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We study the enumeration of inversion sequences that avoid pattern 021 and another pattern of length four. We
determine the generating trees for all possible pattern pairs and compute the corresponding generating functions. We
introduce the concept of d-regular generating trees and conjecture that for any 021-avoiding pattern τ , the generating
tree T ({021, τ}) is d-regular for some integer d.
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1 Introduction
An integer sequence e = e0e1 · · · en is called an inversion sequence of length n if 0 ≤ ei ≤ i for each
0 ≤ i ≤ n. We use In to denote the set of inversion sequences of length n. There is a bijection between
In and the set of permutations of length n+ 1, denoted by Sn+1. Let τ be a word of length k over the al-
phabet [k] := {0, 1, · · · , k−1}, we say that an inversion sequence e ∈ In contains the pattern τ if there is
a subsequence of length k in e that has the same relative order with τ ; otherwise, we say that e avoids the
pattern τ . For instance, e = 010213 ∈ I5 avoids the pattern 201 because there is no subsequence ejekel
of length three in ewith j < k < l and ek < el < ej . On the other hand, e = 010213 contains the patterns
010 and 0012. For a given pattern τ , we use In(τ) to denote the set of all τ -avoiding inversion sequences
of length n. Similarly, for a given set of patterns B, we set In(B) = ∩τ∈BIn(τ). The first results on the
pattern-avoiding inversion sequences were obtained by Mansour and Shattuck (2015) and Corteel et al.
(2016) for the patterns of length three. Later, Martinez and Savage (2018) generalized and extended the
notion of pattern-avoidance for the inversion sequences to triples of binary relations that lead to new con-
jectures and open problems. Various other pattern-avoidance conditions such as vincular patterns, pairs
of patterns, and longer patterns are also studied for inversion sequences; for relevant results, see Auli and
Elizalde (2021); Bouvel et al. (2018); Beaton et al. (2019); Cao et al. (2019); Chern (2023); Duncan and
Steingrı́msson (2011); Callan et al. (2023); Lin (2018, 2020); Mansour and Shattuck (2022); Yan and Lin
(2020–2021); Lin and Fu (2021); Lin and Yan (2020) and references therein. In the context of inversion
∗Partially supported by Tubitak-Ardeb-120F352.
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sequences, two sets of patterns B1 and B2 are said to be Wilf equivalent if |In(B1)| = |In(B2)| for all
n ≥ 0, that is, they have the same counting sequence. Note that there are 13 patterns of length three and
75 of length four up to order isomorphism. Hong and Li (2022) and Yan and Lin (2020–2021) studied the
Wilf-equivalence classification for inversion sequences avoiding the length-four and pairs of length-three
patterns, respectively. The current results show that pattern-avoiding inversion sequences have rich struc-
tures and provide a unifying framework for many well-known counting sequences. We can highlight some
interesting results as follows: the large Schröder numbers enumerate In(021), the odd-indexed Fibonacci
numbers enumerate In(012), the Euler up/down numbers enumerate In(000), the Bell numbers enumer-
ate In(011), and powers of two enumerate In(001); see the above references for details. The In(021)
counting sequence also satisfies a nice four-term recurrence relation, see Lin and Kim (2021). These
results indicate that each case deserves further examination, and there are already some important recent
results in this direction. For instance, Lin and Kim (2018) provided an intriguing bijection that preserves
six set-valued statistics between In(021) and (2413, 4213)-avoiding permutations. Inversion sequences
avoiding a pattern of length three and an additional longer pattern is a possible next step for this research
program. In this paper, we study inversion sequences avoiding 021 and another pattern of length four. As
we see in the next sections, the generating tree method combined with the kernel method works nicely
in this case and leads to a complete enumeration of all possible cases. As a summary of the main results
of this paper, we present a list of the generating functions for all cases in Table 1 and the corresponding
counting sequences in Corollary 3.9. Even though the method works well, some cases are very subtle and
technically demanding. The pattern class In(021, 0000) is an example of such a case. It has a long list of
succession rules that require some non-trivial methods to solve the equations for the generating functions
derived from the kernel method; for the details, see Section 3.1. Furthermore, we observe a special struc-
ture in the generating trees corresponding to the inversion sequences avoiding 021 and another pattern
that avoids 021. We formulate this observation in Conjecture 2.1. The results of the present paper and
the note of Mansour and Yıldırım (2022) provide evidence for the validity of this conjecture. We will use
the algorithmic approach based on generating trees developed in Kotsireas et al. (2024) and the kernel
method. Our results mainly follow the following five-step procedure: (i) an educated guess of the rules of
the generating tree based on the algorithm’s output, (ii) verification of the previous step, (iii) translating
the rules of the generating tree into a one-parameter infinite system of equations involving related gen-
erating functions, (iv) using bivariate generating functions and obtaining a finite system of equations, (v)
using kernel method to obtain an expression for the generating function of the pattern class. In most cases,
obtaining a nice closed formula for the enumerating sequence of the class is possible. We will provide the
details of this procedure in the following section. Inversion sequences avoiding multiple patterns look like
a promising research direction. There are still no enumerating formulas for the avoidance sets In(100) and
In(120), and Wilf-equivalent In(201) and In(210). The enumeration of the pattern 010 is recently solved
by Testart (2022). The generating tree method also has some successful applications for pattern-avoiding
permutations; for earlier and recent results, see Banderier et al. (2002); Hou and Mansour (2008); West
(1996); Mansour et al. (2022).

We organized the paper as follows: In Section 2, we outline the details of our procedure that leads to
the main result of this paper and present some examples. In Section 3, we study the generating functions
for all possible pattern pairs of 021 and τ where τ is a pattern of length four that avoids 021. Note that
we only need to consider 42 patterns of length four that avoid 021. There are some patterns τ of length
four that avoids 021 but In(021, τ) = In(021) because all inversion sequences begin with letter 0. For
instance, In(021, 3102) = In(021).
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We use Cn and Mn to denote the Catalan and Motzkin numbers, respectively. Their generating func-
tions are C(x) = 1−

√
1−4x
2x and M(x) = 1−x−

√
1−2x−3x2

2x2 . For a letter or number s, we use sm to denote
the string of m s, that is, sm = ss · · · s︸ ︷︷ ︸

m times

.

2 An algorithmic approach based on generating trees
For each class of inversion sequences avoiding a fixed set of patterns, there is a corresponding generating
tree that encodes the elements of the class as its vertices under some specific rules. We refer the reader to
Section 2 of Kotsireas et al. (2024) for the details.

We use IB = ∪∞n=0In(B) to denote the set of all inversion sequences avoiding the pattern set B. The
corresponding generating tree T (B) is a rooted, labeled, plane tree whose vertices are the objects of IB
with the following properties: (i) each element of IB appears exactly once in the tree; (ii) element of size
n appears at level n in the tree (the root has level 0); (iii) there is a set of succession rules that determine the
number of children and their labels for each vertex. The tree T (B) will be empty if no inversion sequence
of arbitrary length avoids the set B. Otherwise, the root’s label will always be 0, that is, 0 ∈ T (B). From
the root, whose level is zero, we construct the remainder of the tree T (B) in a recursive way where the
nth level of the tree consists exactly the elements of In(B) arranged in such a way that the parent of an
inversion sequence e0e1 · · · en ∈ In(B) is the unique inversion sequence e0e1 · · · en−1 ∈ In−1(B). We
obtain the children of e0e1 · · · en−1 ∈ In−1(B) from the set {e0e1 · · · en−1en | en = 0, 1, . . . , n} by
obeying the restrictions of the patterns in B. We arrange the nodes from the left to the right so that if
e = e0e1 · · · en−1i and e′ = e0e1 · · · en−1j are children of the same parent e1 · · · en−1, then e appears
on the left of e′ if i < j. Based on this initial tree T (B), we define an equivalence relation on the set of
the nodes of this tree and obtain a second representation of the tree corresponding to the class IB which
is more efficient for enumerating purposes. We relabel the vertices of the tree T (B) as follows. Define
T (B; e) as the subtree of the inversion sequence e as the root and its descendants in T (B). We say that
e is equivalent to e′, denoted by e ∼ e′, if and only if T (B; e) ∼= T (B; e′) (in the sense of plane trees).
Let T ′(B) be the same tree T (B) where we replace each node e by the first node e′ ∈ T (B) from top to
bottom and from left to right in T (B) such that T (B; e) ∼= T (B; e′). Clearly, the generating tree T ′(B)
has a root 0, for any B such that 0 6∈ B.

Let B be any set of patterns, and let T ′(B) be the generating tree for the class In(B). The length of a
node v ∈ T ′(B) is defined to be the number of letters in v, and it is denoted by len(v). For any k ≥ 1,
let Dk(B) be the multi-set of all nodes of length k at level k − 1 in T ′(B). For each node v ∈ Dk(B),
we denote the multi-set of all children of v at level k in T ′(B) by Nk(B; v). A generating tree T ′(B) is
said to be d-regular if there exists k ≥ 1 such that

• the number of different nodes in Dr(B) equals d, for all r > k;

• for any v ∈ Dr(B) and w ∈ Nr(B; v), the number of occurrences of w in Nr(B; v) does not
depend on r, whenever r > k.

