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Local practical stabilization for a class of
discrete-time switched affine systems

G. KHODJA ˚ C. FITER ˚ L. HETEL ˚ T. FLOQUET ˚

˚ Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000
Lille, France.

Abstract: This paper deals with the study of discrete-time switched affine systems. While
generally the literature is focused on the global (practical) stabilization problem, there are
classes of switched affine systems that can be stabilized only locally. In this paper we deal with
such a class of switched affine systems. More precisely, we consider switched affine systems with
decoupled switching in the state matrix and the affine input term. For this particular class of
systems, a switching control law is designed and conditions ensuring the system local practical
stability are provided. A qualitative approach is given based on the existence of a stabilizing
linear state feedback. These results are illustrated using a numerical example.
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1. INTRODUCTION

Switched systems (Liberzon [2003]) represent a class of hy-
brid dynamical systems (Goebel et al. [2012]). They consist
on a family of subsystems and a switching law that orches-
trates the switching among them. A particular important
class of these systems is the class of switched affine systems
(Seatzu et al. [2006]), (Bolzern and Spinelli [2004]), (Hetel
and Bernuau [2014]) that have several practical appli-
cations, particularly in the domain of power converters
(Deaecto et al. [2010]), (Corona et al. [2007]), (Albea
et al. [2015]), (Serieye et al. [2019]). In this paper, we are
interested in the design of locally stabilizing switching laws
for switched affine systems. This means finding conditions
to select the active subsystem according to the system
state so that stability is ensured. The presence of the affine
terms makes that each subsystem has its own equilibrium
point. However, the stabilization of the overall system is
generally looked towards a desired equilibrium point which
is usually different than the equilibria of the subsystems.
The problem, is even more challenging in the discrete-
time case (Deaecto and Egidio [2016]), (Albea Sanchez
et al. [2020]), which is the main object of study of this
paper. In general, for discrete-time switched affine systems,
the stabilization cannot be addressed to an equilibrium
point but only to a neighborhood containing it, or to
a limit cycle. Such discrete-time switched systems have
been studied for example in (Deaecto and Geromel [2017]),
(Egidio and Deaecto [2019]), (Serieye et al. [2021]) and
(Serieye et al. [2020]). In (Deaecto and Geromel [2017]), a
stabilizing min-type switching state feedback function and
a characterization of the attractive invariant set is pro-
vided based on general quadratic Lyapunov functions. In
(Egidio and Deaecto [2019]), stability conditions are given
based on Lyapunov-Metzler inequalities in order to ensure
practical stability of an equilibrium point for discrete-time
switched affine systems. In (Serieye et al. [2020]) condi-
tions for designing a stabilizing switching function are
also given based on Lyapunov-Metzler conditions. However

differently from (Egidio and Deaecto [2019]), the positive
invariant set is characterized by the union of several poten-
tially disjoint ellipsoids. LMI conditions for the existence
of the stabilizing switching law are provided based on
the existence of multiple shifted Lyapunov functions. In
(Egidio et al. [2020]), conditions for stabilization towards a
limit cycle are given. The extension to the case of uncertain
switched affine systems has been recently addressed in
(Serieye et al. [2021]).

Note that all these results provide global stabilization con-
ditions. However, there are important classes of switched
affine systems that can be only locally stabilized. Consider
for instance a scalar switched affine system xk`1 “ axk `b
where the state matrix a may take two values in the set
A “ t1.02, 1.03u and where the affine term b switches
among B={0.05, -0.05}. Clearly, since all the values of
the state matrix are greater than 1, the system cannot be
globally stabilized. No matter what the switching law is, if
|xk| ą max

␣

5
2 ,

5
3

(

then |xk`1| ą |xk|. However, one may

easily check in simulations that when |x0| ă min
␣

5
2 ,

5
3

(

the solutions of the system

xk`1 “

"

1.02xk ´ 0.05, when xk ě 0,
1.03xk ` 0.05, when xk ă 0,

(1)

