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ABSTRACT
The finite element method (FEM) is a classical approach to simulate the surface settlements induced by
a tunnel boring machine (TBM). Unfortunately, for this application, the FEM is also computationally
demanding. In this case, it is often useful to build simplified models from a set of reference simulations
to quickly predict quantities of interest (QoIs) and make decisions. Such simplified models are called
metamodels. In this article, our objective is to use kriging metamodels, aka Gaussian process metamod-
els, to build an approximation of a parametric 2D finite element tunneling model implemented using
Python and ABAQUS. Our methodology evaluates the performance of kriging metamodels when the
number of reference simulations varies. The performances are evaluated using several comparison
metrics. We also compare two open-source implementations for kriging, two different assumptions for
the mean of the Gaussian process, and we also test kriging against several classical regression methods.

Keywords FEM, Tunnelling, Metamodel, Settlements, Kriging

I. INTRODUCTION

Urban densification drives the need to expand underground networks. Monitoring in these hazardous envi-
ronments is a major challenge for the building and civil engineering sector particularly for predicting surface
settlements caused by tunnel excavation. Among other excavation methods, tunnel boring machines (TBM)
are favored for large-scale projects in urban areas. Even if TBM can minimize surface settlements (Kolymbas
2005), several factors such as over-excavation, TBM design, void formation behind the tail, mortar behavior,
guidance, ground loss, and maintenance breaks may still result in substantial ground movements (Lam-
brughi et al. 2012).

Currently, the control of TBM excavation is based on theoretical models, numerical simulation out-
comes, and the expertise of engineers. To conduct precise and comprehensive studies that would improve
decision-making for controlling TBM, it would be possible to rely on 3D finite element models (FEM) taking
into account the different sources of uncertainty. However, such numerical models typically require many
hours of computation. As a result, it is essential to identify faster and hopefully accurate methods that can
assist with decision-making and knowledge development throughout a project.

To reduce computational time for complex and reliable FEM incorporating TBM parameters, machine
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learning-based metamodels can be used (see, e.g, Liu et al. 2017, Ninic et al. 2018). In this article, we fo-
cus on kriging, aka Gaussian process (GP) modelling, for constructing metamodels from a FEM of TBM
excavation. GP modelling is probably the most ubiquitous class of metamodels in the domain of com-
puter experiments (see e.g. Kitanidis 1983, Currin et al. 1988), mainly because it yields a flexible class of
models (Williams & Rasmussen 2006) and its theoretical properties are well understood (Stein 1999). GP
modelling has been used in many applications and many domains such as biology (Yasrebi et al. 2009), civil
engineering (Laurenceau & Sagaut 2008), aerospace engineering (Martin & Simpson 2005), etc.

Our main contribution is to assess the performance of GP modelling for tunneling simulation. To this
end, we consider a 2D FE parametric model with plane strain assumption and linear elastic soil mechanics
(a very simplified representation of reality) that will make it possible to carry out many simulations for
validation purposes at a relatively small cost.

In our methodology we seek to evaluate the performance of kriging metamodels when the number
of simulations used to build the metamodel varies against several comparison metrics. We also want to
compare different open-source implementations for kriging. Finally, we test kriging against several other
classical regression methods.

The modelling assumptions will be explained in Section II. In Section III, a sensitivity analysis using
Sobol first and total order indices is conducted to identify key input parameters affecting surface settle-
ments. In Section IV, we conduct numerical experiments to assess the performances of GP modelling. In
Section V, we provide conclusions about our numerical experiments and discuss future work.

II. 2D FINITE ELEMENT METHOD OF TBM EXCAVATION

A. General assumptions

In this section we present modelling assumptions to build a toy simulator of TBM excavation that will
be used for assessing the performances of GP modelling. The toy simulator is based on the study case
introduced in Berthoz et al. (2020). The assumptions are as follows.

