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9Université Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France

(Received 14 July 2022; accepted 10 October 2022; published 8 November 2022)

Polarization singularities and topological polarization structures are generic features of inhomogeneous
vector wave fields of any nature. However, their experimental studies mostly remain restricted to optical
waves. Here, we report the observation of polarization singularities, topological Möbius-strip structures,
and skyrmionic textures in 3D polarization fields of inhomogeneous sound waves. Our experiments are
made in the ultrasonic domain using nonparaxial propagating fields generated by space-variant 2D acoustic
sources. We also retrieve distributions of the 3D spin density in these fields. Our results open the avenue to
investigations and applications of topological features and nontrivial 3D vector properties of structured
sound waves.
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Introduction.—Polarization is an inherent property of
monochromatic vector waves, which describes the tra-
jectory of the wave field over its oscillation period.
Polarization is routinely used for transverse (e.g., electro-
magnetic or elastic shear) waves, where it lies in the plane
orthogonal to the wave vector k for a single plane wave and
is also responsible for the spin of the wave [1,2]. For
longitudinal (e.g., sound) waves, the vector field is collinear
with k for a single plane wave, and it might seem that the
polarization properties of such waves are trivial. However,
the interference of multiple longitudinal plane waves with
different wave vectors kj, j ¼ 1;…; N, causes the polari-
zation at a given point r to become an ellipse with arbitrary
3D orientation and ellipticity, and hence to have spatially
varying spin density [3–6]. Thus, polarization properties of
structured vector waves share similar generic features
independently of the transverse (divergence-free) or longi-
tudinal (curl-free) character of the wave field.
Complex inhomogeneous fields can be characterized via

their singularities and topological structures. Polarization
singularities (e.g., the C points or C lines where polariza-
tion is circular) have been analyzed in detail for optical
fields [7–14], and it was found that the orientation of the 3D
polarization ellipse in a vicinity of a generic (nondegen-
erate) C point has a nontrivial Möbius-strip topology [13–
20]. Recently, some of us argued that the same topological
structures can appear naturally in inhomogeneous sound

waves [21] and the present work is in a line of emerging
studies of the vector properties of sound waves. First,
nonzero spin densities in structured sound waves have
recently attracted great attention and offered novel methods
of contactless manipulation of objects with sound waves
[4,5,22–26]. Second, skyrmionic polarization textures have
been recently described and observed in both optical
[27–32] and sound [33] waves. Finally, polarization knots
were recently analyzed for both optical and sound waves
[34–37]. It is worth mentioning that other types of classi-
cal waves (e.g., water waves) can also exhibit similar
polarization-related features [6,21,36].
Here, we report on the first observation of polarization

singularities, polarization Möbius strips, and polarization
skyrmionic textures in structured propagating sound waves.
We generate nonparaxial Bessel-like sound beams with a
pair of C points near the beam center, and also investigate
three-wave interference with a periodic lattice of C points.
We reconstruct 3D polarization-ellipse distributions of the
acoustic velocity field, observe the Möbius-strip topology
around the C points, and also retrieve the 3D spin density
and identify skyrmionic texture in the propagating field.
Our results demonstrate that sound waves exhibit the same
rich variety of topological polarization features as opti-
cal waves.
Sound waves under consideration.—We consider mono-

chromatic propagating sound waves that can be described
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by two distinct complex space-variant fields: the scalar
pressure field pðrÞ and the vector velocity field vðrÞ ¼
−ði=ρωÞ∇pðrÞ, where ρ is the mass density of the medium
(air, in our case) and ω is the angular frequency. The real
time-dependent fields are obtained by applying Re½…e−iωt�
to the complex fields p and v and polarization is described
by the velocity field, which can thus be deduced from the
gradient of the pressure field.
We consider inhomogeneous sound waves resulting from

the superposition of N plane waves with equal amplitudes
and wave vectors evenly distributed over the circle kz ¼
k cos θ0, k ¼ ω=c, Fig. 1, where c is the speed of sound.
The pressure and velocity fields of this superposition can be
written as [21]

p ¼ v0ρc
XN
j¼1

exp ðikj · rþ iΦjÞ; ð1Þ

v ¼ v0
XN
j¼1

k̄j exp ðikj · rþ iΦjÞ; ð2Þ

where v0 is the common real-valued velocity ampli-
tude of every constituting plane wave, and k̄j≡kj=k¼
ðsin θ0 cosϕj;sin θ0 sinϕj;cos θ0Þ with ϕj ¼ 2πðj − 1Þ=N
are the directions of the wave vectors, using spherical
angles ðθ;ϕÞ. In addition, we choose the relative phases of
the interfering waves to correspond to the vortex with an
integer topological charge l, i.e.,Φj ¼ lϕj. Specifically, in
our experiments we generate fields (1) and (2) with N ¼ ∞
(Bessel beams) and N ¼ 3 (three-wave interference), topo-
logical charges l ¼ �1, and θ0 ¼ π=4.
The polarization singularities of the vector field v are the