T ′(B) is 0-regular if and only if the generating tree T ′(B) is finite. We present an example of d- regular
and non-regular trees to illustrate the definition. If B = {021, 0123}, then the generating tree T ′(B) has
the following rules

am  am+1bmbm−1 · · · b1, bm  b2m+1c
m, c c2, (1)
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where am = 0m, bm = 0m1, and c = 012. Note that D1(B) = {a1}, D2(B) = {a2, b1}, D3(B) =
{a3, b2, b2, b2, c}, and Dk(B) = {ak, bk−1, . . . , bk−1︸ ︷︷ ︸

2k−1 − 1 times

} for all k ≥ 4. Moreover, the child ak+1 of ak ∈

Dk(B) occurs inNk(B; ak) exactly once and the child bk of bk−1 ∈ Dk(B) occurs exactly twice. Hence,
T ′(B) is 2-regular.

Let B = {000, 0011}. The generating tree T ′(B) has the following rules:

am  bm+1
m am+1, bm  bm+2

m ,

where am = 012 · · ·m and bm = am0. Note that Dk(B) contains ak−1 exactly once and bk−2 exactly
k − 1 times, for all k ≥ 1. Thus, T ′(B) is not d-regular for any d.

Based on our results (see Table 1), we have the following conjecture.

Conjecture 2.1 For any 021-avoiding pattern τ , the generating tree T ′({021, τ}) is d-regular for some
d.

We will use the following procedure to study the generating functions for the sequences

{|In({021, τ})|}n≥0

where τ is any pattern of length four that avoids 021.
The five-step Procedure: The main results of this paper are applications of the five-step procedure
described briefly in the introduction. We will now outline the details of the procedure for the pat-
tern set B = {021, 1002}. First, we obtain the rules of the generating tree T ′(B) by using the algo-
rithm developed in Kotsireas et al. (2024). We then get an explicit formula for the generating function
FB(x) =

∑
n≥0 |In(B)|xn+1 from the rules of generating tree in a systematic way that can be pro-

grammed in software.

• Step 1- An educated guess for the rules of T ′(B): Based on the output of the algorithm of
Kotsireas et al. (2024), we guess that the rules of the generating tree T ′(B) can be described as
follows: the generating tree T ′(B)’s root is denoted by a1, and the succession rules are:

am  am+1bmbm−1 · · · b1, bm  cmbm+1dmdm−1 · · · d1,
cm  fcm+1emem−1 · · · e1g, dm  emdm+1dm · · · d1,
em  hem+1em · · · e1g, f  f2,
g  he1g, h h,

where m ≥ 1, am = 0m, bm = am1, cm = bm0, dm = am12, em = am102, f = 0100, g = 0103,
and h = 01020. In Kotsireas et al. (2024), elementary examples show how the algorithm works, so
we refer the reader to it for the details. We useR to denote the (proposed) set of rules of the tree.

• Step 2- Verifying the set of rules for T ′(B): We prove that the proposed set of rules R hold for
any level in the tree. Note that we have to show that when we add a letter j = 0, 1, . . . , len(v) for
the father v of a rule, we obtain a rule in R. For instance, consider the rule h  h, we can add a
letter j = 0, 1, . . . , 5:

– since the inversion sequences avoid B, we see that T ′(B;h0) ∼ T ′(B;h).
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– h1 = 010201 contains 021, so h1 is not a child of h;

– hj = 01020j, j = 2, 3, 4, 5, contains 1002, so hj is not a child of h.

Thus the rule h h holds for T ′(B). Similarly, we can show that the rulesR describe all the rules
of T ′(B).

• Step 3- From the rules of T ′(B) to a one-parameter infinite system of equations: For each rule
of the type v  v(1)v(2) · · · v(`) in R, we define the generating function Av(x) as the generating
function for the number of nodes at level n in the subtree T ′(B; v) of T ′(B), where the root of this
subtree is the vertex v that stays at level 0. Then each rule of the type v  v(1)v(2) · · · v(`) can be
translated into an equation for the generating functions as

Av(x) = x+ x
∑̀
j=1

Av(j)(x).

Note that if we have a finite number of rules, then there will be a finite system of equations. For the
above rules, we have

Am(x) = x+ xAm+1(x) + xBm(x) + · · ·+ xB1(x),
Bm(x) = x+ xCm(x) + xBm+1(x) + xDm(x) + · · ·+ xD1(x),
Cm(x) = x+ xF (x) + xCm+1(x) + xEm(x) + · · ·+ xE1(x) + xG(x),
Dm(x) = x+ xEm(x) + xDm+1(x) + · · ·+ xD1(x),
Em(x) = x+ xH(x) + xEm+1(x) + · · ·+ xE1(x) + xG(x),
F (x) = x+ 2xF (x),
G(x) = x+ xH(x) + xE1(x) + xG(x),
H(x) = x+ xH(x).

where Am(x) = Aam(x), Bm(x) = Abm(x), Cm(x) = Acm(x), Dm(x) = Adm(x), Em(x) =
Aem(x), F (x) = Af (x), G(x) = Ag(x), and H(x) = Ah(x).

• Step 4- A finite system of equations for bivariate generating functions: There are many different
methods to solve such system of recurrence relations. In this paper, we observe that for each set of
patterns B = {021, τ} with a 021-avoiding four-letter pattern τ , the system of recurrence relations
is linear, and it is parametrized by one parameter m.

We will use bivariate generating functions to solve the recurrence relations. Consider Am(x)
parametrized by one parameter m, we define the bi-variate generating function as

A(x, v) =
∑
m≥s

Am(x)vm−s,

where s indicates the minimal value of m such that the recurrence for the generating function
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Am(x) holds. From the above recurrence relations, we obtain

A(x, v) = x
1−v (1 +B(x, v)) + x

v (A(x, v)−A(x, 0)),

B(x, v) = x
1−v (1 +D(x, v)) + xC(x, v) + x

v (B(x, v)−B(x, 0)),

C(x, v) = x
1−v (1 + F (x) + E(x, v) +G(x)) + x

v (C(x, v)− C(x, 0)),

D(x, v) = x
1−v (1 +D(x, v)) + xE(x, v) + x

v (D(x, v)−D(x, 0)),

E(x, v) = x
1−v (1 +H(x) + E(x, v) +G(x)) + x

v (E(x, v)− E(x, 0)),

F (x) = x
1−2x ,

G(x) = x+x(1−x)E1(x)
(1−x)2 ,

H(x) = x
1−x .

• Step 5- Obtaining the generating function FB(x) with the kernel method: In order to solve such
system, we use kernel method several times. We apply the algorithm in Hou and Mansour (2008).
Let v0 = 1−

√
1−4x
2 , we consider the equation of E(x, v) with v = v0, which leads to

E(x, 0) =
1−
√

1− 4x

(1− x)(1− 2x+
√

1− 4x)
.

Then by setting this into the same equation of E(x, v), we obtain

E(x, v) =
x(1− 2x−

√
1− 4x)

(1− x)(1− 2x+
√

1− 4x)(v2 − v + x)
.

For the second step, we take the equation of D(x, v) at limit v = v0, which leads to

D(x, 0) =
(1− 2x)

√
1− 4x− (1− x)(1− 4x)

(1− 4x)(1− x)
.

Then by setting this into the same equation of D(x, v), we obtain

D(x, v) = (v−1)(4v2x2−6v2x−8vx2+4x3+v2+7vx−2x2−v)
2
√
1−4x(1−x)(v2−v+x)2 + (v−1+x)(2v2x−v2−4vx+2x2+v)

2(1−x)(v2−v+x)2

Similarly, we solve other cases. Let v0 = x, for C(x, v) with v = v0, we first obtain C(x, 0) and
then obtain an explicit formula for C(x, v). The case of B(x, v) and A(x, v) follow with the same
v = v0. Hence we obtain

A(x, 0) =
x

1− x
+

x

1− x
B(x, x),

which leads to that the generating function A(x, 0) is given by

(1− 2x)(2x2 − 4x+ 1)

2x2(1− x)
√

1− 4x
− (2x2 − 2x+ 1)(2x6 − 12x5 + 25x4 − 34x3 + 24x2 − 8x+ 1)

2x2(1− x)5(1− 2x)
.

Clearly, A(x, 0) = A1(x) is the generating function for the number of inversion sequences in
In(B).
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An explicit formula for the enumerating sequence {|In({021, 1002})|}n≥1 follows from the generating
function:

1

2

(
2n+ 4

n+ 2

)
− 5

2

(
2n+ 2

n+ 1

)
+

5

2

(
2n

n

)
+

1

2

n−1∑
j=0

(
2j

j

)
+ 2n − 1

24
(n4 − 2n3 + 11n2 + 14n+ 12).

