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Résumé – Nous proposons une méthode d’estimation locale des propriétés multifractales. Cette methode, qui repose sur une moyenne d’in-
crément à une dimension, est applicable à tout type de processus ponctuel marqué pour lesquels l’information n’est pas accessible partout. Nous
montrons la robustesse d’estimation sur trois types de supports différents.

Abstract – In this paper, we develop a methodology for the local estimation of multifractal properties in random 2D fields. The main novelty
of our approach lies in introducing a local average of one-dimensional increments, rendering the analysis applicable not only for fully defined
images but also for any marked point process where information is not ubiquitously available, e.g. in the context of geospatial data analysis and
modeling. We demonstrate the robustness of the estimation by deploying the methodology on a multifractal random field defined as a marked 2D
point pattern with three different underlying supports: an equidistant grid (or image), a self-similar and a multifractal Sierpinski carpet. We show
that the estimation of obtained scaling characteristics is statistically concurrent on these three spatial distributions. We conclude by presenting a
real-world application using geospatial data.

1 Introduction

Scaling or multifractal analysis [1, 2, 3] is now a standard
procedure for estimating local regularities in empirical data.
Scale invariance is indeed a property that has been extensively
observed in numerous phenomena of very different nature [4,
5]. In general, multifractal analysis consists in measuring sca-
ling exponents, whose values are then commonly involved in
various detection, identification or classification tasks. Despite
its increasing popularity, existing methods for multifractal es-
timation are only able to deal with signals or images that are
defined everywhere on a full support or where non-existent va-
lues are replaced by 0. Even though the latter approach is re-
liable if the density of missing values is very small, it can not
be used for datasets where access to information is irregular,
e.g. in the context of geospatial point patterns. Even though
an original methodology to derive (multi-) fractal properties of
such heterogeneous geographical distributions was recently de-
veloped [5] it focused exclusively on unmarked points so far.
Against this background, we propose a procedure based on an
average of one-dimensional increments allowing for the targe-
ted extension of these methods for marked 2D point processes
with arbitrary underlying spatial patterns. Building upon a brief
overview of the classical multifractal procedure, we introduce
the two main contributions of this work : the multiscale quan-
tity specifically tailored for irregular 2D distributions and the

local multifractal analysis. We conclude by providing a real-
world example using geographical data.

2 Classical Multifractal Analysis

Multifractal analysis aims at characterizing the local regu-
larity of a process V . Different pointwise regularity exponents
can be used, most commonly the Hölder exponent h(x0) > 0.
It is defined as the largest α so that there exists, in a neighbo-
rhood of x0, a constant C > 0 and a polynomial P (of order
smaller than α) satisfying |V (x0 − r)− P (x0 − r)| < C|r|α.
The multifractal spectrum D(h) is defined as the collection of
Hausdorff dimensions (dimH ) of the sets of points x, where
h(x) takes the values h.D(h) = dimH {x such thath(x) = h}.
The shape and the width of D(h) provide information on the
intensity of fluctuations in local regularity.

Practical estimation of the multifractal spectrum requires the
use of multifractal formalism, a procedure originally inspired
by thermodynamics (cf., e.g., [2] ). It is based on estimating
the different moments of certain multiscale quantities and ob-
serving their evolution across scales. Historically, multiscale
coefficients were defined as the increments of the process, ho-
wever these were later generalized to wavelet coefficients (de-
fined as the high pass filtering of the process [6]) or to some
non-linear transformations of these [7, 8].



Let T (x, r) denote the multiscale coefficient at point x and
scale r. A process V defined on Rd is said to possess scale-
invariance or scaling properties if - for some statistical orders q
- the time averages of |T (x, r)|q in a fixed scale display power
law behaviors with respect to radii r

Sq(r) = E{|T (x, r)|q} = lim
N→+∞

1

N

N∑
x=1

|T (x, r)|q ∼ Fq|r|ζq ,

whereN is the total number of points x. The scaling exponents
ζq are related by a Legendre transform to its multifractal spec-
trum D(h) = minq(d+ qH − ζq).