First, the soil is assumed to be linear elastic. The settlements prediction accuracy depends on the me-
chanical properties of the soil (Cheng et al. 2007, Jenck & Dias 2004). Complex soil models provide more
accurate predictions of surface displacement shape and magnitude but they come at the cost of longer com-
putational time (Migliazza et al. 2009) and expensive laboratory testing (Zhao et al. 2015) due to the numer-
ous parameters required (as for the Hardening Soil Model in Schanz (1999)). Second, the model assumes
2D-plane strain although mechanical phenomena during TBM excavation are 3D in nature (Lambrughi et al.
2012). Third, we assume symmetry and thus neglect the non-symmetrical nature of urban surface as well
as soil heterogeneities. Fourth, the model only simulates one TBM phase whereas the final settlement is the
result of multiple sequential steps: excavation, support, mortar injection, and lining installation.

The simulations were performed using the ABAQUS 2022 software and a 3-node linear triangular mesh
(CPE3) with finer mesh density near the tunnel and coarser mesh further away (Figure 1). The boundary
conditions were defined as follows: complete restriction on all directions of displacement at the bottom,
restriction on horizontal displacement on the left and right sides, and free field condition on the top.

B. Simulation of TBM excavation

The model uses a force control approach based on the convergence-confinement method. The tunneling
process is represented through the following two steps: 1) geo-stress state definition; 2) soil excavation
simulation deactivating the excavated soil and applying pressure to support the wall.

The second step simulates the support provided by the TBM or the lining through the application of
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TABLE 1. Global model parameters

Parameters Notation Unit Parameter type Parametric (Y/N) Value
Excavation Pressure Pexc kPa TBM driving Yes 160
Gradient Pressure ∆Pexc kPa/m TBM driving Yes 15

Tunnel depth ztunnel m Design Yes 18
Tunnel diameter Dtunnel m Design No 9.17
Surface weight qsurface kPa Mechanical model Yes 75

Watertable level zwt m Mechanical model No 18.5

either a fictive pressure, representing the force of the TBM or the lining on the soil, or a real pressure to
represent the mortar injection between the tail and the lining. A gradient is incorporated to account for
the self-weight of materials such as the TBM, excavated soil, mortar, lining, and backup train. Parameters
values are detailed in Table 1. The reversible nature of the model due to the soil elastic behavior explains
the decision to model only two steps rather than all real phenomena.

C. Geological model

Before tunneling the soil stress state is established calculating the vertical and lateral earth pressure. Vertical
pressure σv is calculated based on the weight of the soil γsoil in either saturated or unsaturated conditions.
The lateral pressure σh is obtained by multiplying the vertical pressure by the earth pressure coefficient
K0. To simplify analysis, the influence of pore pressure is disregarded, and the soil is assumed to be linear
elastic. Accordingly, the stress state of the soil varies as a function of the depth z.

The selection between drained or undrained conditions is determined by considering factors such as
soil permeability and TBM velocity. High soil permeability and low TBM velocity results in fully drained
conditions Berthoz et al. (2020). When excavating permeable soil situated below the water table, a fully
drained condition is maintained and the stress state is determined using the effective stress σeff .{

σv
eff(z) =

∫ z

0
γsoil(x)dx−

∫ z

0
γwater(x)dx ,

σh
eff(z) = K0(z).σ

v
eff(z) .

(1)

When dealing with soils above the water table or nonpermeable soils below the water table, the stress
state is assessed using the total stress σt: {

σv
t (z) =

∫ z

0
γsoil(x)dx

σh
t (z) = K0(z).σ

v
t (z)

(2)

TABLE 2. Geologic mechanical properties

Geological layers ID Ep. (m) γ(kN/m3) E (MPa) ν K0 Water conditions Stress type
Colluvium COLL (0) 5 18 32 0.3 0.8 Dry Total

Saint-Ouen Limestone CSO (1) 2.5 19 120 0.3 0.7 Dry Total
Beauchamp Sand SB (2) 2 21 300 0.3 0.6 Dry Total
Marls and Pebbles MC (3) 9 20 200 0.3 0.6 Dry Total
Coarse Limestone CG (4) 15 21 600 0.3 0.5 Drained Effective

γ: soil density (unsaturated when above the water table, or saturated otherwise), E: Young modulus, ν: Poisson ratio, K0: earth
pressure coefficient.

