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This paper deals with the study of discrete-time switched affine systems. While generally the literature is focused on the global (practical) stabilization problem, there are classes of switched affine systems that can be stabilized only locally. In this paper we deal with such a class of switched affine systems. More precisely, we consider switched affine systems with decoupled switching in the state matrix and the affine input term. For this particular class of systems, a switching control law is designed and conditions ensuring the system local practical stability are provided. A qualitative approach is given based on the existence of a stabilizing linear state feedback. These results are illustrated using a numerical example.

INTRODUCTION

Switched systems [START_REF] Liberzon | Switching in systems and control[END_REF]) represent a class of hybrid dynamical systems [START_REF] Goebel | Hybrid dynamical systems[END_REF]). They consist on a family of subsystems and a switching law that orchestrates the switching among them. A particular important class of these systems is the class of switched affine systems [START_REF] Seatzu | Optimal control of continuous-time switched affine systems[END_REF]), [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF]), [START_REF] Hetel | Local stabilization of switched affine systems[END_REF]) that have several practical applications, particularly in the domain of power converters [START_REF] Deaecto | Switched affine systems control design with application to dc-dc converters[END_REF]), [START_REF] Corona | Stabilization of switched affine systems: An application to the buck-boost converter[END_REF]), [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to dc-dc converters[END_REF]), [START_REF] Serieye | Freematrices min-projection control for high frequency dc-dc converters[END_REF]). In this paper, we are interested in the design of locally stabilizing switching laws for switched affine systems. This means finding conditions to select the active subsystem according to the system state so that stability is ensured. The presence of the affine terms makes that each subsystem has its own equilibrium point. However, the stabilization of the overall system is generally looked towards a desired equilibrium point which is usually different than the equilibria of the subsystems. The problem, is even more challenging in the discretetime case [START_REF] Deaecto | Practical stability of discrete-time switched affine systems[END_REF]), [START_REF] Albea Sanchez | Robust switching control design for uncertain discrete-time switched affine systems[END_REF]), which is the main object of study of this paper. In general, for discrete-time switched affine systems, the stabilization cannot be addressed to an equilibrium point but only to a neighborhood containing it, or to a limit cycle. Such discrete-time switched systems have been studied for example in [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF]), [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF]), [START_REF] Serieye | Robust stabilization to limit cycles of switching discrete-time affine systems using control lyapunov functions[END_REF]) and [START_REF] Serieye | Stabilization of switched affine systems via multiple shifted lyapunov functions[END_REF]). In [START_REF] Deaecto | Stability analysis and control design of discrete-time switched affine systems[END_REF]), a stabilizing min-type switching state feedback function and a characterization of the attractive invariant set is provided based on general quadratic Lyapunov functions. In [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF]), stability conditions are given based on Lyapunov-Metzler inequalities in order to ensure practical stability of an equilibrium point for discrete-time switched affine systems. In [START_REF] Serieye | Stabilization of switched affine systems via multiple shifted lyapunov functions[END_REF]) conditions for designing a stabilizing switching function are also given based on Lyapunov-Metzler conditions. However differently from [START_REF] Egidio | Novel practical stability conditions for discrete-time switched affine systems[END_REF]), the positive invariant set is characterized by the union of several potentially disjoint ellipsoids. LMI conditions for the existence of the stabilizing switching law are provided based on the existence of multiple shifted Lyapunov functions. In [START_REF] Egidio | Global asymptotic stability of limit cycle and h2/h performance of discrete-time switched affine systems[END_REF]), conditions for stabilization towards a limit cycle are given. The extension to the case of uncertain switched affine systems has been recently addressed in [START_REF] Serieye | Robust stabilization to limit cycles of switching discrete-time affine systems using control lyapunov functions[END_REF]).

Note that all these results provide global stabilization conditions. However, there are important classes of switched affine systems that can be only locally stabilized. Consider for instance a scalar switched affine system x k`1 " ax k `b where the state matrix a may take two values in the set A " t1.02, 1.03u and where the affine term b switches among B={0.05, -0.05}. Clearly, since all the values of the state matrix are greater than 1, the system cannot be globally stabilized. No matter what the switching law is, if

|x k | ą max ␣ 5 2 , 5 3 ( then |x k`1 | ą |x k |.
However, one may easily check in simulations that when |x 0 | ă min ␣ 5 2 , 5 3 ( the solutions of the system 

