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Traditional Neural Networks (NN) have been popular in the satellite remote sensing community for the last 25 years. For coarse resolution infrared or microwave instruments, NN algorithms have been used at the pixel level. New neural architectures such as Convolutional Neural Networks (CNN) use the Deep Learning (DL) approach to solve complex problems at the image scale. For instance, CNNs have been applied to high resolution instruments (SAR or in the visible domain) to detect surface waters or vegetation. High resolution data is better suited for image processing techniques because spatial features are stronger and pixel noise can be an important issue. CNNs applications are generally related to image classification or segmentation, less for regression problems dealing with the estimation of a variable in each pixel of the image. The objective of this paper is to better understand how and on which

conditions CNNs work, and how beneficial they can be for coarse resolution instruments such as IASI (Infrared Atmospheric Sounding Interferometer). The CNN and DL approaches are tested in a regression mode, to estimate the Sea Surface Temperature (SST) at the image scale. The CNN technique is compared to a traditional pixel-based NN: both have a SST retrieval error of 0.3 K. An instrument noise and a missing data sensitivity studies are conducted. It is shown that the use of the CNN approach in this simple-experiment context is beneficial only under some conditions: when the variable to retrieve has enough spatial coherency (simple smoothness or presence of spatial features in the images), and when the instrument noise at the pixel scale is larger than a threshold. This study is a preliminary illustration of what can be expected from CNNs for coarse resolution instruments such as IASI.

Introduction

Traditional NNs have been popular in the satellite remote sensing community for the last 20 years (Aires et al., 2002). For coarse resolution infrared or microwave instruments, the NN algorithms have been designed at the pixel level to retrieve surface and atmospheric variables (Aires et al., 2002[START_REF] Aires | A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations[END_REF]. More recently, the DL theory has capitalised on the exponential power increase of the computers. DL proposes to use neural architectures similar to classic NN feedforward models, but with many more hidden layers. These large statistical models have been used to solve complex problems for instance in speech recognition [START_REF] Fayek | Evaluating deep learning architectures for Speech Emotion Recognition[END_REF] or image processing [START_REF] Moen | Deep learning for cellular image analysis[END_REF]Zhou et al., 2016). Among these DL techniques, the CNN is the most popular architecture (LeCun et al., 2015) in particular for EO applications (Shao et al., 2019;Shao and Cai, 2018;He et al., 2020). It is based on numerous layers that perform successive convolutions in the several dimensions of the data, to extract features from the input space that can help the output estimation task. CNNs are generally designed for image classification (i.e., an entire image is classified) [START_REF] Hameed | Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models[END_REF][START_REF] Yu | Global Spatial and Local Spectral Similarity-Based Manifold Learning Group Sparse Representation for Hyperspectral Imagery Classification[END_REF] or image segmentation (i.e., each pixel of the image is classified) [START_REF] Clough | A Topological Loss Function for Deep-Learning based Image Segmentation using Persistent Homology[END_REF][START_REF] Shao | Multilabel Remote Sensing Image Retrieval Based on Fully Convolutional Network[END_REF], but less for regression problems to estimate a variable in each pixel of the image. This aspect will be studied in this paper.

CNNs and DL have been used in Earth observation. Several research institutes or space agencies (see e.g. the ESA Phi-lab1 or the AI4EO2 initiative) have prioritised the use of these techniques as a main source of improvement for the next generation of remote sensing algorithms. CNNs have mostly been used on high spatial resolution instruments such as SAR (Synthetic Aperture Radar) [START_REF] Ban | Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning[END_REF] for fire detection, or in the visible domain to monitor for instance rice fields [START_REF] Zhang | Mapping paddy rice using a convolutional neural network (CNN) with Landsat 8 datasets in the Dongting Lake Area[END_REF]. This type of satellite observations is often used to develop algorithms at the regional scale, and historically this was often done using image processing approaches. Image processing techniques are well suited for such high resolution data at the surface because they generally have very important spatial features, contrasted textures, and spatial coherency; and because they often include important noise level at the pixel level (such as the speckle noise in SAR data).

On the contrary, coarse resolution instruments in the microwave and infrared are predominantly processed at the pixel level. Variational assimilation used in numerical weather centres do use 2D or 3D observations [START_REF] Kalnay | The NCEP/NCAR 40-Year Reanalysis Project[END_REF][START_REF] Courtier | The ECMWF implementation of threedimensional variational assimilation (3D-Var). I: Formulation[END_REF][START_REF] Geer | All-sky satellite data assimilation at operational weather forecasting centres[END_REF], but the retrieval part is mainly done at the pixel level and the atmospheric circulation model is in charge to link physically the pixels with physical circulation constraints. Inversion schemes at the pixel level can be physical or statistical. In particular, NN have proven to be very efficient to perform such retrieval in the atmosphere [START_REF] Butler | Retrieving atmospheric temperature parameters from DMSP SSM/T-1 data with a neural network[END_REF], in the ocean [START_REF] Aires | Atmospheric water-vapour profiling from passive microwave sounders over ocean and land. Part I: Methodology for the Megha-Tropiques mission[END_REF], and over the continents (Aires et al., 2002), in particular with IASI observations (Aires et al., 2002,a,b;[START_REF] Blackwell | A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data[END_REF][START_REF] August | IASI on Metop-A: Operational Level 2 retrievals after five years in orbit[END_REF]Paul et al., 2012;[START_REF] Safieddine | Artificial Neural Networks to Retrieve Land and Sea Skin Temperature from[END_REF]. A first objective of this paper is to investigate if the CNN technology can be useful for such instruments. In particular, can the spatial features used by CNNs help the retrieval? The exploitation of spatial features in the retrieval can help reduce pixel noise or interpolate missing data, but it can also smooth out the retrieval and therefore dampen the dynamics of local extreme cases. As often, the statistical retrieval needs to realise a compromise between the pixel scale information and the exploitation of the spatial features. The CNN learning stage is asked to obtain this optimal compromise, after finding the pertinent spatial features. Another objective of this paper is to better understand how, on which conditions, and why CNNs work.

