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We consider the inverse problem of quantitative reconstruction of properties (e.g., bulk 
modulus, density) of visco-acoustic materials based on measurements of responding waves 
after stimulation of the medium. Numerical reconstruction is performed by an iterative 
minimization algorithm. Firstly, we investigate the robustness of the algorithm with 
respect to attenuation model uncertainty, that is, when different attenuation models are 
used to simulate synthetic observation data and for the inversion, respectively. Secondly, 
to handle data-sets with multiple reflections generated by wall boundaries around the 
domain, we perform inversion using complex frequencies, and show that it offers a robust 
framework that alleviates the difficulties of multiple reflections. To illustrate the efficiency 
of the algorithm, we perform numerical simulations of ultrasound imaging experiments to 
reconstruct a synthetic breast sample that contains an inclusion of high-contrast properties. 
We perform experiments in two and three dimensions, where the latter also serves to 
demonstrate the numerical feasibility in a large-scale configuration.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Attenuation refers to the loss of energy of waves propagating in a medium. The level of energy loss is quantified as a 
material property of a viscous medium. In the context of imaging with waves, visco-acoustic media represent additional 
challenges compared to an ideal (that is a non-attenuating) medium: For instance, the mathematical description of such 
materials involves more parameters, e.g., to account for the attenuation mechanisms. In this work we investigate the quan-
titative reconstruction of properties of a visco-acoustic medium, which is relevant, for instance, in ultrasound imaging, 
non-destructive testing, or seismic imaging, e.g., [15,27,65,34,5,51,3]. In such a setup, probing waves are sent to the area of 
interest, and the mechanical response of the medium is indirectly measured at the position of the receivers.

Attenuation is a phenomenon that intrinsically depends on the frequencies of the propagating waves, where each fre-
quency component looses a different amount of energy [7,1,11]. It is common to categorize attenuation models into different 
families, such as those that dominantly attenuate low or high frequency components, see Section 2. Generalized models com-
bine multiple mechanisms of attenuation and enable the consideration of signals with wide frequency ranges, [11,67], see 
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Remark 2. Therefore, the wave equations that model the propagation of attenuated waves can have different forms, as in-
troduced, for instance, in [62,11]. From a practical perspective, it is difficult to identify the appropriate mathematical model 
of attenuation that adequately describes a given material, cf. [11,57] for geophysical applications or [70] for medical ones. 
Consequently, in practical applications of inverse problems, the appropriate attenuation model to describe the material be-
havior represents an additional unknown. Note that despite the different nature of the media and of the acquisition setups, 
cf. [53], geophysical and medical imaging share the same models of visco-acoustic wave propagation.

In our work we assume that the excitation that generates the waves within the medium is a broad-band time-signal. 
Then, we apply a Fourier transform to the time measurements to work with frequency-domain data, as we illustrate in Sub-
section 2.1. To simulate the waves that will later be compared with the measurement data used to reconstruct the medium’s 
properties, we use the frequency-domain wave propagation equations. The frequency-domain formulation has been recog-
nized to be more convenient to handle attenuation, cf. [7,47,55], as it allows us to work with Partial Differential Equations 
(PDEs) regardless of the attenuation model. On the other hand, the time-domain formulation can lead to integro-differential 
equations instead. This is due to the fact that in the frequency-domain the attenuation is encoded via complex-valued pa-
rameters in the PDEs, e.g., [47,12,62]. However, causality principles must be carefully addressed in the frequency-domain 
as advocated by [31,11,18]. The level of attenuation of a medium is quantified by the frequency-dependent quality factor, 
see Definition 1. The higher it is, the less attenuating is the medium. In our experiments, we consider the reconstruction 
of breast tissues at ultrasound frequencies, where the quality factor is higher than 100 (see Table 3, Sections 4 and 5): this 
corresponds to weakly attenuating medium, [64].

For the quantitative reconstruction of medium properties, our experiments follow the principles of ultrasound tomogra-
phy, which have been applied, for instance, in the context of breast imaging, e.g., [16,17,41], where simplifying assumptions 
regarding the models of wave propagation can be used. Reconstruction methods are further compared in [50,24]. We further 
use the full model of wave propagation for the simulations, and the reconstructions are carried out with an iterative method 
that minimizes a misfit function defined to evaluate the distance between the observed measurements and simulations. This 
approach is usually referred to as the Full Waveform Inversion (FWI) in seismic imaging, [40,61,54,65]. As its name indicates, 
FWI relies on the full measurement signals, e.g., contrary to approaches that only use the travel-times.

Imaging using the full waveform has been used in the context of ultrasound tomography, for instance with special 
emphasis on bone structures, [6], for the brain, [32] and for breast imaging considering the breast as a viscous medium, 
with implementations both in the frequency, [42], and time-domain, [53,51,3,44]. We can highlight two major differences 
between our work and these references:

1. The aforementioned references rely on a single attenuation model, which is fixed a-priori, prior to the reconstruction.
2. These papers assume wave propagation in free-space, that is, assuming that no reflection comes from the boundary of 

the acquisition setup. For practical experiments this requires particular experimental conditions, such as adding padding 
materials, or a non-trivial data post-processing step ([68]) to remove the multiple reflections coming from imperfect 
boundaries while preserving the ones that come from the sample.

More specifically, the contributions of our work are the following:

– We review and implement seven different attenuation models describing visco-acoustic wave propagation. Each model 
encompasses a different effect of wave dissipation and dispersion.

– We carry out inversion with attenuation model uncertainty, that is, we use a different attenuation model to generate 
the synthetic data (simulating measurement data) and to carry out the numerical reconstruction procedure. Despite 
the resulting changes in the forward PDE models, we show that FWI is a robust approach that does not suffer from 
inconsistency in the attenuation model.

– We start with experiments where we impose absorbing boundary conditions to constrain the numerical domain, hence 
mimicking a free-space wave propagation. We then investigate the consideration of wall boundary on the sides of 
the domain. The resulting multiple reflections are shown to strongly influence the accuracy of the reconstructions. To 
overcome the difficulty, we use complex frequencies. This approach is also referred to as the Laplace-Fourier domain 
method, [58,59] and it is shown to improve the convexity of the misfit function for inversion in [22,19]. In our work, 
we show that this transformation can alleviate the difficulty that occurs from the multiple reflections coming from wall 
boundaries, by enhancing wave first arrivals, [34].

– In the context of multi-parameter inversion, we investigate the choice of parametrization, that is, the choice of model 
parameters with respect to whom the gradient is computed, [8,37,19]. In particular, the density and attenuation prop-
erties are known to be hard to reconstruct, [65,33], and possibly require a specific misfit function, [35].

– We perform experiments in three dimensions to explore the feasibility of our methodology and detail the computational 
cost.

In Section 2, we provide the visco-acoustic equation for wave propagation in the frequency domain, and review seven 
different attenuation models from the literature, [62,11,18]. We highlight the benefit of working in the frequency domain, 
in which case all the attenuation models are encoded as PDEs with complex-valued parameters. Therefore the frequency 
domain allows for using PDE software infrastructure, which the time domain does not allow. The inverse procedure for 
2
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Fig. 1. Non-invasive measurement setup with Ricker source excitation: the data are obtained from a single point-source excitation or a transducer device, 
which corresponds to an array of fixed length composed of multiple point-sources, which are simultaneously excited. The source function is a Ricker-
wavelet, which is a broad-band signal. The receivers are positioned around the sample (black dashed line). (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

the reconstruction of parameters using FWI is detailed in Section 3. In Section 4, we carry out reconstructions for a two-
dimensional sample corresponding to a breast model, while a three-dimensional case is performed in Section 5, where we 
also provide the computational cost of the method.