x k`1 " " 1.02x k ´0.05, when x k ě 0, 1.03x k `0.05, when x k ă 0, (1) 
k | ą 0.05 1`1.02 then |x k`1 | ă |x k |
, that is the system can be locally practically stabilized. The local practical stabilization is clearly ensured by the affine terms b. The existing literature cannot address the example under study. For this reason, in this work, we are interested in the local practical stabilization problem. More specifically, we consider a special class of discrete-time switched affine systems with decoupled switchings in the state matrix and the affine term b. Methods for designing a switching control law that locally practically stabilizes the system to some neighborhood of the origin are given. A qualitative approach is provided, based on the existence of a stabilizing linear state feedback. Numerical examples are given to illustrate the approach. The research in this work is related to studies on sampled data controllers for switched affine systems [START_REF] Hetel | Robust sampleddata control of switched affine systems[END_REF]), [START_REF] Sanchez | Practical stabilization of switched affine systems with dwell-time guarantees[END_REF]) and on relay systems in [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF]). This article is organized as follows: in Section 2, the system under study is presented with related assumptions. In Section 3 some necessary preliminary results needed for the synthesis of the control are given. The main theorem of the article is given in Section 4. Numerical examples are then presented in Section 5.2. Proofs are in the appendix.

Notations. The following notations will be used all along the paper. For a given symmetric matrix P , P ą 0 ( resp. P ă 0) indicates it is positive definite (resp. negative definite), and the notation EpP, γq corresponds to the ellipsoid EpP, γq " tx P R n : x T P x ď γu for some γ ą 0. Bpϵ, 0q, for some ϵ ą 0 describes the space ball centered at the origin with radius ? ϵ. convpVq denotes the convex hull of a set V and intpVq its interior. ∥X∥ is the Euclidean norm either for a vector X P R n or a matrix X P R nˆn . For a finite set of vectors V " tv 1 , v 2 , . . . , v N u, where v i P R m , @i P t1, ¨¨¨, N u and a function f : R m Ñ R we denote argmin vPV f pvq " tv P V : f pvq ď f pwq, @w P Vu and argmin vPV f pvq " v i with i " mintj P t1, ¨¨¨, N u : v j P argmin wPV f pwqu.

PROBLEM STATEMENT

Consider the following discrete time system:

x k`1 " A λ k x k `Bu k , x 0 P R n , k P N (2) where x k is the system state. A i P R nˆn , i P Λ " t1, ¨¨¨, Lu are L known matrices, λ k P Λ is the index of the active subsystem at time k and B P R nˆm . u k P R m is the control input such that it takes values in a finite set of vectors V " tv 1 , v 2 , ¨¨¨, v N u, v i P R m , @i P t1, ¨¨¨, N u.
With respect to the classical literature on switched affine systems, system (2) can be represented in the form:

x k`1 " A λ k x k `bσ k , x 0 P R n , k P N (3)
where σ k P t1, ¨¨¨, N u and b i " Bv i , i P t1, ¨¨¨, N u. σ k is the classical switching control, i.e. σ k " i when u k " v i for some i P t1, ¨¨¨, N u. However, this switched affine system has the particularity that the state matrix switches according to another parameter λ k which is arbitrarily switching. In this sense, we say that system (3) is a switched affine system with decoupled switching in the state matrix and the affine term. The main reason for studying this system is the need to emphasize the role played by the affine terms b i " Bv i in the local stabilization. Here we assume that λ k is arbitrarily varying to show the importance of the affine terms. However, we may always formalize another problem statement where λ k is also a control parameter (maybe also related to σ k ).

All along the article the following Assumptions are considered:

Assumption 2.1. The set V is non empty and 0 P int pconvpVqq.

Assumption 2.2. At every time k, the active index λ k is known.

Assumption 2.3. There exist K P R mˆn , 0 ă β ă 1 and a symmetric positive definite matrix P " P T ą 0 such that the function V pzq "

z T P z , V : R n Ñ R `, satisfies the condition V ´pA i `BKq x ¯ă p1 ´βqV pxq, (4) 
@x P R n \t0u, @i P Λ.

Assumption 2.3 implies that there exists a linear static state feedback gain K which ensures the quadratic stability of the system x k`1 " pA λ k `BKqx k uniformly with respect to the switching law λ k P Λ.

The objective is to design the control law u k " Πpx k , λ k q, Π : R n ˆΛ Ñ V such that the closed loop system is locally practically stable for any switching sequence tλ k u kPN .