The application presented here is the retrieval of the SST using IASI data. Such SST retrievals have been done using traditional NNs, see for instance Aires et al. (2002)). Retrieval of Land Surface Temperature (LST) is more difficult because of the heterogeneity of the surface emissivities over land (Paul et al., 2012). A combined land/sea surface temperature retrieval was recently proposed in [START_REF] Safieddine | Artificial Neural Networks to Retrieve Land and Sea Skin Temperature from[END_REF] using a traditional NN approach. The CNN and DL approaches are tested here in a regression mode to estimate the SST at the image scale. The CNN technique is then compared to a traditional pixel based NN. An instrument noise sensitivity analysis is conducted. A strategy is proposed for the missing pixels that are a true difficulty when using an image in the infrared due to the cloud contamination and the land/sea transition.

Section 2 presents the database that is built to perform the IASI experiments. The methodology is introduced in Section 3: it includes the spectral and spatial principal component analysis, and the neural network retrieval techniques. Results are presented in Section 4 to compare the retrievals and analyse their sensitivity to input noise and missing data.

Conclusions and perspectives are drawn in Section 5.

Database

IASI instrument

IASI is a Fourier transform spectrometer based on a Michelson interferometer coupled to an integrated imaging system [START_REF] Blumstein | IASI instrument: technical overview and measured performances[END_REF]. It was developed by the French space agency CNES. The optical interferometry possesses 8461 channels, measuring the infrared radiation emitted from the Earth at a fine spectral resolution (0.25 cm -1 un-apodized) in the range of 645 cm -1 to 2760 cm -1 . This enables the instrument to retrieve the skin temperature, the temperature and water vapour profiles in the troposphere and the lower stratosphere, and other atmospheric constituents. The instantaneous field of view of IASI is 12 km at Nadir. The total 8461 channels are divided into three bands, with [645-1210 cm -1 ] the first band, [1210-2000 cm -1 ] the second band, and [2000-2760 cm -1 ] the third band.

EUMETSAT is procuring and operating the three IASI instruments.

Image databases

In the following, machine learning techniques will be used to retrieve SST from the IASI TB measurements. Therefore, a comprehensive database of images including the TBs and the SST is required to calibrate the NN regression models. The sampling process to build a NN training dataset is a difficult task because samples need to be sampled in a high-dimensional space whose dimensions can be very different in nature (such as temperature and water vapour or ozone), in order to describe as well as possible all the possibles states in nature but at the same time emphasising on the most frequent states [START_REF] Aires | Sampling techniques in high-dimensional spaces for the development of satellite remote sensing database[END_REF][START_REF] Paul | Using Shannon's entropy to sample heterogene and high-dimentional atmospheric datasets[END_REF]. This is the most important step in an artificial intelligence / machine learning experiment [START_REF] Zhou | PatternNet: A Benchmark Dataset for Performance Evaluation of Remote Sensing Image Retrieval[END_REF][START_REF] Shao | [END_REF].

"Regular" version

The database used here is based on three years of IASI data (2010)(2011)(2012). EUMETSAT (EUropean organisation for the exploitation of METeorological SATellites) data were obtained in the form of orbit files including the geophysical variables (SST, atmospheric profile of temperature and humidity) (including EUMETSAT algorithm versions 4.3.2 to 6.0.5) and the TBs on the 8461 IASI channels [START_REF] Klaes | The EU-METSAT Polar System -13+ Successful Years of Global Observations for Operational Weather Prediction and Climate Monitoring[END_REF]. A channel selection scheme based on the entropy reduction (Rabier et al., 2002;[START_REF] Collard | Selection of IASI channels for use in numerical weather prediction[END_REF] was used to extract channels for the retrieval of surface temperature, atmospheric temperature, humidity and ozone. Among these 300 resulting channels, ten were kept for the SST around the 1190 cm -1 spectral region [START_REF] Pellet | Bottleneck Channels Algorithm for Satellite Data Dimension Reduction: A Case Study for IASI[END_REF]. This channel selection was used for instance in [START_REF] Safieddine | Artificial Neural Networks to Retrieve Land and Sea Skin Temperature from[END_REF].

A traditional NN experiment would gather a large number of pixels sampled in this 3-year dataset. For CNN processing, it is necessary to collect images and not pixels. Therefore, a sampling process was used to obtain images of dimension 22×22 pixels from the IASI orbits.

These images are centred at Nadir (i.e. center of the orbit) to avoid inhomogeneities in the image due to the higher incidence angles. Fig. 1 represents three samples of 22×22 images, with one of the selected channels at 2189 cm -1 and the corresponding SST. There is a strong similarity between these two patterns, showing the adequacy of the channel selection.