Fig. 1. Behaviour of the system depending on different
initial conditions



are bounded (see figure 1 for an illustration). By sim-
ple computations, one may show that if |xk| ă 5

3 and

|xk| ą 0.05
1`1.02 then |xk`1| ă |xk|, that is the system can be

locally practically stabilized. The local practical stabiliza-
tion is clearly ensured by the affine terms b. The existing
literature cannot address the example under study. For
this reason, in this work, we are interested in the local
practical stabilization problem. More specifically, we con-
sider a special class of discrete-time switched affine systems
with decoupled switchings in the state matrix and the
affine term b. Methods for designing a switching control
law that locally practically stabilizes the system to some
neighborhood of the origin are given. A qualitative ap-
proach is provided, based on the existence of a stabilizing
linear state feedback. Numerical examples are given to
illustrate the approach. The research in this work is related
to studies on sampled data controllers for switched affine
systems (Hetel and Fridman [2013]), (Sanchez et al. [2019])
and on relay systems in (Govindaswamy et al. [2014]).

This article is organized as follows: in Section 2, the system
under study is presented with related assumptions. In
Section 3 some necessary preliminary results needed for
the synthesis of the control are given. The main theorem
of the article is given in Section 4. Numerical examples are
then presented in Section 5.2. Proofs are in the appendix.

Notations. The following notations will be used all along
the paper. For a given symmetric matrix P , P ą 0 ( resp.
P ă 0) indicates it is positive definite (resp. negative defi-
nite), and the notation EpP, γq corresponds to the ellipsoid
EpP, γq “ tx P Rn : xTPx ď γu for some γ ą 0. Bpϵ, 0q,
for some ϵ ą 0 describes the space ball centered at the
origin with radius

?
ϵ. convpVq denotes the convex hull of

a set V and intpVq its interior. ∥X∥ is the Euclidean norm
either for a vector X P Rn or a matrix X P Rnˆn. For a
finite set of vectors V “ tv1, v2, . . . , vNu, where vi P Rm,
@i P t1, ¨ ¨ ¨ , Nu and a function f : Rm Ñ R we denote

argmin
vPV

fpvq “ tv P V : fpvq ď fpwq,@w P Vu

and
argmin

vPV
fpvq “ vi with

i “ mintj P t1, ¨ ¨ ¨ , Nu : vj P argmin
wPV

fpwqu.

2. PROBLEM STATEMENT

Consider the following discrete time system:

xk`1 “ Aλk
xk ` Buk, x0 P Rn, k P N (2)

where xk is the system state. Ai P Rnˆn, i P Λ “

t1, ¨ ¨ ¨ , Lu are L known matrices, λk P Λ is the index of
the active subsystem at time k and B P Rnˆm. uk P Rm

is the control input such that it takes values in a finite set
of vectors V “ tv1, v2, ¨ ¨ ¨ , vNu, vi P Rm, @i P t1, ¨ ¨ ¨ , Nu.

With respect to the classical literature on switched affine
systems, system (2) can be represented in the form:

xk`1 “ Aλk
xk ` bσk

, x0 P Rn, k P N (3)

where σk P t1, ¨ ¨ ¨ , Nu and bi “ Bvi, i P t1, ¨ ¨ ¨ , Nu.
σk is the classical switching control, i.e. σk “ i when
uk “ vi for some i P t1, ¨ ¨ ¨ , Nu. However, this switched
affine system has the particularity that the state matrix
switches according to another parameter λk which is
arbitrarily switching. In this sense, we say that system
(3) is a switched affine system with decoupled switching
in the state matrix and the affine term. The main reason
for studying this system is the need to emphasize the
role played by the affine terms bi “ Bvi in the local
stabilization. Here we assume that λk is arbitrarily varying
to show the importance of the affine terms. However, we
may always formalize another problem statement where
λk is also a control parameter (maybe also related to σk).

All along the article the following Assumptions are con-
sidered:

Assumption 2.1. The set V is non empty and 0 P

int pconvpVqq.

Assumption 2.2. At every time k, the active index λk is
known.

