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ARTICLE OPEN

Interactive exploration of a global clinical network from a
large breast cancer cohort
Nadir Sella1,2,3,8, Anne-Sophie Hamy2,4,5,8, Vincent Cabeli 3,8, Lauren Darrigues5, Marick Laé6,7, Fabien Reyal2,5✉ and Hervé Isambert3✉

Despite unprecedented amount of information now available in medical records, health data remain underexploited due to their
heterogeneity and complexity. Simple charts and hypothesis-driven statistics can no longer apprehend the content of information-
rich clinical data. There is, therefore, a clear need for powerful interactive visualization tools enabling medical practitioners to
perceive the patterns and insights gained by state-of-the-art machine learning algorithms. Here, we report an interactive graphical
interface for use as the front end of a machine learning causal inference server (MIIC), to facilitate the visualization and
comprehension by clinicians of relationships between clinically relevant variables. The widespread use of such tools, facilitating the
interactive exploration of datasets, is crucial both for data visualization and for the generation of research hypotheses. We
demonstrate the utility of the MIIC interactive interface, by exploring the clinical network of a large cohort of breast cancer patients
treated with neoadjuvant chemotherapy (NAC). This example highlights, in particular, the direct and indirect links between post-
NAC clinical responses and patient survival. The MIIC interactive graphical interface has the potential to help clinicians identify
actionable nodes and edges in clinical networks, thereby ultimately improving the patient care pathway.
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INTRODUCTION
The availability of health data from patient medical records is
increasing, and these data constitute, in theory, a rich resource for
research purposes. However, despite the unprecedented amount
of information now available, health data remain underexploited
due to their heterogeneity and complexity. There is, therefore, an
urgent need for innovative tools, based on intuitive and
interactive graphical interfaces, specifically designed for the
exploration of health data by medical practitioners. Data
visualization is gradually emerging as a new field of research,
and graphical representations are used for two main purposes: (i)
explanatory illustration, to highlight novel scientific insights
graphically and to ensure efficient communication between
scientists1–4; and (ii) exploratory analysis, searching for relation-
ships previously overlooked and leading to new discoveries,
thereby maximizing the potential of information-rich databases.
We present here an exploratory analysis of a global clinical network
from a large breast cancer cohort, with a novel interactive
graphical interface for the exploration of health data.
We previously developed an advanced computational method

for graphical analyses, including causal relationships, from multi-
variate data5. The underlying MIIC (Multivariate Information-based
Inductive Causation) algorithm, which was released as an online
server6, uses a machine learning method combining constraint-
based and information theory approaches to reconstruct causal,
non-causal or mixed networks from large datasets. The MIIC
algorithm was first developed to analyze categorical genomic
data5,6 and has recently been extended to the analysis of more
challenging heterogeneous datasets, such as medical records,
combining both categorical and continuous variables, in which
interdependence is notoriously difficult to assess7.

Breast cancer (BC) clinical datasets are particularly suitable for
the type of exploratory analysis presented here, as BC is a complex
heterogeneous disease highly variable in its aggressiveness and
prognosis. BC remains one of the leading causes of cancer-related
death among women. The BC patients included in the cohort
analyzed here were treated with neoadjuvant (or preoperative)
chemotherapy (NAC). NAC was originally restricted to patients
with inflammatory or locally advanced BC, but is now the standard
care for aggressive early-stage breast cancers, i.e., triple-negative
(TNBC) and HER2-positive BCs8,9. From the patient’s viewpoint, the
benefits of the neoadjuvant strategy include a greater feasibility of
breast-conserving surgery and the prognostic stratification of risk
obtained after analyses of the residual tumor burden at surgery.
From the research and development standpoint, the neoadjuvant
setting makes it possible to monitor the chemosensitivity of the
tumor in vivo, and provides an opportunity for the rapid validation
of research hypotheses and the acceleration of drug approval.

RESULTS
The global network displayed in Fig. 1 is accessible at https://
miic.curie.fr/job_results_showcase.php?id=NEOREP. We discuss
below some of the links inferred in the NEOREP network after
grouping according to several clinically relevant concepts
identified from published studies on BC.

MIIC performs quality control
MIIC first identifies relationships between a disease and the
corresponding treatment. ER positivity—which is predictive of
efficacy for anti-hormonal treatment10—is associated with the use
of endocrine therapy (Supplementary Fig. 3A), and a similar
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association is observed for HER2-positivity and trastuzumab use
(Supplementary Fig. 3B)11. Beyond cancer, significant associations
are also found between depression and the use of psycholeptics
(Supplementary Fig. 3C), between thyroid disorders and thyroid
hormone use (Supplementary Fig. 3D), and between hypertension
and drugs for the treatment of cardiovascular diseases (Supple-
mentary Fig. 3E). More generally, comedication use is associated
with the type of NAC (Supplementary Fig. 3F), reflecting the
greater likelihood of less toxic regimens being prescribed to
fragile patients (patients on other types of medication) than to
patients without comedication12–14.
MIIC then identifies clinical factors known to be epidemiologi-

cally related (Supplementary Fig. 4A). Menopause, a process
occurring in older women, is directly linked to age (Supplementary
Fig. 4B) (median age: 43 years for premenopausal, versus 58 years
for postmenopausal women). Postmenopausal status is associated
with dyslipidemia (Supplementary Fig. 4C)15. Consistent with these
associations, body mass index (BMI) increases with age (Supple-
mentary Fig. 4A, D) and both factors, which have been reported to
increase cardiovascular risks, are linked to hypertension (Supple-
mentary Fig. 4A, E). The number of drugs taken by a patient
(comedication) increases with the number of comorbidities
(Supplementary Fig. 4A, F).