Images are chosen only over sea, between [-50 • ; +50 • ] in latitude, and for clear sky (cloudy pixels introduce missing data that are hard to handle with the CNN). Cloudy pixels are defined by a cloud fraction >10%. This clear-sky constraint is very selective because most IASI images contain cloudy pixels, this point will be discussed later. From this sampling process, about 150,000 images are selected. Fig. 2 represents the average SST and TB on the resulting database. The number of samples in each 1 • ×1 • is also indicated, the sampling covers well the ±50 • latitudinal band, except for the coastal areas due to the constrain on no-land pixels in the image. The 150,000 image samples are divided in 70% for the learning database, and 30% for the testing database.

"Structured" version

SST fields at the spatial resolution of IASI over images of size 22×22 pixels are rather smooth. On smooth images and under low instrumental noise, it is expected that a pixel scale processing might be enough and that no spatial filters are necessary. In order to test the sensitivity of the CNN approach on the presence of spatial features, a "synthetic" database is built. It includes the same 22×22 images as in the regular database, but pixels in each image are ordered following a simple pattern. The pixel values are kept identical, but their location is changed, so the distributions in one image do not change. This reorganisation of the pixels inside an image does not perturb the SST/TB relationship from the radiative transfer, so the physics of the problem is preserved in this new structured database, only the surface patterns are modified. The goal is to enhance the spatial features inside the images to analyse the behaviour of the CNN when spatial features are present at the surface. Strong spatial structures should be stronger for other variables than the SST that is relatively smooth.

For instance, Land Surface Temperature (LST) is more heterogeneous with complex spatial patterns due to contrasted surface emissivities over land (Paul et al., 2012). The pixel ordering inside each image of the new "structured" database follows simple orientations: north-south, east-west, and diagonal. Fig. 1 (third and fourth column) represents from top to bottom three samples of SST and their corresponding reorganised TB, following these simple orientations.

Methodology

Principal component analysis

Principal Component Analysis (PCA) is a compression tool that allows to find linear filters that can be applied on inputs to extract uncorrelated components [START_REF] Jolliffe | Principal component analysis[END_REF].

Although other component extraction techniques exist (e.g. factorial analysis, ICA, etc.), the PCA is the predominant one. It is based on three assumptions: variables are Gaussian, filters are linear and orthogonal to each other, and explained variance is maximised in the first components.

Spectral filtering

Using PCA to spectrally filter the IASI channels and find the best suited components for a forthcoming retrieval has been used for the last two decades [START_REF] Huang | Application of principal component analysis to high-resolution infrared measurement compression and retrieval[END_REF]Aires et al., 2002a,b). When applied to the ten selected channels for SST (Section 2.2.1), it is found that the first two components represent respectively 99.83% and 0.15% of the total variance (higher-order components are neglected here). The first component is a weighted average of the ten channels that are all highly correlated to SST. The second component represents a variability pattern among these ten channels. The SST retrieval can be performed using the ten raw TBs or the first two principal components.

Spatial filtering

PCA can also be used on the spatial domain. It will be seen in the following that the CNN will use 3×3 pixels window filters, so it is interesting to see what the PCA filters are on these same 3×3 windows. For that purpose, 3×3 window samples are extracted from the image database, and a PCA is then performed on the corresponding 9-dimensional vectors.

Such local filters have been used to analyse larger scale images using PCA or independent component analysis, see for instance [START_REF] Nadal | Blind source separation in the presence of weak sources[END_REF]. This spatial filtering using PCA is performed on the regular database but results (not shown) are extremely similar for the structured database. Resulting filters are presented in Fig. 3. The percentage of explained variance by each component is respectively: 99.8649, 0.0686, 0.0636, 0.0009, 0.0007, 0.0005, 0.0003, 0.0002, 0.0002. These filters are very geometric, but this is not a surprise and has been observed in the past [START_REF] Nadal | Blind source separation in the presence of weak sources[END_REF]. A PCA can actually be quite similar to a Fourrier transform that searches for sinusoidal shapes, orthogonal to each other, from lower to higher frequencies. Except that the filter shape can take any form in a PCA, where a Fourrier transforms searches only for sinusoids. It will be seen in the following that this indeterminacy is a challenge for a neural network training.

The first component represents the average value of the 3×3 window, inside the image:

It represents the image-scale and inter-image variabilities. The higher-order components represent spatial anomalies inside the 3×3 windows. They represent the intra-window variability and this should not be compared to the first component. Therefore, the percentages of intra-window variance explained by components 2 to 9 are: 50.81, 47.11, 0.67, 0.52, 0.37, 0.22, 0.15, 0.15. Components 2 and 3 represent about 98% of the intra-window variability.

Therefore, one should use at least the first three PCA components to describe the full image (the first for the image-scale variability, and the next two components for the intra-window variability with spatial features). Note that any orthogonal rotation of the PCA axes (i.e., the axes on which the original data is projected to obtain the components) would explain as much information as these three components (Aires et al., 2002).

To understand how such PCA spatial filters can be used to detect spatial features, Fig. 4 shows how these filters represent one SST image (i.e., second row, second column of Fig. 1).