C points [in the 2D ðx; yÞ plane] or C lines (in 3D space)
[7–14], which correspond to phase singularities (vortices)
of the quadratic scalar field v · v. We note that, generally,
polarization singularities do not coincide with phase
singularities of the pressure field. As predicted in
Ref. [21], a Bessel beam with l ¼ �1 has a double-
degenerate C point at its center, which can be split into a
pair of nondegenerate C points by a perturbation breaking

the cylindrical symmetry of the field [38–40], whereas the
three-wave interference generates a periodic lattice of
nondegenerate C points. The orientation of the major axes
of the 3D polarization ellipses has a Möbius-strip topology
along a closed contour embracing an odd number of
nondegenerate C points [13–20].
Experimental setup.—Space-variant ferroelectret-based

acoustic transducers, which can be regarded as examples of
active acoustic metasurfaces [41], are at the heart of the
setup shown in Fig. 2. Their principle of operation is
detailed in [42]. This technology allows operating over a
broad ultrasonic frequency range 60–300 kHz and offers
creating space-variant sources on either flat or developable
surfaces. Good acoustic impedance matching with air and
user-friendly operation make it a valuable experimental
option.
To generate the idealized plane-wave superpositions

depicted in Fig. 1 and given by Eqs. (1) and (2), we fabri-
cate three types of flat monolithic electroactive diffracting
gratings (EADGs): counterclockwise and clockwise circu-
lar spirals for the Bessel beams with ðN;lÞ ¼ ð∞;�1Þ and
a clockwise triangular spiral for the three-wave interference
ðN;lÞ ¼ ð3;−1Þ, see Fig. 2. Details on the design, fabri-
cation, and characterization of EADGs for the generation
of ultrasonic Bessel beams can be found in [43,44]. Here,
the space-variant acoustic transducers are excited with a

FIG. 1. Wave vectors of N interfering planes waves, Eqs. (1)
and (2), evenly distributed over the cone with the polar angle
θ0 ¼ π=4 and having relative vortex phases Φj ¼ lϕ (color
coded). The three cases shown here correspond to the Bessel
beams with l ¼ �1 and a three-wave interference with l ¼ −1.

(a)

(b)

FIG. 2. (a) Sketch of the experimental setup involving 2D
structured electroactive diffraction gratings (EADG). (b) Top
view of the fabricated acoustic sources corresponding to the
Bessel beam with ðN;lÞ ¼ ð∞; 1Þ and three-wave interference
ðN;lÞ ¼ ð3;−1Þ. Scale bars: 5 cm.

PHYSICAL REVIEW LETTERS 129, 204301 (2022)

204301-2



computer-controlled 100 V peak-to-peak chirped signal
driving a signal generator (Tektronix, Model AFG3022C),
connected to a high-speed high-voltage amplifier (Falco
System, Model WMA300) for power supply of the
EADGs.
The geometrical grating parameters are introduced in

Fig. 2 (in red), where dP ¼ 0.45P. The desired interference
field is generated owing to the first-order diffraction
from the grating characterized by the angle θ0 ¼ π=4 [see
Fig. 3(a)], which is equivalent to P ¼ ffiffiffi

2
p

λ where λ ¼
2πc=ω is the wavelength. The azimuth-dependent phase
difference between the diffracted waves, Φj ¼ lϕj, is
ensured by the geometry of the spiral [43,44]. The circular
Bessel-beam spirals have M ¼ 5 turns with a minimum
radius r0 ¼ 10 mm, and they operate at the frequency
ω=2π ¼ 97 kHz (λ ¼ 3.5 mm). The triangular spiral
has M ¼ 8 turns with r0 ¼ 22 mm (the minimum radial
distance to the spiral), and it operates at ω=2π ¼
70 kHz (λ ¼ 4.9 mm).
In the limit of geometric acoustics the first diffraction