MIIC identifies inherent associations between variables
The duration of neoadjuvant treatment is directly linked to the type
of NAC regimen delivered (Fig. 2a) reflecting the fact that
anthracycline-based (AC) regimens usually include four cycles
(median of 106 days, Fig. 2b), whereas sequential regimens in which
anthracyclines are followed by taxanes are generally administered

over six or eight cycles (median of 147 days, Fig. 2b). The number of
nodes retrieved is associated with the type of axillary surgery (Fig. 2c),
consistent with the fact that sentinel node (SLN) biopsy procedures
were developed to reduce the number of lymph nodes removed
during dissection (LND) (Fig. 2d)16. MIIC correctly represents the
direct links between residual cancer burden (RCB) (Fig. 2e) and the
patterns making up this score, derived from measurements on
the primary tumor bed (size, fraction of invasive cancer, cellularity)
and the regional lymph nodes (number of positive lymph nodes).

MIIC identifies intra- and inter-modality associations
For the variables derived from pathology records, MIIC found
associations between tumor grade, Ki67, and mitotic index
(Supplementary Fig. 5A–C), all of which are markers of tumor
proliferation17. MIIC can also visualize links between patterns
assessed in different ways. Measurements of pre-NAC tumor size
evaluated clinically, by mammography and by MRI, were found to
be closely related (Supplementary Fig. 5C–E) as previously
reported18,19. Similarly, the response to treatment assessed clinically
at NAC completion was found to be associated with histological
size based on the surgical specimen (Supplementary Fig. 5F).

MIIC provides insight into tumor biology and response to
treatment
The presence of lymphovascular invasion (LVI) in the post-NAC
specimen is associated with a higher RCB index, consistent with
the strong resistance to chemotherapy of these tumors20

(Supplementary Fig. 6A). TNBCs and HER2-positive tumors have
a higher pre-NAC mitotic index and more stromal TIL infiltration

Fig. 1 MIIC global network for the NEOREP breast cancer cohort. Each node corresponds to a variable of the dataset, with circles indicating
continuous variables and squares indicating categorical variables. The colors define a category of variables, as detailed under the figure. Each
edge corresponds to a “direct” association between two variables with different types of orientation described in Methods. BC breast cancer,
BMI body mass index, DCIS ductal carcinoma in situ, ER estrogen receptor status, LVI lymphovascular invasion, NAC neoadjuvant
chemotherapy, CNS central nervous system, pCR pathological complete response, PR progesterone receptor status, RCB residual cancer
burden, TILs tumor-infiltrating lymphocytes. Blue edges indicate negative partial correlations, red edges indicate positive partial correlations.
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Fig. 2 The MIIC interactive online interface identifies inherent associations between variables. a NAC type is directly correlated with NAC
duration. NAC= neoadjuvant chemotherapy. b Distribution of neoadjuvant chemotherapy (NAC) duration (in days) according to the NAC
regimen administered: anthracyclines (AC), taxanes or sequential AC-taxanes. c The number of axillary nodes in the histological specimen
depends on the type of axillary surgery performed. d Boxplot showing the number of axillary nodes removed according to the type of surgery
performed: lymph node dissection (LND), sentinel lymph node biopsy (SLN) or both. The boxes represent the IQR, the horizontal lines
correspond to the median values and lines ends mark the upper and lower fence. The number of cases considered for the analysis are
reported in the legend. e Network interactions of the RCB node with the five patterns making up the RCB score.
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(Supplementary Fig. 6B, C) than luminal BCs21,22. Consistently, high
TIL levels are significantly associated with histological grade 3
tumors (Supplementary Fig. 6D).

MIIC reflects clinical practice
Several associations highlighted in the network reflect clinical
practice decisions applied throughout BC centers. For example,
the likelihood of performing conservative breast surgery depends
on tumor histology (higher rates of mastectomy have been
reported for patients with lobular or other histological types of
tumor less likely to respond to NAC)23,24 (Supplementary Fig. 7A)
and is positively associated with the practice of oncoplastic
surgery25 (Supplementary Fig. 7B). Similarly, lumpectomy is more
frequently associated with radiation therapy than with mastect-
omy (Supplementary Fig. 7C)26–29. After surgery, the addition of a
second line of treatment by adjuvant chemotherapy, to decrease
the risk of relapse, is driven by the identification of factors
associated with a poor prognosis30, such as high levels of lymph
node involvement (Supplementary Fig. 7D).
Beyond these well-established practices, MIIC also identified

differences in clinical practices between the two centers of the
cohort (Fig. 3a). For example, oncoplastic surgery and adjuvant
chemotherapy were performed at only one of the two centers
(Fig. 3b, c); the NAC regimen also differed between centers, with
the Curie St Cloud center using more AC regimens than AC-taxane
combinations, resulting in a shorter duration of NAC treatment
(Fig. 3d, e).

MIIC traces the natural course of the disease
The natural course of BC may include local relapse, possibly
followed by distant metastases, the trigger events leading to
death31–35 (Fig. 4a–c). Contralateral BC is often used in composite
survival endpoints, such as distant relapse-free survival36, but MIIC
clearly identifies contralateral BC as an event being independent of
other oncologic events and almost totally isolated from the rest of
the network (Fig. 1). Luminal BC is known to recur and develop
metastases later than HER2-positive BC and TNBC (Fig. 4d)21,22,37,38.
The link between has also been found between PR negativity and a
higher risk of brain metastasis39–43 (Fig. 4e).