The size of these window filters is 3×3 pixels, and the "stride" (from 1 to 3 pixels) represent how windows are moved along the image. The number of filters ranges from 1 to 9. The overall standard deviation error of the representation is provided for several combinations.

A stride of 1 avoids discontinuity representation, and errors decrease with the number of filters. The number of PCA filters used in the representation reduces significantly from 1 to 3. It can be see for instance that the vertical filter (second spatial filter in Fig. 3) can help represent vertical structures such as in middle part of the bottom of the image. Complex parts of the image (upper part) require more spatial filters for a good representation. As expected, using the nine components means that the representation is perfect. This way to represent an image using these spatial filters is what is being done in the CNN architecture that will be presented in Section 3.3, even if here, the use of the PCA filters is not optimal as it should be in a CNN.

Neural Networks

NN techniques have proven to be very successful for remote sensing applications. The Multi-Layered Perceptron (MLP) model [START_REF] Rumelhart | Learning Internal Representations by Error Propagation[END_REF] is selected here (also called feedforward network). It is defined by the number of input neurons, the number of outputs, and the number of neurons in the hidden layers that controls the complexity of the model.

A balance needs to be found: Too many free parameters in the model can conduct to the over-learning (over-parameterisation) leading to degraded generalisation properties. On the contrary, too few free parameters will yield under-parameterisation and bias error of the model.

The NN is trained to reproduce the behaviour described by a database of samples composed of inputs (the TBs) and their associated outputs (the SSTs). When enough samples are available, any continuous relationship, as complex as it is, can be represented by a MLP [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF] providing that enough hidden neurones are present, but the quality of the NN retrieval is ultimately limited by the information content of its inputs.

The learning algorithm used to train the NN is the classical back-propagation algorithm.

The NN are trained on a learning dataset, and the ability of the model to generalise to independent samples is monitored on a testing dataset. The learning is stopped when this generalisation error ceases decreasing [START_REF] Bishop | Neural networks for pattern recognition[END_REF].

The inputs of such a model can be anything: a point measurement, a time series or an image. More complex architectures (such as CNNs presented in the next section) are actually based on the same principles of MLPs. In the remote sensing domain, MLPs have been mostly used on the pixel scale, meaning that their inputs are measurements made over one pixel. Therefore, the information used to retrieve SST on a pixel is dependent only on measurements made on this location. This is a different approach than that used in image processing methods that intend to exploit the neighbourhood of the pixel to improve the retrieval.

Convolutional Neural Networks (CNN)

In the last decade, DL has introduced a new class of NNs to solve complex tasks for domains such as speech recognition (Abreu [START_REF] Araujo | Role of non-linear data processing on speech recognition task in the framework of reservoir computing[END_REF], image processing [START_REF] Moen | Deep learning for cellular image analysis[END_REF], or even game theory (see [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] for an application to the "go" game). The theory and elementary blocks of such networks is not too different to traditional networks. The specificity of DL is the use of much more than the two layers traditionally used in MLPs. This was made possible by the increase of computer power. Adding a large number of layers in a MLP is problematic not only because of the computational cost: Such architectures include often tens of thousands of free parameters that need to be optimised during the learning step. It is well known that the over-parameterisation of statistical models can bring the over-fitting problem (or over-training). It also introduces difficulties in the convergence of the learning that can be trapped in local minima. So DL involves many layers but constraints and dedicated architectures are required. Furthermore, introducing knowledge and constraints in the architecture is always a good strategy.

One of the most widely used classes of deep networks is the CNN. The classical application of CNNs is image processing. In CNN, depending on the application, an input images is represented as a tensor of the form: (image height) × (image width) × (image depth, here the number of channels). The CNN architecture is then a stack of layers that transform the input image into an output, typically with a series of convolutions (dot products with inputs) and an activation function. Although there exists many more options, only the layers that were used in the experiments are described in the following.

The convolutional layer is the basic building block of CNNs. Each layer uses one or more filters on the space of the data of the previous layer(s). Filters can be of size 3×3, 5×5 or much bigger, depending on the spatial shapes that are expected in the processed images.

CNNs use these filters to recognise spatial features. These window filters are moving along the image following some specifications. There are three hyper-parameters that control the output volume of the convolution layer:

• The depth of the layer corresponds to the number of convolution cores.

• The stride represents the overlap. For instance, when the stride is equal to unity, the filter moves one pixel at a time.

• The padding is the act of adding a margin of zeros in order to control the spatial dimension of the output volume.

The activation function most commonly used by CNNs is the ReLU (Rectified Linear Unit) defined by f (x) = max(0, x). This activation function removes negative values, it a necessary non-linearity in the model, and this is done without slowing down too much the learning step as this is a very simple function to differentiate.

Finally, the network usually ends with a loss layer, which specifies how the network penalises the differences between the network and the desired outputs in the training dataset.

CNNs have been used a lot for classification: each input image is classified based on the presence of an object in the image. CNNs are also very useful for segmentation in which each pixel of the image is classified. The Softmax loss is often used for classification and segmentation tasks. In this paper, the goal is to quantify a variable (i.e. the SST) in each pixel of the image so the CNN architecture is asked to perform a regression, which is much less common in the literature. In our case, the Mean Square of the Errors (MSE) losses can be used for regression tasks with continuous output values. As seen in Section 3.3, the number of parameters in a CNN is several orders of magnitude higher than that for a regular NN (at the pixel level). Section ?? has introduced several regularisation strategies to avoid the difficulties associated to the over-parameterisation in regression tools such as NNs or CNNs.