All other cases are based on similar techniques as described above. For some {021, τ}-avoiding in-
version sequence classes, we observe that finding the root of the kernel requires the solution of a third or
fourth-order polynomial. We will provide the details of the proofs of such cases in the following sections.

3 Four letter patterns
In this section, we consider the set of inversion sequences of length n that avoid both 021 and τ , where τ
is any pattern of length four that avoids 021. We summarize our results in Table 1; the results follow from
the procedure discussed in the previous section (for the Maple file which includes all the computations,
we refer the reader to Mansour (2022b)). We obtain exact formulas for the generating functions

F{021,τ}(x) =
∑
n≥0

|In({021, τ})|xn+1.

Most of them are algebraic of degree at most 6 and only involve the square root of 1 − 4x. We will
give all the details of the above procedure for five cases to show how we find analytic expressions for the
generating functions. In Corollary 3.9, we summarize the exact enumerating formulas for all pattern cases
except the ones whose generating functions don’t lead to a nice closed formula.

Tab. 1: Succession rules for the generating trees T ′(B) and generating functions FB(x) for pattern
setB = {021, τ}, where τ is any pattern of length four that avoids 021.

Beginning of Table 1
No. τ d Rules of T ′({021, τ) F{021,τ}(x)
1 0000 6 Theorem 3.11 Theorem 3.11
2 0001 2 a0  b0c1, b0  ea1f , e e, f  egf , g  eha1f

h eh, i hi, am  e3bmamam−1 · · · a1f
bm  e3ham+1am · · · a1f , cm  amdmcmcm−1 · · · c1,
dm  ibmcm+1cm · · · c1
am = 0212 · · · (m− 1)2m, bm = amm

cm = 01222 · · · (m− 1)2m, dm = cmm
9x5−6x4−x3+5x2−4x+1

2x2(1+x)(1−x)3
√

1−2x−3x2

e = 000, f = 002, g = 0022, h = 00111, i = 0111 + 2x6−6x5+x4+3x3−4x2+3x−1

2x2(1+x)(1−x)3
3 0010 2 a1  a2b1, am  am+1am · · · a2c

bm  am+2bm+1bm · · · b1, c a2c
am = 0m, bm = 01m, c = 002 x√

1−4x

4 0011 2 a1  a2b1, b1  a3b2b1, am  am+1am · · · a2c
bm  am+2bm+1amam−1 · · · a2c, c a2c

2x3+2x2−4x+1

2x2(1−x)

am = 0m, bm = 01m, c = 002 − (1−2x)
√

1−4x

2x2(1−x)
5 0012 2 a1  a2b1, b1  a3b2b1, am  am+1c

m

bm  am+2bm+1c
m, c c2

am = 0m, bm = 01m, c = 001
x(2x4−5x3+8x2−4x+1)

(1−x)4(1−2x)

6 0100 3 am  am+1bmbm−1 · · · b1, bm  cmbm+1bm · · · b1
cm  cm+1cm · · · c1d, d c1d
am = 0m, bm = am1, cm = bm0, d = 0103

0110 3 am  am+1bmbm−1 · · · b1, bm  cmbm+1bm · · · b1
cm  cm+1cm · · · c1d, d c1d

am = 0m, bm = am1, cm = bm1, d = 0113
(1−3x)2

2x2
√

1−4x
− (1−3x)(1−x)

2x2
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Continuation of Table 1
No. τ d Rules of T ′({021, τ) F{021,τ}(x)
7 0101 2

0111 2 am  am+1bmbm−1 · · · b1, bm  am+1bm+1bm · · · b1
am = 0m, bm = am1 Theorem 3.2

8 0102 3 am  am+1bmbm−1 · · · b1, bm  dbm+1cmcm−1 · · · c1
cm  ecm+1cm · · · c1 4x6−12x5+24x4−27x3+19x2−7x+1

2x(1−2x)(1−x)4

am = 0m, bm = am1, cm = bm2, d = 010, e = 0120 −
√

1−4x
2x(1−x)

9 0112 2 am  am+1bmbm−1 · · · b1, bm  cbm+1bm · · · b1,
c c2

am = 0m, bm = am1, c = 011
1−4x+5x2−4x3−(1−x)2

√
1−4x

2x(1−2x)(1−x)
10 0120 3

0122 3 am  am+1b1 · · · bm, bm  b2m+1c1 · · · cm
cm  c1 · · · cm+1

am = 0m, bm = am1, cm = bm2 1−2x
2(1−x) (

1√
1−4x

− 1)

11 0123 2 am  am+1bmbm−1 · · · b1, bm  b2m+1c
m, c c2

am = 0m, bm = am1, c = 012
x(1−7x+21x2−30x3+22x4−8x5)

(1−x)3(1−2x)3

12 1000 4 am  am+1b1 · · · bm, bm  b1 · · · bm+1cm
cm  c1 · · · cm+1dme, dm  d1 · · · dm+1fg
e efc1, f  d1fg, g  fg
am = 0m, bm = am1, cm = bm0, dm = cm0
e = 0103, f = 01003, g = 01004

1100 4 am  am+1b1 · · · bm, bm  b1 · · · bm+1cm
cm  c1 · · · cm+1dme, dm  d1 · · · dm+1fg
e efc1, f  d1fg, g  fg

am = 0m, bm = am1, cm = bm1, dm = cm0
(1−x)(1−2x)2

2x3

e = 0113, f = 01103, g = 01104 + 2x5−56x4+78x3−44x2+11x−1

2x3
√

1−4x3

13 1001 3
1011 3 am  am+1b1 · · · bm, bm  cmb1 · · · bm+1

cm  am+2b1 · · · bm+1cm+1

am = 0m, bm = am1, cm = bm0
1101 3 am  am+1b1 · · · bm, bm  cmb1 · · · bm+1

cm  am+2b1 · · · bm+1cm+1

am = 0m, bm = am1, cm = bm1 Theorem 3.1
14 1002 5 am  am+1bmbm−1 · · · b1,

bm  cmbm+1dmdm−1 · · · d1
cm  fcm+1emem−1 · · · e1g, dm  emdm+1dm · · · d1
em  hem+1em · · · e1g, f  f2

g  he1g, h h

am = 0m, bm = am1, cm = bm0
(1−2x)(2x2−4x+1)

2x2(1−x)
√

1−4x

dm = am12, em = am102, f = 0100 − x
2(2x2−2x+1)(2x2−12x+25)

2(1−x)5(1−2x)

g = 0103, h = 01020 +
(2x2−2x+1)(34x3−24x2+8x−1)

2x2(1−x)5(1−2x)

15 1010 4 am  am+1b1 · · · bm, bm  cmb1 · · · bm+1
cm  cm+1dmb1 · · · bm+1, dm  d1 · · · dm+1ef
e d1ef , f  ef
am = 0m, bm = am1, cm = bm0, dm = cm1
e = 01013, f = 01014

1110 4 am  am+1b1 · · · bm, bm  cmb1 · · · bm+1
cm  cm+1dmb1 · · · bm+1, dm  d1 · · · dm+1ef
e d1ef , f  ef
am = 0m, bm = am1, cm = bm1, dm = cm1
e = 01113, f = 01114 Theorem 3.3

20 1012 3 am  am+1bmbm−1 · · · b1, bm  cmbm+1bm · · · b1
cm  dcm+1bm+1bm · · · b1, d d2

am = 0m, bm = am1, cm = bm0, d = 0101 Theorem 3.5
21 1020 5

1022 5 am  am+1b1 · · · bm, bm  cmbm+1d1 · · · dm
cm  c2m+1e1 · · · em−1fg, dm  emd1 · · · dm+1

em  e1 · · · em+1fg, f  fg, g  e1fg

am = 0m, bm = am1, cm = bm0, dm = bm2 2−15x+34x2−22x3

2x3(1−x)
√

1−4x

em = dm0, f = 0103, g = 0102 + 2x4+4x3−16x2+11x−2

2x3(1−x)
23 1023 5 am  am+1bmbm−1 · · · b1,

bm  cmbm+1dmdm−1 · · · d1
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Continuation of Table 1
No. τ d Rules of T ′({021, τ) F{021,τ}(x)

cm  c2m+1f
m+1, dm  emdm+1dm · · · d1

em  em+1f
m+2, f  f2

am = 0m, bm = am1, cm = bm0, dm = am12 − (2x2−2x+1)
√

1−4x

2x(1−x)2(1−2x)

em = dm0, f = 0102 − 16x9−76x8+212x7−342x6

2x(1−x)5(1−2x)3

e = 0110, f = 0113, g = 01120 − 374x5−286x4+151x3−53x2+11x−1

2x(1−x)5(1−2x)3

26 1102 4 am  am+1bmbm−1 · · · b1, bm  bm+1bm · · · b1cm
cm  ecm+1dmdm−1 · · · d1f , dm  gdm+1dm · · · d1f
e e2, f  gd1f , g  g

am = 0m, bm = am1, cm = bm1, dm = cm2 −4x5+31x4−46x3+30x2−9x+1

2x2(1−x)2(1−2x)
√

1−4x

e = 0110, f = 0113, g = 01120 − 4x6−15x5+35x4−40x3+25x2−8x+1

2x2(1−x)3(1−2x)