Assumption 2.3. There exist K P Rmˆn, 0 ă β ă 1 and a
symmetric positive definite matrix P “ PT ą 0 such that
the function V pzq “ zTPz , V : Rn Ñ R`, satisfies the
condition

V
´

pAi ` BKqx
¯

ă p1 ´ βqV pxq, (4)

@x P Rn\t0u, @i P Λ.

Assumption 2.3 implies that there exists a linear static
state feedback gain K which ensures the quadratic stabil-
ity of the system xk`1 “ pAλk

` BKqxk uniformly with
respect to the switching law λk P Λ.

The objective is to design the control law uk “ Πpxk, λkq,
Π : Rn ˆΛ Ñ V such that the closed loop system is locally
practically stable for any switching sequence tλkukPN.

3. PRELIMINARY RESULTS

Before presenting our main results, some useful prelimi-
nary results are given:

Proposition 1. Given K P Rmˆn, P “ PT ą 0 and a finite
set V “ tv1, ¨ ¨ ¨ , vNu Ă Rm, such that Assumption 2.1
holds, then

Dγ ą 0 : xTPx ă γ ùñ Kx P convpVq, @x P Rn. (5)

Proof. See Appendix A.

Proposition 1 indicates that for any given linear state
feedbackKx, there exists a sufficiently small neighborhood
of the state space such thatKx belongs to the convex poly-
tope described by the switching vectors vi, i P t1, ¨ ¨ ¨ , Nu.

The following theorem from (Ziegler [2012]) - Fundamental
Theorem of Polytopes - establishes the link between the
vertex and affine representations of a convex polytope.

Theorem 2. (Ziegler [2012]) Consider the convex polytope
conv pVq whose vertices are the vectors vi, i P t1, ¨ ¨ ¨ , Nu.
There exist vectors hi P Rm, i P t1, ¨ ¨ ¨ , nhu, such that

conv pVq “
␣

y P Rm : hT
i y ď 1, @i P t1, ¨ ¨ ¨ , nhu

(

. (6)



Using Theorem 2, we may compute the largest level set
EpP, γq of the quadratic Lyapunov Function V pxq “ xTPx
where Kx belongs to the convex polytope described by the
controls vi.

Lemma 3. Consider the convex polytope convpVq

convpVq “
␣

y P Rm : hT
i y ď 1, @i P t1, ¨ ¨ ¨ , nhu

(

, (7)

and a matrix K P Rmˆn. Then for any positive γ˚ such
that

γ˚ ď
1

hT
i KP´1KThi

, @i P t1, ¨ ¨ ¨ , nhu,

x P EpP, γ˚q implies Kx P convpVq.

Proof. See Appendix B.

The convexity relation described in Lemma 3 will be
further used in the following section in order to design
a stabilizing switching control.

4. MAIN RESULT

In this section we present our main results. The following
theorem provides methods for designing a locally (prac-
tically) stabilizing switching law based on the existence
of a stabilizing linear state feedback (Assumption 2.3). In
addition, an estimation of the domain of attraction and of
the attractor is provided.

Theorem 4. Consider system (2) such that Assumptions
2.2 and 2.1 hold. Let hi P Rm, i P t1, ¨ ¨ ¨ , nhu be vectors
such that

conv pVq “
␣

y P Rm : hT
i y ď 1, @i P t1, ¨ ¨ ¨ , nhu

(

. (8)

Assume that there exist P “ PT ą 0, β ą 0 and K such
that Assumption 2.3 holds. Let

γ “ min
iPt1,¨¨¨ ,nhu

1

hT
i KP´1KThi

, (9)

δ “ max
vPV

vTBTPBv

β ´ ϵ
, with 0 ă ϵ ă β ă 1 (10)

ρ “ max
iPΛ,vPV

˜

∥Ai∥

d

δ

λminpP q
` ∥Bv∥

¸2

λmaxpP q. (11)