SST retrieval experiments

Our tests have confirmed these difficulties, the training of a CNN is much more complex than a regular NN at the pixel level. This can be noticed in the training curves (not shown) that do not always converge to the same score, meaning that the training can easily be stuck in local minima of the loss function. Sensitivity to the initial conditions appears also to be very important. Several tests using generic CNN architectures were unsuccessful with retrieval scores much too high (several K for the SST retrieval). These instability symptoms are typical of an over-parameterised architecture. We will illustrate in the following how the initialisation of the spatial filters in the CNN architecture can truly improve the learning.

The three forms of regularisations presented in Section ??) have been employed here in order to better constrain this complex regression problem:

• Pre-processing of the database -A PCA was performed in the ten TBs (Section 3. 1.1) and the PCA components have been chosen instead of the raw TB measurements. The CNN could have been in charge of finding these PCA components but convergence issues and meaningfulness of the PCA components were an issue so it is . An alternative would have been to code the PCA inside the CNN (first layer) and initialising it using the PCA filters. However, there is a whole literature on extraction from the IASI spectra of features pertinent for the retrieval [START_REF] Huang | Application of principal component analysis to high-resolution infrared measurement compression and retrieval[END_REF]Aires et al., 2002a,b;Rabier et al., 2002;[START_REF] Aires | Dimension reduction of satellite observations for remote sensing. Part 1: A comparison of compression, channel selection and bottleneck channel approaches[END_REF][START_REF] Pellet | Bottleneck Channels Algorithm for Satellite Data Dimension Reduction: A Case Study for IASI[END_REF] and it is reasonable to perform this task preliminary to the use of the CNN. The learning of the CNN is anyway very unstable when it is requested to find this spectral filtering, probably due to the infinity of solutions when compressing the spectral data (i.e., any orthogonal rotation of the PCA axes is a valid compression for the retrieval (Aires et al., 2002)).

• Structural stabilisation -A quite controlled architecture has been selected, reproducing steps that can be easily interpreted. There is a first layer doing the spectral filtering (using the PCA components) that provides a first SST estimate at the pixel scale.

Then spatial filters are used to detect if spatial features are present in the image or not. These spatial features are combined to estimate the SST at the image scale.

• Formal regularisation -The optimisation algorithm in charge of the training was also regularised through the initialisation of the CNN weights, for the spectral filtering, and the spatial filtering too (this point will be illustrated in the following).

All the tests performed in these experiments show that such regularisation (pre-processing of the data, architecture, and initialisation for the training) is extremely positive for the CNN. An interesting remark is that the CNN model could be decomposed into modules that would perform a simple and particular task easily interpretable. The advantage of the CNN is that it is possible to optimise all these tasks in a unique neural architecture. However, good initialisation and understanding of these elementary process is, to our understanding, mandatory.

Neural architectures

We propose two CNN architectures to retrieve SST: one is explicitly shallow (CNN), allowing perfect understanding of its operation, and the other is slightly deeper (CNN-D). Fig. 5 shows the architecture of (A) the regular NN (here a MLP) as described in Section 3.2, (B) the CNN used in this study, and (C) the CNN-D with a deeper architecture.

To obtain comparable results between a traditional feedforward net and our architecture, we first start with a 1×1 convolution. This layer provides a pixel-wise SST retrieval, comparable to the one obtained with a NN feedforward net. We then apply three 3×3 convolutions, aiming to learn spatial structures present in images, thus leaving us with three 20×20 feature maps which we regress into one 20×20 image using another 1×1 convolution.

In order to add depth to our architecture, starting from the three 20×20 feature maps obtained after the 3 ×3 convolutions, we use three convolutions with 3×3 filters and a stride of 2, reducing the spatial dimensions of the feature maps to 9×9. We do this again to obtain three feature maps of size 4×4. Here we introduce up convolutions, with a 3×3 filter and stride of 2, the goal being to upsample the feature maps, giving us three feature maps of size 9×9. These feature maps are concatenated with the ones obtained in the previous layer, thus we have six 9×9 feature maps, which we upsample using six up convolutions with 4×4 filters and stride of 2 to obtain six 20×20 feature maps which we can concatenate with the 20×20 feature maps obtained at the beginning of the network. In the same way as with the shallower CNN, we then regress these nine feature maps into one 20×20 image using a 1×1 convolution. This architecture is similar to the classic U-net architecture: It combines the spatial information from downsampling with the contextual information from upsampling.

To illustrate the instability of the CNN training, Fig. 6 represents the spatial filters obtained inside the CNN. The first row represents the spatial filters obtained when the CNN is randomly initialised, before the learning. The obtained spatial filters have no meaning and no particular structure. The explanation is that the first spatial PCA component represents more than 99,86% of the variance (Section 3.1.2), it represents a 3×3 sliding window in the image so it is very efficient for coding a smooth image. Therefore, the higher-order spatial PCA filters become negligible and the CNN seems to use several spatial filters for the first PCA filter. This is a general difficulty when regressing multiple variables when one is several orders of magnitude more important than the other ones. Another explanation is that any rotation of the PCA axis would be satisfactory for the retrieval itself (Aires et al., 2002) so an orthogonal rotation of the first three PCA components would be equivalent in the CNN for the sole purpose of the regression. The PCA has a constraint to explain the most variance in the first components, but this constraint is not used in such CNN. However the orthogonality of the first three filters in the first row of Fig. 6 is not totally valid. In contrast, the second row in Fig. 6 represents the spatial filters when the CNN is initialised with the PCA spatial filters of Section 3.1.2 in Fig. 3. The training of the CNN has almost not changed the PCA solution as these are the pertinent patterns to obtain. This means that the CNN learning process are satisfied with the PCA solution, but when not well initialised, it had a hard time converging to this solution.