MIIC identifies unexpected associations, leading to new
discoveries
With more than 15 associations involving treatment center (Fig.
3a), MIIC unmasked an unexpected “batch” effect relating to the
site of BC treatment in this cohort. The observed differences
reflect not only differences in therapeutic practice, but also in the
characteristics of the population (differences in the proportion of
women with psychological disorders, difference in incomes), in
tumor presentation (tumor size), in pathological variable scoring
(grade, presence of pre-NAC LVI, tumor cellularity, TILs), and in
time to treatment within the care pathway.

MIIC identifies factors likely to improve prediction or
prognosis
MIIC also favors new insights, e.g., comedication appears to
protect against local relapse (Fig. 5a). Several retrospective studies
have reported this association, with the use of statins44, NSAIDs45,
or beta-blockers46 found to have indirect anticarcinogenic effects.
It has recently been suggested that these non-oncological
treatments may have immunomodulatory and chemosensitizing
effects47.

MIIC suggests relevant combinations of predictive of
prognostic biomarkers
MIIC may provide clues to combinations of new prognostic
biomarkers likely to improve the prediction of response to
chemotherapy, or post-NAC prognosis. Pre-NAC lymphovascular
invasion (LVI) was found to be associated with both lower rates of
clinical response (Fig. 5b) and shorter relapse-free survival (Fig. 5c).
Both RCB (Fig. 5d, e) and post-NAC mitotic index (Fig. 5d–f), a
parameter rarely used in practice but nevertheless reported to be a
predictor of BC recurrence48,49, appear to be strongly associated
with the risk of death. MIIC may, therefore, be an efficient tool for
identifying features likely to improve prognosis, by combining gold
standard indicators with other parameters, such as post-NAC mitotic
index, and post-NAC LVI, for example. Finally, MIIC also makes it
possible to optimize the binning of residual cancer burden (RCB).
RCB is a post-NAC histological score calculated as an increasing
continuous index, and then subdivided into four classes (0, I, II, and
III)50. Our analysis based on information maximization principles
suggested a new unsupervised classification of RCB scores into three
categories (Fig. 5e), with RCB= 0 with low RCB values merged, in
particular, into a single class associated with a good prognosis.

DISCUSSION
When applied to a large cohort of BC patients, the MIIC algorithm
successfully (i) performed quality controls; (ii) identified intra- and
inter-modality correlations; (iii) highlighted differences in clinical
practice, including center specificities; (iv) traced the natural
course of the disease; (v) highlighted unsuspected and hidden
associations, leading to new discoveries. The interactive visualiza-
tion and causal analyses provided by this algorithm make it a
promising tool for fast and effective explorations of the increasing
amount of available health data.
The amount of exploitable health data is increasing exponentially.

The best known health data resource for cancer studies remains the
SEER (Surveillance, Epidemiology, and End Results) database, which
collects data from population-based cancer registries covering
approximately 34.6% of the US population51,52. By 2016, the
National Cancer Database (NCDB) had amassed more than 34
million hospital records from cancer patients (almost four times the
size of the SEER database), to become the largest clinical cancer
registry in the world53. In France, the French administrative
healthcare database, the SNDS (Système National des Données de
Santé), is one of the largest administrative databases in the domain
of medicine, providing many opportunities for medical research54,55,
as it covers 99% of the French population (about 66 million people).
The French government is planning to ease access to this almost
exhaustive population research resource, through release as part of
the “Health data hub” project. Finally, beyond these structured
databases, the largest mine of untapped data worldwide remains
the content of electronic health records (EHRs), encompassing a full
range of data (clinical notes, laboratory results, imaging, genetic
data, etc.) relating to patient care. Recent advances in information
technology have made it easier for both hospitals and healthcare
institutions to collect large amounts of healthcare data.
Biomedical scientists are now facing new challenges in the

management and analysis of massive, heterogeneous datasets56.
These challenges include the development of tools for exploration
and visualization, analytical methods, integration into a compre-
hensive overview, and translation of the findings into public
health impact. The visualization of information makes it possible
for users to find profound patterns in clinical data, through visual
recognition. Simple charts cannot represent the complexity of big
data analyses and fail to support multifaceted tasks effectively3,4.
There is, therefore, a need for sophisticated visualization tools
dealing with many elements simultaneously and enabling users to
perceive the patterns and insight generated by the algorithm57.
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Supplementary Table 1 shows the main data visualization tools
used to present medical data. Many of the visual methods have
been adopted directly from the field of data mining, but others,
specific to the healthcare domain, have also been designed
(Supplementary Table 2). For example, Happe and Drezen built the
ePEPs toolbox, which displays relevant patterns extracted by eye
from patient reimbursement data in the SNDS database, and

supporting interactive exploration by researchers58. CARRE
provides web-based components for interactive health data
(fitness and biomarkers) visualization and risk analysis for the
management of cardiorenal diseases59. The MITRE Corporation has
also developed a web-based solution that provides an overview of
an individual’s health through graphical representations of EHR
data, highlighting abnormal values60. None of these visualization