If ρ ă γ, then system (2) with the control law

uk “ argmin
vPV

pxT
kA

T
λk
PBvq (12)

is locally practically stabilizable from EpP, γq to EpP, ρq,
that is

x0 P EpP, γq ùñ lim
kÑ8

xk P EpP, ρq. (13)

Proof. The proof of this theorem follows from results of
Propositions 5 and 6 given in the Appendix C. Propo-
sition 5 shows that whenever xk P EpP, γq\EpP, δq we
have ∆V pxkq ă 0, which means that trajectories starting
in EpP, γq\EpP, δq are all decreasing toward the ellipsoid
EpP, δq. However, a trajectory that is inside this ellipsoid
might leave it. Proposition 6 give an estimation of EpP, ρq

that contains the trajectories leaving EpP, δq.

Remark. Theorem 4 shows that when Assumption 2.3 is
satisfied, the switching law (12) ensures the local practical
stabilization of system (2). Any solution with initial con-
dition in the ellipsoid EpP, γq (the estimate of the domain
of attraction) with γ given in (9) converges towards the
ellipsoid EpP, ρq (the attractor) with ρ given in (11) (pro-
vided that ρ ă γ).

Remark 2. The method presented here can be adapted for
the case where λk is also a control parameter. Considering
the same conditions as in Theorem 4, a pair of state
dependent switching laws θ : Rn Ñ Λ and Π : Rn Ñ V
can be derived such that system (2) with λk “ θpxkq and
uk “ Πpxkq is locally practically stable. More precisely the
following switching functions are obtained:

pθpxq,Πpxqq “ argmin
λPΛ,vPV

`

xTAT
λPAλx ` 2xTAT

λPBv
˘

(14)
This pair of switching laws can be derived using the
same developments used in Theorem 4 (in the steps given
in (C.9)-(C.11) we choose the controls v and λ which
minimize the expression Mpx, λ, vq).

5. NUMERICAL EXAMPLES

5.1 Example 1

Consider the motivating example given in the Introduc-
tion. For this example, the vectors h1, h2 in (8) are
t 1
0.05 ,´ 1

0.05u . The conditions of Theorem 4 are satisfied
for

β “ 0.01, P “ 0.4904, K “ ´0.0350. (15)

With these parameters we obtain γ “ 1 and ρ “ 0.1566.
This means that trajectories with initial condition |x0| ă

1.4280 converge to the set r´0.5650, 0.5650s.

5.2 Example 2

Consider a system of the form (2) such that Aλk
switches

arbitrarily between the two matrices

A1 “

„

1 0.01
0 1

ȷ

, A2 “

„

1.02 0
´0.01 0.99

ȷ

(16)

and B is defined by B “

„

0.005 0
0 0.005

ȷ

. Both A1 and A2

have eigenvalues outside the unit circle. The control uk

takes values in the set

V “

"„

1
1

ȷ

,

„

1
´1

ȷ

,

„

´1
´1

ȷ

,

„

´1
1

ȷ*

. (17)

For this example the vectors hi, i “ 1, . . . , 4, are given by
"„

1
0

ȷ

,

„

´1
0

ȷ

,

„

0
1

ȷ

,

„

0
´1

ȷ*

. (18)

It can be checked numerically that Assumption 2.3 is
satisfied with β “ 10´2,

P “

„

25.2785 0.3057
0.3057 6.0956

ȷ

, K “

„

´5.0102 0.1452
0.7314 ´2.4331

ȷ

,

γ “ 1, ρ “ 0.3921. The shape of the estimation of the
domain of attraction EpP, γq and of the attractor EpP, ρq

can be seen in Figure 2 together with the trajectories of

x1 and x2 for the initial condition x0 “ r0.1866 0.1312s
T
.



Fig. 2. Domain of attraction EpP, γq and attractor EpP, ρq

for the system in Example 5.2. The black lines delimit
the region in the state space for which Kx P convpVq.

As we can see in the simulations, the estimation of the
attractor EpP, ρq is quite conservative. This leaves space
for improvement in the estimation of ρ.