If we suppose that ζq is smooth at 0, we can use a Taylor ex-
pansion of ζq =

∑
p≤1 cp

qp

p! and show that the log-cumulant of
multiscale coefficients behaves linearly with respect to scales
r. For the two first orders one obtains :

C1(r) = E{log |T (x, r)|} = c1 log(|r|) + d1 (1)
C2(r) = E{log |T (x, r)|2} − C2

1 (r) = c2 log(|r|) + d2 (2)

which give a quadratic approximation of the singularity spec-
trum D(h) ∼ 1 + (h−c1)

2

2c2
.

3 Local Multifractal Analysis
Here, we propose a novel methodology that is able to mea-

sure local scaling properties of random fields. It involves two
essential steps : the definition of multiscale quantities and their
local weighting functions.

Multiscale coefficient. We start by introducing a multiscale
coefficient, defined as the average of all one-dimensional incre-
ments originating from x, i.e.

T (x, r) = 1
Nx(r)

∑
x′, ||x′−x||<r(V (x′)− V (x)) (3)

where Nx(r) is the number of points in radius r that is cente-
red on x. In a two-dimensional space, this coefficient can be
seen as a convolution of the field V with the high-pass filter
ψr(x) = πr2δ0−1B0(r) which verifies the admissibility condi-
tion

∫
R2 ψr(x)dx = 0 for all r. This filter can be regarded as a

wavelet and the scaling in equations 1, 1 and 2 are still valid as
long as 0 < H < 1 [6].

Local weighting function. To carry out the local multifrac-
tal analysis, we first introduce a local environment L, that is
larger than the radius (or radii) r. Second, we introduce a re-
gular grid of arbitrary size with points xg , which will serve as
the focal points for local estimations. Moving on, we compute
a weighted average based on the distance between a chosen es-
timation site xg and the locations of the original points x :

Sq(xg, r) =
∑
x

wxg,x|T (x, r)|q

C1(xg, r) =
∑
x

wxg,x log |T (x, r)|

C2(xg, r) =
∑
x

wxg,x (log |T (x, r)| − C1(xg, r))
2 (4)

FIGURE 1 – Images showing the same MRW process with a full
support (right), a self-similar Sierpinski carpet (middle) and a
multifractal Sierpinski carpet. The top row displays a realiza-
tion of a MRW with H = 0.7 and c2 = 0.04, the bottom row
with H = 0.3 and c2 = 0.04.

where weights are defined as wxg,x = f(||xg − x||/L). We
use a quartic (biweight) kernel defined as f(x) = (1 − x2)2

if ||x|| < 1 and 0 otherwise. For better estimation quality, we
restrict our analysis to estimation sites where Nxg

(
√
2l) ̸= 0, l

standing for the distance between points xg . Locally we recover
the scaling

logSq(xg, r) ∼ ζq(xg) log(|r|) + Fq(xg)

C1(xg, r) ∼ c1(xg) log(|r|) + d1(xg)

C2(xg, r) ∼ c2(xg) log(|r|) + d2(xg) (5)

Finally, global estimation can be defined by choosing a col-
lection of estimation sites N(xg) and derive the average over
this set of measurement points :

logSq(r) =
1

Nxg

∑
xg

logSq(xg, r) ∼ ζq log(|r|) + Fq

C1(r) =
1

Nxg

∑
xg

C1(xg, r) ∼ c1 log(|r|) + d1

C2(r) =
1

Nxg

∑
xg

C2(xg, r) ∼ c2 log(|r|) + d2 (6)

4 Numerical simulations
In this section, first, the procedure for generating the analy-

zed 2D marked point processes is described ; second, they are
used to assess the performance of the local multifractal analysis
introduced in Section 3.
Multifractal random walk. The multifractal random walk
(MRW) [9, 10], is a popular and representative member of the
group of multiplicative cascade processes. It constitutes one
of the most prominently used class of multifractal models for
applied research. More precisely, MRW is a non-stationary,
non-Gaussian process with stationary increments. Its multifrac-
tal properties are those of the well-known multiplicative log-
normal cascade of Mandelbrot. In one dimension, It is defined
as V (0) = 0 and V (n) =