28 1120 4 am  am+1bmbm−1 · · · b1, bm  bm+1bm · · · b1cm
cm  c2m+1dmdm−1 · · · d1, dm  dm+1dm · · · d1e,
e d1e

am = 0m, bm = am1, cm = bm1, dm = cm2, e = 0113
(3x−1)

√
1−4x+5x2−5x+1
x(1−4x)

29 1200 4 am  am+1b1 · · · bm, bm  b2m+1c1 · · · cm
cm  dmc1 · · · cm+1, dm  d1 · · · dm+1e, e d1e
am = 0m, bm = am1, cm = bm2, dm = cm0, e = 01204

1220 4 am  am+1b1 · · · bm, bm  b2m+1c1 · · · cm
cm  dmc1 · · · cm+1, dm  d1 · · · dm+1e, e d1e

am = 0m, bm = am1, cm = bm2, dm = cm2, e = 01224 22x3−29x2+10x−1

2x(1−x)
√

1−4x3
+

(1−5x)(1−2x)
2x(1−4x)

30 1202 4 am  am+1bmbm−1 · · · b1, bm  b2m+1cmcm−1 · · · c1
cm  dmcm+1cm · · · c1, dm  dm+1dm · · · d1
am = 0m, bm = am1, cm = bm2, dm = cm0 Theorem 3.7

31 1203 4 am  am+1bmbm−1 · · · b1, bm  b2m+1cmcm−1 · · · c1
cm  cm+1dmdm−1 · · · d1e, dm  dm+1dm · · · d1f
e e2, f  f

(1−2x)

2(1−x)2
√

1−4x

am = 0m, bm = am1, cm = bm2, dm = cm4 − 16x8−76x7+188x6−270x5

2(1−x)5(1−2x)3

e = 0120, f = 01230 − 246x4−145x3+53x2−11x+1

2(1−x)5(1−2x)3

32 1220 4 am  am+1bmbm−1 · · · b1, bm  b2m+1cmcm−1 · · · c1
cm  dmcm+1cm · · · c1, dm  dm+1dm · · · d1e,
e d1e

am = 0m, bm = am1, cm = bm2, dm = cm2, e = 01224
(1−2x)(1−5x)

2x(1−4x)
+ 22x3−29x2+10x−1

2x(1−x)
√

1−4x 3

33 1230 4 am  am+1bmbm−1 · · · b1, bm  b2m+1cmcm−1 · · · c1
cm  c2m+1dmdm−1 · · · d1, dm  dm+1dm · · · d1
am = 0m, bm = am1, cm = bm2, dm = cm3

x(3−16x+26x2−16x3−(1−2x+2x2)
√

1−4x)

2(1−x)2(1−2x)(1−4x)

End of Table 1

Theorem 3.1 Let B ∈ {{021, 1001}, {021, 1011}, {021, 1101}}. Then, the generating function FB(x)
satisfies FB(x) = x(1 + FB(x))2(1 + F 2

B(x)). Moreover, for all n ≥ 1,

|In(B)| = 1

n+ 1

bn2 c∑
j=0

(
n+ 1

j

)(
2n+ 2

n− 2j

)
.

Proof: By the generating tree succession rules for T ′({021, 1001}), T ′({021, 1011}), and T ′({021, 1101})
in Table 1, it follows that for all x,

F{021,1001}(x) = F{021,1011}(x) = F{021,1101}(x).

Define Am(x), Bm(x), and Cm(x) to be the generating functions for the number of nodes at level n in
T ′({021, 1001}; am), T ′({021, 1001}; bm), and T ′({021, 1001}; cm), respectively, where its root stays
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at level 0. Then

Am(x) = x+ xAm+1(x) + xB1(x) + · · ·+ xBm(x),
Bm(x) = x+ xCm(x) + xB1(x) + · · ·+ xBm+1(x),
Cm(x) = x+ xAm+2(x) + xB1(x) + · · ·+ xBm+1(x) + xCm+1(x).

Define G(x, v) =
∑
n≥1Gm(x)vm−1 for all G ∈ {A,B,C}. Then the above recurrences can be written

as
A(x, v) = x

1−v + x
v (A(x, v)−A1(x)) + x

1−vB(x, v),

B(x, v) = x
1−v + xC(x, v) + x

1−vB(x, v) + x
v (B(x, v)−B1(x)),

C(x, v) = x
1−v + x

v2 (A(x, v)−A1(x)− vA2(x)) + x
1−vB(x, v)

+x
v (B(x, v) + C(x, v)−B1(x)− C1(x)).

By findingA(x, v) from the first equation andC(x, v) from the second equation, we obtain that the second
equation can be written as

v4−2v3x+2v2x2+(x−v)3
vx2(1−v)(x−v) B(x, v)

= v
x−vA1(x) + x−v−vx

vx B1(x)− (A2(x) + C1(x)) + (vx+v−x)(v−x)+x2

x(1−v)(v−x) .

Let v1, v2, v3, v4 be the four roots of K(v) = v4−2v3x+ 2v2x2 + (x− v)3 = 0 as functions of x, where
(here i2 = −1)

v1 = x+ x
4
3 + 2

3x
5
3 + 2

3x
2 + 82

81x
7
3 + 349

243x
8
3 + · · · ,

v2 = x− 1+
√
3i

2 x
4
3 − 1−

√
3i

3 x
5
3 + 2

3x
2 − 41(1+

√
3i)

81 x
7
3 − 349(1−

√
3i)

486 x
8
3 + 2x3 + · · · ,

v3 = x− 1−
√
3i

2 x
4
3 − 1+

√
3i

3 x
5
3 + 2

3x
2 − 41(1−

√
3i)

81 x
7
3 − 349(1+

√
3i)

486 x
8
3 + 2x3 + · · · ,

v4 = 1− x− 2x2 − 6x3 − 21x4 − 82x5 − · · · .

By taking v = vj , j = 1, 2, 3, we obtain

vj
x− vj

A1(x) +
x− vj − vjx

xvj
B1(x)− (A2(x) + C1(x)) +

(vjx+ vj − x)(vj − x) + x2

x(1− vj)(vj − x)
= 0.

Solving this system for A1(x), B1(x), and A2(x) + C1(x), we obtain

A1 =
v1v2v3(1 + x2) + (v1 + v2 + v3)(1− x)x2 + x4 − (v1v2 + v1v3 + v2v3)x

x2(1− v1)(1− v2)(1− v3)
.

Note that v1+v2+v3+v4 = 1+2x, v1v2v3v4 = x3, and v4(v1+v2+v3)+v3(v1+v2)+v2v1 = x(3+2x).
Thus, v3(v1 + v2) + v2v1 = x(3 + 2x) − v4(1 + 2x − v4). Hence, the generating function A1 can be
written as

A1 =
x2(x2 + 1)− x(x2 + x+ 2)v4 + (x2 + x+ 1)v24 − v34

x(v34 − 2xv24 + (2x2 + x)v4 − x3)
.

By using a computer programming, we can express v4 in terms of A1. Given that K(v4) = 0, we find that
the generating function A1 satisfies A1 = x(1 + A1)2(1 + A2

1). By the Lagrange inversion formula, we
complete the proof. 2

From Table 1, we see that the patterns 0101 and 0111 when paired with 021 have the same generating
trees. Our next result enumerates these pattern pairs.
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Theorem 3.2 The generating functions F{021,0101}(x) and F{021,0111}(x) are given by f(x), where
f(x) = x(1+f(x))

1−x(1+f(x))2 . Moreover, for all n ≥ 1,

|In({021, 0101})| = |In({021, 0111})| =
n+1∑
i=1

1

i

(
n

i− 1

)(
2n+ 2− i
i− 1

)
.

Proof: By the generating tree succession rules for T ′({021, 0101}) and T ′({021, 0111}) in Table 1, we
have

F{021,0101}(x) = F{021,0111}(x).

By translating the rules of the generating tree T ′({021, 0101}) to generating function, we obtain

A(x, v) = x
1−v + x

v (A(x, v)−A(x, 0)) + x
1−vB(x, v),

B(x, v) = x
1−v + x

v (A(x, v)−A(x, 0)) + x
v (B(x, v)−B(x, 0)) + x

1−vB(x, v).

Finding A(x, v) from the first equation and substituting it into the second equation, we obtain

B(x, v) = x
1−v + x

v

(
x(vA(x,0)+vB(x,v)−A(x,0)+v)

(1−v)(v−x) −A(x, 0)
)

+x
v (B(x, v)−B(x, 0)) + x

1−vB(x, v).