6. CONCLUSION

This work investigated the local stabilization properties of
discrete-time switched affine systems. A particular class
of these systems, characterized by a decoupling in the
state matrix and the affine term has been treated. A
stabilizing switching law design has been proposed for the
affine term whatever the switching of the state matrix
is. Sufficient conditions for the existence of a locally
practically stabilizing switching law have been given. In
addition, a method for estimating the domain of attraction
and the attractor has been given. These results have been
tested on numerical examples. In the future, we intend to
provide methods for simultaneously design switching laws
for the switching matrix and the affine terms in order to
improve the local stabilization properties.

Appendix A. PROOF OF PROPOSITION 1

Proof. V is a non empty subset of Rm containing 0 in its
interior, which means that there exists an Rm ball Bpϵ1, 0q

of sufficiently small radius
?
ϵ1, centered in 0, contained in

the convex hull of V. The function Kx,K P Rmˆn is linear
and continuous from Rn to Rm. Then there exists an Rn

ball Bpϵ2, 0q centered in 0 with radius
?
ϵ2, such that

x P Bpϵ2, 0q ùñ Kx P Bpϵ1, 0q. (A.1)

Since Bpϵ2, 0q Ă Rn exists and is non empty, then an
ellipsoid EpP, γq can be found inside it, with a γ that
satisfies γ ď ϵ2λminpP q. This comes from the fact that
for all x P EpP, γq we have xTx ď

γ
λminpP q

and for all

x P Bpϵ2, 0q we have xTx ď ϵ2. Then, in order to have
EpP, γq Ď Bpϵ2, 0q, γ

λminpP q
ď ϵ2 needs to hold.

Appendix B. PROOF OF LEMMA 3

Proof. The proof of this lemma is adopted from (Hindi
and Boyd [1998]). We give it in what follows for the
sake of self-containment. From equation (6), the condition
Kx P convpVq is equivalent to the existence of nh ą 0

vectors hi from Rm such that hT
i Kx ď 1 , @i P t1, ¨ ¨ ¨ , nhu.

We want to show that whenever x P EpP, γq, hT
i Kx ď

1, @i P t1, ¨ ¨ ¨ , nhu. Note that this is implied by the
assumption

xTKThih
T
i Kx ď 1 whenever xT P

γ
x ď 1, (B.1)

@i P t1, ¨ ¨ ¨ , nhu. Let us remark that if KThih
T
i K ď

P
γ , @i P t1, ¨ ¨ ¨ , nhu then condition (B.1) is satisfied.

Rewriting

KThih
T
i K ď

P

γ
as P ´ KThiγh

T
i K ě 0 (B.2)

and using the Schur Complement Lemma, we can show
that this is equivalent to:

»

–

P KThi

hT
i K

1

γ

fi

fl ě 0. (B.3)

Then using the reverse formula of the Schur Complement,
gives:

1

γ
´ hT

i KP´1KThi ě 0, (B.4)

which is equivalent to:

γ ď
1

hT
i KP´1KThi

, @i P t1, ¨ ¨ ¨ , nhu. (B.5)

Therefore, we have shown that if 0 ă γ ď 1
hT
i
KP´1KThi

,

@i P t1, ¨ ¨ ¨ , nhu, then (B.1) holds, and therefore the
Proposition holds.

Appendix C

Proposition 5. Consider system (2) such that Assump-
tions 2.2 and 2.1 hold. Let hi, i P t1, ¨ ¨ ¨ , nhu be Rm

vectors such that:

conv pVq “
␣

y P Rm : hT
i y ď 1 @i P t1, ¨ ¨ ¨ , nhu

(

.
(C.1)

Assume that there exist P “ PT ą 0, β ą 0 and K such
that Assumption 2.3 holds. Let:

γ ď
1

hT
i KP´1KThi

, @i P t1, ¨ ¨ ¨ , nhu (C.2)

δ ą max
vPV

"

vTBTPBv

β ´ ϵ

*

, 0 ă ϵ ă β ă 1 (C.3)

If δ ă γ, then for system (2) with the switching control

uk “ Πpxk, λkq “ argmin
vPV

pxT
kA

T
λk
PBvq

we have

V pAλk
xk ` Bukq ă V pxkq, @λk P Λ, (C.4)

whenever

xk P EpP, γq\EpP, δq, @k P N.