Fig. 3 MIIC identifies differences in clinical practices between the two centers of the cohort. a Network interactions around the node
“center” of treatment. b Proportion of patients undergoing oncoplastic surgery, according to treatment center: Paris or St Cloud. c Proportion
of patients receiving adjuvant chemotherapy according to treatment center: Paris or St Cloud. d Proportion of the various NAC regimens
according to treatment center. e Distribution plot for NAC duration in days, according to treatment center.
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programs has yet managed to bridge the gap between of the
large amounts of clinical data available and the discovery of
clinical knowledge or paths for scientific research. By processing
large heterogeneous sets of variables inherent to clinical records,
MIIC provides physicians with a full picture of BC disease. It will be
interesting to see how extending the present cohort of BC
patients to larger BC cohorts treated with similar NAC therapy will
allow us to refine the visual clinical network presented here, Fig. 1.
In addition to this use for visualization, the MIIC algorithm

presents several other advantages for analyses, including its

unsupervised nature, overcoming the need for training or human
involvement. This feature makes it possible to obtain new
knowledge through the automatic identification of patterns and
dependences in the data, highlighting new interactions, and it
may be of use for feature selection in machine learning models.
In conclusion, MIIC, an open-access, interactive, multitask tool, is

designed to visualize datasets to help clinicians and researchers to
understand the relationships between the variables within them. It
opens up promising perspectives for guiding the generation of
new hypotheses, helping clinicians identify actionable nodes and

Fig. 4 MIIC traces the natural course of the disease. a Network interactions showing links between relapses, metastases and death in breast
cancer. b Proportion of distant metastases according to the occurrence or absence of local relapses. c Proportion of deaths according to
distant metastasis status. d Distribution plot for relapse-free survival (in months) according to breast cancer subtype. e Proportion plot
displaying the relationship between central nervous system (CNS) metastasis and progesterone receptor (PR) status.
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edges in clinical networks, and revealing new clues to relation-
ships of interest for research purposes. Its widespread use in the
field of health data could increase the accuracy of prediction for
treatment responses and prognosis. This tool has the potential to
improve the care pathway and, ultimately, the survival of patients.

METHODS
Patients and treatment
We analyzed a cohort of 1197 patients with non-metastatic BC treated by
NAC, with or without trastuzumab, followed by surgery, at either of the two
Institut Curie sites (Paris and Saint Cloud) between 2002 and 2012 (NEOREP

Fig. 5 MIIC identifies factors likely to improve prediction or prognosis. a Network interaction displaying the link between local relapse
occurrence and the number of drugs taken (comedication). b Proportion plot showing the percentage of different clinical responses
according to the presence or absence of pre-NAC lymphovascular invasion. c Boxplot of relapse-free survival according to the presence or
absence of pre-NAC lymphovascular invasion. d Network interaction displaying the link between death, RCB and post-NAC mitotic index.
e Boxplot of RCB values according to vital status. f Boxplot of post-NAC mitotic index according to vital status. The boxes represent the IQR,
the horizontal lines correspond to the median values and lines ends mark the upper and lower fence. The number of cases considered for the
analysis are reported in the legend.
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Cohort, CNIL declaration number 1547270. The methods were performed
in accordance with relevant guidelines and regulations and approved by
CNIL and the Breast Cancer Group of Institut Curie on September 11, 2020.
Owing to the retrospective nature of this study, the ethics committee
granted a waiver of informed consent for the included participants.). We
included unilateral, non-recurrent, non-inflammatory, non-metastatic
tumors, and excluded T4 tumors. This retrospective study was conducted
in accordance with institutional and ethical rules regarding research on
tissue specimens and patients. Information on family history, clinical
characteristics (age; menopausal status; body mass index) and tumor
characteristics (clinical tumor stage and grade; histology; clinical nodal
status; ER, PR and HER2 status; BC subtype; mitotic index; Ki67;
lymphovascular invasion) was retrieved from electronic medical records.
All the patients of the cohort received NAC, and additional treatments
were decided in accordance with national guidelines.

Tumor samples and pathological review
In accordance with the guidelines used in France (Group for Evaluation of
Prognostic Factors using Immunohistochemistry in Breast Cancer61), cases
were considered estrogen receptor (ER)-positive or progesterone receptor
(PR)-positive if at least 10% of the tumor cells expressed estrogen and/or
progesterone receptors (ER/PR). Endocrine therapy was prescribed when
this threshold was exceeded. HER2-negative status was defined as a score
of 0 or 1+ for the tissue section stained by immunohistochemistry (IHC).
Tissue sections with scores of IHC 2+ or IHC 3+ were then analyzed by
fluorescence in situ hybridization (FISH) to confirm HER2 positivity. BC
tumors were classified into subtypes (TNBC, HER2-positive, and luminal
HER2-negative [referred to hereafter as “luminal”]). BC subtypes were
defined as follows: luminal, ER+ or PR+/HER2−; TNBC, ER−/PR−/HER2−;
HER2-positive BC, HER2+. Pretreatment core needle biopsy specimens and/
or the corresponding post-NAC surgical specimens were reviewed
independently by breast disease experts for research purposes, to assess
residual cancer burden index, and the levels of tumor-infiltrating
lymphocytes. The pathological reviews of these specimens are described
in detail elsewhere20,62,63. Pathological complete response (pCR) was
defined as the absence of residual invasive cancer cells in the breast and
axillary lymph nodes (ypT0/is þ/ypN0).

Survival endpoints
Relapse-free survival (RFS) was defined as the time from surgery to death,
loco-regional recurrence or distant recurrence, whichever occurred first.
Overall survival (OS) was defined as the time from surgery to death. The
date of last known contact was retained for patients for whom none of
these events were recorded. The cutoff date for survival analysis was
March, 13th, 2019.