The kernel of this equation is given by K(v) = v3−(1+x)v2+x(x+2)v−x2

(1−v)(v−x)v . The equation K(v) has three
roots, that is, K(vj) = 0 for j = 1, 2, 3, where

vj =
2
√

1− 4x− 2x2

3
cos

(
1

3
arccos

(
2− 12x+ 6x2 − 7x3

2
√

1− 4x− 2x2
3

)
+

(2j + 1)π

3

)
+
x+ 1

3
.

By taking either v = v1 or v = v2 into the equation, we get a system of equations. Solving this system
for A(x, 0) and B(x, 0), we obtain

A(x, 0) =
(x+ 1)v1v2 − x(v1 + v2)x

x(1− v1)(1− v2)
.

Note that v1 + v2 + v3 = 1 + x and v1v2v3 = x2, we have

A(x, 0) =
v23 − (1 + x)v3 + x(1 + x)

v23 − xv3 + x2
.

Since K(v3) = 0, we have that A(x, 0) satisfies the equation

A(x, 0) =
x(1 +A(x, 0))

1− x(1 +A(x, 0))2
.

By the Lagrange inversion formula, we obtain

A(x, 0) =
∑
i≥1

∑
j≥0

1

i

(
i− 1 + j

i− 1

)(
i+ 2j

i− 1

)
xi+j ,

which, by comparing coefficient of xn, we complete the proof. 2
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Theorem 3.3 Let B ∈ {{021, 1010}, {021, 1110}}. Then,

FB(x) =
x

1− x

(
1 +

P (x)

Q(x)

)
with
P (x) = x(1−x)((x−1)

√
1− 4x−3x+1)+((1−x)2

√
1− 4x−x2+4x−1)v3−x(

√
1− 4x+1)v23 ,

Q(x) = x2(x− 1)(
√

1− 4x− 2x+ 1)− 2x((x− 1)
√

1− 4x− x2 + 3x− 1)v3 − (1− 4x+ 2x2 +
(1− 2x)

√
1− 4x)v23 ,

where v3 is defined in (2).

Proof: By the generating tree succession rules for T ′({021, 1010}) and T ′({021, 1110}) in Table 1, we
have

F{021,1010}(x) = F{021,1110}(x).

Define Am(x), Bm(x), Cm(x), E(x), and F (x) to be the generating functions for the number of nodes at
level n ≥ 0 in T ′({021, 1010}; am), T ′({021, 1010}; bm), T ′({021, 1010}; cm), T ′({021, 1010}; dm),
T ′({021, 1010}; e), and T ′({021, 1010}; f), respectively, where its root stays at level 0. Then

Am(x) = x+ xAm+1(x) + xB1(x) + · · ·+ xBm(x),
Bm(x) = x+ xCm(x) + xB1(x) + · · ·+ xBm+1(x),
Cm(x) = x+ xCm+1(x) + xDm(x) + xB1(x) + · · ·+ xBm+1(x),
Dm(x) = x+ xD1(x) + · · ·+ xDm+1(x) + xE(x) + xF (x),
E(x) = x+ xD1(x) + xE(x) + xF (x),
F (x) = x+ xE(x) + xF (x).

Define G(x, v) =
∑
n≥1Gm(x)vm−1 for all G ∈ {A,B,C,D}. Then the above recurrence can be

written as

A(x, v) = x
1−v + x

v (A(x, v)−A1(x)) + x
1−vB(x, v),

B(x, v) = x
1−v + xC(x, v) + x

1−vB(x, v) + x
v (B(x, v)−B1(x)),

C(x, v) = x
1−v + x

v (C(x, v)− C1(x)) + xD(x, v) + x
1−vB(x, v) + x

v (B(x, v)−B1(x)),

D(x, v) = x
1−v + x

v (D(x, v)−D1(x)) + x
1−vD(x, v) + x

1−v (E(x) + F (x)),

E(x) = x+ xD1(x) + xE(x) + xF (x),
F (x) = x+ xE(x) + xF (x).

By taking v = 1−
√
1−4x
2 , the last three equations lead to

D1(x) = (2x−1)
√
1−4x+2x2−4x+1

2x3 ,

E(x) = (x−1)
√
1−4x−3x+1
2x2 ,

F (x) = 1−2x−
√
1−4x

2x .

By finding C(x, v) from the third equation, then substituting it into the second equation, we obtain

v3−(vx+v−x)(v−x)
v(1−v)(x−v) B(x, v)

= x(vx+v−x)
v(v−x) B1(x) + x2

x−vC1(x)− (vx−v−2x+1)v
√
1−4x

2(v−x)(v2−v+x)

+ (2v3x2−v3x−6v2x2+2vx3+v3+5v2x+6vx2−2x3−2v2−4vx+v)
2(v2−v+x)(1−v)(v−x) .
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Let v1, v2, v3 be the four roots of v3 − (vx+ v − x)(v − x) = 0 as functions of x,

vj =
2
√

1− 4x− 2x2

3
cos

(
1

3
arccos

(
2− 12x+ 6x2 − 7x3

2
√

1− 4x− 2x2
3

)
+

(2j + 1)π

3

)
+
x+ 1

3
. (2)

By taking v = vj , j = 1, 2, we obtain

x(vjx+vj−x)
vj(vj−x) B1(x) + x2

x−vjC1(x)− (vjx−vj−2x+1)vj
√
1−4x

2(vj−x)(v2j−vj+x)

+
(2v3jx

2−v3jx−6v
2
jx

2+2vjx
3+v3j+5v2jx+6vjx

2−2x3−2v2j−4vjx+vj)
2(v2j−vj+x)(1−vj)(vj−x)

= 0.

Solving this system for B1(x) and C1(x), we have explicit formulas for B1(x) and C1(x):

B1(x) =

x(2x2(x2 − 2x+ 2) + x(x− 2)(
√
1− 4x− 2x+ 3)v3

−(x− 1)(
√
1− 4x− 2x+ 3)v23)(2x− 3 +

√
1− 4x)

2(x2 − 2x+ 2)(x2(x− 1)(
√
1− 4x− 2x+ 1)

−2x((x− 1)
√
1− 4x− x2 + 3x− 1)v3 + (4x− 2x2 − 1 + (2x− 1)

√
1− 4x)v23)

,

C1(x) =
x((1+x)

√
1−4x+x−1−x(

√
1−4x+1)v3+(

√
1−4x+1)v2

3)

x2(1− x)(
√
1− 4x− 2x+ 1) + 2x((x− 1)

√
1− 4x− x2 + 3x− 1)v3
+(1− 4x+ 2x2 + (1− 2x)

√
1− 4x)v23

.

Hence, by the equation of B(x, v), we obtain an explicit formula for B(x, v). In particular, we have
B(x, x) = R(x). Therefore, by equation of A(x, v) with v = x, we have that A1(x) = x

1−x +
x

1−xB(x, x), which completes the proof. 2

Remark 3.4 By the proof of Theorem 3.3 and using that v = v3 is a root of v3−(vx+v−x)(v−x) = 0,
we get that f = F{021,1010}(x) satisfies

x(x6 − 6x5 + 19x4 − 32x3 + 27x2 − 9x+ 1)
+(x− 1)(6x6 − 28x5 + 58x4 − 57x3 + 35x2 − 10x+ 1)f
+x(15x6 − 76x5 + 159x4 − 170x3 + 94x2 − 23x+ 2)f2

+x(20x6 − 84x5 + 139x4 − 117x3 + 50x2 − 11x+ 1)f3 + x3(15x4 − 46x3 + 50x2 − 21x+ 3)f4

+x5(6x2 − 10x+ 3)f5 + x7f6 = 0.

Theorem 3.5 The generating function F{021,1012}(x) is given by

− ((3x2 − 3x+ 1)v23 + (−2x3 + 2x− 1)v3 + 2x4 − 2x2 + x)

(1− x)(1− 2x)(v23 − v3x+ x2)
,

where v3 = 2
√
1−4x−2x2

3 cos
(

1
3 arccos

(
2−12x+6x2−7x3

2
√
1−4x−2x2 3

)
+ π

3

)
+ x+1

3 = 1− x− 2x2 − · · · is a root of

v3 − (1 + x)v2 + x(2 + x)v − x2 = 0.

Proof: By translating the rules of the generating tree T ′({021, 1012}) in Table 1 to generating functions,
we have

A(x, v) = x
1−v + x

v (A(x, v)−A(x, 0)) + x
1−vB(x, v),

B(x, v) = x
1−v + xC(x, v) + x

v (B(x, v)−B(x, 0)) + x
1−vB(x, v),

C(x, v) = x
1−v + x

v (C(x, v)− C(x, 0)) + x
1−vD(x) + x

v (B(x, v)−B(x, 0)) + x
1−vB(x, v),

D(x) = x
1−2x .
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FindingC(x, v) from the third equation and substituting its expression into the second equation, we obtain

B(x, v) = x
1−v + x2

(1− xv )(1−v)

(
1 + x

1−2x + 1−v
v (B(x, v)−B(x, 0)− C(x, 0)) +B(x, v)

)
+x
v (B(x, v)−B(x, 0)) + x

1−vB(x, v),

The kernel of this equation is given by K(v) = v3−(1+x)v2+x(2+x)v−x2

(1−v)(v−x)v . The equation K(v) = 0 has
three roots, that is, K(vj) = 0 for j = 1, 2, 3, where

vj =
2
√

1− 4x− 2x2

3
cos

(
1

3
arccos

(
2− 12x+ 6x2 − 7x3

2
√

1− 4x− 2x2
3

)
+

(2j + 1)π

3

)
+
x+ 1

3
.

