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Spatial coalescent connectivity through
multi-generation dispersal modelling pre-
dicts gene flow across marine phyla

Térence Legrand 1 , Anne Chenuil 2, Enrico Ser-Giacomi 3,
Sophie Arnaud-Haond4, Nicolas Bierne 5 & Vincent Rossi 1

Gene flow governs the contemporary spatial structure and dynamic of popu-
lations as well as their long-term evolution. For species that disperse using
atmospheric or oceanic flows, biophysical models allow predicting the
migratory component of gene flow, which facilitates the interpretation of
broad-scale spatial structure inferred from observed allele frequencies among
populations. However, frequent mismatches between dispersal estimates and
observed genetic diversity prevent an operational synthesis for eco-
evolutionary projections. Here we use an extensive compilation of 58 popu-
lation genetic studies of 47 phylogenetically divergent marine sedentary spe-
cies over the Mediterranean basin to assess how genetic differentiation is
predicted by Isolation-By-Distance, single-generation dispersal and multi-
generation dispersal models. Unlike previous approaches, the latter unveil
explicit parents-to-offspring links (filial connectivity) and implicit links among
siblings from a common ancestor (coalescent connectivity). We find that
almost 70 % of observed variance in genetic differentiation is explained by
coalescent connectivity over multiple generations, significantly out-
performing other models. Our results offer great promises to untangle the
eco-evolutionary forces that shape sedentary population structure and to
anticipate climate-driven redistributions, altogether improving spatial con-
servation planning.

Gene flow counterbalances natural selection and genetic drift,
reshuffles mutations among spatial locations and contributes to
shaping the contemporary spatial patterns of biodiversity1–5. By
introducing foreign alleles to local populations, gene flow spreads
adaptative changes and tends to alleviate the effect of inbreeding
depression1–3. Simultaneously, gene flow homogenizes allele fre-
quency among populations, which counteracts the effects of local
adaptation, reducing the mean fitness of populations (i.e., migration

load)2. Fundamentally, gene flow is ensured when dispersal is followed
by reproduction and subsequent offspring survival6. A common con-
fusion prevails between demographic connectivity (i.e., the number of
migrants exchanged among populations), which is usually assessed by
direct detection of individuals (field observations and parentage ana-
lyses of genetic data), and genetic connectivity (i.e., the efficient
transfer of genetic material between distant populations), which is
indirectly estimated thanks to population genetics analyses1,3,4,7–10. In
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this way, demographic and genetic connectivity seem to interact on
specific -yet poorly appreciated- temporal and spatial scales3,11–14. This
may explain the numerous mismatches reported between demo-
graphic connectivity and gene flow estimates7–9.

This paradox could stem from the fact that dispersal is a complex
and multi-aspect process involving interlocked ecological and evolu-
tionary mechanisms6,15,16. Dispersal results from movements of indivi-
duals themselves or movements induced by third parties categorized
as biotic (e.g., thanks to other moving organisms17,18) or abiotic, that is
driven by winds and ocean currents8,16,19. This study focuses on species
that, as adults, have no or little displacement abilities (hereafter called
sedentary species) so that their connectivity is mostly ensured by the
abiotic dispersal of propagules, like numerous marine and terrestrial
taxa. This alleviates the difficulties in appraising the movements of
wild populations and biotic third parties. In marine sedentary popu-
lations, early-life non-motile stages (e.g., seeds, eggs, larvae) are reg-
ularly released in the water column and are then passively transported
across the seascape by anisotropic currents over various spatial
scales20,21, ensuring the replenishment of both local and distant
populations22,23. As such, the proper evaluation of current-driven dis-
persal should helpus disentangling the evolutionary forces (geneflow,
selection, genetic drift or mutation) shaping marine biodiversity and
its climate-driven redistributions24. The inherent spatial scales of
genetic structures are generally a few orders ofmagnitude higher than
potential dispersal distances over a single generation25, even for spe-
cies exhibiting rare long-distance dispersal26,27. Likewise, a single-
generation dispersal event does not allow to evaluate the evolutionary
timescale over which gene flow shapes genetic diversity6. Theory
predicts instead that consecutive dispersal events of numerous pro-
pagules, acting in synergy with other evolutionary forces, shape
together the genetic diversity observed at broad-scale26,28. Conse-
quently, modelling genetic diversity from the unique perspective of
water-borne dispersal should enlighten the typical scales and relative
importance of evolutionary forces that shape the spatial structure of
marine sedentary populations.