Variables of interest
The care pathway of BC patients eligible for neoadjuvant chemotherapy
can be summarized as follows: (i) pretreatment biopsy for BC diagnosis; (ii)
administration of chemotherapy as the first-line treatment; (iii) removal of
the tumor by surgery; (iv) histological analysis of the specimens obtained;
(v) prescription of adjuvant treatments, if indicated (radiotherapy,
hormonotherapy, chemotherapy); (vi) patients follow-up to monitor for
relapse or death. We identified 94 clinically relevant variables from clinical,
radiological, pathological and outcome data, which we grouped into 14
categories (hospital, history, comedication, comorbidities, clinical baseline,
baseline histology, pre-NAC pathology, treatment response, surgery,
treatment, changes during NAC, post-NAC pathology, delayed relapse/
survival, metastasis). For composite variables derived from raw variables
(e.g., BC subtype, constructed from a combination of ER status, PR status,
HER2 status), both derived and raw variables were represented on the
network.

MIIC algorithm
The functioning of the algorithm has been described in detail elsewhere5,7.
Briefly, starting from a fully connected network, the MIIC algorithm first
removes dispensable edges by iteratively subtracting the most significant
information contributions from indirect paths between each pair of
variables. The remaining edges, the underlying effect of which cannot be
explained by indirect paths, are then oriented based on the causality
signature in the data, corresponding to the simultaneous head-to-head
orientations of so-called “v-structures”, X→Z←Y. In principle, propagation

of v-structure orientations to downstream edges can also be implemented
to fulfill underlying model class assumptions64,65 but are not applied on
the NEOREP clinical network to ensure that MIIC algorithmic decisions are
only based on information actually contained in the data.
Each edge corresponds to a “direct” association between two variables,

that is, a statistical association that cannot be entirely explained by indirect
effects involving other variables. Red and blue edges correspond to
positive and negative (i.e., anti-correlated) associations, respectively. Four
types of edge orientations are distinguished by the MIIC online server: (i)
directed edges with a gray arrowhead represent inferred causal relation-
ships; (ii) bidirected edges (drawn with dashed lines) reflect the presence
of a latent common cause (L) unobserved in the available dataset, i.e.,
X←(L)→Y; (iii) directed edges with a colored (red or blue) arrowhead are
consistentent with either a causal or a latent common cause relationship;
and (iv) undirected edges, whose orientation if it exists, cannot be inferred
from non-perturbative data. The original algorithm was restricted to
categorical variables5, but MIIC has recently been extended to include
continuous variables, the values of which are partitioned into optimal bins,
maximizing mutual information with another (continuous or categorical)
variable of interest, while preventing the overfitting of datasets of finite
size due to the use of too many bins7. In particular, each continuous
variable may have different information-maximizing partitions depending
on the associated variable of interest. For instance, MIIC finds three
maximally informative bins for the residual cancer burden (RCB) score in
association with patient survival status (Supplementary Fig. 1A), whereas
eight RCB bins are required to estimate its mutual information with post-
NAC cellularity correctly (Supplementary Fig. 1B).

MIIC online server
The MIIC online server is freely accessible at https://miic.curie.fr and can be
used with the Google Chrome, Mozilla Firefox, Edge, and Safari browsers.
The user guide summarizing the main steps for running the MIIC algorithm
is accessible at https://miic.curie.fr/user_guide.php, and an online video
tutorial is available at: https://miic.curie.fr/tutorial.php. The workbench is
available from https://miic.curie.fr/workbench.php. As input data, the user
can upload a dataset formatted as a table with commas, semicolons, tabs,
pipes or colons, as separators, without row names. Each variable can be
either categorical or quantitative (discrete or continuous). Variables can be
grouped into families, identified with different colors on the network.
Missing values are allowed in the dataset and their possible statistical
biases are taken into account by MIIC7. They should be indicated as “NA” in
the dataset table. Once the dataset has been prepared, the user runs the
algorithm, and an e-mail is sent when the job is completed.

MIIC output
The MIIC online server generates a visualization of the global network of
the dataset. An example based on the NEOREP dataset is displayed in
Fig. 1, and is accessible as an interactive network at https://miic.curie.fr/
job_results_showcase.php?id=NEOREP.

Interactive exploration of the network
The distributions and neighborhoods of each node and edge of the
inferred network can be explored through an interactive interface, through
the mouse-over right- or left-click buttons on the browser page, as detailed
in the online tutorials. Briefly, any variable can be highlighted by clicking
on the network or through the “Search” toolbox (Supplementary Fig. 2A).
The corresponding plots can be downloaded as.png or.svg images. Each
node can be explored individually in terms of counts (categorical variables,
Supplementary Fig. 2B, C) or distribution (continuous variables Supple-
mentary Fig. 2D, E). Each edge can be explored by a right click and the
choice of “plot join distribution” or “plot discretization”. The resulting plots
are (i) proportion plots, with the edge representing the total association
between two categorical variables (Supplementary Fig. 2F); (ii) distribution
histograms (Supplementary Fig. 2G) or boxplots (Supplementary Fig. 2H),
in which the edge represents the total association between a categorical
and a continuous variable or (iii) scatter plots (Supplementary Fig. 2I), in
which the edge represents the total association between two continuous
variables. Additional options include inverting the x and y axes, the choice
of frequency or absolute counts, or NA removal (proportion plots), and
faceting or superimposing the variables (distribution histograms). All the
figures presented here were generated with the MIIC online interactive
visualization tool.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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job_results_showcase.php?id=NEOREP. Data corresponding to the NEOREP cohort
study will be available upon reasonable request.