2. Visco-acoustic forward wave problem

2.1. From time-domain to complex frequency-domain data-sets

We investigate the reconstruction of material parameters of a heterogeneous visco-acoustic medium. Waves are excited 
at the boundary of a sample and propagate through it; receivers positioned outside of the sample measure the response 
wavefield which is used to reconstruct the medium properties. In particular, this means that we investigate a non-invasive 
experiment. We assume that the exciting source has a compact support. Mathematically, it can be represented by a delta-
Dirac in space and a time-domain wavelet: δ(x) S(t). We refer to such a function as a point-source, see Fig. 1a. We can also 
consider line-source excitations, see Fig. 1b. Mathematically it is written as a composition of point-sources that are excited 
at the same time-instant. In this work, the time-domain signal/wavelet S(t) of the point-source excitation follows a Ricker 
wavelet function, which represents a broad-band signal containing multiple frequencies, as illustrated in Fig. 1d.

Time-domain signals are transformed with a Laplace-Fourier transform [59,22,25], introducing the complex frequency ω
such that,

ω := ωR + iωI ⇒ iω = iωR − ωI with ωR > 0 and ωI ≥ 0. (2.1)

Namely, the discrete transform of a signal S composed of Nt time-steps such that S = { S0, S1, S2, . . ., SNt−1} is computed 
with

F
(

S
)
(ω) =

Nt−1∑
k=0

Sk eiωk/Nt , (2.2)

using the same convention as [1, Box 5.2]. Note that when the imaginary part is zero, ωI = 0, it corresponds to the ordinary 
frequency ν Hz, with ωR = 2πν . In the experiments, receivers record time signals (e.g., pressure fields), which are thus first 
transformed to complex-frequency data, see Fig. 2.

In the following of the paper, we only study wave propagation in the frequency-domain, or time-harmonic waves, omit-
ting the preliminary step that consists in transforming the measured time-domain signals. As illustrated in Fig. 1d, the 
available frequency content depends on the Ricker source frequency peak.
3
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Fig. 2. Illustration of the steps from time-domain measurements to the complex frequency data in a two-dimensional setup depending on the source 
excitation. The source is positioned at angle 0◦ , corresponding to the Cartesian coordinates x = 17.5 cm, z = 9 cm in Fig. 1. Inversion experiments following 
this setup are carried out in Section 4, 3D experiments are in Section 5.

2.2. Frequency-domain visco-acoustic wave equations

Following the complex Fourier transform of the time-domain data, we consider the propagation of waves in the frequency 
domain. Let us consider the domain � in dimension d (2 or 3 in our experiments), with boundary �. The propagation of 
waves in a visco-acoustic medium is described by the particle velocity vector field v : � → Cd(�) and the scalar pressure 
field p : � →C(�), that satisfy the first-order system of equations, [25]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−iωρ(x)v(x,ω) + ∇p(x,ω) = 0,

− iω

κ†(x,ω)
p(x,ω) + ∇ · v(x,ω) = g(x,ω),

(2.3a)

(2.3b)

where x is the space-coordinates and g the interior source function. The derivation of the complex-frequency time-
harmonic wave equation is further detailed in Appendix A.

The material properties describing the medium consist of the density ρ : � → R(�) and of the bulk modulus κ† : � →
C(�), which is complex-valued and frequency dependent to acknowledge the effects of attenuation. The complex wave 
speed c† : � →C(�) is defined from these two coefficients by

c†(x,ω) =
√

κ†(x,ω)

ρ(x)
, (2.4)
4
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where 
√· uses the principal argument branch [0, 2π), cf. [18, Section 3], that is

κ
β

† = |κ† |β (
β arg(κ†)

)
. (2.5)

Free-space propagation We refer to free-space propagation when waves are supposed to propagate up to infinity, without 
generating reflections. This is typically assumed in the ultrasound imaging setup, e.g., [53,51,3]. In this case, we impose arti-
ficial absorbing boundary conditions (corresponding to Sommerfeld’s radiation condition) to constrain the numerical domain 
in our simulations. Denoting by n the normal direction, it corresponds to imposing the following relation on the numerical 
boundary �:

absorbing boundary condition: − 1

ρ(x) c†(x,ω)
p(x,ω) + v(x,ω) · n = 0 , on �. (2.6)

Wall boundary conditions We also consider a different experiment, where the sample is enclosed in a domain with reflecting 
boundaries. Mathematically, this means that Neumann boundary conditions for the pressure have to be imposed:

wall boundary condition: ∇p(x,ω) · n = 0 , on �. (2.7)

This case is more challenging as multiple wave reflections occur from the boundary and appear in the data, as we highlight 
in the numerical experiments.

2.3. Attenuation with complex coefficients

The attenuation of waves is a frequency-dependent phenomenon, conveniently encoded in the frequency-domain equa-
tions with complex-valued parameters, cf. [7,62,11], while it can be more challenging to implement with the time-domain 
formulation, cf. [7,47]. For propagation with attenuation, the complex wavenumber k is decomposed into its real and imag-
inary parts as follows,

k(x,ω) = ω

c†(x,ω)
= ω0

cp(x)
+ iα(x,ω) , (2.8)

where cp : � →R>0(�) is the phase velocity, [62], the imaginary part α : � →R≥0(�) and ω0 ∈R>0.
The positiveness of the coefficients leads to conditions on the real and imaginary parts of the wave speed and frequency. 

Considering c† = cR + icI , we have

ω

c†
= ωR + iωI

cR + icI
= ω0

cp
+ iα

⇒ ωRcR − iωRcI + iωIcR + ωIcI

c2
R + c2

I

= ω0

cp
+ iα

⇒ ωRcR + ωIcI

c2
R + c2

I

= ω0

cp
and

ωIcR − ωRcI

c2
R + c2

I

= α .

(2.9)

Therefore, to ensure that ω0, cp and α are positive, the real and imaginary parts of the wave speed and frequency must 
verify

ωRcR + ωIcI > 0 , ωIcR − ωRcI ≥ 0 . (2.10)

Firstly, to verify the first condition in the case where ωI = 0 (i.e., for ordinary frequencies), we must have that the real 
part of the wave speed is positive: cR > 0. Now assuming cR > 0, the second condition in (2.10) is always valid (in particular 
when ωI = 0) when

cI ≤ 0 . (2.11)

Therefore we consider that the wave speed has a non positive imaginary part. This is a minimal condition for attenuation 
models, see [1]. We summarize the main assumptions regarding attenuation below.

Assumption 1 (Validity of wave propagation with attenuation). We assume the following conditions for the formulation of the 
wave problem (2.3):

1. The complex frequency verifies: ωR > 0 and ωI ≥ 0 ; (2.12a)

2. The real part of the wave speed verifies: cR > 0 ; (2.12b)

3. The imaginary part of the wave speed verifies: cI ≤ 0 ; (2.12c)
5



F. Faucher and O. Scherzer Journal of Computational Physics 472 (2023) 111685
In addition, we introduce the quality factor Q , that quantifies the level of attenuation.

Definition 1 (Quality factor). The quality factor Q is defined by the ratio between the real and imaginary parts of the complex 
wave speed ([11]),

Q (x,ω) :=
Re

(
κ†(x,ω)

)
−Im

(
κ†(x,ω)

) (2.4)=
Re

(
c†(x,ω)2

)
−Im

(
c†(x,ω)2

) > 0 . (2.13)

The inverse of the quality factor Q −1 is referred to as the dissipation factor and is 0 in a non-attenuating media.