Modelling water-borne dispersal is a multidisciplinary challenge
sharing tight commonalities with air-borne dispersal29. First, it requires
to jointly account for the spatio-temporal variability of currents, the
species-specific early-life traits, the habitat patchiness9,30, as well as to
consider all possible connectivity pathways31. Second, it must simulate
consecutive dispersal events by considering multiple generations of
migrants where each intermediary connected population acts as a
stepping-stone. Third, it must simulate all possibly existing popula-
tions, not just known or sampled ones. Biophysical models, which
simulate explicitly the dispersal of propagules by oceanic chaotic
flows, have been widely used in the last few decades to derive physical
connectivity metrics such as dispersal kernels20,23,32,33. Simulations of
single-generation dispersal commonly provide quantitative estimates
of how distant populations are connected with each other. However,
they rarely match observed gene flows8, possibly due to intrinsic flaws
such as disregarding the multi-generational character of successive
dispersal events34–36, while overlooking intermediate stepping-stone
connections.

In the marine realm, current models considering multi-
generational dispersal are seldom used, concern only a few spe-
cific species or taxa, and still inadequately explain genetic differ-
entiation measures. They rely on the computation of connectivity
matrices, which are mathematical objects describing dispersal of
propagules exchanged between discrete populations, hereafter
called localities. Such matrices can be interpreted as adjacency
matrices of directed and weighted networks (or graphs). Thus, an
approach consists in considering network theory tools such as
shortest paths analysis to estimate the strength of connections
among two distinct localities overmultiple dispersal events34,37,38. As
shortest and most-probable paths of such networks differ39, these

methods neglect all other possible pathways that may drastically
change the resulting connectivity40. Another approach uses Markov
chains and matrix multiplications to estimate the probability of
connection between locality-pairs over a given number of
generations35,41–43. Studies using this method did not consider all the
inherent dispersal pathways as they only assessed the connection
probabilities occurring at a given number of generations (equiva-
lent to the exact number of multiplication) while neglecting all
intermediate connections associated to any number of generations
lower or equal to the prescribed number of dispersal events44.
Moreover, and to our knowledge, all present modelling approaches
simulate stepping-stone dispersal of single lineages; in other words,
they estimate the connectivity resulting from explicit parents-to-
offspring connections, i.e., filial connectivity. However, it is con-
spicuous that two fully disconnected localities, which are both
replenished by migrants originating from the same source locality,
should share common alleles and thus display similar allele
frequencies.

The consideration in dispersal models of this conceptual view of
coalescent connectivity44, which highlights implicit links among sib-
lings through common ancestors has been overlooked to-date,
although it could largely alter gene flow predictions and contribute to
the aforementioned discrepancies between predicted dispersal and
realized gene flow assessments1. Note that here the term “coalescent”
refers to the dispersalmodel, not to the geneticmodel.Modelling such
implicit connections would permit going beyond the concept of
pairwise interactions addressing higher-order dynamics, a perspective
that is lately attracting lots of interests, both in Network Theory45 and
Theoretical Ecology46,47.

In this work, we present an exhaustive comparison between
demographic and genetic basin-scale connectivity based on classical
and novel dispersal metrics across a meta-analysis of several marine
taxa. While our results mainly apply to marine sedentary populations
whose dispersal is mediated by ocean currents, our models and con-
clusions have thepotential to transformhowwater- aswell as air-borne
dispersal of sedentary terrestrial populations are evaluated. Here, we
introduce state-of-the-art multi-generation dispersal models that
evaluate all connections among locality-pairs for a fixed number of
generations while simultaneously accounting for those accumulated
by previous generations44. Our models provide not only a precise
estimation of the explicit links (filial connectivity) but also allow
computing, for the first time, the implicit links existing between any
locality-pair having common source localities through multi-
generational dispersal (coalescent connectivity). After parameteriz-
ing our model with the main dispersal traits of various taxa encom-
passing seagrasses, algae and metazoans, we test modelled gene flow
predictions against an extensive compilation of observed genetic
structures (i.e., genetic differentiation estimates given by Fst between
locality-pairs48) over the whole Mediterranean Sea. We find that coa-
lescent connectivity through multi-generation dispersal explains
almost 70% of the observed variance of genetic structures, sub-
stantially improving gene flow predictions with respect to previous
approaches. Furthermore, the optimal number of generations to best
predict gene flow significantly correlates with the sampling coverage
scaled by the species-specific dispersal abilities, enlightening the
typical scales of eco-evolutionary processes. It suggests that ourmodel
could be used to infer population genetic structures, a key pre-
requisite for management and protection.

Results
We test the predictions of our multi-generation explicit and implicit
dispersal models44, simulating filial and coalescent connectivity
respectively, against an extensive compilation of 58 genetic structures
observed in the Mediterranean Sea. The dataset contains 3821
observed Fst measures (Fobs

st ) between locality-pairs for 47 marine
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species (Fig. 1a) which are characterized by a biphasic life cycle, i.e.
early-life free-swimming dispersing propagules and full to semi-
sedentary adult (Fig. 2a). We model the full range of variability of
current-driven dispersal over the whole Mediterranean basin for each
species using a fine-tuned particle-tracking model23,49–52, fed by the
horizontal multi-year velocity field from an operational data-
assimilative ocean model53. Each species is characterized by three
main dispersal traits: Pelagic Larval Duration (PLD, i.e. the time pro-
pagules spend drifting with ocean currents, Fig. 2a), spawning seasons
and adult habitats (Fig. 1b, c). These biological factors were identified
as the major ones governing how the variability of ocean currents
reflect on our probabilistic connectivity metrics39,50.