Retrieval statistics

Comparison of the models

Table 1 represents the RMS error in K for the regular and the structured databases, for the NN and the CNN retrievals, over the training and the testing sets. The training and testing scores are identical in all these experiments confirming that we were successful in controlling the over-training on over-parameterised architectures such as CNNs. For the regular dataset, the pixel scale NN has scores equivalent to those of the CNN version. It is even slightly better (0.31 K compared to 0.33 K) but these differences are not significative and result more on the numerical instabilities of the CNN training. Fig. 7 shows examples of retrieval, and it can clearly be noted that the CNN has the tendency to smooth out the SST images, and that extreme cases are dampened. Isolated extreme pixels are suppressed. This is natural since it uses the spatial filters that use the information of the neighbourhood pixels to estimate the SST in the central pixel. It will be seen that this smoothing can be positive in some cases (higher pixel noise or in the presence of stronger spatial features) but it is not the case in the regular database.

On the contrary, over the structured database, the CNN offers a strong improvement compared to the NN at the pixel scale (0.24 K instead of 0.32 K STD error). This can be understood by the fact that the CNN exploits the spatial features in the database to better retrieve the SST. Therefore CNNs are pertinent at this noise level when spatial features are present in the SST images. Therefore, the use of a CNN using spatial filters can be negative (eroding extreme cases), neutral, or positive. The training of a regression tool intends to find the best overall compromise over the learning database. This means that the smoothing of the CNN can be positive or negative depending if spatial features are present or not. The challenge would be to obtain a CNN that could easily detect the presence of this type of spatial features and adapt to it. This will be investigated in the future.

Fig. 8 represents the overall processing scheme of the CNN retrieval that will be tested in the following section. The PCA preprocessing is performed outside of the CNN architecture, this is a choice as this could had been added inside the CNN. At the end of the processing chain, the diagnostics (bias, STD and maximum errors) are estimated over a testing databases not used for the training of the CNN.

Global statistics

The SST retrieval error statistics (bias and STD errors) are provided in Fig. 9, for the CNN retrieval, over the regular database. Results would be similar for the NN retrieval.

The error patterns would be similar over the structured dataset. These maps are based on the compositing of the retrievals over each 1 • ×1 • oceanic pixels.

In regions with more clouds, the SST seems to be underestimated (too cold) contrarily to the low latitudes where an overestimation can be observed. Furthermore, retrieval errors are overestimated on west of African coast, with a pattern similar to the seasonal mineral dust emitted by the Sahara (see Fig. 2 in [START_REF] Bellouin | Estimates of aerosol radiative forcing from the MACC re-analysis[END_REF]). The pattern includes plumes from the Sahara mineral dust in summer and from biomass fires in the spring.

These mineral dust have a seasonality (?), with more aerosols in summer, but also a varying altitude. The mineral dust absorb the infrared radiation emitted by the Earth surface (?) so it is natural that IASI observations would be colder in this case. Further analysis should be conducted to know if these are errors due to aerosol contamination in the IASI observations used for the retrieval, or if EUMETSAT SST estimates used here (Section 2) were already contaminated by the aerosols. Since retrieved SST seem too warm, it is probably a aerosol contamination on the EUMETSAT SST database.

Sensitivity analyses

Sensitivity to noise

Satellite observations are contaminated with instrumental noise so it is important to measure the sensitivity of a retrieval method to their presence. With a higher noise level in the observations, it can become more interesting to exploit the spatial coherency (either smoothness of the image, or presence of characteristic spatial features). It was seen in the previous section that CNNs have the tendency to smooth out the SST retrieved images and smoothing out a solution can be seen as a regularisation, in particular in the presence of noise. For instance, retrieval of an atmospheric profile requires such smoothness constraint, implicitly or not [START_REF] Aires | The "Weight Smoothing" Regularization of MLP for Jacobian Stabilization[END_REF], otherwise spurious oscillations are present in the retrieved profile [START_REF] Rodgers | Inverse Methods for Atmospheric Sounding: Theory and Practice, Inverse Methods for Atmospheric Sounding: Theory and Practice[END_REF].

An additional instrumental noise was then added in each one of the ten input IASI channels, following a Gaussian distribution with a specified standard deviation. Fig. 10 represents the retrieval errors of the NN and CNN retrievals when the noice level increases, over the original and the structured databases. With the original noise, as mentioned before, the NN and CNN retrieval are equivalent over the regular database, but the CNN outperforms the NN over the structured dataset. What is interesting is that retrieval errors increase significantly for higher TB-noise for the NN (on both the regular and structured dataset).

The CNN appears to be much less sensitive to this TB noise increases. So pixel noise can be compensated in the CNN by the exploitation of the spatial features of the SST map.