PRELIMINARY RESULTS

Before presenting our main results, some useful preliminary results are given: Proposition 1. Given K P R mˆn , P " P T ą 0 and a finite set

V " tv 1 , ¨¨¨, v N u Ă R m , such that Assumption 2.1 holds, then Dγ ą 0 : x T P x ă γ ùñ Kx P convpVq, @x P R n . (5) Proof. See Appendix A.
Proposition 1 indicates that for any given linear state feedback Kx, there exists a sufficiently small neighborhood of the state space such that Kx belongs to the convex polytope described by the switching vectors v i , i P t1, ¨¨¨, N u.

The following theorem from [START_REF] Ziegler | Lectures on polytopes[END_REF]) -Fundamental Theorem of Polytopes -establishes the link between the vertex and affine representations of a convex polytope. Theorem 2. [START_REF] Ziegler | Lectures on polytopes[END_REF]) Consider the convex polytope conv pVq whose vertices are the vectors v i , i P t1, ¨¨¨, N u. There exist vectors

h i P R m , i P t1, ¨¨¨, n h u, such that conv pVq " ␣ y P R m : h T i y ď 1, @i P t1, ¨¨¨, n h u ( . (6) 
Using Theorem 2, we may compute the largest level set EpP, γq of the quadratic Lyapunov Function V pxq " x T P x where Kx belongs to the convex polytope described by the controls v i . Lemma 3. Consider the convex polytope convpVq convpVq "

␣ y P R m : h T i y ď 1, @i P t1, ¨¨¨, n h u ( , (7) 
and a matrix K P R mˆn . Then for any positive γ ˚such that γ

˚ď 1 h T i KP ´1K T h i
, @i P t1, ¨¨¨, n h u,

x P EpP, γ ˚q implies Kx P convpVq.

Proof. See Appendix B.

The convexity relation described in Lemma 3 will be further used in the following section in order to design a stabilizing switching control.

MAIN RESULT

In this section we present our main results. The following theorem provides methods for designing a locally (practically) stabilizing switching law based on the existence of a stabilizing linear state feedback (Assumption 2.3). In addition, an estimation of the domain of attraction and of the attractor is provided. Theorem 4. Consider system (2) such that Assumptions 2.2 and 2.1 hold. Let h i P R m , i P t1, ¨¨¨, n h u be vectors such that conv pVq " ␣ y P R m : h T i y ď 1, @i P t1, ¨¨¨, n h u

( . (8) 
Assume that there exist P " P T ą 0, β ą 0 and K such that Assumption 2.3 holds. Let

γ " min iPt1,¨¨¨,n h u 1 h T i KP ´1K T h i , (9) 
δ " max

vPV v T B T P Bv β ´ϵ , with 0 ă ϵ ă β ă 1 (10) ρ " max iPΛ,vPV ˜∥A i ∥ d δ λ min pP q `∥Bv∥ ¸2 λ max pP q. ( 11 
)
If ρ ă γ, then system (2) with the control law

u k " argmin vPV px T k A T λ k P Bvq (12)
is locally practically stabilizable from EpP, γq to EpP, ρq, that is x 0 P EpP, γq ùñ lim kÑ8

x k P EpP, ρq.

Proof. The proof of this theorem follows from results of Propositions 5 and 6 given in the Appendix C. Proposition 5 shows that whenever x k P EpP, γq\EpP, δq we have ∆V px k q ă 0, which means that trajectories starting in EpP, γq\EpP, δq are all decreasing toward the ellipsoid EpP, δq. However, a trajectory that is inside this ellipsoid might leave it. Proposition 6 give an estimation of EpP, ρq that contains the trajectories leaving EpP, δq.

Remark. Theorem 4 shows that when Assumption 2.3 is satisfied, the switching law (12) ensures the local practical stabilization of system (2). Any solution with initial condition in the ellipsoid EpP, γq (the estimate of the domain of attraction) with γ given in (9) converges towards the ellipsoid EpP, ρq (the attractor) with ρ given in (11) (provided that ρ ă γ).

Remark 2. The method presented here can be adapted for the case where λ k is also a control parameter. Considering the same conditions as in Theorem 4, a pair of state dependent switching laws θ : R n Ñ Λ and Π : R n Ñ V can be derived such that system (2) with λ k " θpx k q and u k " Πpx k q is locally practically stable. More precisely the following switching functions are obtained:

pθpxq, Πpxqq " argmin λPΛ,vPV `xT A T λ P A λ x `2x T A T λ P Bv (14)
This pair of switching laws can be derived using the same developments used in Theorem 4 (in the steps given in (C.9)-(C.11) we choose the controls v and λ which minimize the expression M px, λ, vq).