Among the 58 compiled basin-scale population genetic studies
(Fig. 1), we test for prediction of Fobs

st =ð1� Fobs
st Þ48,54 by our cumulative

explicit and implicit dispersal models (Fig. 2b, c) considering both
single- and multi-generation estimates thanks to a maximum-
likelihood population-effects (MLPE) linear mixed model. We also
test for conventional Isolation-By-Distance (IBD) models, using either
Euclidian or sea-least-cost distances (i.e., the shortest overwater dis-
tances). The number of significant R2 is 16 for single-generation
explicit, 30 for Euclidian IBD, 31 for sea-least-cost IBD, 37 for multi-
generation explicit and implicit models respectively (Fig. 3). Among
the significant MLPE linear mixed model R2, the lowest mean R2 is
found for the single-generation explicit dispersal model (0.50), fol-
lowed by both sea-least cost (0.58) and Euclidian (0.59) IBD models.
The highest mean R2 stem from both multi-generation models, with
0.68 for explicit dispersal and 0.69 for implicit dispersal models.

Next, we evaluate thequality (i.e., predictive ability) of eachmodel
relative to each of the other models, and then to all models together,
thanks to the AIC estimator. To do so, the same expected
value,Fobs

st =ð1� Fobs
st Þ, is considered among the five differentmodels of

geneflowwhen usingMLPE linearmixedmodels. The bestmodel is the
multi-generation implicit dispersal model in 25 cases, the multi-
generation explicit dispersal model in 18 cases, the Euclidian IBD
model in 10 cases, the sea-least-cost IBD model in 7 cases, and the
single-generation explicit dispersal model in only 3 cases. The relative

likelihood permits to evaluate that among the five candidate models,
themulti-generation implicit dispersalmodel is the one thatminimizes
the information lostwith amean relative likelihoodof 0.75 at themeta-
analysis scale. Moreover, this model is the only one that displays
positive relative likelihooddifference in pairwise comparisonswith the
four other models (Fig. 3). Hence, our multi-generation implicit dis-
persal model provides the best predictions of Fobs

st .
When inspecting the study-specific accuracy of the best multi-

generation implicit dispersalmodel, R2 values range from0.11 for the
colonial ascidian Botryllus schlosseri55 to 1 for the ascidian Halo-
cynthia papillosa56, the sea cucumber Holothuria mammata57 and
the sea snail Phorcus turbinatus56 (Fig. 4a). For studies that include
abundant genetic markers, it is possible to identify markers with
particularly high Fobs

st values (i.e., outliers; based on appropriate
models), suggesting that natural selection filtered alleles differen-
tially among localities. For a sea urchin Paracentrotus lividus58, Fobs

st

outlier loci returns a R2 of 0.93***, which is higher than the R2 of
0.80*** obtained considering all the loci. Note that two studies
focusing on the same species both using microsatellite markers, can
display contradictory results: Corallium rubrum is characterized by a
highly significant and tight correlation (R2 = 0.54***, ref. 59) as well as
a non-significant loose correlation (R2 = 0.27ns, ref. 60; Fig. 4a),
exemplifying inter-study variability. For the flathead grey mullet
Mugil cephalus61, which have been sampled homogeneously across
the Mediterranean basin (i.e., the mean straight-line geographical
distance between sampled localities, Dbtw, is 1279 km, Supplemen-
tary Table 1), the network representation of modelled Fst (Fmod

st )
mimics well the one of Fobs

st (Fig. 4b). Fobs
st are low for locality-pairs

located in the western basin but relatively high between western and
eastern Mediterranean localities, suggesting spatial genetic struc-
turing that is well predicted by coalescent connectivity (see the
scatter plot of Fig. 4b, R2 = 0.73***). Similar results are obtained for
instance for a seagrass species, Cymodocea nodosa62 (Fig. 4c).
Although in this case spatial sampling is less balanced (sampled
locality mostly clustered along the Spanish coast but with two dis-
tant localities in the Eastern Mediterranean, Dbtw = 1601 km), the

Ericaria amentacea

Penaeus kerathurus

b

c

Fig. 1 | Meta-analysis summary, estimated habitats and geographical locations
of the sampled populations. a Exemplary pictures ofmarine species belonging to
the nine taxonomic groups comprised in the compilation of 58 population genetics
studies.bBasin-scale viewof all sampledpopulations compiled in themeta-analysis
(dark green dots) and putative localities (light green squares) that act as step-
pingstones in our multi-generation dispersal model for the shallow coastal habitat.

c, same as b but for the neritic shelf habitat. Source data are provided as a Source
Data file. Photos credit (from left to right, top to bottom): © Veronique Lamare
2015, © Alain-Pierre Sittler 2004, © Alain-Pierre Sittler 2005, © Gilles Cavignaux
2007, © Jean-Georges Harmelin 1999, © Frédéric André 2007, © Christophe
Dehondt 2006, © Jean-Claude Wolles 2007 and © Jean-Georges Harmelin 2005
(published on the DORIS web site, https://doris.ffessm.fr/).
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genetic structure (high Fobs
st ) between the Adriatic and Spanish

localities is well reproduced by Fmod
st (R2 = 0.77***).