CODE AVAILABILITY
The code corresponding to the MIIC algorithm can be found at the following address:
https://github.com/miicTeam/miic_R_package.

Received: 24 February 2022; Accepted: 27 June 2022;

REFERENCES
1. Bärtschi, M. Health Data Visualization-A review * Seminar Collaborative Data

Visualization in 2015 (2015).
2. Luo, J., Wu, M., Gopukumar, D., & Zhao, Y. Big data application in biomedical

research and health care: a literature review. Biomed. Inf. Insights 8, 1–10 (2016).
3. Ola, O. & Sedig, K. Beyond simple charts: Design of visualizations for big health

data [Internet]. Online J Public Health Inform 8, e195 (2016).
4. Shneiderman, B., Plaisant, C. & Hesse, B. W. Improving healthcare with interactive

visualization. Computer 46, 58–66 (2013).
5. Verny, L., Sella, N., Affeldt, S., Singh, P. P. & Isambert, H. Learning causal networks with

latent variables from multivariate information in genomic data. PLoS Comput. Biol. 13,
e1005662 (2017).

6. Sella, N., Verny, L., Uguzzoni, G., Affeldt, S. & Isambert, H. MIIC online: a web server
to reconstruct causal or non-causal networks from non-perturbative data. Bioin-
formatics 34, 2311–2313 (2018).

7. Cabeli, V. et al. Learning clinical networks from medical records based on infor-
mation estimates in mixed-type data [Internet]. PLoS Comput. Biol. 16, e1007866
(2020).

8. Brandão, M., Reyal, F., Hamy, A.-S., & Piccart-Gebhart, M. Neoadjuvant treatment
for intermediate/high-risk HER2-positive and triple-negative breast cancers: no
longer an “option” but an ethical obligation. ESMO Open 4, e000515 (2019).

9. Reyal, F., Hamy, A. S. & Piccart, M. J. Neoadjuvant treatment: the future of patients
with breast cancer. ESMO Open 3, e000371 (2018).

10. Burstein, H. J. et al. Adjuvant endocrine therapy for women with hormone
receptor–positive breast cancer: American Society of Clinical Oncology Clinical
Practice Guideline Focused Update. J. Clin. Oncol. 32, 2255–2269 (2014).

11. Wilson, F. R. et al. Herceptin® (trastuzumab) in HER2-positive early breast cancer:
protocol for a systematic review and cumulative network meta-analysis. Syst. Rev.
6, 196 (2017).

12. Aaldriks, A. A. et al. Prognostic factors for the feasibility of chemotherapy and the
Geriatric Prognostic Index (GPI) as risk profile for mortality before chemotherapy
in the elderly. Acta Oncol. 55, 15–23 (2016).

13. van Leeuwen, R. W. F. et al. Potential drug interactions in cancer therapy: a
prevalence study using an advanced screening method. Ann. Oncol. 22,
2334–2341 (2011).

14. Popa, M. A., Wallace, K. J., Brunello, A., Extermann, M. & Balducci, L. Potential drug
interactions and chemotoxicity in older patients with cancer receiving che-
motherapy. J. Geriatr. Oncol. 5, 307–314 (2014).

15. Wang, N., Qin, M. Z. & Cui, J. Lipid profile comparison between pre- and post-
menopausal women. Zhonghua Xin Xue Guan Bing. Za Zhi 44, 799–804 (2016).

16. Veronesi, U. et al. Sentinel-lymph-node biopsy as a staging procedure in breast
cancer: update of a randomised controlled study. Lancet Oncol. 7, 983–990
(2006).

17. Weidner, N., Moore, D. H. & Vartanian, R. Correlation of Ki-67 antigen expression
with mitotic figure index and tumor grade in breast carcinomas using the novel
“paraffin”-reactive MIB1 antibody. Hum. Pathol. 25, 337–342 (1994).

18. Cortadellas, T. et al. Estimation of tumor size in breast cancer comparing clinical
examination, mammography, ultrasound and MRI—correlation with the patho-
logical analysis of the surgical specimen. Gland Surg. 6, 330–335 (2017).

19. Berg, W. A. et al. Diagnostic accuracy of mammography, clinical examination, US,
and MR imaging in preoperative assessment of breast cancer. Radiology 233,
830–849 (2004).

20. Hamy, A.-S. et al. Lymphovascular invasion after neoadjuvant chemotherapy is
strongly associated with poor prognosis in breast carcinoma. Breast Cancer Res.
Treat. 169, 295–304 (2018).

21. Meyers, M. O. et al. Impact of breast cancer molecular subtypes on locoregional
recurrence in patients treated with neoadjuvant chemotherapy for locally
advanced breast cancer. Ann. Surg. Oncol. 18, 2851–2857 (2011).

22. Lowery, A. J., Kell, M. R., Glynn, R. W., Kerin, M. J. & Sweeney, K. J. Locoregional
recurrence after breast cancer surgery: a systematic review by receptor pheno-
type. Breast Cancer Res. Treat. 133, 831–841 (2012).

23. Waljee, J. F., Hu, E. S., Newman, L. A., & Alderman, A. K. Predictors of re-excision
among women undergoing breast-conserving surgery for cancer. Ann. Surg.
Oncol. 15, 1297–1303 (2008).