∑n
k1=1 ωH(k1)e

ω(k1), where n is
an integer, ωH(k) are the increments of a fractional Brownian



FIGURE 2 – Local analysis. Cumulant of order 1 (eq. 5) obtai-
ned on an image (left), a self-similar (middle) and a multifractal
Sierpinski carpet (right). The parameters used areH = 0.7 and
c2 = 0.04 (top) and H = 0.3 and c2 = 0.04 (bottom).

motion with parameter H (thus a fractional Gaussian Noise of
parameterH) ; ω is a Gaussian random process, independent of
ωH with auto-covariance Cov(ω(k1), ω(k2)) = c2 ln(

T
|k1−k2|+1 )

when |k1 − k2| < T and 0 otherwise. MRW has the follo-
wing scaling properties[10] : ζq = c1q − c2

2 q
2 and D(h) =

1 + (1−c1)
2

2c2
with c1 = H + c2.

The two-dimensional isotropic MRW field is obtained using
the generalization of the 1D case proposed in [11, 12]. For the
purposes of this study, we generate a full image of an MRW
process of size M = 4096 with parameters H and c2. In the
followings, this image will be construed as a marked point pro-
cess with spatial positions at [0, M − 1]2.
Mono- and multifractal support. In order to emphasize ge-
neral applicability that is independent of underlying point pat-
terns, we construct two Sierpinski carpets using the IFS fractal
generator “GenFrac” [15]. We deploy one (d0 = 1.76) and then
four different (d0 = 1.56) reduction factors to obtain a mono-
and multifractal structure, with different capacity dimensions
d0 = − log(Nr)/ log(r). Since our methodology may be of
interest to research on geospatial systems, it is compelling to
observe such rather different point patterns characterized by
distinct variations in their point densities.

For each centroid point of the 2D carpet elements, we as-
sign the value of the MRW at the rounded point position. As
a result, we obtain three marked point process Γi = xi, yi, Vi,
i = 1, 2 or 3. Fig. 1 shows the support structure of the three
processes and their assigned MRW values that were generated
with two different H exponents (0.7 and 0.3) and a single sha-
red c2 = 0.04. We note that restricting the fully defined image
of the multifractal random field to a fractal set of points may be
mathematically ill-defined. However, this does not constitute a
problem here as the methodology from Section 3 operates ex-
clusively on a finite collection of scales.
Performance assessment. In accordance with (3), we com-
pute the multiscale coefficients at each location xg (see Fig 1).
For the purposes of this analysis, we apply ten scales logarith-
mically spaced between r = 22 and 27. A non-weighted linear

FIGURE 3 – Local analysis. Cumulant of order 2 (eq. 5) obtai-
ned on an image (left), a self-similar (middle) and a multifractal
Sierpinski carpet (right). The parameters used areH = 0.7 and
c2 = 0.04 (top row) and H = 0.3 and c2 = 0.04 (bottom row).

regression is then carried out at each point xg (spaced with a
resolution of 25 pixels), making use of all available scales to
obtain ζ2(xg), c1(xg) and c2(xg). Final results form an image
of size 162X162 : In Fig. 2, we show the resulting slopes ob-
tained for the cumulant of order one, c1(xg), computed on the
processes shown in Fig. 1, whilst Fig. 3 displays the associated
cumulant of order two c2(xg).