2.4. Models of attenuation

The choice of attenuation model indicates the interplay between the real and imaginary parts of the wavenumber k and 
its frequency dependency. Several models have been introduced in the literature, cf., e.g., [62,11,18]. In this work, we are 
considering seven different models, which are given in Table 1. In their formulations, we indicate explicitly the dependency 
in frequency, such that all of the variables (κ0, η, η, τ , τε and τσ ) are real and only depend on the space coordinates. We 
further indicate the condition on the parameters to ensure the positiveness and negativeness of the signs, respectively for 
the real and imaginary parts of the wave speed, see Assumption 1.

We note that in the case where β = 1, the Cole–Cole model is equivalent to the Zener model. The Kolsky–Futterman 
model (2.15) originates from [38,29] and in our work, we use a simplified version which is frequency independent. It is 
obtained under the assumptions of weak attenuation (4Q 2 � 1), as detailed in [19, Section 1.7]) This model (in its frequency-
dependent version) is also used in [56,45]. In the definition of the modified Szabo model (2.21), τ is placed together with 
the frequency and both are at power (β − 1), contrary to [18] where τ is separated from the power of ω; This is only 
motivated for unit consistency, such that τ is expressed in time unit in (2.21).

Remark 1 (Causality). The models summarized in Table 1 are causal as they are directly derived from their time-domain 
counterpart, cf. [31,62,11,18]. More generally, causality principles can be verified via the Kramers–Kronig relations, or en-
suring that the parameters are analytic in the lower-half complex plane, and we refer to [31,11,18] for more details.

Remark 2 (Generalized models). The attenuation models given in Table 1 account for one frequency mechanism of attenuation, 
which is sufficient when the data contain a relatively narrow band of frequency, as highlighted in our experiments. For 
broadband signals, one has to consider multiple mechanisms each associated with a different frequency, introducing a 
generalized model, cf. [12,48,11,46,67]. For instance, considering L attenuation mechanisms each associated with frequency 
ωl , one can define, e.g., [67],

Table 1
Attenuation models used for the visco-acoustic time-harmonic propagation, extracted from [62,18] and [11, Section 2]. The parameters 
κ0, τ , τε , τσ , η and η are real-valued, only depend on the space variable, and are non-negative to validate the conditions given in
(2.12). In terms of units, κ0 as unit [Pa], τ , τε and τσ are in time units (in [s]), η is in [Pa s] and η is unitless.

model coeff. complex bulk modulus condition

no-attenuation κ0 κ
(no)

† = κ0 (2.14) n/a

simplified Kolsky–Futterman κ0, η κ
(kf)
† = κ0 − i

κ0

η
(2.15) η≥ 0

Cole–Cole, [14,62] κ0, τε , τσ , β κ
(cc)
† = κ0

1 + (− iωR τε)
β

1 + (− iωR τσ )β
(2.16) τε ≥ τσ ≥ 0, 0 ≤ β ≤ 1

Zener, [69], [11, Section 2.4.3] κ0, τε , τσ κ
(z)
† = κ0

1 − iωR τε

1 − iωR τσ
(2.17) τε ≥ τσ ≥ 0

Kelvin–Voigt, [11, Section 2.4.2] κ0, τε κ
(kv)

† = κ0 − iωR κ0 τε (2.18) τε ≥ 0

Maxwell, [11, Section 2.4.1] κ0, η κ
(m)

† = −iωR κ0 η

κ0 − iωR η
(2.19) η > 0

KSB (Kowar–Scherzer–Bonnefond), [18,39] κ0, η, τ , β κ
(ksb)

† = κ0(
1+ η√

1+(−iωRτ )β

)2
(2.20) η>0, τ >0, 0 < β < 1

modified Szabo, [60,18] κ0, τ , β κ
(sz)
† = κ0

1 + (−iωR τ )β−1 (2.21) τ > 0, 0 < β < 1
6
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Table 2
Choice of coefficients for the attenuation models to compute Q in 
Fig. 3. These are chosen such that the quality factor at 300 kHz is 
Q =118. For models that involve multiple coefficients, there exist dif-
ferent combinations that would also give Q = 118 at 300 kHz and we 
only choose one of them.

attenuation model parameters

simplified Kolsky–Futterman η= 118
Kelvin–Voigt τε = 4.5 ns
Maxwell η = 1.4.105 Pa s
Zener τε = 90 ns, τσ = 85.4 ns
Cole–Cole τε = 90.5 ns, τσ = 85.5 ns, β = 0.8
KSB τ = 2.105 s, η= 8.75, β = 0.5
modified Szabo τ = 13.28 s, β = 0.6

Fig. 3. Comparisons of attenuation models with frequency using c0 = 1500 m s−1 and ρ = 1000 kg m−3. The attenuation parameters for each model are 
chosen such that their quality factor Q is equal to 118 at frequency 300 kHz, cf. Table 2.

κ
(G)

† (x,ω) = κ0(x)

(
1 −

L∑
l=1

Bl(x,ω)
ωl

ωl + iω

)
, (2.22)

where Bl represents the attenuation function of the lth mechanism.

2.5. Comparison of attenuation models

We illustrate the dependency of the quality factor Q defined in (2.13) with the frequency for the different attenuation 
models in Fig. 3. We fix the values of the density to ρ = 1000 kg m−3, and of the bulk modulus κ0 = 2.25 GPa, such that 
the wave speed is c0 = √

κ0/ρ =1500 m s−1. To select and compare the parameters of each of the attenuation models, we 
impose the quality factor at the reference frequency ωR/(2π) = 300 kHz to be Q = 118, leading to the values represented 
in Table 2.

One main difference between the attenuation models is that either the low or high frequencies are attenuated the most. 
For instance, the quality factor decreases with frequency for the Kelvin–Voigt, Zener and Cole–Cole models, while it increases 
with frequency for the Maxwell, KSB and modified Szabo ones. For the latter family, it means that low-frequency waves are 
more attenuated while it is the high-frequency waves that are attenuated the most with the first family of models. In the 
investigated frequency band, we observe that the Kelvin–Voigt, Zener and Cole–Cole models have the same pattern with 
high quality factors at low frequencies, a rapid decrease, and then a stabilization. The KSB and modified Szabo models 
instead have low quality factors at low frequencies, before it slowly increases with higher frequencies. One could also use 
the generalized models, as discussed in Remark 2, to allow more flexibility on the quality factor’s evolution. Here, we see 
that, while the quality factors of the attenuation models all coincide at frequency 300 kHz, they become all different when 
stepping away from this reference frequency.

3. Quantitative inverse problem using iterative minimization

The inverse wave problem associated to the forward equation (2.3) corresponds to the reconstruction of the hetero-
geneous properties κ†(x) and ρ(x) given some wave measurements. In this section, we review the steps for quantitative 
7
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imaging based upon iterative minimization. In the context of seismic imaging where one uses the phase and amplitude 
information recorded by the seismograms this is usually referred to as the Full Waveform Inversion (FWI), [40,61,65,19].