orders overlap at axial distances between

zmin ¼ r0
P
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λ2

P2

r
and zmax ¼ zmin

�
1þMP

r0

�
ð3Þ

from the acoustic source. Therefore, we obtain the desired
fields at a distance zobs ¼ ðzmax þ zminÞ=2 from the source
plane, as shown in Fig. 3(a). Note that r0 ≠ 0 prevents the
zeroth-order diffracted field to interfere with the desired
first-order one in the ðx; yÞ area r < r0 (there are no
propagating higher diffraction orders at the frequencies
of interest).
Measurements and simulations.—The polychromatic

radiated acoustic pressure field (50–200 kHz chirped pulse
of 830 μs duration at a repetition rate of 10 Hz) is measured

using a calibrated microphone (1=8 inch, Bruel and Kjaer)
whose position is controlled in 3D with an XYZ stage unit.
A 0.5 mm diameter pinhole is fitted to the tip of the
microphone to increase the spatial resolution of the
measurements while preventing diffraction drawbacks
[45]. The signal is recorded after being amplified while
a real-time monitoring is made with an oscilloscope. Then,
we perform a Fourier analysis of the time-domain data,
which gives access to both the magnitude and phase of each
spectral component of the pressure field with practically
negligible noise. The frequency of interest (70 or 97 kHz) is
selected according to our design for further data processing.
To reconstruct the 3D inhomogeneous acoustic field, we

gather data both in the ðx; yÞ transverse plane, at z ¼ zobs,
and in the ðx; zÞ meridional plane. Measurements in the
transverse plane are made over a squared grid of 12 ×
12 mm2 [15 × 15 mm2] in steps of 0.3 mm correspond-
ing to the ðx; yÞ planes at the distances of z ¼
ð22.8; 23.0; 23.2Þ mm [z ¼ ð50.3; 50.6; 50.9Þ mm] for the
Bessel beams ðN;lÞ ¼ ð∞;�1Þ [three-wave interference

(a) (b)

FIG. 3. (a) Side view sketch of the diffraction orders emitted
from the structured acoustic source. All space-variant transducers
are made to operate at θ0 ¼ π=4 with the observation plane being
located at zobs ¼ 22.5 mm (≃6.4λ) for the Bessel beams and
zobs ¼ 50 mm for the three-wave interference. (b) Numerically
simulated amplitude of the pressure field p in the meridional
ðy; zÞ plane for the Bessel beam with l ¼ 1. (For l ¼ −1 the
distribution is mirror symmetric y → −y; the slight asymmetry is
due to the broken cylindrical symmetry of the spiral source,
Fig. 2.) Scale bars: λ.

(a)

(b)

(c)

FIG. 4. Experimental (main panels) and numerically simulated
(inset panels) transverse ðx; yÞ distributions (at z ¼ zobs) of the
amplitude (a) and phase (b) of the pressure field p, and of the
phase (c) of the quadratic field v · v for the Bessel beams with
ðN;lÞ ¼ ð∞;�1Þ. The charge-�2 vortices in Argðv · vÞ indicate
double-degenerate C points of circular polarizations in the beam
centers [5,21]. Scale bars: λ.
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ðN;lÞ ¼ ð3;−1Þ]. These values of z are experimentally
chosen as optimal and are close to the expected values zobs.
The distance between the three consecutive z planes and
points of the grid in the ðx; yÞ plane allow one to reconstruct
the distribution of the vector velocity field vðrÞ ∝ ∇pðrÞ in
the observation ðx; yÞ plane from the calculated gradient of
the scalar pressure field. Similar square grids in the ðx; zÞ
planes with y ¼ ð−0.2; 0; 0.2Þ mm are used for measure-
ments and reconstruction of the velocity field in the
meridional ðx; zÞ plane. For all measurements, the data
being shown are evaluated after convolution smoothing of
the raw complex pressure field over 5 × 5 data points.
Numerical validation is performed by simulating the

generated acoustic fields based on the Rayleigh diffraction
integral for the total radiated pressure field, namely,

pðrÞ ¼ −i
ρω

2π

Z Z
S
vzðrsÞ

expðikjr − rsjÞ
jr − rsj

dS; ð4Þ

where vzðrsÞ is the vertical velocity of the structured
transducer at a point rs in the z ¼ 0 plane. As an example,
Fig. 3(b) shows the pressure field magnitude of the Bessel
beam with l ¼ 1 in the meridional plane ðy; zÞ.
Results.—Figure 4 shows the results of numerical simu-