By taking either v = v1 or v = v2 into the equation, we get a system of equations. Solving this system
for B(x, 0) and C(x, 0), we obtain

B(x, 0) = (x−1)2v1v2
x(1−2x)(1−v1)(1−v2) ,

C(x, 0) = (2x2−1)v1v2+x(1−x−x2)(v1+v2)+2x3−x2

x2(1−2x)(1−v1)(1−v2) .

Note that v1 + v2 + v3 = 1 + x and v1v2v3 = x2, we have

A(x, 0) = − ((3x2 − 3x+ 1)v23 + (−2x3 + 2x− 1)v3 + 2x4 − 2x2 + x)

(1− x)(1− 2x)(v23 − v3x+ x2)
,

as claimed. 2

Remark 3.6 By the proof of Theorem 3.5 and using that v = v3 is a root of v3−v2x+vx2−v2 + 2vx−
x2 = 0, we get that f = F{021,1012}(x) satisfies

x(2x2 − 2x+ 1)(x6 − 2x5 + 13x4 − 24x3 + 19x2 − 7x+ 1)
+(1− 2x)(1− x)(x7 − x6 + 24x5 − 51x4 + 50x3 − 27x2 + 8x− 1)f
+x(x3 + 6x2 − 6x+ 2)(1− 2x)2(1− x)2f2 + x(1− 2x)3(1− x)3f3 = 0.

Theorem 3.7 The generating function F{021,1202}(x) is given by

x(2(1− 3x)v23 − (1− 6x2)v3 + x(1 + x)(1− 3x))

(1− x)(1− 6x)(v23 − xv3 + x2)
,

where v3 = 2
√
1−4x−2x2

3 cos
(

1
3 arccos

(
2−12x+6x2−7x3

2
√
1−4x−2x2 3

)
+ π

3

)
+ x+1

3 = 1− x− 2x2 − · · · is a root of

v3 − (1 + x)v2 + x(x+ 2)v − x2 = 0.

Proof: By translating the rules of the generating tree T ′({021, 1202}) in Table 1 to generating functions,
we have

A(x, v) = x
1−v + x

v (A(x, v)−A(x, 0)) + x
1−vB(x, v),

B(x, v) = x
1−v + x

1−vC(x, v) + 2x
v (B(x, v)−B(x, 0)),

C(x, v) = x
1−v + x

v (C(x, v)− C(x, 0)) + x
1−vC(x, v) + xD(x, v),

D(x, v) = x
1−v + x

1−vC(x, v) + x
v (C(x, v) +D(x, v)− C(x, 0)−D(x, 0)).
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FindingD(x, v) from the fourth equation and substituting its expression into the third equation, we obtain

C(x, v) = x
1−v (1 + C(x, v)) + x2

(1−v)(v−x) ((v − 1)(C(x, 0) +D(x, 0)) + C(x, v) + v)

+x
v (C(x, v)− C(x, 0)).

The kernel of this equation is given by K(v) = v3−(1+x)v2x+x(2+x)v−x2

(1−v)(v−x)v . The equation K(v) = 0 has
three roots, namely, K(vj) = 0 for j = 1, 2, 3, where

vj =
2
√

1− 4x− 2x2

3
cos

(
1

3
arccos

(
2− 12x+ 6x2 − 7x3

2
√

1− 4x− 2x2
3

)
+

(2j + 1)π

3

)
+
x+ 1

3
.

By taking either v = v1 or v = v2 into the equation, we get a system of equations. Solving this system
for B(x, 0) and C(x, 0), we obtain

C(x, 0) = v1v2
x(1−v1)(1−v2) ,

D(x, 0) = − ((1+x)v1−x)((1+x)v2−x)
x2(1−v1)(1−v2) .

Thus, by expressions of C(x, 0) and D(x, 0), we have explicit formulas for C(x, v) and D(x, v).
Hence, by considering the equation of B(x, v) with v = 2x, we obtain

B(x, 0) =
(1 + 3x)v1v2 − 3x(v1 + v2) + x

(1− 6x)(1− v1)(1− v2)
,

which, by using this expression and C(x, v), we obtain an explicit formula for B(x, v).
By considering the equation of A(x, v) with v = x, we obtain

A(x, 0) = x
1−x + x

1−xB(x, x)

= (1−2x−6x2)v1v2−2x(1−3x)(v1+v2)+x(1−4x)
(1−x)(1−6x)(1−v1)(1−v2) .

Note that v1 + v2 + v3 = 1 + x and v1v2v3 = x2, we have

A(x, 0) =
x(2(1− 3x)v23 − (1− 6x2)v3 − x(1 + x)(1− 3x))

(1− x)(1− 6x)(v23 − v3x+ x2)
,

as claimed. 2

Remark 3.8 By the proof of Theorem 3.7 and using that v3 is a root of

v3 − (vx+ v − x)(v − x) = 0,

we get that f = F{021,1202}(x) satisfies

x2(2x2 − 2x+ 1)− x(1− x)(8x2 − 3x+ 1)f + x(12x− 1)(1− x)2f2 + (1− 6x)(1− x)3f3 = 0.
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Before we study the pair of 021 and 0000 in Section3.1, we present the following corollary that states
explicit formulas for |In({021, τ)| where τ is any 021-avoiding four-letter pattern except three cases,
1110, 1012 and 1202. For these three patterns, we could not succeed to find explicit formulas. The
formulas follow from determining the coefficient of the term xn in the generating functions F{021,τ}(x),
where we omit the details.

Corollary 3.9 For all n ≥ 0,

|In({021, 0001})| = (4n−25)(−1)n
32 − n(n+1)−1

4 + 1
323n+4

+
∑n+1
j=0

(
(4j−39)(−1)j

32 + 1
4j

2 − j + 1
2 −

1
323j+2

)
Mn+1−j ,

|In({021, 0010})| =
(
2n
n

)
,

|In({021, 0011})| = Cn+2 + 1−
∑n+1
j=0 Cj ,

|In({021, 0012})| = 2n+3 − (n+1)(2n2+7n+24)
6 − 3,

|In({021, 0100})| = |In({021, 0110})| = n2+n+6
8(2n+3)(2n+5)

(
2n+6
n+3

)
,

|In({021, 0101})| = |In({021, 0111})| =
∑n+1
j=1

1
j

(
n
j−1
)(

2n+2−j
j−1

)
,

|In({021, 0102})| = 2n+1 − (n+1)(n2+2n+12)
6 − 1 +

∑n+1
j=0 Cj ,

|In({021, 0112})| = Cn+1 − 2n+1 + 1 +
∑n
j=0 2n−jCj ,

|In({021, 0120})| = |In({021, 0122})| = 1
2

(
2n+2
n+1

)
− 1

2

∑n
j=1

(
2j
j

)
,

|In({021, 0123})| = 2n−1(n2 − 3n+ 4) + n(n+1)
2 − 1,

|In({021, 1000})| = |In({021, 1100})|
= n5+2n4+23n3+46n2+120n+48

2(n+1)(n+2)(n+3)(n+4)

(
2n
n

)
,

|In({021, 1001})| = |In({021, 1011})| = |In({021, 1101})|
= 1

n+1

∑bn2 c
j=0

(
n+1
j

)(
2n+2
n−2j

)
,

|In({021, 1002})| = 1
2

(
2n+6
n+3

)
− 5

2

(
2n+4
n+2

)
+ 5

2

(
2n+2
n+1

)
+ 1

2

∑n
j=0

(
2j
j

)
+2n+1 − 1

24 (n4 + 2n3 + 11n2 + 34n+ 36),
|In({021, 1020})| = |In({021, 1022})|

=
(
2n+8
n+4

)
− 13

2

(
2n+6
n+3

)
+ 21

2

(
2n+4
n+2

)
− 1

2

∑n+1
j=0

(
2j
j

)
− 1

2 ,

|In({021, 1023})| =
∑n+1
j=0 (2j+1 − j − 1)Cn+1−j

+n(3n3+22n2+129n+398)
24 + 2n−1(n2 − 3n− 52) + 24,

|In({021, 1102})| = 1
2

(
2n+6
n+3

)
− 21

4

(
2n+4
n+2

)
+
(
2n+2
n+1

)
+ (n+1)2

2 − 2n + 1

+ 1
2

∑n+3
j=1 (2j−2 − 3j + 8)

(
2n+6−2j
n+3−j

)
|In({021, 1120})| = 4n − n

2(2n+3)

(
2n+4
n+2

)
,

|In({021, 1200})| = |In({021, 1220})|
= n+4

2(n+2)

(
2n+2
n+1

)
+
∑n−1
j=0 (2j + 1)

(
2j
j

)
− 4n,

|In({021, 1203})| = n+1
24 (n3 + n2 − 2n− 108) + 2n−1(n2 − 11n+ 28)− 19

2

+ 1
2

(
2n+2
n+1

)
− 1

2

∑n+1
j=2 (j − 1)

(
2n+2−2j
n+1−j

)
,

|In({021, 1220})| = n+4
2(n+2)

(
2n+2
n+1

)
− 4n +

∑n−1
j=0 (2j + 1)

(
2j
j

)
,

|In({021, 1230})| = 1
3 (2 · 4n + 1) +

∑n
j=1( j2 − 2j−1)

(
2n+2−2j
n+1−j

)
.