We then test the robustness of the multi-generation implicit dis-
persal model with respect to the species and studies attributes. None
of these factors (taxa, PLD, spawning season, geneticmarker, andDbtw)
has a significant effect onmodel fit results (R2, p value, Supplementary
Table 10). Yet, we find a significant linear negative correlation between
the logarithmofMLPE linearmixedmodelsp-values and thenumber of
sampled localities (R2 = 0.40***) as well as with the range of Fobs

st

(R2 = 0.18***, Supplementary Table 10). Furthermore, the probability to
obtain a significant R2, i.e., successful gene flow predictions, as a
functionof categories of number of sampled localities iswell predicted
by a logit model using a binomial distribution (R2 = 0.72***, Supple-
mentary Fig. 10). Finally, we find a positive linear relationship between
the PLDs categories and Dbtw divided by the optimal number of
modelled generations (R2 = 0.31***, Fig. 5), considering the 37 studies
whose model predictions of genetic observations are significant. This
surprisingly tight relationship has several interesting implications.
First, if the spatial structures of two species are evaluated through the
same sampling design, our dispersal model needs more generations
for short PLD than for long PLD species to properly represent genetic

observations. Consequently, our model conforms to the intuitive view
that a species needs more successive events of dispersion across
generations to disperse widely across the seascape. Moreover, if two
species have similar PLDs, our model requires a higher number of
generations to accurately simulate the genetic structure of the one
whose sampling is wider and more comprehensive. Last, when para-
meterized to fit the dispersal ability (i.e., PLD) of the target species, the
predictive ability of the implicit dispersal model scales with the Dbtw.
The metric Dbtw/(optimal number of generation) could be interpreted
as the average velocity of genetic connectivity in km.generations−1.
Altogether and assuming that the species-specific dispersal traits have
been accurately parametrized, it suggests that the non-significant gene
flow predictions (e.g., 21 studies among the meta-analysis) could be
attributed to too scarcely and spatially-restricted sampling rather than
to the models abilities themselves.

Discussion
For gene flow predictions at the meta-analysis scale, the cumulative
multi-generation implicit dispersal model44, which evaluates coales-
cent connectivity, significantly outperformed explicit dispersal mod-
els, which assess filial connectivity, as well as IBD models. Nearly two-
thirds of the predicted genetic differentiation estimates are significant,
even though observations span a wide phylogenetic range of seden-
tary taxa with contrasted dispersal traits. It is more than twice the
proportion displayed by the explicit single-generation dispersal
model, which emerges as the worst model in our meta-analysis.
Overall, the best models are the multi-generation implicit and explicit
dispersal, suggesting unambiguously that modelling multiple genera-
tions is crucial to accurately predict genetic connectivity36. To our
knowledge, the only other model that considers both coalescent and
filial connectivity uses circuit theory to approximate how barriers and
corridors of habitat affect genetic connectivity through a process
called Isolation-By-Resistance63. While this empirical model helped
interpreting gene flow for self-dispersing organisms across a well-
known and relatively stable landscape40, it has not yet been applied to
themarine realm probably because the seascape is highly variable and
in perpetual movement. Contrarily, our dispersal models are
mechanistic and plainly consider the dynamical properties of ocean
currents that drive water-borne dispersal, so that it can be readily
applied to air-borne dispersal29.

We find that multi-generation dispersal models performed sig-
nificantly better than IBDmodels. Similar results are foundwhen using
explicitmulti-generationmodels for the seagrass Zosteramarina in the
North Sea35, and the mollusc Kelletia kelletii along the Californian
shores43. Yet, Boulanger et al.34 found a tighter and more significant
correlation of observed genetic structure with sea-least-cost IBD
model thanwith their explicitmulti-generation dispersalmodel for the
fishMullus surmuletus64. By contrast, when using the same data of Fobs

st ,
our multi-generation implicit dispersal model returns a better corre-
lation than IBD models.