lations and experimental measurements of the transverse
distributions of the amplitude and phase of the pressure
field pðrÞ, as well as of the phase of the quadratic field
vðrÞ · vðrÞ for the Bessel beams with l ¼ �1 generated by
the circular spirals. One can see the charge-l vortex at the
center of the pressure field p and the charge-2l vortex at
the center of the v · v field. The latter shows the double-
degenerate C point at the Bessel-beam center [5,21]. A
zoomed-in view on the central area, shown in Fig. 5(a),
reveals the fine splitting of the double-degenerate C point
into a pair of nondegenerate C points. This splitting occurs
because the spiral source is not perfectly cylindrically
symmetric, which lifts the central degeneracy in the sound
Bessel beam [21,38–40].
Having two nondegenerate C points, we can resolve the

polarization Möbius-strip structure around each of these.
Figure 5(b) shows the bivectors of the major semiaxes of
the polarization ellipses for the 3D velocity field vðrÞ,
retrieved from the experimental data, along the two con-
tours C1 and C2 embracing one and two C points. One can
see the Möbius and non-Möbius evolutions of the polari-
zation orientations along these contours, in agreement with
the theory of polarization singularities [13,15].
Figure 6 shows analogous results of numerical simu-

lations and experimental measurements for the three-wave
interference with l ¼ −1 generated by the triangular spiral.
One can see a periodic lattice of charge-�1 vortices in the
pressure field p and in the v · v field. Thus, the field exhi-
bits a lattice of nondegenerate C points [21]. Figure 6(b)
shows the distribution of the polarization ellipses and their
major semiaxis bivectors for the 3D field vðrÞ in the
vicinity of one of the C points. One can clearly trace the

(a)

(b)

FIG. 5. (a) Fine subwavelength splitting of the double-
degenerate C point in the center of the Bessel beam with
l ¼ 1, Fig. 4(c), into a pair of nondegenerate C points due to
the slight asymmetry of the spiral source. (b) Experimentally
retrieved distributions of the major semiaxes (represented by
colored bivectors) of the polarization ellipses of the 3D velocity
field v along the contours C1 and C2 embracing one and two C
points, respectively. These two configurations correspond to the
Möbius-strip (notice the bivector discontinuity highlighted in
yellow) and non-Möbius topologies [13].

(a)
(b)

FIG. 6. (a) Same as Fig. 4 but for the three-wave interference field ðN;lÞ ¼ ð3;−1Þ. The lattice of charge-�1 vortices in Argðv · vÞ
indicate nondegenerate C points [21]. Scale bars: λ. (b) Distributions of the experimentally retrieved 3D polarization ellipses and their
major semiaxes for the velocity field v in the subwavelength area A around one of the C points. One can see the appearance of the
Möbius-strip topology around the polarization singularity [15].
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appearance of the Möbius-strip topology around the polari-
zation singularity.
It is worth noting that, since we obtain complete

information about the vector velocity field vðrÞ, we can
assess experimentally any polarization-related properties of
the inhomogeneous sound wave field. This is illustrated in

Fig. 7 which displays the longitudinal and transverse
components of the normalized 3D spin density S̄ ¼
Imðv� × vÞ=jvj2 in the transverse and meridional cross
sections of the Bessel beam with l ¼ −1, constructed
from the measurements. These experimental results, which
are supported by numerical simulations, validate recent
analytical calculations [5].
Also, we find that the distribution of the direction of the

instantaneous velocity field Re½vðrÞe−iωt� in the three-wave
interference experiment exhibits a lattice of skyrmions [27–
32], see Fig. 8 and Supplemental Material, Sec. II [46]).
This echoes the recent results of Ref. [33] but for
propagating acoustic waves rather than for surface standing
waves. The temporal behavior of the skyrmionic pattern
and the corresponding Skyrme number are discussed in
Supplemental Material [46], both for the theoretical and the
experimental cases.
Conclusions.—We presented experimental measure-

ments of polarization singularities (C points) and 3D
polarization Möbius-strip structures in inhomogeneous
sound-wave fields. In doing so, we employed 2D spiral
gratings generating nonparaxial interference fields with
imprinted vortex properties. By changing the approximate
rotational symmetry of the spirals (triangular and circular in
our experiments) we controlled the symmetry properties of
the generated propagating fields, demonstrating near-
degenerate and nondegenerate polarization singularities.
In all cases, evolution of the 3D polarization ellipse of the
vector velocity field along a contour embracing an odd
number of C points exhibits the Möbius-strip topology,
in agreement with the general theory of polarization
singularities.
We also retrieved nontrivial distributions of the 3D spin

density in nonparaxial sound Bessel beams, as well as
skyrmionic features in the instantaneous velocity field for a
superposition of three plane waves. All generic topological
structures we observed are robust against small perturba-
tions, which can be seen from our experimental data
exhibiting inevitable distortions. Our results pave the
way to further investigations and applications of topologi-
cal polarization features of 3D vector waves. In addition to
the sound waves considered here, one could study other
kinds of material waves, such as water waves, elastic
waves, etc.
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(a) (b)