NUMERICAL EXAMPLES

Example 1

Consider the motivating example given in the Introduction. For this example, the vectors h 1 , h 2 in (8) are t 1 0.05 , ´1 0.05 u . The conditions of Theorem 4 are satisfied for β " 0.01, P " 0.4904, K " ´0.0350.

(15) With these parameters we obtain γ " 1 and ρ " 0.1566. This means that trajectories with initial condition |x 0 | ă 1.4280 converge to the set r´0.5650, 0.5650s.

Example 2

Consider a system of the form (2) such that A λ k switches arbitrarily between the two matrices

A 1 " " 1 0.01 0 1 ȷ , A 2 " " 1.02 0 ´0.01 0.99 ȷ ( 16 
)
and B is defined by B " " 0.005 0 0 0.005 ȷ . Both A 1 and A 2 have eigenvalues outside the unit circle. The control u k takes values in the set

V " "" 1 1 ȷ , " 1 ´1ȷ , " ´1 ´1ȷ , " ´1 1 ȷ* . ( 17 
)
For this example the vectors h i , i " 1, . . . , 4, are given by "" 2 together with the trajectories of x 1 and x 2 for the initial condition x 0 " r0.1866 0.1312s T .

1 0 ȷ , " ´1 0 ȷ , " 0 1 ȷ , " 0 ´1ȷ* . ( 18 
Fig. 2. Domain of attraction EpP, γq and attractor EpP, ρq for the system in Example 5.2. The black lines delimit the region in the state space for which Kx P convpVq.

As we can see in the simulations, the estimation of the attractor EpP, ρq is quite conservative. This leaves space for improvement in the estimation of ρ.

CONCLUSION

This work investigated the local stabilization properties of discrete-time switched affine systems. A particular class of these systems, characterized by a decoupling in the state matrix and the affine term has been treated. A stabilizing switching law design has been proposed for the affine term whatever the switching of the state matrix is. Sufficient conditions for the existence of a locally practically stabilizing switching law have been given. In addition, a method for estimating the domain of attraction and the attractor has been given. These results have been tested on numerical examples. In the future, we intend to provide methods for simultaneously design switching laws for the switching matrix and the affine terms in order to improve the local stabilization properties.

Appendix A. PROOF OF PROPOSITION 1

Proof. V is a non empty subset of R m containing 0 in its interior, which means that there exists an R m ball Bpϵ 1 , 0q of sufficiently small radius ? ϵ 1 , centered in 0, contained in the convex hull of V. The function Kx, K P R mˆn is linear and continuous from R n to R m . Then there exists an R n ball Bpϵ 2 , 0q centered in 0 with radius ? ϵ 2 , such that

x P Bpϵ 2 , 0q ùñ Kx P Bpϵ 1 , 0q. (A.1)
Since Bpϵ 2 , 0q Ă R n exists and is non empty, then an ellipsoid EpP, γq can be found inside it, with a γ that satisfies γ ď ϵ 2 λ min pP q. This comes from the fact that for all x P EpP, γq we have x T x ď γ λminpP q and for all x P Bpϵ 2 , 0q we have x T x ď ϵ 2 . Then, in order to have EpP, γq Ď Bpϵ 2 , 0q, γ λminpP q ď ϵ 2 needs to hold.

Appendix B. PROOF OF LEMMA 3

Proof. The proof of this lemma is adopted from [START_REF] Hindi | Analysis of linear systems with saturation using convex optimization[END_REF]). We give it in what follows for the sake of self-containment. From equation ( 6), the condition Kx P convpVq is equivalent to the existence of n h ą 0 vectors h i from R m such that h T i Kx ď 1 , @i P t1, ¨¨¨, n h u.