Our results also show that IBD models (Euclidian and sea-least-
cost distance) better explain observed genetic differentiation than the
single-generation dispersal model, in accord with previous studies34,35.
Slightly more than half of the compiled studies displayed significant
IBD predictions. The mean Mantel R2 computed from these studies
(Supplementary Table 5 and 6) is comparable to previous meta-
analysis65,66. Still, for some previous studies which do not consider
multi-generation, single-generation dispersal models were reported to
improve gene flow prediction as compared to IBD models (e.g., refs.
67–69). The apparent contradiction with the present results may be
due to a publication bias: single-generation dispersal predictions that
were worse than IBD’s ones could have been withheld by authors.
Single-generation dispersal models are worse than IBD models prob-
ably because broad-scale single-generation dispersal modelling stu-
dies often reported that most distant localities were not connected at

Fig. 2 | Modelling multi-generational water-borne dispersal. a Schematic
representation of a biphasic life cycle composed of sedentary adults and dispersive
early-life stages, that is a distinctive feature of all species included in the meta-
analysis. During the dispersive phase, numerous individuals are dispersed across
the seascape by turbulent currents (represented in the Mediterranean miniature).
b Explicit dispersal model evaluates filial connections between locality-pairs.
c Implicit dispersalmodel estimates coalescent connections between locality-pairs.
Schematics highlight the simulated genealogy over two generations and illustrate
one of many multi-generational dispersal pathways that are considered by our
models when estimating the connectivity between distant localities A and B. Icons
credit: © vectorsmarket, © Agne Alesiute, © Elisabetta Calabritto, © Luis Prado, ©
Joi Stack,©TatinaVazest,©mindgraphy,©Oleksandr Panasovskyi,©ProSymbols,
© Sean Maldjian (changes were made on all the icons, Creative Commons BY 4.0
license).
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all, suggesting genetic isolation. This was often explained by dispersal
barriers due to major oceanographic features such as fronts and jet-
like currents70. Our results contradict this view: multi-generation dis-
persal models suggest that these locality-pairs can be connected
through stepping-stone dispersal despite the supposed physical
barriers44. Notwithstanding, our models showed that physical barriers
still can limit the levels of connectivity (see Fig. 8 of Ser-Giacomi
et al.44) as reflected in observed genetic differentiation and as pre-
dicted by theoretical gene flow magnitudes3,7. Consequently, the
reduced gene flow measured across these barriers is probably due to
the large environmental gradients (affecting negatively propagules
survival and settlement) rather than to intrinsic transport barriers (as
propagules effectively disperse through them44). Since IBD is an ana-
lytical model with little biological meaning as it tentatively explains
genetic differentiation by only accounting for geographical distances,
it does not allow disentangling the relative importance of evolutionary
processes that control gene flow. In line with the distinction between
IBD and Isolation-by-Environment71, and since our mechanistic multi-
generation dispersal models realistically simulate stepping-stone dis-
persal, one can tease apart the respective role of evolutionary forces in
driving gene flow. In fact, the non-significant predictions of observed

genetic differentiation suggests that strong evolutionary forces (such
as natural selection) not considered in our approach are at play.
Moreover, our analysis indicates that addressing implicit connections
and thus going beyond simple pairwise perspectives (i.e., such as
explicit connections)45, can significantly improve the understanding of
biogeographical and genetic patterns47. Altogether, our results suggest
that the supposed physical barriers often underlined in seascape
analyses are more permeable to dispersal than previously thought70,
and that genetic isolation in the marine realm could be rather due to
environmental selection acting on drifting propagules and settled
adults as well as intrinsic reproductive isolation72. Since ocean
currents73, transport and mixing processes74, as well as ocean
temperatures75, are already changing fast, the structure of marine
populations is expected to fluctuate accordingly, consistently with the
recent evidence of spatial reorganization of marine biodiversity24.

Our models perform better than previous ones probably also
because they consider properly the mesoscale variability of ocean
currents, they are parametrized with species-specific dispersal
traits, and they allow testing explicitly what number of generations
maximize correlations with observed data. Since there is no con-
sensus on the adequate number of generations required to

a

b

c

d

e

Fig. 3 | Cross-comparison of gene flow predictive models. Purple squares indi-
cate mean MLPE linear mixed model R2, red diamonds indicate the relative like-
lihood of the reference model (depicted on the left) vs the four remaining models,
and grey dots indicate the relative likelihood difference of the reference model
(depicted on the left) vs each of the four remaining models. Comparative analyses
are made for a IBD (Euclidian) model, b IBD (sea-least-cost) model, c single-
generation explicit dispersal model, d multi-generation explicit dispersal model
and e multi-generation implicit dispersal model. Only the significant predictions
(p value*) of each reference model (left) are considered to compute the mean R2,
while all the 58 studies are used to compute the relative likelihood and the relative