FIG. 7. Experimentally retrieved and numerically calculated
(insets) distributions of the longitudinal z and transverse y compo-
nents of the normalized spin density S̄ in the transverse ðx; yÞ (at
z ¼ zobs) and meridional ðz; xÞ (at y ¼ 0) cross sections of the
Bessel beamwith l ¼ −1. Flipping the sign ofl flips the sign of S̄z
(see SupplementalMaterial, Sec. I [46]) but not S̄y [5]. Scale bars: λ.

(a) (b)

(c) (d)

FIG. 8. Theoretical (top row) and experimental (bottom row)
coverage of the sphere of velocity field directions for a super-
position of three plane waves. In all parts, the direction of the
velocity field is encoded as color following the palette at the
center. (a) Theoretical distribution of directions for the velocity
field over the transverse ðx; yÞ plane, which can be subdivided
into cells in which each direction is covered once. (b) Coverage of
the sphere of directions for a Cartesian sampling of the ðx; yÞ
plane. (c) Velocity field direction distribution for the mea-
sured field. (d) Distribution over the sphere of directions for
the cell indicated by a rectangle in (c). Scale bars: λ. See also
Supplemental Material, Sec. II and Videos 1 and 2 [46].
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Franco Nori,5, 6 Miguel A. Alonso,7, 8 Konstantin Y. Bliokh,5 and Etienne Brasselet9

1School of Civil and Geomatic Engineering, Universidad del Valle, 760032 Cali, Colombia
2School of Mechanical Engineering, Universidad del Valle, 760032 Cali, Colombia

3Instituto de F́ısica, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, México
4Centro de Investigación e Innovación en Bioinformática y Fotónica, Universidad del Valle, 760032 Cali, Colombia

5Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
6Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

7Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
8The Institute of Optics, University of Rochester, Rochester, New York 14627, USA

9Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France

1. ℓ-dependent S̄z for Bessel vortex fields

The figure S1 shows experimental and simulated de-
pendence of the longitudinal component of the normal-
ized spin density, S̄z, on the topological charge ℓ of Bessel
vortex beams, which has been previously predicted ana-
lytically in Ref. 1. According to the notation introduced
in the main text, the results refer to (N, ℓ) = (∞,±1)
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FIG. S1. Experimentally retrieved (top row) and
numerically calculated (bottom row) distributions of the
longitudinal z component of the normalized spin density
S̄ in the transverse (x, y) (at z = zobs) for Bessel beams
with ℓ = ±1. Scale bars: λ.

2. Skyrmion texture in three-wave interference

Here we show that, for fixed t and z, the direction of
the velocity field for a superposition of three plane waves
covers the complete sphere when the coordinates (x, y)
vary within a given area. The velocity field at this time
can then be regarded as a skyrmionic lattice.

The velocity field distribution at, say, t = 0 and z = 0
(where the field at the origin is maximal) corresponds to
the real part of Eq. (2), in this case with N = 3 and
Φj = 0, that is, ℓ = 0. Recall that, while the experi-
mental implementation used ℓ = −1, for N = 3 a change
in Φj corresponds to a spatial shift of the pattern and
a global phase. Figure 8(a) of the main text shows a
simulation based on Eq. (2) of the direction of the veloc-
ity field at each point, with color-encoded direction: hue
encodes the azimuthal coordinate (longitude) and light-
dark encodes the polar coordinate (latitude). The pat-
tern in Fig. 8(a) can be subdivided into cells over which
all directions appear only once. This subdivision is not
unique, but for convenience we choose aligned horizontal
rectangular sections. Note that the vertical limiting lines
can be shifted arbitrarily without changing the fact that
each direction is covered only once, while the horizontal
lines are fixed. (In fact, the vertical boundaries of the
third and fourth rows could be shifted by half a period
to better match the patterns of the first and second rows,
but such change is irrelevant to the covered velocity field
directions.) The coverage of the sphere of directions for
a Cartesian sampling of one of these cells is shown in
Fig. 8(b) and Supplementary Video 1.