3.1. Forward problem

We assume measurements of the pressure field p at the position of receivers. As described in Subsection 2.1, we consider 
that the time-domain measurements results from a source, which is mathematically represented as a Ricker wavelet. Then, 
a complex Fourier (or Laplace–Fourier) transform is applied to work with frequency-domain data, see Fig. 2. Therefore, we 
define the forward problem F directly in the frequency domain: For a source g (which corresponds to the complex Fourier 
transform of the original Ricker source), it is defined such that,

F(m,ω, g) =
{

p(x1,ω, g), p(x2,ω, g), . . . , p(xnrcv ,ω, g)
}

, (3.1)

where p solves (2.3) with right-hand side g . Here, x1, . . . , xnrcv denotes the position of the nrcv receivers. The model pa-
rameters are represented by m and correspond to the bulk modulus and density such that m := {κ†, ρ}. We have nsrc

independent sources in the experiment, and define the data-set associated to the frequency ω by

F(m,ω) =
{
F(m,ω, g1), F(m,ω, g2), . . . , F(m,ω, gnsrc)

}
. (3.2)

Here, we keep the notation F when there is no ambiguity. Note that we have assumed that the receivers remain in the 
same position for each source (that is, they do not depend on g), but modifying the receiver positions together with the 
source would not modify the methodology.

3.2. Reconstruction with iterative minimization, FWI

The reconstruction is carried out following the minimization of a misfit functional J , that evaluates a distance between 
measurements d and simulations:

J (m,ω) = dist
(
F(m,ω), d(ω)

)
, (3.3)

where the choice of misfit function, depending on the data-sets and inverted parameters, is the subject of numerous studies, 
e.g., [58,28,9,63,35,21,26,23]. Per simplicity, we rely on the l2-distance of the difference, such that

J (m,ω) = 1

2

nsrc∑
k=1

∥∥F(m,ω, gk) − d(ω, gk)
∥∥2

2 . (3.4)

The reconstruction is performed by minimizing J with respect to the model parameters m, with a truncated-Newton 
method, [49]. We further follow a progressive increase in the frequency-content to improve the convergence of the algorithm 
and mitigate ill-posedness, as advocated in [10,4,22].

The pressure wave propagating through the medium is broadband (see Fig. 1d). It is recorded at a finite number of 
receivers. Then the complex Fourier transform of the time signals is performed, and we get information for all frequencies 
ω = ωR + iωI such that ω(min)

R ≤ ωR ≤ ω
(max)
R and ω(min)

I ≤ ωI ≤ ω
(max)
I . Following the guidelines of [4,22], we further use 

a sequential frequency progression (i.e., one ω at a time) in the reconstruction algorithm (instead of a band of frequencies 
inverted at once). The progression in the selection of ωR and ωI is detailed and motivated below. The iterative minimization 
algorithm is summarized in Algorithm 1.

Ordinary frequency progression When the imaginary part of the frequency is zero, ωI = 0, (see Fig. 2), one works with 
ordinary frequencies only. In this case the progression in frequency content is chosen from low to high values, [10,4,22,19,
65]. That is, we start with ω(1) = ω

(1)
R ≥ ω

(min)
R , carry out minimization iterations, and then update to ω(2) = ω

(2)
R > ω

(1)
R , 

and repeat with the next frequency, see Algorithm 1.

Complex frequency progression In the case where the imaginary part of the frequency is non-zero (illustrated in Fig. 2), the 
progression in the frequency content follows the strategy of [22]: ωI varies first, from high to low values with ωR fixed. 
Then ωR is increased and we repeat the sequence of ωI (from high to low). This choice is motivated from the estimates of 
attraction basins size provided in [22]. Namely, we start with ω(1) = ω

(1)
R + iω(1)

I , such that ω(1)
R ≥ ω

(min)
R and ω(1)

I ≤ ω
(max)
I . 

The next frequency is ω(2) = ω
(1) + iω(2) , with ω(2) ≤ ω

(1) , see Algorithm 1.
R I I I
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Algorithm 1: Iterative minimization procedure for quantitative reconstruction using complex frequencies. The real 
and imaginary parts of the frequency are ordered such that ω(1)

I > ω
(2)
I > . . . > ω

(NωI )

I and ω(1)
R < ω

(2)
R < . . . < ω

(NωR )

R .

Initialization: starting model parameters m1 = (κ†,1, ρ1), and measurements d.
for i = 1, . . . , (NωI ) do

for j = 1, . . . , (NωR ) do

Set ω := ω
( j)
R + iω(i)

I ;
Compute the complex Fourier transform of the time-domain measurement at ω, see (2.2) and Fig. 2 ;
for k = 1, . . . , niter do

Set l := (i − 1) NωR niter + ( j − 1)niter + k ;
Solve Problem (2.3) using current models ml and frequency ω for all sources in the acquisition;
Compute the misfit function J (ml, ω) ;
Compute the gradient of the misfit function with adjoint-state method, [25];
Compute the search direction (e.g., nonlinear conjugate gradient, [49]) ;
Compute the step length, αl using line-search method, [49] ;
Update the model: ml+1 = ml − αl sl .

end
end

end

3.3. Numerical implementation

For the discretization of the forward wave problem (2.3), we use the Hybridizable Discontinuous Galerkin method (HDG), 
[13,25]. The HDG method used the mixed formulation and static condensation to solve Problem (2.3). It results in a linear 
system to be solved, which size is shown to be less than, e.g., for finite elements method, depending on the degree of 
the approximation polynomials, see. [36,66,25]. Our implementation for the forward and inverse problems follows the steps 
described in [25], where the only change is to consider a complex-valued bulk modulus κ† . The computation of the gradient 
is performed with the adjoint-state method ([54,52,4]) specifically derived for the HDG discretization in [25]. For the two 
and three dimensional computational experiments that are carried out in the following sections, we use the open-source 
software hawen,1 [20]. The precise computational cost is further discussed in Subsection 5.4.

4. Numerical experiments in two dimensions

In this section, we investigate a two-dimensional experiment, following the setup described in Fig. 2. The reconstruction 
is carried out following Algorithm 1, and we study the following:

1. We evaluate the robustness of the reconstruction procedure with attenuation model uncertainty, that is, we select an 
attenuation model to generate synthetic measurement data and use a different model to carry out the reconstruction.

2. While the primary focus of this paper is on the reconstruction of the wave speed variations, we also investigate the 
choice of parametrization to recover the medium’s density, which is known to be harder to recover, see [65,33,19] and 
the references therein.

3. We investigate the effect of the domain boundary conditions, that is, whether we allow waves to freely escape the 
domain using absorbing boundary conditions (free-space) or assuming wall boundaries around the sample.

The following experiments have all been realized using software hawen, [20], see Footnote 1. We further detail the compu-
tational cost of the 2D and 3D reconstructions in Subsection 5.4.

4.1. Experimental setup

We consider a synthetic experiment of ultrasound imaging with a two-dimensional breast model, described by its wave 
speed c0, density ρ , and quality factor Q , pictured in Fig. 4. The medium is of size 18×18 cm2 and is composed of tissues, 
blood and fat. These layers are obtained from a cross-section of the OA-Breast Phantom data-set,2 [43], where the values of 
the parameters depending on the layers (e.g., blood, skin) are taken following the IT’IS Database,3 see Table 3. In addition, 
we incorporate a high-contrast ellipsoid inclusion in the model parameters, which can be seen as a defect that has to be 
identified with ultrasound imaging. From the values given in Table 3, we see that the quality factor is the lowest in the skin 
layer, that is, waves are attenuated the most by skin. In the other layers, the quality factor is relatively high (at least 280), 
such that we have a weakly attenuating medium, [64].