Remark 3.10 The first ten terms of the counting sequences of In({021, 0010}), In({021, 0011}),
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In({021, 0101}), In({021, 0120}), In({021, 0123}), In({021, 1120}) match with A000984, A279557,
A106228, A279561, A116757, A319028 in OEIS, respectively.

3.1 Case B={021,0000}
In this section, we study the pair of patterns 021 and 0000. The generating tree T ′({021, 0000}) has a
long list of succession rules and the solution to the equations for the generating functions requires some
technical steps. By applying our algorithm, we found that the generating tree T ′({021, 0000}) has the
following set of rules. The root has the label 0 and the succession rules are the following:

0 02, 01, 02  03, 021, 022,
01 021, 012, 01, 03  031, 032, 033,
021 031, 0212, 021, 022, 022 032, 0222, 022,
012  0212, 013, a121(2), 01, 031 0312, 031, 032, 033,
032 0322, 032, 033, 033 0332, 033,
0212  0312, 0213, a221(2), 021, 022, 0222  0322, 0223, 021, 022,
013  0213, a131(2), a121(2), 01, 0312  0313, a321(2), 031, 032, 033,
0322  0323, 031, 032, 033, 0332  03, 032, 033,
0213  0313, a231(2), a221(2), 021, 022, 0223  0323, a221(2), 021, 022,
0313  a331(2), a321(2), 031, 032, 033, 0323  a321(2), 031, 032, 033

such that for all m ≥ 2,

a121(m) a221(m), a122(m), a121(m), · · · , a121(2), a131(m− 1), · · · , a131(2), 01,
a122(m) a222(m), a123(m), a131(m), · · · , a131(2), a121(m), · · · , a121(2), 01,
a123(m) a223(m), a121(m+ 1), · · · , a121(2), a131(m), · · · , a131(2), 01,
a131(m) a231(m), a132(m), a121(m), · · · , a121(2), a131(m), · · · , a131(2), 01,
a132(m) a232(m), a133(m), a121(m+ 1), · · · , a121(2), a131(m), · · · , a131(2), 01,
a133(m) a233(m), a121(m+ 1), · · · , a121(2), a131(m+ 1), · · · , a131(2), 01,
a221(m) a321(m), a222(m), a221(m), · · · , a221(2), a231(m− 1), · · · , a231(2), 021, 022,
a222(m) a322(m), a223(m), a221(m), · · · , a221(2), a231(m), · · · , a231(2), 021, 022,
a223(m) a323(m), a221(m+ 1), · · · , a221(2), a231(m), · · · , a231(2), 021, 022,
a231(m) a331(m), a232(m), a221(m), · · · , a221(2), a231(m), · · · , a231(2), 021, 022,
a232(m) a332(m), a233(m), a221(m+ 1), · · · , a221(2), a231(m), · · · , a231(2), 021, 022,
a233(m) a333(m), a221(m+ 1), · · · , a221(2), a231(m+ 1), · · · , a231(2), 021, 022,
a321(m) a322(m), a321(m), · · · , a321(2), a331(m− 1), · · · , a331(2), 031, 032, 033,
a322(m) a323(m), a321(m), · · · , a321(2), a331(m), · · · , a331(2), 031, 032, 033,
a323(m) a321(m+ 1), · · · , a321(2), a331(m), · · · , a331(2), 031, 032, 033,
a331(m) a332(m), a321(m), · · · , a321(2), a331(m), · · · , a331(2), 031, 032, 033,
a332(m) a333(m), a321(m+ 1), · · · , a321(2), a331(m), · · · , a331(2), 031, 032, 033,
a333(m) a331(m+ 1), a321(m+ 1), · · · , a321(2), a331(m), · · · , a331(2), 031, 032, 033.

where aijk(m) = 0i13 · · · (m− 2)3(m− 1)jmk for all m ≥ 2, 1 ≤ i, k ≤ 3 and j = 2, 3.
Define

Ar = Ar(x) =
∑
n≥0(number of nodes at level n in T ′(B; r))xn+1,

Aijk(v) = Aijk(x; v) =
∑
n≥0(number of nodes at level n in T ′(B; aijk(m)))xn+1vm−2.



18 Toufik Mansour, Gökhan Yıldırım

Then, by translating each rule of the generating tree T ′(B), we obtain the following sets of equations (we
group them into three sets of equations):
System S1:

A0 = x+ xA00 + xA01, A00 = x+ xA000 + xA001 + xA002,
A01 = x+ xA001 + xA011 + xA01, A000 = x+ xA0001 + xA0002 + xA0003,
A001 = x+ xA0001 + xA0011 + xA001 + xA002, A002 = x+ xA0002 + xA0022 + xA002,
A011 = x+ xA0011 + xA0111 + xA121(0) + xA01, A0001 = x+ xA00011 + xA0001 + xA0002 + xA0003,
A0002 = x+ xA00022 + xA0002 + xA0003, A0003 = x+ xA00033 + xA0003,
A0011 = x+ xA00011 + xA00111 + xA221(0) A0022 = x+ xA00022 + xA00222 + xA001 + xA002,

+xA001 + xA002,
A0111 = x+ xA00111 + x(A131(0) +A121(0)) + xA01, A00011 = x+ xA000111 + xA321(0) + xA0001

+xA0002 + xA0003,
A00022 = x+ xA000222 + xA0001 + xA0002 + xA0003, A00033 = x+ xA000 + xA0002 + xA0003,
A00111 = x+ xA000111 + x(A231(0) +A221(0)) A00222 = x+ xA000222 + xA221(0) + xA001

+xA001 + xA002, +xA002,
A000111 = x+ x(A331(0) +A321(0)) + xA0001 A000222 = x+ xA321(0) + xA0001 + xA0002

+xA0002 + xA0003, +xA0003,

System S2:

A121(v) = x
1−v

+ xA221(v) + xA122(v) +
x

1−v
(A121(v) + vA131(v) +A01),

A122(v) = x
1−v

+ xA222(v) + xA123(v) +
x

1−v
(A131(v) +A121(v) +A01),

A131(v) = x
1−v

+ xA231(v) + xA132(v) +
x

1−v
(A131(v) +A121(v) +A01),

A133(v) = x
1−v

+ xA233(v) +
x
v
(A131(v) +A121(v)−A131(0)−A121(0))

+ x
1−v

(A131(v) +A121(v) +A01),

A221(v) = x
1−v

+ xA321(v) + xA222(v) +
x

1−v
(A221(v) + vA231(v) +A001 +A002),

A222(v) = x
1−v

+ xA322(v) + xA223(v) +
x

1−v
(A231(v) +A221(v) +A001 +A002),

A231(v) = x
1−v

+ xA331(v) + xA232(v) +
x

1−v
(A231(v) +A221(v) +A001 +A002),

A233(v) = x
1−v

+ xA333(v) +
x
v
(A231(v) +A221(v)−A231(0)−A221(0))

+ x
1−v

(A231(v) +A221(v) +A001 +A002),

A321(v) = x
1−v

+ xA322(v) +
x

1−v
(A321(v) + vA331(v) +A0001 +A0002 +A0003),

A322(v) = x
1−v

+ xA323(v) +
x

1−v
(A331(v) +A321(v) +A0001 +A0002 +A0003),

A331(v) = x
1−v

+ xA332(v) +
x

1−v
(A331(v) +A321(v) +A0001 +A0002 +A0003),

A333(v) = x
1−v

+ x
v
(A331(v) +A321(v)−A331(0)−A321(0))

+ x
1−v

(A321(v) +A331(v) +A0001 +A0002 +A0003),

and
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System S3:

A123(v) =
x

1− v + xA223(v) +
x

v
(A121(v)−A121(0)) +

x

1− v (A121(v) +A131(v) +A01), (3)

A132(v) =
x

1− v + xA232(v) + xA133(v) +
x

1− vA121(v) +
x

v
(A121(v)−A121(0))

+
x

1− v (A131(v) +A01), (4)

A223(v) =
x

1− v + xA323(v) +
x

v
(A221(v)−A221(0)) +

x

1− v (A221(v) +A231(v) +A001 +A002),(5)