Five geological layers are considered as introduced in Table 2. Additionally, a surface weight is applied
to simulate the effects of buildings, backfill, and heterogeneities. As in Berthoz et al. (2020), the mean value
of the surface weight is taken as equal to the equivalent of 4 meters of backfill.
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FIGURE 1. Parametric finite element model of the "Paris T6-S6’s" tunnel and its black-box representation

TABLE 3. Input random variables of the parametric model

Parameters Notation Mean (µm) Coefficient of variation (CV)
Excavation Pressure Pexc 160 kPa 100%
Gradient Pressure ∆Pexc 15 kPa/m 100%

Tunnel depth (surface to tunnel center) ztunnel 18 m 5 %
Surface weight qsurface 75 kPa 30 %

Young Modulus of each geological layer E cf Table 2 20 %
Earth pressure coefficient of each geological layer K0 cf Table 2 20 %

D. Parametric model

A parametric model (Figure 1) has been established to examine the impact of individual parameters on the
settlement. Six construction parameters have been selected as inputs. Each parameter is assigned a mean
value µm and a coefficient of variation (CV) δm = σm

µm
where σm is the standard deviation. The values are

reported in Table 3.
We also define a domain of variation for each parameter specified as the interval [µm · (1 − δm), µm ·

(1 + δm)]. The mean values and coefficients of variation for pressure and gradient of pressure are based
on the findings in Berthoz et al. (2020). For the other parameters, the mean values follow the values used
in Berthoz et al. (2020), while the coefficients of variation is set at 20% for soil properties, 30% for surface
weight, and 5% for tunnel depth.

A pipeline was established to compute settlements automatically. For a set of input parameters, a
simulation is run and the resulting surface settlements (the vertical displacement of nodes at the surface)
are recorded as depicted in Figure 1.

To characterize the settlements, two crucial quantities of interest (QoIs) were identified. According
to Peck (1969) and other studies, the settlement caused by tunnel excavation follows approximately an
exponential curve characterized by two parameters: the inflection point and the maximum settlement. The
maximum settlement is estimated by the maximum displacement of surface nodes and the inflection point
is determined by fitting a Peck curve to the displacement of surface nodes. Both QoIs are computed and
recorded at the end of a simulation.
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III. SENSITIVITY ANALYSIS

A. Problem formulation

The finite element model is now viewed as a black box and our objective is to compute Sobol indices (Sobol
1993) to quantify the importance of each input parameter on the variations of quantity of interests (QoIs)
that characterize settlements. To this end, we assume that the vector of input parameters is a random vector
X = (Xi)i∈[1,d] with uniform distribution U(X), where X ⊂ Rd, d ≥ 1, is the input domain defined in
Section II. D. A given QoI is then a random variable Z ∈ R that is computed from the outputs of the FEM
presented in Section II. We assume that there is a function f : X → R such that Z = f(X).

B. Sobol indices

Consider the following decomposition of the variance of Z (Efron & Stein 1981, Sobol 1993):

V [Z] =
∑
i

V [fi(Xi)] +
∑
i

∑
k>i

V [fi,k(Xi, Xk)] + ...+ V [f1,2,...,d(X1, X2, ..., Xd)] (3)

with 
f0 = E(Z)
fi(Xi) = E(Z | Xi)− f0
fi,k(Xi, Xk) = E(Z | Xi, Xk)− fi(Xi)− fk(Xk)− f0
. . .

(4)

where E(·) denotes the expectation operator, E(· | ·) the conditional expectation and V (·) the variance
operator. This decomposition exists and is unique under the assumption of independence for the elements
of X and other mild conditions established by Sobol (1993). This decomposition leads to the definition of
the Sobol indices to analyze the contribution of each input parameter to the variation in the output QoIs Z:

Si =
V [E(Z|Xi)]

V [Z]
, Si,k =

V [E(Z|Xi, Xk)]− V [E(Z|Xi)]− V [E(Z|Xk)]

V [Z]
, . . . (5)

The first-order Sobol indices Si measure the sensitivity of the output random variable Z to a single
input random variable Xi. On the other hand, higher-order Sobol indices quantify the variance of the output
random variable Z attributed to interactions between multiple input random variables. Additionally, we
also introduce the total-order Sobol index:

∀i ∈ [1, 2, ..., d] , STi = 1− V [E(Zq|X∼i)]

V [Zq]
, (6)

where X∼i denotes the random vector in which all components vary except Xi.
The total-order Sobol index STi quantifies the combined effect of both the direct influence (first-order

index) and the interaction influence (higher-order indices) of input random variable Xi on the output ran-
dom variable Z.