To carry out the reconstruction, we assume measurements of the pressure field, following the setup described in Sub-
section 2.1: A Ricker source wavelet excites the medium and time-domain data are measured. The Ricker wavelet conveys 

1 https://ffaucher.gitlab .io /hawen -website/
2 https://anastasiolab .wustl .edu /downloadable -content /oa -breast -database/.
3 https://itis .swiss /virtual -population /tissue -properties/.
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Table 3
Interval of the model values depending on the type of tissues. These follow the IT’IS 
database, see Footnote 3.

medium wave speed c0 (m s−1) density ρ (kg m−3) Q at 300 kHz

background 1490 1000 800
skin (1590, 1610) (1100, 1120) (100, 120)

blood (1565, 1575) (1090, 1110) (290, 310)

fat (1440, 1460) (920, 940) (410, 430)

glandular tissue (1490, 1520) (1030, 1050) (280, 300)

inclusion 1550 1050 350

Fig. 4. Two-dimensional breast models of wave-speed, density and quality factor at frequency ωR/(2π) = 300 kHz including a high-contrast inclusion. The 
values of the parameters depending on the type of tissues are detailed in Table 3. The domain is of size 18×18 cm2.

Table 4
Interval of values for the coefficients of the attenuation models to represent the 
parameters given Fig. 4 and Table 3.

model parameters

simplified Kolsky–Futterman η ∈ (100,800)

Kelvin–Voigt τε ∈ (0.663,5.305) ns
Maxwell η ∈ (0.148,0.942) MPa s
Zener τε ∈ (4.729,8.663) ns, τσ ∈ (1,8) ns
Cole–Cole τε ∈ (3.150,8.387) ns, τσ ∈ (1,8) ns, β = 0.8.
KSB τ ∈ (1,8) s, η ∈ (17.332,3.036.108), β = 0.5
modified Szabo τ ∈ (5.905,384.552) s, β = 0.5

multiple frequency contents (Fig. 1d) and one transforms the recorded time-domain data into complex frequency-domain 
ones, see Fig. 2 Nonetheless, as we consider a synthetic experiment, for simplicity we directly generate the data-sets in the 
frequency domain and incorporate white noise a-posteriori. The acquisition is composed of 36 independent point-sources 
positioned in a circular pattern, as illustrated in Fig. 1a. The receivers measuring the pressure field for each of the source 
are positioned onto the same disk, with a total of 360 receivers.

For the reconstruction procedure, the initial models consist in the constant values of the parameters in the background, 
that is, the inversion starts with c0 = 1500 m s−1, ρ = 1000 kg m−3 and attenuation parameters chosen (depending on the 
attenuation model) such that Q = 800 at ωR/(2π) = 300 kHz.

4.2. Comparison of wave propagation with attenuation models and boundary conditions

We generate synthetic data for each of the seven attenuation models given in Table 1, leading to seven different data-
sets. The choice of the parameters that describe the attenuation is such that the quality factors Q of each model are equal 
at 300 kHz, and can be seen in Fig. 4c. This amounts to the intervals of values given in Table 4.

For the models that have several degrees of freedom, we consider different magnitudes in the parameters. We illustrate 
the data depending on the medium attenuation model in Fig. 5, for a source positioned at angle 0◦(see Fig. 2) and the 
medium properties pictured in Fig. 4. We further compare the simulations with absorbing or wall boundary conditions. For 
the sake of clarity, we only compare three ordinary (real) frequencies, that is, we keep ωI = 0, and picture the results for 
the Kolsky–Futterman, Kelvin–Voigt, and KSB models. The data used for inversion are obtained every 1◦(i.e., 360 receivers, 
see Fig. 5e), but we also plot in Fig. 5 the signals with data-point every 0.1◦for better visualization and comparisons.

We observe that the three selected attenuation models all give different signals. In Fig. 5a, we see that the difference 
exists for all angles θ , and particularly at large offset, with drastic changes in terms of amplitude. In Figs. 5b and 5c, we 
picture the solution at 500 kHz for θ ∈ (90◦, 120◦) depending on the choice of the boundary condition: We observe that 
when using absorbing conditions (i.e., assuming free-space propagation, Fig. 5c), the difference between the signals is small 
10
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Fig. 5. Comparison of the pressure field at the position of the receivers depending on the attenuation model of the medium, with medium parameters 
pictured in Fig. 4. The receiver devices are positioned around the sample, in the configuration of Fig. 2, and the source is at angle θ =0◦ . For visualization, 
we first consider one receiver every 0.1◦ . Nevertheless, the data used for inversion consider one receiver every 1◦instead, i.e., 360 receivers.

both in terms of amplitude and phase. On the other hand, when assuming the wall boundaries on the sides of the domain, 
we see drastic changes in the wavefields, cf. Fig. 5c. In Fig. 5d, we plot the results for frequency 300 kHz, at which the quality 
factors of each attenuation model are the same, here we see that the signals corresponding to the Kolsky–Futterman and 
Kelvin–Voigt models are indeed very close. Nonetheless, the signal corresponding to the KSB model is different in amplitude 
and phase. Furthermore, to carry out the inversion, we see that we have a sub-sampled signal with one data-point every 
1◦ , as plotted in Fig. 5e.

Note also that there is some flexibility with the position of the absorbing boundary conditions to constrain the compu-
tational domain, as waves are anyway supposed to freely propagate up until infinity. On the other hand, when considering 
wall boundaries, it is essential that the computational domain boundaries follow the actual setup, so that the reflections 
from the wall are adequately simulated.

4.3. Reconstruction with absorbing boundary conditions (free-space)

We consider the medium in free-space, such that acoustic waves propagate according to (2.3) in the domain � with 
absorbing boundary conditions (2.6) on �. In this configuration, one assumes that either the propagation domain is suf-
ficiently large so that reflections from the boundaries are negligible, or that these reflections can somehow be removed 
in a pre-processing stage of the data. Note that the later option is not a trivial task in general (cf. the suppression of the 
so-called multiples in seismic acquisition) and can lead to inconsistency in the data. We further investigate the case of 
reflecting boundaries, which is more challenging, in Subsection 4.4.

4.3.1. Wave speed reconstruction with attenuation model uncertainty
In this test-case, we investigate the robustness of the iterative reconstruction procedure with respect to the attenuation 

model. We generate a synthetic data-set for each of the attenuation model (see Subsection 4.2) and carry out the recon-
11
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struction using a different one. All of the data-sets have the same acquisition with 36 independent point-sources and 360 
receivers measuring the pressure field, as illustrated in Figs. 2 and 5. We use synthetic data, but the numerical setup is 
changed between the forward and inverse problems. Namely, the data are generated using a discretization mesh of more 
than 200000 cells to ensure the accuracy of the different layers, and the solution is approximated with polynomials of order 
5. On the other hand, the inversion is carried out on a mesh of less than 10000 cells, with variable orders using p-adaptivity 
for efficiency, cf. [25]. In addition, white noise is added to the synthetic data, using a signal-to-noise ratio of 20 dB. During 
inversion, the model parameter is represented as a piecewise-polynomial function per cell, using Lagrange basis function of 
linear order. Therefore, the model parameters are represented by 3 unknowns on each cell of the discretized mesh.

In this experiment we only use ordinary (real) frequencies (i.e., regular Fourier transform of the time-domain data) 
such that ωI = 0. We consider the increasing frequency progression as follows: ωR/(2π) = {200, 300, 400, 600} kHz. The 
evolution in the frequency content of the data is chosen sequentially, [22], and 30 iterations are performed per frequency 
for the minimization, following Algorithm 1. Therefore, there is a total of 120 iterations. The reconstruction is carried out 
with respect to the bulk modulus κ0, that is, the density ρ and quality factor Q remain at their constant initial values. 
For visualization, we instead picture the resulting wave speed c0 = √

κ0/ρ , assembled from the reconstructed real part of 
the bulk modulus κ0 and the (homogeneous) initial density ρ . In Fig. 6 are shown the reconstructed wave speed models, 
comparing for all data-sets the use of a different model for inversion where, for visualization, the raw results are slightly 
smoothed a-posteriori, see Remark 3.