A232(v) =
x

1− v + xA332(v) + xA233(v) +
x

v
(A221(v)−A221(0))

+
x

1− v (A221(v) +A231(v) +A001 +A002), (6)

A323(v) =
x

1− v +
x

v
(A321(v)−A321(0)) +

x

1− v (A321(v) +A331(v) +A0001 +A0002 +A0003), (7)

A332(v) =
x

1− v + xA333(v) +
x

v
(A321(v)−A321(0))

+
x

1− v (A321(v) +A331(v) +A0001 +A0002 +A0003). (8)

In order to find the generating function A0 = F{021,0000}(x), we have to solve a system that is obtained
from S1-S2-S3. Since the expressions are too long to present here, we only describe the algorithm that
leads to an explicit formula for A0. For a Maple worksheet file for finding A0, we refer the reader to
Mansour (2022a).
Step 1: We use System S2 to find formulas for A121(v), A122(v), A131(v), A133(v), A221(v), A222(v),
A231(v), A233(v), A321(v), A322(v), A331(v), and A333(v) in terms of A123(v), A123(0), A132(v),
A132(0), A223(v), A223(0), A232(v), A232(0), A323(v), A323(0), A332(v), and A332(0). We denote
these set of expressions by E1.
Step 2: By substituting expressions of E1 into all equations of System S3, and then using Gauss elimina-
tion method with respect to the six variables A123(v), A132(v), A223(v), A232(v), A323(v), and A332(v),
we obtain System NS3.
Step 3: Define

K(v) = x6 + x3(x− 2)v + (1− 2x− x2)v2 − v3.
The equation A332(v) in System NS3 is given by

K(v)A332(v) = (v+2x−1)vx3

1−2x A323(0) + (−2x4+x3+v2+2vx−v)x3

1−2x A332(0)

+ xv2

1−2x (1 +A0001 +A0002 +A0003). (9)

We use kernel method to solve this equation. Note that the roots of K(v) = 0 are given by

vj = 2
√
4x4−2x3+2x2−4x+1

3 cos
(

1
3 arccos

(
16x6−12x5+27x4−10x3+18x2−12x+2

2
√
4x4−2x3+2x2−4x+1

3

)
+ 2πj

3

)
+ 1−2x+x2

3 ,

where j = 0, 1, 2. Note that the first terms in the power series (in the variable
√
x) of vj are given by

v0 = 1− 2x− x2 − 2x3 − 3x4 − 8x5 − 22x6 − 62x7 − 182x8 − 548x9 + · · · ,
v1 = x3 − x 7

2 + 3
2x

4 − 21
8 x

9
2 + 4x5 − 839

128x
11
2 + 11x6 − 18733

1024 x
13
2 + 31x7 − · · · ,

v2 = x3 + x
7
2 + 3

2x
4 + 21

8 x
9
2 + 4x5 + 839

128x
11
2 + 11x6 + 18733

1024 x
13
2 + 31x7 + · · · .
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Note that there are two relations for these three roots

v0 + v1 + v2 = 1− 2x− x2 and v0v1v2 = x6. (10)

By taking either v = v1 or v = v2 into (9), we obtain a system of two equations with variables A323(0)
and A332(0). Solving the system and using (10), we obtain

A323(0) =
(1 +A0001 +A0002 +A0003)(v0(1− 2x− x2)− v20 − x3)

x2v0(x2 + v0)

and

A332(0) =
x(1 +A0001 +A0002 +A0003)

x2v0(x2 + v0)
.

By substituting expressions of A323(0) and A332(0) into equations of A323(v) and A332(v) of NS3 and
solving for A323(v) and A332(v), we obtain

A323(v) = (x6−2x5−x3−(2x3−2x2+3x−1)v−(x2−x+1)v2)(1+A0001+A0002+A0003)
xK(v)

− (2x6−2x5+3x4−x3+(x4+6x2−5x+1)v−(x2−3x+1)v2)(1+A0001+A0002+A0003)v0
x4K(v)

− (x5−x4+x3−(x2−3x+1)v+(1−x)v2)(1+A0001+A0002+A0003)v
2
0

x4K(v)

A332(v) = (x6−2x4+2x3−(2x3−2x2−2x+1)v+(1−x2)v2)(1+A0001+A0002+A0003)
xK(v)

− (2x5−2x4−2x3+x2−(4x2−4x+1)v+(1−2x)v2)(1+A0001+A0002+A0003)v0
x3K(v)

− (x4−x2+(1−2x)v−v2)(1+A0001+A0002+A0003)v
2
0

x3K(v) .

Step 4: We will not present the exact expressions because most of them are quite long. For the next step,
we consider the equation of A232(v) in System NS3. After using the expressions of A323(v), A323(0),
A332(v), and A332(0), we obtain an equation of the form

K(v)2A232(v) = α(v) + β(v)A232(0) + γ(v)A223(0),

which leads to

2K(v)K ′(v)A232(v) +K2(v)A′232(v) = α′(v) + β′(v)A232(0) + γ′(v)A223(0),

where f ′(v) denotes the derivative of f with respect to v. By substituting either v = v1 or v = v2,
we obtain a system of two equations with the variables A232(0) and A223(0). Solving this system and
using (10), we obtain explicit formulas for A232(0) and A223(0) in terms of the root v0 and x. Then, by
substituting expressions of A323(0), A332(0), A223(0), A232(0), A323(v), and A332(v) into the equations
of A223(v) and A232(v) of NS3 and solving for A223(v) and A232(v), we derive explicit formulas for
A223(v) and A232(v) in terms of the root v0 and v, x.
Step 5: Now, we consider the equation ofA132(v) in System NS3. After using the expressions ofA323(v),
A323(0), A332(v), A332(0), A223(v), A223(0), A232(v), and A232(0), we obtain an equation of the form

K(v)3A132(v) = α(v) + β(v)A132(0) + γ(v)A123(0),



Inversion sequences avoiding 021 and another pattern of length four 21

which leads to
(K3(v)A132(v))′′ = α′′(v) + β′′(v)A132(0) + γ′′(v)A123(0).

By substituting either v = v1 or v = v2, we obtain a system of two equations with the variables A132(0)
and A123(0). Solving this system and using (10), we obtain explicit formulas for A132(0) and A123(0)
in terms of the root v0 and x. Then, by substituting expressions of A323(0), A332(0), A223(0), A232(0),
A132(0), A123(0), A323(v), A332(v), A223(v), and A232(v) into the equations of A123(v) and A132(v) of
NS3 and solving for A123(v) and A132(v), we derive explicit formulas for A123(v) and A132(v) in terms
of the root v0 and v, x.

All the explicit expressions of these generating functions can be found in the following Maple work-
sheet Mansour (2022a).
Step 6: Up to now, we have explicit formulas for the generating functions Ar(v) (also for Ar(0)), for
all r ∈ {123, 132, 223, 232, 323, 332}. By the expressions of E1, we get explicit formulas for all Ar(v)
which leads to explicit expressions for Ar(0), where r = ijk and 1 ≤ i, k ≤ 3 and j = 1, 2.
Step 7: At the last step, we solve System S1 by using expressions Ar(0) from the previous step. In
particular, we obtain an explicit formula for A0.

Theorem 3.11 The generating function F{021,0000}(x) is given by

− 256x9+560x7+132x6+792x5+168x4+235x3−115x2−31x+10
x2(16x3+8x2+11x−4)2

+ (256x9−576x8−440x7−1306x6−104x5−85x4+335x3+18x2−62x+10)v0
x5(16x3+8x2+11x−4)2

+
(256x8+112x6−452x5−198x4−191x3+56x2+42x−10)v20

x5(16x3+8x2+11x−4)2

= x+ 2x2 + 6x3 + 21x4 + 78x5 + 296x6 + 1126x7 + 4285x8 + 16281x9 + 61690x10

+233078x11 + 878164x12 + 3299936x13 + 12370320x14 + · · · .

The computations used in Steps 1-7 are programmed in Mansour (2022a).

4 Concluding remarks
Table 1 presents the generating trees for all the cases In({021, τ}) whenever τ is a four-letter pattern that
avoids 021. Moreover, the table includes the explicit formulas for the corresponding generating functions
F{021,τ}(x). We see that Conjecture 2.1 holds for length-four patterns. Our method successfully solves
the case 0000, but we are curious whether there is a more straightforward solution for it or not.

There are 106 patterns of length five that avoid 021. We applied our algorithm to each class and found
that the Conjecture 2.1 holds for 021-avoiding five-letter patterns. More precisely, we determined the
generating trees and obtained explicit formulas for the generating functions F{021,τ}(x) whenever τ is a
five-letter pattern that avoids 021. Since the computations are too long, especially for the following four
cases τ = 00000, 00001, 00011, 00012, we decided not to present them here. But the explicit formulas of
the generating functions for five-letter pattern cases are available in Mansour and Yıldırım (2022).
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