The measurements follow the theoretical predictions.
Figure 8(c) shows the skyrmionic texture for the mea-
sured velocity field at t = 0, using the same data over
the same area as that in the third panel in Fig. 6(a).
The top section (enclosed in a rectangle) approximately
corresponds to a cell like those in Fig. 8(a) (with the ver-
tical boundaries shifted). The coverage of directions over
the sphere for the measured points is shown in Fig. 8(d)
and Supplementary Video 2.
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We now discuss how the coverage of the sphere of direc-
tions changes with time. At any given time t and distance
z, the density of the mapping from the plane (x, y) to the
surface of the sphere of directions is characterized by the
Skyrme density, defined as

σ(x, y; z, t) =
1

4π
û · ∂û

∂x
× ∂û

∂y
, (S1)

where

û =
Re

!
v(r)e−iωt

"

|Re[v(r)e−iωt] | . (S2)

The integral of the Skyrme density over a unit cell gives
the Skyrme number,

Σ(z, t) =

##

unit cell

σ(x, y; z, t) dx dy, (S3)

which equals ±1 if the sphere is fully covered over the cor-
responding area, the sign determining the sense in which
the coverage takes place.

As Fig. 8 shows, for t = 0 and z = 0 the coverage
is fairly uniform. However, for other times (or equiva-
lently, for other propagation distances z) it can become
more irregular, and in fact the sign of the Skyrme num-
ber presents abrupt changes. The reason for this can be
appreciated from Supplementary Video 3, which shows
the evolution of the coverage over a temporal period, as
well as the skyrmionic texture. One can see that there
are topological transitions at certain times and locations
(associated with zeros of the field). The video also shows
that the even and odd rows of cells shown in Fig. 8(a) no
longer cover each the complete sphere of directions sepa-
rately; for each some sections are not covered and others
are covered twice. However, together such two contigu-
ous cells do cover the complete sphere twice. Note that
for t = mT/6, where m is an integer and T = 2π/ω is
the temporal period of the acoustic wave, the coverage
of the sphere is similar to that of t = 0, where each cell
covers fairly uniformly the whole sphere.

Figure S2 shows the temporal evolution of the Skyrme
number averaged over two vertically contiguous cells (see
Fig. 8), Σ, both for the theoretical case (black curve) and
for the experimental data (blue curve). For the theoreti-
cal case the coverage is complete almost at any time, but
it switches sign six times per cycle. The experimental
counterpart presents similar oscillations, however with-
out exhibiting a perfect square waveform due not only
to experimental limitations but also to the coarse sam-
pling that results in a rough estimations of the spatial
derivatives and of the integral.

Finally, Fig. S3 shows en enlarged version of the panel
(c) of Fig. 8 that allows to better appreciate the details
of the velocity field direction distribution.

!"

#Σ

FIG. S2. Skyrme number Σ averaged over two vertically
contiguous cells (see Fig. 8), as a function of time over a
wave cycle at fixed z, for the theoretical superposition
of three plane waves (black curve) and for the
experimental measurements (blue curve).

(a) (b)
Theory

FIG. S3. Enlarged version of Fig. 8(c). We refer to the
caption of Fig. 8.

3. Video captions

Video 1. For a theoretical model of three plane waves:
(left) coverage of the sphere of directions; (middle) color
representation of distribution of directions over the (x, y)
plane; (right) skyrmionic texture (at one third of the
sampling of the other two parts). In all parts, the color
scheme for representing velocity field directions follows
the palette at the center of Fig. 8.

Video 2. For the experiment using a triangular grat-
ing: (left) coverage of the sphere of directions, where due
to the lower sampling a grid of white lines is used to aid
visualisation; (middle) color representation of distribu-
tion of directions over the (x, y) plane; (right) skyrmionic
texture. In all parts, the color scheme for representing
velocity field directions follows the palette at the center
of Fig. 8., and the sampling corresponds to that of the
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experimental data.

Video 3. Time evolution of the velocity field direc-
tions for a theoretical model of three plane waves. The
distributions of points over the spheres at the top and
bottom panels on the left column correspond, respec-
tively, to the coverage of velocity field directions of the
cells over the first and second (or equivalently third and
fourth) rows of any of the two columns of the plane in

the top-right panel. The bottom-right panel shows the
skyrmionic texture corresponding to the two cells at the
top-left of the panel above.
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