While each attenuation model gives a quite different data-set, as highlighted in Fig. 5, we see that all of the configura-
tions provide the appropriate layers in the sample, and have similar accuracy. The main tissue features are reconstructed 
with the appropriate values and the skin of the sample is correctly obtained. Namely, using an attenuation model for the re-
construction that is different from the one of the original medium does not alter the accuracy of the features reconstructed, 
demonstrating the robustness of the iterative minimization procedure for this two-dimensional test-case. In addition, we see 
that while the density ρ and attenuation Q are not inverted and remain to their initial values, the reconstructed profiles of 
wave speed c0 are accurate.

In all of the cases, the ellipse-shaped included defect is found at the right position and with its precise shape. We note 
that the speed in the skin layer in slightly less than expected, while the one in the contrasting object is slightly higher than 
expected. The robustness of the reconstruction algorithm with respect to changes in attenuation models could be explained 
by two reasons:

1. Data of relatively limited frequency bandwidth are sufficient for the reconstruction (from 200 to 600 kHz) and the 
difference between attenuation models is less significant is such a narrow band, see Fig. 3.

2. The reconstruction with FWI is known to be more sensitive to phase shifts rather than amplitude, hence robust with 
respect to incorrect attenuation which mostly affects the signal amplitude. Indeed, the dispersion resulting from the 
change of attenuation models remains small compared to the one that comes from changes in the bulk modulus κ0 .

In addition, we are in a case of tissues which have weak attenuation properties, which may also justifies the lack of 
sensitivity to change in attenuation model, even though the wave fields of Fig. 5 show strong differences. In the following 
experiments, for the sake of clarity, we only consider one of the cases, with the data-set generated with the Kolsky–
Futterman model, while FWI is conducted using the Kelvin–Voigt model.

Remark 3 (Post-processing visualization). The visualization of the reconstruction may suffer from the coarse discretized mesh 
(about 10000 cells) employed for the numerical discretization, which is chosen to reduce the numerical cost. To enhance 
the visualization, we use the function imgaussfilt of MATLAB, which corresponds to a Gaussian smoothing filter, that 
we illustrate in Fig. 7. This procedure is done a posteriori, independently of the reconstruction algorithm, and is therefore 
costless. One could instead rely on an extra regularization term in the optimization, such that Tikhonov or Total Variation 
regularization, but it needs an additional threshold in the formulation of the minimization problem, which can be difficult 
to select, e.g., [26]. This post-processing is only performed to enhance the visual aspect of the reconstructions by smoothing 
some numerical artifacts.

4.3.2. Multi-parameter reconstruction
We have inverted with respect to model parameter κ0 in the previous experiments, and now investigate the reconstruc-

tion of two model parameters simultaneously. We refer to the choices of the parameters to invert as the parametrization, 
which is shown to have a strong influence the reconstruction, cf. [8,37,19]. Namely, the physical properties characterizing 
the medium can be expressed with different physical parameters, for instance, omitting the attenuation property, we have 
the bulk modulus κ0, the density ρ , the wave speed c0 = √

κ0/ρ , or the impedance I0 = √
κ0 ρ . For inversion, here we 

select two parameters among the aforementioned four, that will be reconstructed simultaneously, following Algorithm 1. It 
amounts to twelve possibilities but, for the sake of conciseness, we consider four cases:

– Inversion with respect to (κ0, ρ), – Inversion with respect to (I0, ρ),
– Inversion with respect to (c0, ρ), – Inversion with respect to (I0, c0).

In particular, the last choice is motivated by [65]. To evaluate the gradient of the misfit function with respect to the 
selected model parameter, we start by computing the derivatives with respect to κ0 and ρ (which are the main unknowns 
12
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Fig. 6. Reconstruction of the wave speed c0 = √
κ0/ρ using the iterative minimization Algorithm 1 with sequential frequency progression ωR/(2π) =

{200, 300, 400, 600} kHz and fixed ωI = 0, starting from homogeneous backgrounds (Table 3). The visualization corresponds to x from 2 to 16 cm and 
z from 4 to 14.5 cm, with color scale similar to Fig. 4. Each line corresponds to a different data-set, each column corresponds to a different attenuation 
model used for FWI: (column 1) Kolsky–Futterman model; (column 2) Kelvin–Voigt model; (column 3) Maxwell model; (column 4) Zener model; (column 
5) Cole–Cole model; (column 6) KSB model; (column 7) Szabo model. Diagonal elements are reconstructions with the “right” model.

appearing in the wave equation (2.3)), and then use the chain rule formula, cf. [19, Sections 5.5 and 5.6]. In Fig. 8, we 
compare the reconstructions: For all cases, we picture the wave speed c0 and density ρ that are reassembled from the 
reconstructed model parameters. In addition, we maintain the attenuation model uncertainty, with data generated with the 
Kolsky–Futterman attenuation model, while inversion is carried out with the Kelvin–Voigt model.

The assembled wave speed is similarly accurate with all choices of parametrizations, with the different tissue features 
correctly retrieved and the ellipse-shaped defect resulting in a contrast of wave speed is visually clearly identified. However, 
we observe major differences in the reconstruction of the density: The parametrization (κ0, ρ), (I0, c0) and (I0, ρ) are able 
to identify the main layers and (I0, ρ) provides the best resolution, with smoother contrasts. Nonetheless, the values of 
the density are incorrect in all cases, and remain near to the initial value. Here, the parametrization (c0, ρ) is the worst 
regarding the density reconstruction, with a noisy background where only the skin delimitation barely appears.
13



F. Faucher and O. Scherzer Journal of Computational Physics 472 (2023) 111685
Fig. 7. Illustration of the Gaussian filtering of the reconstruction to a-posteriori improve the visualization. We use a standard deviation for the Gaussian 
σ = 2. This reconstruction corresponds to the upper left image of Fig. 6.

Fig. 8. Comparison of the reconstruction depending on the parametrization of the inverse problem. The reconstruction follows Algorithm 1 with sequential 
frequency progression ωR/(2π) = {200, 300, 400, 600} kHz and fixed ωI = 0 with 30 iterations per frequency, starting from homogeneous backgrounds 
(Table 3). The domain units are given in cm.

Remark 4. We note that the difficulty of recovering the density is similar in seismic imaging, [65,19]. This is explained as 
density perturbations mostly modify the amplitude of the signals and, as indicated above, the FWI focuses on the differences 
in the signals phase-shift. As an alternative, one could carry the FWI reconstruction of one main parameter, such as the bulk 
modulus, wave speed or impedance, and then infer the density via analytic formula inherited from physics, such as Gardner’s 
relation, [30]. Another alternative is to select a different misfit function.

4.4. Reconstruction with wall boundary conditions and complex frequencies

In the previous experiments, we have seen that the wave speed is accurately reconstructed, even in the case of an 
attenuation model error. We have assumed that waves can escape the medium without incurring reflections, by using in 
the numerical simulations absorbing boundary conditions on all sides. We now instead consider wall boundary conditions on 
the domain boundary � with (2.7), hence leading to multiple wave reflections from each side. The background coefficients 
also have low attenuation (see Table 3), further supporting these multiple reflections. We shall see that the modification 
of the boundary condition drastically alters the performance of the reconstruction, and that complex frequencies can be 
used to overcome the difficulties. For the sake of conciseness, we only consider the data-set using the Kolsky–Futterman 
attenuation model, while the reconstruction procedure is carried out with the Kelvin–Voigt model.