Sensitivity to missing data

Several sources of missing data can be listed. Clouds cover about 60% of the globe at any time [START_REF] Rossow | Advances in understanding clouds from ISCCP[END_REF], this number depends on the spatial resolution. LST can be retrieved from IR observations for about 60% of the locations with a spatial resolution of 1 km 2 twice a day from polar orbiters (Prata et al., 1995), and with a spatial resolution of 2 km 2 every 15 min from geostationary satellites [START_REF] Schmit | A Closer Look at the ABI on the GOES-R Series[END_REF]. In some regions, the number of missing data due to clouds can be extremely high. IASI observations are highly sensitive to the presence of clouds, so missing data due to clouds is a true difficulty for such infrared instruments. Instrument can also have a technical problem or a recalibration step, so missing data can add up in the image. Furthermore, the retrieval developed here is for SST only, so the presence of land in the 22×22 images brings missing pixels in the image too.

In current IASI processing chains, missing data has not been a true difficulty since retrievals are performed at the pixel scale: Data is processed in the available pixels, and missing data is reported with no values. For the CNN retrieval scheme, this is obviously a problem because the input images to the network are supposed to be complete. The default setting in the DL toolbox of Matlab is to fill these missing values with zero values. This solution is not satisfactory as these artificial zeros values can mislead the CNN. This shows that this missing data issue is still not solved. Dedicated missing value detection and filling could be implemented inside a deep CNN but this is not a trivial task and it will be investigated in the future. A simpler approach is tested here, based on simple spatial interpolation.

In order to test this missing data filling approach, a missing data model is first defined.

Several holes are randomly placed inside the input TB-images. These holes are chosen as circles of radius 1 to 5 pixels. Another constraint is that these holes do not cross the image limits so that the interpolation can be done in an easier way. This missing data model is rather simple, and in most cloud-contaminated IASI images, a large part of the image is actually missing with no possibility of spatial interpolation. A more sophisticated extrapolation technique would then be required and this will be investigated in the future.

Fig. 11 provides some examples of such missing data structures. These holes are introduced in the TB images simultaneously for the ten selected input channels.

To perform the SST retrieval, the TB-images are first filled using a bilinear interpolation.

Tab. 2 represents the retrieval errors on the location of the missing pixels, when using the NN or CNN retrievals, over the regular and the structured datasets, when no pixels are missing or when the missing pixels were interpolated. For comparison purpose, the statistics are given only over the missing pixels location, even for the "no missing pixels" statistics.

First comment is that the missing data deteriorates the retrieval, from 0.123 to 0.137 K standard deviation error over the regular database for the NN retrieval for instance. As mentioned earlier, the CNN and NN approaches are equivalent in the regular database for the no-missing and the missing experiments, so CNN do not help much (but do not degrade either) the interpolation retrieval on the regular database. However, the CNN improves the NN results over the structured database. As for the input noise sensitivity experiment, the use of the spatial features is based on a signal-to-noise ratio: when noise is increased, or when missing data is present, the CNN can exploit spatial features to improve pixel scale NN retrieval. Other more sophisticated interpolation scheme could be proposed for the future, in particular for more complex missing data models. for the NN and CNN methods, over the regular and structured databases. For comparison purpose, statistics are performed only on at the location of missing pixels even for the non missing case.

RMS error (K)

Conclusion and perspectives

The NN retrieval at the pixel scale and the CNN retrieval at the image scale have been compared in the context of SST retrieval using IASI observations. It was shown that for this application, the noise level and spatial coherency of the SST images is such that the retrieval at the pixel scale is very efficient (about 0.3 K of STD error). In these conditions, the image processing approach of the CNN has equivalent scores. However, when the instrumental noise is increased, CNNs outperform NNs because it becomes interesting to use spatial features. It is shown also that in datasets with more prominent spatial features, CNNs outperform traditional NNs. The compromise between pixel and image scale retrievals is dependent on the spatial resolution of the pixels. It was shown that CNNs can be useful for coarse resolution instruments such as IASI. As often, the advantages and inconvenience of a retrieval method truly depend on the application: noise level, presence of spatial features, difficulty of the retrieval based on the information content of the inputs. Missing data is a true issue for approaches based on images such as CNNs because infrared observations for instance are very sensitive to the presence of clouds. A simple interpolation solution is proposed and retrieval results appear robust enough to deal with this type of missing data structures.

These experiments have shown how CNN perform. In particular it was seen that the learning stage is very instable due to the presence of numerous free parameters in the model Perspectives for this work have been mentioned in the text. First, 20×20 moving window images were used as inputs of the CNN, meaning that the CNN is asked to be generic and work in a similar way all around the world over the oceanic surfaces. Another strategy could use images always in the same spatial domain. This would allow to specialise spatial filters in different parts of the image. This could help dealing with specific spatial structures such as mouthes of rivers. It could also help dealing with land/ocean transitions to retrieve simultaneously SST and LST. Images can also be non-uniform, for instance the radiative transfer depend on the incidence angle of the satellite acquisition so edges of the track have different properties than the center. The use of a same larger spatial domain could also help adapt a specialised retrieval on the different parts of the image. Finally, using larger images over the same domain would avoid losing observations at the edge of the smaller images (i.e., the padding of CNNs).