likelihood difference. The number of significant predictions per model (over the
total of 58 studies) is reported on the right of each purple square. The number of
times the referencemodel displays the lowest AIC among all the four other models
is reported on the right of each red diamond. The number of times the reference
model displays the lower AIC among each of the four remainingmodels is reported
on the right of each grey dots. Error-bars represent the 95 % confidence intervals.
Source data are provided as a Source Data file. Icons credit: © vectors market, ©
Agne Alesiute, © Elisabetta Calabritto, © Luis Prado,© Joi Stack,©Tatina Vazest, ©
mindgraphy, © Sean Maldjian (changes were made on all the icons, Creative
Commons BY 4.0 license).
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comprehend gene flow, previous multi-generational approaches
used shortest path algorithms (minimum number of steps to con-
nect sampled locality-pairs) with 25 or less intermediate steps34,37 or
set arbitrarily the number of generations from dozens (as it was
considered sufficient to span the studied domain35) to thousands
(i.e., the number of Markov chain iterations needed to reach con-
vergence) of generations43. It illustrates that the typical time scales
over which demographic connectivity interplays with genetic con-
nectivity are difficult to infer1,3. The relationship between the main
dispersal trait (PLD) and the spatial extent of the sampling divided
by the optimal number of generations (Dbtw/Opt gen, see Fig. 5)
implies that the temporal scales estimated with our implicit model
(from 1 to several tens of generations, e.g., ecological time) and
spatial scales derived from genetic methods (over typical evolu-
tionary scales, from a hundred to a few thousands of km) are tightly
linked. This is aligned with estimates of dispersal kernels that were
found congruent over ecological and evolutionary time14. Indeed,
the averaged genetic connectivity velocities, in km.generation−1,

match the demographic connectivity scales for similar PLD (an order
of 100 km for two coastal fishes23). Moreover, island model theory
assumes that the metapopulation has reached an equilibrium
between gene flow and genetic drift76, suggesting that the implicit
model should predict best Fobs

st =ð1� Fobs
st Þ for long-term multi-gen-

eration dispersal, that is when dispersal probabilities reach
convergence43 (i.e., after about 500 generations in our case; see Fig.
9 of Ser-Giacomi et al.44). The relatively low median optimal number
of generations disclosed here (~20, Supplementary Fig. 7) further
suggests that gene flow and drift have insufficient time to reach
equilibrium due to environmental stochasticity and rapidly chan-
ging ecological forces10. Moreover, the substantial impacts of eco-
logical processes on genetic structures shown here could explain
why chaotic genetic patchiness has been recently documented at
small space and time scales11,77–81, which are also the scales over
which dispersal and environment co-vary. As such, dispersal could
be characterized as one of the evolutionary forces shaping the
contemporary spatial patterns of biodiversity, along with natural

a

b

c

Fig. 4 | Accuracy of themulti-generation implicit dispersalmodel in explaining
compiled genetic structures. a MLPE linear mixed model R2 between Fmod

st and
Fobs
st =ð1� Fobs

st Þ. Filled dots highlight the 37 significant correlations (p value*). Note
that some results reported by a given study are analyzed separately: (i) Weber
et al.87 used nuclear DNA marker (1) and mtDNA marker (2); (ii) Carreras et al.58

considered all the loci together (3) and then only theMediterranean outliers loci (4);
(iii) Marzouk et al.88 analyzed nuclear DNAmarker (5) and mtDNAmarker (6). Error-
bars for all studies represent the 95 % confidence intervals. b Network

representation of Fobs
st =ð1� Fobs

st Þ (observed Fst, left) and Fmod
st (modelled Fst, right)

and their corresponding scatterplot for the flathead grey mullet (Mugil cephalus;61

red dot in a). c same as b but for a seagrass (Cymodocea nodosa;62 red dot in a).
Source data are provided as a Source Data file. Icons credit: © vectors market, ©
Agne Alesiute, © Elisabetta Calabritto, © Luis Prado,© Joi Stack,©Tatina Vazest, ©
mindgraphy, © Oleksandr Panasovskyi, © ProSymbols, © Sean Maldjian (changes
were made on all the icons, Creative Commons BY 4.0 license).
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selection, providing evolutionary changes occurring over ecological
time scales of few generations78,82.

Last but not least, our multi-generation mechanistic dispersal
models, which allow assessing both filial and coalescent connectivity
and are applicable to other taxonomic groups and ecosystems, could
serve as future guidelines to optimize sampling design for population
genetic studies and anticipate the structure of wild sedentary popu-
lations. Moreover, while higher-order interactions can stabilize com-
petitive ecosystems83, they can also foster abrupt transitions45.
Investigating such aspects inmarine ecosystemswouldprovide crucial
information about how they could react to future perturbations and
open the way to novel approaches to spatial ecology. In the context of
biodiversity loss84 and spatial reorganization24, it is indeed urgent to
better understand the eco-evolutionary dynamics that continuously
shape population structures to improve protection strategies85 and
management of natural resources such as forestry and fisheries86.