Proof. Consider K P Rmˆn, 0 ă β ă 1 and P “ PT ą 0
such that Assumption 2.3 holds. Then we have:

pAλk
xk ` BKxkqTP pAλk

xk ` BKxkq ´ xT
k Pxk ă

´βxT
k Pxk, @λk P Λ, xk ‰ 0.

(C.5)

Proposition 1 states that when convpVq is a nonempty
subset of Rm and that 0 P intpconvpVqq, then Dγ ą 0 such



that for any x P EpP, γq , Kx P convpVq. The latter means
that

@xk P EpP, γq, Dαjpxkq ě 0, @j P t1, ¨ ¨ ¨ , Nu, satisfying

N
ÿ

j“1

αjpxkq “ 1, such that Kxk “

N
ÿ

j“1

αjpxkqvj . (C.6)

Inequality (C.5) implies that

xT
kA

T
λk
PAλk

xk ` 2xT
kA

T
λk
PBKxk ` xT

kK
TBTPBKxk

´p1 ´ βqxT
k Pxk ă 0, @λk P Λ, @xk ‰ 0.

(C.7)

Then taking into account (C.6) leads to
N
ÿ

j“1

αjpxkq
`

xT
kA

T
λk
PAλk

xk ` xT
kK

TBTPBKxk

´p1 ´ βqxT
k Pxk ` 2xT

kA
T
λk
PBvj

˘

ă 0,

(C.8)

For all λk P Λ, xk P EpP, γq. This is the same as
N
ÿ

j“1

αjpxkqMpxk, λk, vjq ă 0, @λk P Λ, @xk P EpP, γq,

(C.9)
with

Mpxk, λk, vjq “ xT
kA

T
λk
PAλk

xk ` xT
kK

TBTPBKxk

´p1 ´ βqxT
k Pxk ` 2xT

kA
T
λk
PBvj .

Since all αjpxq ě 0, then there exists at least one index
i˚ P t1, ¨ ¨ ¨ , Nu such that Mpxk, λk, vi˚ q ă 0. This means
that the minimum of Mpxk, λk, vq is always negative for
v P V. Let us remark that

argmin
vPV

Mpxk, λk, vq “ argmin
vPV

pxT
kA

T
λk
PBvq, @λk P Λ

(C.10)
with matrix Aλk

corresponding to the active state matrix
at instant k. Therefore the following is satisfied:

Mpxk, λk, v
˚q ă 0, @xk P EpP, γq, @λk P Λ

(C.11)
with v˚ “ argmin

vPV
pxT

kA
T
λk
PBvq ” uk.

Let us recall that uk is a function of xk and λk, i.e.
uk “ Πpxk, λkq “ argmin

vPV
pxT

kA
T
λk
PBvq. Using the fact

that

∆Vxk
” V pxk`1q ´ V pxkq

“ V pAλk
xk ` BΠpxk, λkqq ´ V pxkq

“ pAλk
xk ` BΠpxk, λkqqTP pAλk

xk ` BΠpxk, λkqq

´xT
k Pxk

“ xT
kA

T
λk
PAλk

xk ` 2xT
kA

T
λk
PBΠpxk, λkq

`Πpxk, λkqTBTPBΠpxk, λkq ´ xT
k Pxk

and adding and subtracting ΠT pxk, λkqBTPBΠpxk, λkq

to Mpxk, λk,Πpxk, λkqq lead to the following @xk P

EpP, γq:

Mpxk, λk,Πpxk, λkqq “ ∆V pxkq ` xT
kK

TBTPBKxk

`βxT
k Pxk ´ Πpxk, λkqTBTPBΠpxk, λkq ă 0,

(C.12)

In what follows we use (C.12) in order to characterize the

set of states xk such that ∆V pxkq ă 0. More precisely,
we try to find an ellipsoid EpP, δq inside EpP, γq such
that ∆V pxkq ă 0 when xk P EpP, γq\EpP, δq. A sufficient
condition to prove that ∆V pxkq ă 0, @x P EpP, γq\EpP, δq

is to show that

xT
k

`

KTBTPBK ` βP
˘

xk ´ vTi B
TPBvi ą 0,

for all i P t1, ¨ ¨ ¨ , Nu whenever x P EpP, γq\EpP, δq.