C. Methodology

A sensitivity analysis using first-order Sobol and total-order Sobol indices is performed on the parametric
model described in Section II to assess the impact of each input parameter on the output settlement metrics.
The analysis is conducted using the open-source Python framework SALib (Herman & Usher 2017), which
employs the Saltelli’s sampling approach (Saltelli 2002) to fill the input space X defined in Section 2.4, using
a total of 512 simulation results.

D. Results

Figure 2 displays the first-order and total-order Sobol indices for each input parameter highlighting their
effect on the maximum surface settlement and the inflection point of the settlement curve. The analysis
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FIGURE 2. Estimating Sobol indices using Monte Carlo simulations
S1: first-order Sobol index, ST: total-order Sobol index. The blue histogram and black vertical lines correspond

to the estimate of the expectation and the 90% confidence interval of the Sobol indices, respectively.

reveals that excavated pressure has a greater impact on both QoIs than any other input parameter. Moreover,
the influence of the geomechanical parameters E and K0 on the QoIs is significantly greater in the geological
layer in which the tunnel is constructed as compared to other geological layers. This finding has practical
implications as it suggests the possibility of reducing the number of input parameters and simplifying the
problem. In this paper, the input space dimension could be reduced from 14 to 8 by focusing only on the E

and K0 values of the geological layer where the TBM lies.

IV. METAMODEL

A. Kriging

Our objective is to build a cheap approximation of our toy model using kriging, which is more commonly
called Gaussian process (GP) modelling in machine learning. Kriging (Matheron 1969) is originally a spatial
interpolation technique but it has been applied in the domain of computer experiments for more than thirty
years (Sacks et al. 1989). In the following paragraphs we recall the fundamental principles. We encourage
the reader to consult reference texts for more details (Chiles & Delfiner 2009, Williams & Rasmussen 2006).

GP modelling is a Bayesian approach where a given QoI depending on the outputs of the black-box
simulator is viewed as a GP sample path indexed by input parameters in X. This assumption is denoted
by f ∼ GP(m, k), where m : X → R and k : X × X → R are the mean and covariance functions of the
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GP. The mean function represents the prior expected value (before any simulation) of the unknown QoI as
a function of the input parameters x ∈ X. The covariance function quantifies the prior spatial dependence
between the values of the QoIs at different locations in X.

In practice, the user assumes a zero, constant, or linear mean function. The covariance function is
usually an anisotropic stationary covariance function written as k(x, y) = σ2r(∥x − y∥ρ), x, y ∈ R , where
σ2 is the GP variance, r is a correlation function, which is often the so-called Matérn kernel in the literature
of computer experiments (Petit et al. 2022), and where

∥x− y∥ρ =
( d∑
i=0

(xi − yi)
2

ρ2i

) 1
2

is an anisotropic distance depending on a parameters vector ρ ∈ Rd called the vector of correlation lengths.
When simulation results Dn = {(xi, f(xi)), i = 1, . . . , n} become available, the user uses the GP prior

and the data to compute the posterior distributions of f(x) | Dn at untried points x ∈ X.
Under the Gaussian assumption for f , the posterior distribution of f(x) | Dn is also Gaussian: f(x) |

Dn ∼ N (f̂n(x), σ
2
n(x)), where f̂n(x) is the posterior mean, also called the kriging predictor, and σ2

n(x) is the
posterior variance, also called kriging variance.

If we assume a zero mean m for f , then f̂n can be expressed as a linear combination of observed
values for the QoIs: for all x ∈ X, there exists a λn(x) ∈ Rn such that f̂n(x) = λn(x)

T f
n

, where f
n

=

(f(x1), . . . , f(xn))
T . The vector of kriging coefficients λn(x) corresponding to the posterior distribution

minimizes the posterior variance σ2
n(x), which can be written as

σ2
n(x) = V(f(x)− f̂n(x)) = k(x, x) + λn(x)

TKnλn(x)− 2λn(x)
T kn(x), (7)

where Kn is the covariance matrix of f̂n(x) with entries k(xi, xj), i, j = 1, . . . , n, and kn(x) is the covariance
vector with elements k(x, xi), i = 1, . . . , n. Hence, it is straightforward to show that the optimal λn(x) is
the solution of the system of linear equations

Knλn(x) = kn(x) , (8)

which can be computed in O(n3) operations.
In practice, assuming that the prior mean m is zero is too restrictive. However, kriging can be easily

extended to the case where m is written as a linear combination of known functions {ϕl}l∈[0,L].
Finally, it is common to choose the parameters of the covariance function by using a selection criterion.