24. Truin, W. et al. Differences in response and surgical management with neoad-
juvant chemotherapy in invasive lobular versus ductal breast cancer. Ann. Surg.
Oncol. 23, 51–57 (2016).

25. Munhoz, A. M., Montag, E. & Gemperli, R. Oncoplastic breast surgery: indications,
techniques and perspectives. Gland Surg. 2, 143–157 (2013).

26. Buchholz, T. A. Radiation therapy for early-stage breast cancer after breast-
conserving surgery. N. Engl. J. Med. 360, 63–70 (2009).

27. Carlson, R. W. et al. Invasive breast cancer. J. Natl. Compr. Canc. Netw. 9, 136–222
(2011).

28. Eifel, P. et al. National Institutes of Health Consensus Development Conference
Statement: adjuvant therapy for breast cancer, November 1-3, 2000. J. Natl.
Cancer Inst. 93, 979–989 (2001).

29. Halberg, F. E. et al. Conservative surgery and radiation in the treatment of stage I
and II carcinoma of the breast. American College of Radiology. ACR Appropriateness
Criteria. Radiology 215(Suppl), 1193–1205 (2000).

30. Masuda, N. et al. Adjuvant capecitabine for breast cancer after preoperative
chemotherapy. N. Engl. J. Med. 376, 2147–2159 (2017).

31. Dent, R. et al. Factors associated with breast cancer mortality after local recur-
rence. Curr. Oncol. 21, e418–e425 (2014).

32. Whelan, T., Clark, R., Roberts, R., Levine, M. & Foster, G. Ipsilateral breast tumor
recurrence postlumpectomy is predictive of subsequent mortality: results from a
randomized trial. Investigators of the Ontario Clinical Oncology Group. Int. J.
Radiat. Oncol. Biol. Phys. 30, 11–16 (1994).

33. Kurtz, J. M. et al. The prognostic significance of late local recurrence after breast-
conserving therapy. Int. J. Radiat. Oncol. Biol. Phys. 18, 87–93 (1990).

34. Sopik, V., Nofech-Mozes, S., Sun, P., & Narod, S. A. The relationship between local
recurrence and death in early-stage breast cancer. Breast Cancer Res. Treat. 155,
175–185 (2016).

35. Witteveen, A., Kwast, A. B. G., Sonke, G. S., IJzerman, M. J. & Siesling, S. Survival
after locoregional recurrence or second primary breast cancer: impact of the
disease-free interval. PLoS ONE 10, e0120832 (2015).

36. Hudis, C. A. et al. Proposal for standardized definitions for efficacy end points in
adjuvant breast cancer trials: the STEEP system. J. Clin. Oncol. 25, 2127–2132
(2007).

37. Voduc, K. D. et al. Breast cancer subtypes and the risk of local and regional
relapse. JCO 28, 1684–1691 (2010).

38. Wu, X. et al. Pattern of Local Recurrence and Distant Metastasis in Breast Cancer By
Molecular Subtype [Internet]. Cureus 8, e924 (2016).

39. Snell, C. E. et al. Absent progesterone receptor expression in the lymph node
metastases of ER-positive, HER2-negative breast cancer is associated with relapse
on tamoxifen. J. Clin. Pathol. 70, 954–960 (2017).

40. Nishimura, R. et al. Changes in the ER, PgR, HER2, p53 and Ki-67 biological
markers between primary and recurrent breast cancer: discordance rates and
prognosis. World J. Surg. Oncol. 9, 131 (2011).

41. Nishimura, R. et al. Evaluation of factors related to late recurrence–later than 10
years after the initial treatment–in primary breast cancer. Oncology 85, 100–110
(2013).

42. Darlix, A. et al. Hormone receptors status: a strong determinant of the kinetics of
brain metastases occurrence compared with HER2 status in breast cancer. J.
Neurooncol. 138, 369–382 (2018).

43. Zhou, L. et al. Progesterone suppresses triple-negative breast cancer growth and
metastasis to the brain via membrane progesterone receptor α. Int. J. Mol. Med.
40, 755–761 (2017).

44. Ahern, T. P. et al. Statin prescriptions and breast cancer recurrence risk: a Danish
nationwide prospective cohort study. J. Natl. Cancer Inst. 103, 1461–1468
(2011).

45. Kwan, M. L., Habel, L. A., Slattery, M. L., & Caan, B. NSAIDs and breast cancer
recurrence in a prospective cohort study. Cancer Causes Control 18, 613–620
(2007).

46. Powe, D. G. et al. Beta-blocker drug therapy reduces secondary cancer formation
in breast cancer and improves cancer specific survival. Oncotarget 1, 628–638
(2010).

N. Sella et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)   113 

https://miic.curie.fr/job_results_showcase.php?id=NEOREP
https://miic.curie.fr/job_results_showcase.php?id=NEOREP
https://github.com/miicTeam/miic_R_package


47. Hamy, A.-S. et al. Comedications influence immune infiltration and pathological
response to neoadjuvant chemotherapy in breast cancer. OncoImmunology 9,
1677427 (2020).

48. Farrugia, D. J. et al. Mitotic index to predict breast cancer recurrence after
neoadjuvant systemic therapy. JCO 34, e23265 (2016).

49. Pattali, S. et al. Value of mitotic index in residual tumors following neoadjuvant
therapy for breast cancer: Single institution experience. JCO 34, 548 (2016).

50. Symmans, W. F. et al. Measurement of residual breast cancer burden to predict
survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25, 4414–4422 (2007).