Methods
Studies characteristics
We screen the published literature over the last two decades to gather
population genetic studies focussing on marine species at basin-scale
in the Mediterranean Sea. While our meta-analysis intends to be the
most comprehensive possible in terms of collected data and taxa
covered, pre-selected studies arefiltered out based on two criteria: the
biological traits of the species and the sampling design. In this way, we
exclude datasets that are not appropriate to address our research
question while optimizing statistical discriminatory power. More spe-
cifically, we select studies (i) that target poorly mobile species, i.e.,
characterized by a biphasic life cycle with early-life free-swimming
dispersing propagules (e.g., seeds, eggs, larvae or body fragments) and
sessile to sedentary adult behaviour (Fig. 1a) and (ii) which must pre-
sent at least four distinct localities where at least 15 individuals were
sampled (see the PRISMA flow diagram depicting our systematic
review in Supplementary Notes 1). As a result, this meta-analysis

compiles 58 population genetic studies published between 2002 and
2020, encompassing 47 different marine species distributed in nine
taxonomic groups: Algae, Anthozoa, Ascidiacea, Crustacea, Demos-
pongiae, Echinodermata, Fish, Mollusca and Phanerogam (Fig. 1a). In
total, 559 localities were sampled across the basin (dark green dots in
Fig. 1b, c), representing 3821 locality-pairs. Fst fixation index allows
evaluating the genetic differentiation (i.e., observed genetic differ-
entiation, Fobs

st ) between locality-pairs using five types of genetic
markers (allozymes, microsatellites, mitochondrial DNA sequences,
nuclear DNA sequences and SNPs from high throughput sequencing).
Note that, when applicable, we separately analyze different genetic
markers extracted from the same study, i.e., mitochondrial DNA
sequences and nuclear DNA sequences for Ophioderma longicauda87

and Hexaplex trunculus88.
To gauge the sampling strategy of each selected study, we com-

pute the mean straight-line geographical distance (in km) between
sampled localities. This geometrical metric, that we called Dbtw,
quantitatively evaluates the spatial coverage of the sampling strategy
carried out in each study.

Species characteristics
Based on literature review (Supplementary Table 2), all species are
classified according to their main dispersal traits. Reproductive phe-
nology comprises five groups to reflect seasonal (spring, summer, fall,
winter) and annual spawning strategies. Pelagic Larval Durations (PLD)
are categorized in five groups: very-low (1 day), low (10 days), low-to-
medium (20 days), medium-to-high (30 days) and high (45 days) dis-
persal abilities. Finally, two broad-scale classes of habitats are dis-
tinguished (Supplementary Methods 2): the shallow coastal habitat
(inner continental shelf whose depths span 0–50m; Fig. 1b) and the
neritic shelf habitat (mid toouter continental shelfwhosedepths range
is 50–200m; Fig. 1c).

Biophysical modelling
Tracking passive Lagrangian particles is a common approach to char-
acterize flow-driven dispersal of propagules20,23,29,49,51,89 (Fig. 2a). To
provide synthetic -yet realistic- views of basin-scale propagules dis-
persalwhile encompassing the full variability of ocean currents and for
various dispersal abilities, we use the Lagrangian Flow Network fra-
mework (LFN23,39,49–52). It combines a particle-tracking model with
graph theory tools to generate and analyse connectivity matrices
(Supplementary Methods 3), allowing us to investigate oceanic dis-
persal in a robust and efficient manner50.

The Mediterranean Sea surface characterized by favourable
habitats is subdivided into several ¼° sub-areas that are considered in
our analysis as theoretically isolated marine localities, resulting in
n = 1170 localities in the shallow coastal habitat (Fig. 1b) while the
neritic shelf habitat is composed of n = 1163 localities (Fig. 1c; see
Supplementary Methods 2). For each LFN experiment, we track 100
propagules per localities (i.e., totalling ~120,000 propagules con-
sidering all the localities contained in each habitat) by integrating daily
gridded velocity fields generated by a data-assimilative operational
ocean model implemented in the Mediterranean Sea at a 1∕16° hor-
izontal resolution53. We use the horizontal flow field at 10m and 100m
for species inhabiting shallow coastal and neritic shelf habitats,
respectively. Overall, virtual propagules trajectories are modelled at
two specific depths during the five PLDs groups defined previously,
simulating consecutive propagule release events with a 10-day peri-
odicity over 2000–2010. Assuming that the long-term (e.g., decadal,
centennial and longer) variability of ocean currents is negligible as
compared to their inter- and intra-annual variations, our approxima-
tion using 10 recent years allows comprehending the full variability of
both contemporary and past oceanic flows. By computing billions of
Lagrangian trajectories and recording their initial and final positions,
the LFN constructs 402 connectivity matrices for each of the 10