In this work, we use a restricted likelihood criterion, but other criteria are possible Petit et al. (2022).

B. Methodology

A total of N = 500 simulations were used to construct random training sets of varying size n. We built a
validation set using M = 100 simulations. For both sets the space of input parameters, as characterized in
Table 3, was filled using Latin Hypercube sampling. Only the input parameters that were found to have an
impact on the settlements (see Section III. D.) were selected for this study. Our numerical study aims at:

1. Comparing GP modelling (constant or linear mean, and Matérn covariance) as implemented in GPmp

(Vazquez 2023) to other regression models implemented in scikit-learn

(Pedregosa et al. 2011) such as GaussianProcessRegressor, RandomForestRegressor,
LinearRegressor, ExtraTreesRegressor, and GradientBoostingRegressor.

2. Investigating the influence of the size of the train set on the model performance.
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FIGURE 3. Effect of training set size on metamodel performance through 1−R2, L1 and L∞ error
metrics

A total of K = 20 models were trained on a randomly selected sample of size n from a training set
consisting of 500 data points. Afterwards, each of the K models was tested on an independent test set of 100
data points that were not selected from the 500 data points used for training. The models are compared using
three metrics: 1 − R2 where R2 is the coefficient of determination, the L1 and L∞ norms of the prediction
errors εerror = zpredicted − ztrue ∈ RM . zpredicted and ztrue stand for the vector of predicted and true values of
the QoIs in the validation set.

C. Results

Figure 3 shows that the GP model with constant or linear mean functions implemented using the GPmp

library outperforms other regression models implemented using the scikit-learn framework. The GP
regression models exhibit fewer cumulative errors, as indicated by the L1 metric, and a lower maximum
error, as indicated by the L∞ metric, with an R2 value that is close to 0.99. In contrast, the GPs regressor
implemented using scikit-learn has poor performance for the two QoIs.

To summarize, Gaussian Processes (GPs) are highly effective in predicting numerical simulation re-
sults making them a suitable approximation method for our TBM problem. While blackbox models in
scikit-learn can be efficient they may lack transparency, and Gaussian process-based models such
as GaussianProcessRegressor can be challenging to calibrate. However, GP-based models inherently
return a set of solutions with the one chosen being the one that maximizes the restricted log-likelihood. This
choice may vary significantly depending on the training space used, leading to high variability in observed
performance compared to other approaches. It is worth noting that the scale used to measure this variability
is logarithmic, meaning that the actual variation is relatively low.

Nevertheless, it is crucial to keep in mind that achieving good performance with a kriging or other
regressor model may require a larger number of simulation points especially when dealing with more com-
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plex finite element models. As such, it is essential to carefully evaluate the number and quality of data
points used to train the model, particularly if the model is used to make critical predictions or decisions.

V. CONCLUSION

This study shows that metamodels, either using Bayesian or non-Bayesian regressor models, can effectively
substitute the 2D finite element model of a tunnel boring machine excavation. Results indicate that a training
set of 100 simulation points is sufficient to produce a well-performing predictive model. Furthermore, the
Gaussian process regressor using the GPmp framework yielded superior results compared to other regres-
sion models from the scikit-learn package. Using a metamodelling approach may not be necessary for
the particular case considered in this article because the simulation time is only about one minute. It would
however be highly beneficial for more complex finite element models with multiple input parameters where
completing one simulation would take days along with much larger computation resources. Additionally,
the sensitivity analysis performed in this study highlights the potential for reducing the number of input
parameters to minimize the number of simulation points required to train the predictive model. As a next
step, future work will involve implementing a 3D finite element model with a nonlinear soil behavior and
generating simulation points to attempt to substitute this model for Gaussian process regressor.
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