In general, obtained values do fluctuate locally from point to
point but the fluctuations are homogeneous for the three sup-
ports. Except from some very sparse areas in the center of the
multifractal Sierpinski carpet, the estimation does not signifi-
cantly depend on its support (as can be clearly seen in Fig. 2).
Note that this situation is an additional motivation for compu-
ting c1(xg) and c2(xg), i.e. exponents derived from values of
D(h) close to the maximum of the spectrum. Indeed, sets of
small dimensions might become “invisible” when their trace
on a fractal set is considered. Moving on to consider local esti-
mation results, Fig. 2 demonstrates that the range of locally ob-
tained H exponents is evidently distinct for the two generated
multifractal random fields : Darker blue and green colors are
dominating in the bottom row (H = 0.3) whilst bright green
and yellow colors prevail in the top (predefined H = 0.7).
In contrast, the same color range is observable for all cases
in Fig. 3, as they all share one common intermittency coeffi-
cient (c2 = 0.04). The quality of the regression is very good
with a coefficient of determination R2 for ζ2(xg) above 0.95
for all three point processes : 0.997%, 0.984%, 0.795% for the
image, the self-similar and the multifractal carpet respectively.
For c1(xg), we get the same quality for the image and the self-
similar carpet (with 0.993% and 0.917%) but a poorer estima-
tion for the multifractal support with only 0.52% of the points
aboveR2 > 0.96. For c2 the quality of the fit degrades strongly.

Finally, the top row in Fig. 4 shows the statistics for the three
local slopes, ζ2(xg), c1(xg) and c2(xg), and the bottom line the
corresponding global scaling for S2(r), C1(r) and C2(r) as an
average over the entire 2D field xg . What can be clearly seen
is the strong correspondence between the predefined theoreti-



0 1 2 3

0

1

2

3

4

-0.5 0 0.5 1 1.5

0

2

4

6

-0.5 0 0.5

0

2

4

6

3 4 5

-6

-5

-4

-3

-2

3 4 5

-4

-3

-2

3 4 5

1.2

1.3

1.4

FIGURE 4 – The first row shows the histogram of the local sca-
ling ζ2(xg) (left), c1(xg) (middle) and c2(xg) obtained from
the data on the full support in Fig. 1 left. The second row dis-
plays the global average of the scaling, see (6), for the latter
three exponents. The parameters are H = 0.7 and c2 = 0.04
(black symbols) and H = 0.3 and c2 = 0.04 (blue symbols).
The estimation is done for the image (+), the self-similar Sier-
pinski carpet (◦) and the multifractal Sierpinski carpet (⋆).

cal values (red) and the results of the local (top) and global
(bottom) estimations obtained with the proposed methodology
(blue and black). It has to be emphasized that the latter holds
true for all three here-observed supports (Fig. 4 bottom).
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FIGURE 5 – Cumulant of order 1 (left) and order 2 (right) of
housing price [16] in and around Paris, France.

5 Application to geographical data

Due to its local nature and broad range of applicability, the
methodology may find a number of important applications in
settings where information is commonly rather sparse, e.g in
the domains of human or environmental geography. In Fig. 5,
we deployed the methodology to analyze housing prices (“de-
mande de valeurs foncières” [16]) in and around the city of Pa-
ris, France. Small-scale multifractality of land price is of great
potential urban planning and policy relevance and it has already
been associated with more classical measures of socioecono-
mic segregation and inequalities [13, 14]. We must emphasize
that data distribution is highly irregular, it marks the centroids
of cadastral areas where purchases were being made in our
observed time window between 2014 and 2020. Notwithstan-
ding, we were able to derive both local parameters, c1(xg) and
c2(xg) with a sufficient regression quality : the average R2 for

the entire observed 2D field depicted in Fig. 5 lies at 0.84 for
the cumulant of order one c1(xg) and at 0.93 for the cumulant
of order two c2(xg).

Conclusions. To conclude, this paper set out to illustrate
how the introduced methodology is suitable for the local mul-
tifractal analysis of marked spatial point processes whose un-
derlying support structure may be strongly non-uniform. More
precisely, it could recover - with sufficient regression quality -
certain predefined characteristic parameters of multifractal ran-
dom fields, namely the Hurst exponentH and the intermittency
coefficient c2. It has to be stressed that the latter analysis was
possible both on the global and local levels and that estima-
tions were also statistically satisfactory on real-world geospa-
tial data.
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