4.4.1. Reconstruction with ordinary frequencies (ωR > 0, ωI = 0)
We keep the setup of the previous experiment where we only use Fourier frequencies with the progression ωR/(2π) =

{200, 300, 400, 600} kHz, with a fixed ωI = 0. We invert with respect to the bulk modulus only, and picture the reconstruc-
tion in Fig. 9, where we compare different choices of fixed quality factor for the reconstruction, that is, different choices of 
initial values for the attenuation parameters.
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Fig. 9. Reconstruction of the wave speed c0 = √
κ0/ρ in the case of wall boundary conditions with different choices of (fixed) attenuation parameters. 

The reconstruction follows Algorithm 1 with sequential frequency progression ωR/(2π) = {200, 300, 400, 600} kHz and fixed ωI = 0 with 30 iterations 
per frequency. The reconstruction starts from homogeneous wave speed and density (Table 3), and we compare different choices of constant attenuation 
parameters to observe the effect of the initial guess for the attenuation model onto the reconstruction.

We see that the consideration of wall boundary on the sides of the medium completely changes the behavior and 
prevents any accurate reconstruction when using the constant value of background attenuation as initial guess, Fig. 9a, while 
it is the “natural” choice of background value. It appears that the multiple reflections from the boundaries totally annihilate 
the possibility of reconstruction, with information from the sample merged within the wave reflections. Interestingly, when 
the initial guess for the quality factor is much lower than expected (i.e., the initial guess is too attenuating compared to the 
real medium), the FWI reconstruction is slightly better, with the tissue features appearing, see Figs. 9b and 9c. However, the 
reconstruction remains with a poor resolution compared to the previous experiment assuming free-space propagation.

This experiment highlights the difficulty of having strong multiple reflections from the medium boundary, drastically 
reducing the performance of the reconstruction procedure. It would be necessary to treat those multiples in the measure-
ment data, [68], to clear the reflections coming from the domain boundaries, but this task is not trivial in practice. As an 
alternative, one could perform the experiments in a medium with strong attenuation, to reduce or prevent the multiple 
reflections. In the next section, we show how to resolve the issue of the multiple boundary reflections, by encoding an 
artificial damping via the use of complex frequencies.

4.4.2. Reconstruction using complex frequencies (ωR > 0, ωI ≥ 0)
We now investigate the use of complex frequencies for the case with wall boundary conditions, where we keep the 

same set of Fourier frequency, enriched with a Laplace component. In this case, it corresponds to applying a complex 
Fourier transform to the original time-domain observed data, as illustrated in Fig. 2.

For the reconstruction, we use the following sets:

– Fourier frequency ωR/(2π) : {200, 300, 400, 600} kHz,
– Laplace damping ωI : {20.103, 15.103, 10.103} s−1.

Following the analysis of the inverse problem for complex frequencies carried out in [22], the progression of content first 
varies the Laplace damping from high to low for a fixed Fourier frequency, which then varies from low high. Namely, the 
inverted complex frequencies follow the order: (200 kHz, 20.103), (200 kHz, 15.103), (200 kHz, 10.103), (300 kHz, 20.103), 
(300 kHz, 15.103), etc. The reconstructed wave speed c0 using the complex frequency set is pictured in Fig. 10.

The reconstruction using complex frequencies is accurate, with all the layers and the contrasting tumor appearing with 
the same high resolution as in the case of absorbing boundary conditions. Therefore the artificial damping has allowed to 
overcome the multiple boundary reflections. Note that this procedure can be applied for any data measured in the time-
domain, and only necessitates to apply the complex Fourier transform as illustrated in Fig. 2. The performance of the use 
of the Laplace-Fourier transform with several complex frequencies can further be explained as the transform introduces 
artificial damping with the complex frequency, hence enhancing the first arrivals ([34]) by reducing the multiple reflections.

5. Numerical experiments in three dimensions

5.1. Experimental setup

We set up a three-dimensional experiment with a breast model extracted from the OA-Breast Phantom data-set, see 
Footnote 2, and further include a contrasting 3D object embedded in the medium. In Fig. 11 are displayed the wave speed, 
density and quality factor, which are encompassed in a rectangular domain of size 10 × 10 × 16 cm3. The values of the 
parameters in the different layers of the sample follow the values of the previous experiment, and are prescribed in Table 3.

The data are generated from the sides of this bounding box, except for the plane where x = 10 cm, which correspond to 
the patient’s chest in Fig. 11. That is, the data are generated from the five remaining sides. We consider 224 point-sources 
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Fig. 10. Reconstruction of medium with wall boundary condition using complex frequencies. The starting models correspond to the constant background 
values of wave speed, density and quality factor of Table 3. (i.e., using fixed attenuation parameters chosen such that Q = 800 at 300 kHz). The corre-
sponding case without using the complex frequencies is pictured Fig. 9a.

and 1533 receivers equally partitioned between the different sides, with the receivers measuring the pressure field for each 
of the sources. Note that the choice of using a rectangular acquisition setup is only motivated per simplicity, and we could 
also employ a spherical acquisition, only requiring to adapt the discretization mesh.

For the reconstruction, we start with constant background parameters with c0 = 1490 m s−1, ρ = 1000 kg m−3 and 
constant attenuation parameters chosen such that Q (300 kHz) = 800. Furthermore, we only invert for the bulk modulus 
and keep the density and quality factor at their initial values during the entire iterations of FWI. We also incorporate 
attenuation model error in the experiment: the data are generated using the simplified Kolsky–Futterman model while the 
inversion is carried out with wave propagation using the Kelvin–Voigt attenuation model.

5.2. Reconstruction with absorbing boundary conditions (free-space)

In the free-space problem, absorbing boundary conditions (2.6) are implemented on all sides of surrounding box. In this 
case, following the observations of Section 4, we expect that only the Fourier frequencies would be needed (i.e., taking ωI =
0 to transform time-domain signals in Fig. 2), and we select the following three frequencies ωR/(2π) for the reconstruction: 
{100, 200, 300} kHz. We perform 20 minimization iterations per frequency, hence a total of 60 iterations. The wave-speed 
(assembled from the reconstructed bulk modulus) is shown in Fig. 12.

We see that the main features of the sample appear correctly on the reconstruction, with the appropriate values of 
speed recovered. The contrasting shape appears appropriately, in its correct location, as seen on the different cross-sections 
of Fig. 12. We also observe some background oscillatory artifacts in the surroundings of the medium but the skin contour of 
the breast is well identified. Here, smaller details and tissue features are missing and may require higher frequency-contents 
in the data (if available), to refine the accuracy of the reconstructed model.

5.3. Reconstruction with wall boundary conditions and complex frequencies

We consider wall boundary conditions (2.7) on the sides of the acquisition box. Here, we maintain an absorbing condi-
tion on the side of the chest (the plane at fixed x = 10 cm in Fig. 11) and use wall conditions on all of the other sides. To 
alleviate the difficulties of handling the multiple reflections generated from the different sides, we use complex frequencies. 
The Fourier content remains the same as the one used above, with ωR/(2π) = {100, 200, 300} kHz, and we further incorpo-
rate two damping coefficients: ωI = {104, 5.103} s−1. The sequential progression of frequency follows a low-to-high Fourier 
content and high-to-low Laplace one, [22], such that we use (ωR/(2π), ωI) = {(100 kHz, 104), (100 kHz, 5.103), (200 kHz, 
104), . . .}.

