front, but similar results can be
obtained with less dense meshes by better targeting
certain regions for refinement. A possible strategy would
be to define an adaptive grid refinement strategy, where
the refinement dynamically follows the transition front,
where an higher mesh density is needed to capture the
large gradients of the intermittency, γ .
Unfortunately, current trends in gridding for industrial
applications may fail to capture large gradients of γ in
the core of the boundary layer, as well as computing
accurately the hessian of the velocity, but the possible
consequences are still not clear at this stage.
The robustness of the flow is also affected by the
several non-smooth min, max functions within the
transition equation formulations. These functions
cause the non-linear residuals to stagnate and oscillate.
To this matter Piotrowsky has proposed a smoothing
approximations for these functions by exponential penalty

functions, as proposed in Piotrowski and Zingg (2019).
This approach prevents the non-linear residuals from
stalling, nevertheless, its use requires a re-calibration
of the models formulation. Indeed, being γ and
γ − Reθ models based on correlations built empirically,
every change in their formulation can affect transition
predictions.
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