In this paper, we used only 10 channels to retrieve SST, but actually there are hundreds of channels available in the IASI spectra to sound the surface properties. Information on how to select channels for the surface can be found for instance in Aires et al. (2002); Schlussel Using more channels would automatically reduce the impact of the IASI instrument noise on the retrieval. Therefore, a spectral dimension will be added to the 2D dimension of the CNN inputs, in a forthcoming version of our retrieval scheme. It will be investigated if PCA should be done independently from the CNN, to feed the CNN, or if the raw channels can be given directly to the CNN that should then implement its own compression. A nonlinear PCA using a NN structure should also be investigated.

A spatial interpolation of the CNN inputs was proposed here to limit the problem of missing data in input images. A dedicated CNN could also be used to spatially interpolate these inputs. It is expected that for variables with predominant spatial features, CNNs could be a true advantage over traditional interpolation technique because the use of spatial features could outperform simple linear interpolations. Another approach would be to embed inside the CNN a missing data detection that would trigger, inside the CNN, a spatial interpolation scheme that would exploit the most dominant spatial features. This would require a deeper CNN and would be investigated in the future.

It was seen that the benefits of CNN retrievals is dependent on the spatial features of the geophysical variable to retrieve. SST is rather smooth, so retrieval tests for LST would be extremely interesting. LST is much more heterogeneous than SST due to contrasted emissivity patterns [START_REF] Prigent | Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures[END_REF]. The retrieval of LST is very complex, STD retrieval errors are typically of the order of 4 or 5 K to be compared to 0.3 K for SST. Therefore, the signal-to-noise conditions and spatial coherency of this problem could truly benefit from the exploitation of static spatial features by a CNN retrieval at the image scale. Also, we would like to test the simultaneous retrieval of surface and atmospheric properties such as temperature and humidity, this means that (1) a thorough channel selection/compression needs to be performed [START_REF] Collard | Selection of IASI channels for use in numerical weather prediction[END_REF][START_REF] Pellet | Bottleneck Channels Algorithm for Satellite Data Dimension Reduction: A Case Study for IASI[END_REF], (2) use of emissivity information in the retrieval should be considered (Paul et al., 2012), and (3) the vertical dimension in the CNN should be considered in the outputs. 

4. 1 .

 1 NN, CNN and CNN-D architectures 4.1.1. Regularisation strategy

  (i.e., the synaptic weights). An initialisation of the CNN with PCA filters in the frequency and spatial domain ensures the robustness and quality of the learning, and facilitates the processing steps of the CNN. The interpretability of such CNN architectures is very important to overcome the black box conception often associated to neural network models. It was shown that beyond image classification and segmentation, CNN can be used for regression problems too, to estimate geophysical variables in each pixel of a satellite image.

(

  2005); Collard (2007); Paul et al. (2012); Pellet and Aires (2018); Safieddine et al. (2020).

Figure 1 :

 1 Figure 1: From top to bottom, three samples of a 22×22 image. From left to right: TB at 2189 cm -1 , SST, same TB image after reorganisation, and corresponding structured SST.

Figure 2 :

 2 Figure 2: Global map of (A) SST and (B) TB at 2189 cm -1 averaged over 150,000 samples, and (C) number of samples in the database.

Figure 3 :

 3 Figure 3: Nine PCA filters on the 3×3 pixels window, over the regular database.

Figure 4 :

 4 Figure4: Reconstruction of a sample image (Fig.1, second row, second column) and representation error, when using the 3×3 pixels moving window PCA filters: From top to bottom, when using 1, 3, 5 and 9 filters; and from left to right, using a stride of 1 to 3 pixels.

Figure 5 :

 5 Figure 5: Neural network architecture for: (A) a NN (MLP here) used at the pixel scale, (B) a CNN without deep learning, and (C) a CNN with a deeper architecture.

Figure 6 :

 6 Figure 6: Three spatial filters from the CNN with (top) and without (bottom) initialisation using the PCA filters of Fig. 3.

Figure 7 :

 7 Figure 7: Three SST retrieval samples in rows. From left to right, original SST image, corresponding NN and CNN retrievals.

Figure 8 :

 8 Figure 8: General processing CNN scheme used in this study.

Figure 9 :

 9 Figure 9: CNN SST retrieval statistics at the global scale: (A) mean(SST-retrieval) represented on each 1 • ×1 • pixel, (B) same for STD error.

Figure 10 :

 10 Figure 10: Sensitivity of the SST retrieval errors to TB noise, for the NN and CNN methods, over the regular and the structured databases.

Figure 11 :

 11 Figure 11: Samples of the missing structures added to the database for the missing data experiments.

Table 1 :

 1 

			RMSE (K)
	DATABASE RETRIEVAL Training Testing
		NN	0.31	0.31
	Regular	CNN	0.33	0.33
		CNN-D	0.32	0.32
		NN	0.32	0.32
	Structured	CNN	0.24	0.24
		CNN-D	0.24	0.24

SST retrieval statistics in terms of RMSE (K) of the NN, CNN and CNN-D methods, for the training and testing datasets, over the regular and structured databases.

Table 2 :

 2 RMS error (K) of the SST retrieval, for non missing and missing data (with interpolated inputs),

		Regular database Structured database
		NN	CNN	NN	CNN
	No-missing	0.1230 0.1273 0.1297	0.1157
	Interpolated	0.1372 0.1399 0.1343	0.1253
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