51. Duggan, M. A., Anderson, W. F., Altekruse, S., Penberthy, L. & Sherman, M. E. The
Surveillance, Epidemiology and End Results (SEER) program and pathology:
towards strengthening the critical relationship. Am. J. Surg. Pathol. 40, e94–e102
(2016).

52. Yu, J. B. & Smith, B. D. NCI SEER public-use data: applications and limitations in
oncology research [internet]. Oncology 23, 3 (2009).

53. Boffa, D. J. et al. Using the National Cancer Database for Outcomes Research: a
review. JAMA Oncol. 3, 1722–1728 (2017).

54. Bezin, J. et al. The national healthcare system claims databases in France,
SNIIRAM and EGB: Powerful tools for pharmacoepidemiology. Pharmacoepide-
miol. Drug Saf. 26, 954–962 (2017).

55. Tuppin, P. et al. Value of a national administrative database to guide public
decisions: From the système national d’information interrégimes de l’Assurance
Maladie (SNIIRAM) to the système national des données de santé (SNDS) in
France [Internet]. Rev. Epidemiol. Sante Publique. 65 Suppl 4, S149–S167 (2017).

56. Margolis, R. et al. The National Institutes of Health’s Big Data to Knowledge
(BD2K) initiative: capitalizing on biomedical big data. J. Am. Med. Inf. Assoc. 21,
957–958 (2014).

57. Keim, D. et al. Information Visualization (eds Kerren, A., Stasko, J. T., Fekete, J.-D.,
et al.) 154–175 (Springer, 2008).

58. Happe, A. & Drezen, E. A visual approach of care pathways from the French
nationwide SNDS database—from population to individual records: the ePEPS
toolbox [Internet]. Available from: https://hal-univ-rennes1.archives-ouvertes.fr/
hal-01697626 (2018).

59. Zhao, Y. et al. Visual analytics for health monitoring and risk management in
CARRE. E-Learning and Games; 10th International Conference, Edutainment 2016.
Hangzhou, China, April 14–16, 2016, Revised selected papers 9654, 380–391
(2016).

60. Ledesma, A., Al-Musawi, M. & Nieminen, H. Health figures: an open source
JavaScript library for health data visualization [Internet]. BMC Med. Inform. Decis.
Mak. 16, 38 (2016).

61. [Recommendations for the immunohistochemistry of the hormonal receptors on
paraffin sections in breast cancer. Update 1999. Group for Evaluation of Prog-
nostic Factors using Immunohistochemistry in Breast Cancer (GEFPICS-FNCLCC)].
Ann. Pathol. 19, 336–343 (1999).

62. Hamy, A.-S. et al. Stromal lymphocyte infiltration after neoadjuvant chemother-
apy is associated with aggressive residual disease and lower disease-free survival
in HER2-positive breast cancer. Ann. Oncol. 28, 2233–2240 (2017).

63. Hamy-Petit, A.-S. et al. Pathological complete response and prognosis after
neoadjuvant chemotherapy for HER2-positive breast cancers before and after
trastuzumab era: results from a real-life cohort. Br. J. Cancer 114, 44–52 (2016).

64. Affeldt, S. & Isambert, H. Robust reconstruction of causal graphical models based
on conditional 2-point and 3-point information. In Proceedings of the 31th con-
ference on Uncertainty in Artificial Intelligence (UAI) (Amsterdam, The Netherlands,
2015).

65. Affeldt, S., Verny, L. & Isambert, H. 3off2: a network reconstruction algorithm
based on 2-point and 3-point information statistics. BMC Bioinforma. 17(Suppl),
12 (2016).

ACKNOWLEDGEMENTS
N.S. acknowledges support from Sorbonne University (ATER), V.C. from ARC
foundation and HI from ITMO Cancer, Institut Curie and CNRS.

AUTHOR CONTRIBUTIONS
N.S., V.C., and H.I. designed and implemented the machine learning and interactive
exploration tools; A.S.H., L.D., M.L. performed research; A.S.H. and F.R. verified the
data; N.S., V.C., H.I., L.D., F.R., and A.S.H. contributed to data analysis; A.S.H. and F.R.
contributed to expert review. All authors contributed to data interpretation. L.D.,
A.S.H., N.S., and H.I. wrote the paper. N.S. worked on the paper while being affiliated
at 2 and 3. All authors had full access to all the data in the study and had final
responsibility for the decision to submit for publication.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-022-00647-0.

Correspondence and requests for materials should be addressed to Fabien Reyal or
Hervé Isambert.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

N. Sella et al.

10

npj Digital Medicine (2022)   113 Published in partnership with Seoul National University Bundang Hospital

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01697626
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01697626
https://doi.org/10.1038/s41746-022-00647-0
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Interactive exploration of a global clinical network from a large breast cancer cohort
	Introduction
	Results
	MIIC performs quality control
	MIIC identifies inherent associations between variables
	MIIC identifies intra- and inter-modality associations
	MIIC provides insight into tumor biology and response to treatment
	MIIC reflects clinical practice
	MIIC traces the natural course of the disease
	MIIC identifies unexpected associations, leading to new discoveries
	MIIC identifies factors likely to improve prediction or prognosis
	MIIC suggests relevant combinations of predictive of prognostic biomarkers

	Discussion
	Methods
	Patients and treatment
	Tumor samples and pathological review
	Survival endpoints
	Variables of interest
	MIIC algorithm
	MIIC online server
	MIIC output
	Interactive exploration of the network
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