We want to show that whenever x P EpP, γq, h T i Kx ď 1, @i P t1, ¨¨¨, n h u. Note that this is implied by the assumption

x T K T h i h T i Kx ď 1 whenever x T P γ x ď 1, (B.1) @i P t1, ¨¨¨, n h u. Let us remark that if K T h i h T i K ď P γ , @i P t1, ¨¨¨, n h u then condition (B.1) is satisfied. Rewriting K T h i h T i K ď P γ as P ´KT h i γh T i K ě 0 (B.2)
and using the Schur Complement Lemma, we can show that this is equivalent to:

» - P K T h i h T i K 1 γ fi fl ě 0. (B.3)
Then using the reverse formula of the Schur Complement, gives:

1 γ ´hT i KP ´1K T h i ě 0, (B.4)
which is equivalent to:

γ ď 1 h T i KP ´1K T h i , @i P t1, ¨¨¨, n h u. (B.5)
Therefore, we have shown that if 0 ă γ ď 1 h T i KP ´1K T hi , @i P t1, ¨¨¨, n h u, then (B.1) holds, and therefore the Proposition holds.

Appendix C

Proposition 5. Consider system (2) such that Assumptions 2.2 and 2.1 hold. Let h i , i P t1, ¨¨¨, n h u be R m vectors such that: conv pVq " ␣ y P R m : h T i y ď 1 @i P t1, ¨¨¨, n h u ( . (C.1) Assume that there exist P " P T ą 0, β ą 0 and K such that Assumption 2.3 holds. Let:

γ ď 1 h T i KP ´1K T h i , @i P t1, ¨¨¨, n h u (C.2) δ ą max vPV " v T B T P Bv β ´ϵ * , 0 ă ϵ ă β ă 1 (C.3)
If δ ă γ, then for system (2) with the switching control

u k " Πpx k , λ k q " argmin vPV px T k A T λ k P Bvq
we have V pA λ k x k `Bu k q ă V px k q, @λ k P Λ, (C.4) whenever

x k P EpP, γq\EpP, δq, @k P N.

Proof. Consider K P R mˆn , 0 ă β ă 1 and P " P T ą 0 such that Assumption 2.3 holds. Then we have:

pA λ k x k `BKx k q T P pA λ k x k `BKx k q ´xT k P x k ă ´βx T k P x k , @λ k P Λ, x k ‰ 0. (C.5)
Proposition 1 states that when convpVq is a nonempty subset of R m and that 0 P intpconvpVqq, then Dγ ą 0 such that for any x P EpP, γq , Kx P convpVq. The latter means that @x k P EpP, γq, Dα j px k q ě 0, @j P t1, ¨¨¨, N u, satisfying

N ÿ j"1 α j px k q " 1, such that Kx k " N ÿ j"1 α j px k qv j . (C.6) Inequality (C.5) implies that x T k A T λ k P A λ k x k `2x T k A T λ k P BKx k `xT k K T B T P BKx k ´p1 ´βqx T k P x k ă 0, @λ k P Λ, @x k ‰ 0. (C.7)
Then taking into account (C.6) leads to

N ÿ j"1 α j px k q `xT k A T λ k P A λ k x k `xT k K T B T P BKx k ´p1 ´βqx T k P x k `2x T k A T λ k P Bv j ˘ă 0, (C.8)
For all λ k P Λ, x k P EpP, γq. This is the same as N ÿ j"1 α j px k qM px k , λ k , v j q ă 0, @λ k P Λ, @x k P EpP, γq,

(C.9) with M px k , λ k , v j q " x T k A T λ k P A λ k x k `xT k K T B T P BKx k ´p1 ´βqx T k P x k `2x T k A T λ k P Bv j .
Since all α j pxq ě 0, then there exists at least one index i ˚P t1, ¨¨¨, N u such that M px k , λ k , v i ˚q ă 0. This means that the minimum of M px k , λ k , vq is always negative for v P V. Let us remark that argmin vPV M px k , λ k , vq " argmin vPV px T k A T λ k P Bvq, @λ k P Λ (C.10) with matrix A λ k corresponding to the active state matrix at instant k. Therefore the following is satisfied:

M px k , λ k , v ˚q ă 0, @x k P EpP, γq, @λ k P Λ (C.11) with v ˚" argmin vPV px T k A T λ k P Bvq " u k . Let us recall that u k is a function of x k and λ k , i.e. u k " Πpx k , λ k q " argmin vPV px T k A T λ k P Bvq. Using the fact that ∆V x k " V px k`1 q ´V px k q " V pA λ k x k `BΠpx k , λ k qq ´V px k q " pA λ k x k `BΠpx k , λ k qq T P pA λ k x k `BΠpx k , λ k qq ´xT k P x k " x T k A T λ k P A λ k x k `2x T k A T λ k P BΠpx k , λ k q `Πpx k , λ k q T B T P BΠpx k , λ k q ´xT k P x k and adding and subtracting Π T px k , λ k qB T P BΠpx k , λ k q to M px k , λ k , Πpx k , λ k qq lead to the following @x k P EpP, γq: M px k , λ k , Πpx k , λ k qq " ∆V px k q `xT k K T B T P BKx k `βx T k P x k ´Πpx k , λ k q T B T P BΠpx k , λ k q ă 0, (C.12)
In what follows we use (C.12) in order to characterize the set of states x k such that ∆V px k q ă 0. More precisely, we try to find an ellipsoid EpP, δq inside EpP, γq such that ∆V px k q ă 0 when x k P EpP, γq\EpP, δq. A sufficient condition to prove that ∆V px k q ă 0, @x P EpP, γq\EpP, δq is to show that x T k `KT B T P BK `βP ˘xk ´vT i B T P Bv i ą 0, for all i P t1, ¨¨¨, N u whenever x P EpP, γq\EpP, δq.

Using the S-procedure, we can show that the condition

x T k `KT B T P BK `βP ˘xk ´vT i B T P Bv i ą 0, @i P t1, ¨¨¨, N u whenever x Let us take c " β ´ϵ, for some ϵ ą 0 sufficiently small such that 0 ă ϵ ă β ă 1. Then a feasible δ is found such that cδ ´vT i B T P Bv i ą 0, @i P t1, ¨¨¨, N u which means that δ ą v T i B T P Bv i c , @i P t1, ¨¨¨, N u.

(C.16)

In order to take into account all possible switches, δ should be chosen such that δ ą max vPV v T B T P Bv β´ϵ . Proposition 6. Consider system (2) with u k P V, @k P N.

Given P " P T ą 0 and δ ą 0. If x k P EpP, δq, then x k`1 P EpP, ρq with ρ " max iPΛ vj PV ˜∥A i ∥ d δ λ min pP q `∥Bv j ∥ ¸2 λ max pP q.

(C.17)

Proof. Let x k P EpP, δq, which means that x T k P x k ă δ. Since P is symmetric and positive definite: λ min pP q∥x k ∥ 2 ď x T k P x k ď λ max pP q∥x k ∥ 2 (C.18) where λ min pP q and λ max pP q are the minimum and maximum eigenvalues of P . The last equation leads to

||x k || 2 ă δ λ min pP q . (C.19)
We are looking for a lower bound of ρ ą 0 such that:

x T k`1 P x k`1 ă ρ, @x k P EpP, δq, @λ k P Λ. (C.20) We know that :

x `∥Bv∥ ¸2 λ max pP q.

(C.26) Then, it is clear that x k`1 P EpP, ρq with ρ " max iPΛ,vPV ˜∥A i ∥ d δ λ min pP q `∥Bv∥ ¸2 λ max pP q.

Fig. 1 .

 1 Fig. 1. Behaviour of the system depending on different initial conditions

  `KT B T P BK `pβ ´cqP ˘xk `cδ ´vT i B T P Bv i ą 0 (C.15) Let us choose c ă β in order to havex T

		T k P x k ą δ,	(C.13)
	is satisfied if and only if there exists c ą 0 such that
	x T k	`KT B T P BK `βP ˘xk ´cpx T k P x k ´δq ą 0. ´vT i B T P Bv i	(C.14)
	The latter is the same as	
	x T k		

k

`KT B T P BK `βP ´cP ˘xk ą 0.

  k`1 " A λ k x k `Bv, (C.25) using the fact that λ min pP q∥x k`1 ∥ 2 ď x T k`1 P x k`1 ď λ max pP q∥x k`1 ∥ 2 , equation (C.25) gives:

	which gives :			
	∥x k`1 ∥ 2 ă max iPΛ,vPV `∥Bv∥ ¸2 , x T ˜∥A i ∥ d δ λ min pP q k`1 P x k`1 ă	
	max iPΛ,vPV	d ˜∥A i ∥	δ λ min pP q	
					λ k P Λ,	v P V.	(C.21)
			It follows	
			∥x k`1 ∥ ď max iPΛ,vPV	∥A i ∥∥x k ∥ `∥Bv∥,	(C.22)
			∥x k`1 ∥ 2 ď max iPΛ,vPV	p∥A i ∥∥x k ∥ `∥Bv∥q	2 .	(C.23)
			From (C.19) we can have :
					d
			∥x k ∥ ă	δ λ min pP q	,	(C.24)