The reconstructed wave speed is pictured in Fig. 13, where we see that we obtain a accuracy relatively similar to the 
case assuming the free-space propagation (Fig. 12). The main tissue features are visible in the cross-sections and the skin 
layer is recovered. In addition, the position, size and amplitude of the contrast are obtained and clearly stand out on 
the reconstruction. Similar to the free-space medium reconstruction, we observe some background perturbations, which 
however does not prevent us from clearly identifying the main components of the sample.

5.4. Computational cost

The reconstruction relies on the iterative algorithm depicted in Algorithm 1, where the computational cost comes from 
the resolution of the forward problems which has to be repeated with iterations. For the resolution of the time-harmonic 
problem, the discretization leads to relatively large matrix, and one further needs to solve the resulting linear system for 
each of the source in the acquisition. In our implementation, we made the following choices regarding the computational 
implementation:
16
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Fig. 11. 3D breast sample in a bounding domain of size 10 × 10 × 16 cm3. The values of the parameters depending on the type of tissues are given in 
Table 3.

– We use HDG discretization method, see Subsection 3.3, which can help reduce the computational cost compared to 
other approaches, see [25].

– Using HDG, the order of the approximation polynomial on each cell of the discretization mesh is chosen independently 
depending on the local (to the cell) wavelength, to ensure the linear system is as small as possible, cf. [25].

– For the resolution of the linear systems, we use the direct solver MUMPS, [2], that is particularly efficient for solving 
systems with multiple right-hand sides, contrary to iterative solvers. Namely, once the global matrix is factorized, the 
resolution for all of the sources (i.e., 224 point-sources in our 3D experiments) is fast. On the other hand, the matrix 
factorization is a computationally intensive step, especially regarding the memory consumption.

We use software hawen (see [20] and Footnote 1) in all of the experiments. They are carried out on the cluster PlaFRIM.4

The computational costs are the following:

4 https://www.plafrim .fr/.
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Fig. 12. Three-dimensional reconstruction of the breast model Fig. 11 assuming free-space propagation. The reconstruction starts from constant background 
parameters. The iterative minimization uses three frequencies from 100 to 300 kHz, with a total of 60 iterations.

Fig. 13. Three-dimensional reconstruction of the breast model Fig. 11 assuming wall boundary on the sides of the acquisition box. The reconstruction 
starts from constant background parameters and only the bulk modulus is inverted while the density and quality factor remain constant. The iterative 
minimization uses six (complex) frequencies with ωR/(2π) = {100, 200, 300} kHz and ωI = {104, 5.103} s−1, for a total of 120 iterations.

– The 2D experiments of Section 4 are performed on 36 physical cores, with 18 processors and 2 threads per processors. 
The computational time to obtain a reconstruction as in Fig. 6 is about 10 min and corresponds to 120 inversion 
iterations. The memory required to factorize the matrix is about 1 GiB for all frequencies.

– The 3D experiments are performed on 540 physical cores, with 90 processors and 6 threads per processors. The compu-
tational time to obtain a reconstruction as in Fig. 12 is of 5 h and corresponds to 60 inversion iterations. The memory 
required to factorize the matrix depends on the frequency (high frequency needs higher polynomial order hence gener-
ates larger systems), and varies from 200 GiB at 100 kHz to 800 GiB at 300 kHz.
18
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6. Conclusion

We have performed imaging of visco-acoustic media using an iterative reconstruction procedure. Attenuation can be 
encoded in the propagation via different models, and we have the following results.

1. We have implemented seven different models of attenuation and compared the wave propagation. It highlights that, 
while they can coincide at a reference frequency, each model leads to different wave patterns.

2. We have shown that our algorithm is robust with respect to attenuation model uncertainty, where we have used a 
relatively narrow band of frequency (here between 100 and 600 kHz). Namely, if one does not know the attenuation 
model that corresponds to the sample, it does not prevent from reconstructing its main properties.

3. While the wave sped and bulk modulus are accurately reconstructed and allow to describe the key-features of the 
sample, the recovery of the density and quality factor is more difficult, cf. [65,35] and the references therein. To recover 
them, one would need a parametrization that is more suitable to focus on amplitude variation, with an appropriate cost 
function (i.e., instead of the L2 norm), [35].

4. We have shown that the reconstruction assuming a propagation in free-space performs well but considering wall bound-
ary around the samples leads to multiple reflections that drastically alter the reconstruction. As an alternative, we have 
proposed the use of complex frequencies which, by introducing an artificial damping, alleviate the difficulties and enable 
the accurate discoveries of the sample features. It provides us with a candidate to further consider media containing 
objects of high contrast that generate strong reflections, such as bones and skull, which are known to be harder to 
image. This is the subject of ongoing studies.

Our experiments use physical properties of tissues which, in this range of ultrasonic frequencies, are weakly attenuating 
(quality factor higher than 100). In the opposite situation where the medium is highly attenuating and prevent waves to 
propagate in the tissues with sufficient energy, the strategy we propose may have to be modified, this is part of ongoing 
works. In addition, the consideration of visco-elasticity is part of our ongoing research, where the difficulties come on the 
one hand from the incorporation of additional unknowns for inversion and on the other hand by the increased computa-
tional cost of solving a vector-wave problem.
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Appendix A. Time-harmonic formulation with complex frequencies

To illustrate the derivation of the frequency-domain equation (2.3) for complex frequencies, we start with the time-
domain wave equation. For simplicity, we consider the case without attenuation to avoid possibly integro-differential 
equation. In this case, time-dependent acoustic waves are given by the velocity and pressure fields, respectively v̂(x, t)
and p̂(x, t), solutions to⎧⎪⎪⎨⎪⎪⎩

ρ(x) ∂t v̂(x, t) + ∇ p̂(x, t) = 0,

1

κ0(x)
∂t p̂(x, t) + ∇ · v̂(x, t) = ĝ(x, t),

(A.1a)

(A.1b)

where ĝ is the time-dependent source, that is, the Ricker wavelet in the context of Fig. 1.
We consider time-harmonic solutions of the following form:

p̂(x, t) = p(x,ω) e−i (ωR + iωI) t , (A.2a)

v̂(x, t) = v(x,ω) e−i (ωR + iωI) t , (A.2b)

ĝ(x, t) = g(x,ω) e−i (ωR + iωI) t , (A.2c)

where we remind that by definition, ω := ωR + iωI . Deriving with respect to time gives,

∂t p̂(x, t) = −iω p(x,ω) e−iω t , (A.3a)

∂t v̂(x, t) = −iω v(x,ω) e−iω t . (A.3b)

Replacing in (A.1), we obtain,⎧⎪⎪⎪⎨⎪⎪⎪⎩
−iωρ(x) v(x,ω) e−iω t + ∇(

p(x,ω) e−iω t) = 0,

−iω

κ0(x)
p(x,ω) e−iω t + ∇ · (v(x,ω) e−iω t) = g(x,ω) e−iω t .

(A.4a)

(A.4b)

Simplifying the terms e−iω t (that do not depend on space), we obtain the time-harmonic equation (2.3) in the case without 
attenuation. We note that this transformation introduces two parameters (ωR and ωI), similarly to the continuous Gabor or 
the Wavelet transforms.
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