Using the S-procedure, we can show that the condition

xT
k

`

KTBTPBK ` βP
˘

xk ´ vTi B
TPBvi ą 0,

@i P t1, ¨ ¨ ¨ , Nu whenever xT
k Pxk ą δ,

(C.13)

is satisfied if and only if there exists c ą 0 such that

xT
k

`

KTBTPBK ` βP
˘

xk ´ vTi B
TPBvi

´cpxT
k Pxk ´ δq ą 0.

(C.14)

The latter is the same as

xT
k

`

KTBTPBK ` pβ ´ cqP
˘

xk ` cδ ´ vTi B
TPBvi ą 0

(C.15)
Let us choose c ă β in order to have

xT
k

`

KTBTPBK ` βP ´ cP
˘

xk ą 0.

Let us take c “ β´ϵ, for some ϵ ą 0 sufficiently small such
that 0 ă ϵ ă β ă 1. Then a feasible δ is found such that
cδ ´ vTi B

TPBvi ą 0, @i P t1, ¨ ¨ ¨ , Nu which means that

δ ą
vTi B

TPBvi
c

, @i P t1, ¨ ¨ ¨ , Nu. (C.16)

In order to take into account all possible switches, δ should

be chosen such that δ ą max
vPV

vTBTPBv
β´ϵ .

Proposition 6. Consider system (2) with uk P V, @k P N.
Given P “ PT ą 0 and δ ą 0. If xk P EpP, δq, then
xk`1 P EpP, ρq with

ρ “ max
iPΛ vjPV

˜

∥Ai∥

d

δ

λminpP q
` ∥Bvj∥

¸2

λmaxpP q.

(C.17)

Proof. Let xk P EpP, δq, which means that xT
k Pxk ă δ.

Since P is symmetric and positive definite:

λminpP q∥xk∥2 ď xT
k Pxk ď λmaxpP q∥xk∥2 (C.18)

where λminpP q and λmaxpP q are the minimum and maxi-
mum eigenvalues of P . The last equation leads to

||xk||2 ă
δ

λminpP q
. (C.19)

We are looking for a lower bound of ρ ą 0 such that:

xT
k`1Pxk`1 ă ρ, @xk P EpP, δq, @λk P Λ. (C.20)

We know that :

xk`1 “ Aλk
xk ` Bv, λk P Λ, v P V. (C.21)

It follows

∥xk`1∥ ď max
iPΛ,vPV

∥Ai∥∥xk∥ ` ∥Bv∥, (C.22)

∥xk`1∥2 ď max
iPΛ,vPV

p∥Ai∥∥xk∥ ` ∥Bv∥q
2
. (C.23)

From (C.19) we can have :

∥xk∥ ă

d

δ

λminpP q
, (C.24)



which gives :

∥xk`1∥2 ă max
iPΛ,vPV

˜

∥Ai∥

d

δ

λminpP q
` ∥Bv∥

¸2

, (C.25)

using the fact that λminpP q∥xk`1∥2 ď xT
k`1Pxk`1 ď

λmaxpP q∥xk`1∥2, equation (C.25) gives:

xT
k`1Pxk`1 ă

max
iPΛ,vPV

˜

∥Ai∥

d

δ

λminpP q
` ∥Bv∥

¸2

λmaxpP q.

(C.26)
Then, it is clear that xk`1 P EpP, ρq with

ρ “ max
iPΛ,vPV

˜

∥Ai∥

d

δ

λminpP q
` ∥Bv∥

¸2

λmaxpP q.
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