Fig. 5 | Sensitivity of themulti-generation implicit dispersal model predictions
to dispersal trait and sampling design. Correlation (R2 = 0.31*** using a linear
regression model fit) between the PLDs categories (x-axis) and the proxy of sam-
pling extentDbtwdividedby theoptimal numberofmodelledgenerations (y-axis).n
= number of studies whose model predictions of genetic observations are sig-
nificant per PLD categories. On each box, the central mark, the bottom and top
edges indicate the indicates the median, the 25th and the 75th percentiles,
respectively. The whiskers extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using a cross symbol. Note that
Susini et al.91 has been removed from this figure as it displays the minimal number
of localities of our compilation (i.e., three localities while two sampled populations
are indeed compassed in the same locality), which does not permit a robust eva-
luation of Dbtw/Opt gen ratio.When considering this study, R2 = 0.23***. Source data
are provided as a Source Data file.
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habitat/PLD combinations, resulting in 4020 matrices in total. The
elementsmij of each raw n × n connectivity matrix encode the number
of propagules advected between all locality-pairs; they are converted
into backward-in-time dispersal probabilities thanks to a column-nor-
malization:

mij =
mij

Pn
i= 1mij

ð1Þ

Then connectivity matrices M are aggregated (i.e., element-by-
element averaged) according to their starting dates to match each
species-specific spawning phenology. We average 402 matrices for
year-round release and about 100 matrices for seasonal release (i.e.,
402 and about 100 Lagrangian experiments respectively, Supple-
mentary Table 4). In other words, we compute for each species a
composite matrix P (i.e., a 1170 × 1170 matrix for the shallow coastal
habitat and a 1163 × 1163 matrix for the neritic shelf habitat, encom-
passing both sampled and non-sampled localities) that fits best its
dispersal traits, averaging ten years of realistic current-driven dispersal
in the Mediterranean Sea. Single-generation dispersal estimates are
directly extracted from one of these composite matrices. As explained
next, multi-generational dispersal estimates are finally obtained by
applying additional computations on these composite matrices.

Cumulating implicit and explicit links in multi-generation dis-
persal models
Explicit links44 evaluate filial connectivity from parents to children,
assuming unique lineage (Fig. 2b). It is the usual proxy of connectivity
used in other multi-generation models to assess gene flow between
localities34–38,41–43. Implicit links44 evaluate coalescent connectivity
among siblings with common parents, considering multiple lineages
(Fig. 2c). To estimate multi-generation dispersal probabilities between
all locality-pairs, considering explicit or implicit links, we apply the
theoretical formulations described in Ser-Giacomi et al.44 on compo-
site matrices. The main novelties of this approach are (i) the adequate
consideration of putative intermediate connections or steps between
anyof thenon-sampled localities of bothhabitats (Fig. 1b, c) and (ii) the
fact that it allows cumulating connectivity pathways over each con-
secutive generation, i.e., from one generation to a fixed number of
generations. For example, the connection between two localities over
three generations of dispersal also accounts for connections over two
and one generations. Analytical formulations for both cumulative
explicit and implicit probabilities for any number of generations are
established in Ser-Giacomi et al.44 and are theoretically bounded to 1
for an infinite number of generations.

The general expression of explicit dispersal probabilities over G =
2 generations based on the composite matrix P is:

PG= 2 =P + P L � Pð Þ ð2Þ

The circle denotes the Hadamard product, and L is the all-ones
matrix minus the identity matrix. When applying Eq. (2) for two
localities A and B (example illustrated in Fig. 2b), explicit link cumu-
lates: (i) the sampled locality-pair explicit probability ðPABÞ and (ii) the
products of probabilities between sampled localities and their second
generation intermediate locality (PAk1

Pk1B
, Fig. 2b), that is:

PG= 2
AB = PAB + PAk1

Pk1B
ð3Þ

The general expression of implicit dispersal probabilities over G =
2 generations based on the composite matrix P is:

PG= 2 =PTP +P L � PTP
� �h iT

P ð4Þ

As before, the circle denotes the Hadamard product, and L is the
all-ones matrix minus the identity matrix. When applying Eq. (4) for
two localities A and B (example illustrated in Fig. 2c) implicit link
cumulates: (i) the product of probability between sampled localities
and their common source (i.e., parent) localities PAk1

PBk1

� �
; and (ii) the

product of probability between sampled localities and their common
source localities through two generations (PAIA

PIAk2
PBIB

PIBk2
, Fig. 2c),

that is:

PG= 2
AB =PAk1

PBk1
+PAIA

PIAk2
PBIB

PIBk2
ð5Þ

The Hadamard product vanished in Eq. (3) and equation (5)
because there is no self-loop (i.e., self-recruitment) in none of our
simplifiedexemplary localities. If self-recruitment exists, e.g., ifk1=A in
Fig. 2c, siblings are found in both origin and destination localities
implying that implicit links also encompass explicit links. Since Fst are
theoretically symmetrical (i.e., FstAB

equals FstBA
), explicit dispersal

probabilities have been transformed following 1� 1� PAB

� �
* 1� PBA

� �

to be symmetrical. Note that implicit dispersal probabilities between
locality-pairs are already symmetrical by construction44. Both multi-
generation explicit and implicit dispersalmodels are computed for 1, 5,
10, 20, 40, 60, 80, 100, 150, 200, 300, 400 and 500 generations using
species-specific composite matrices.

Reciprocal transformation of dispersal probabilities into mod-
elled Fst
We perform a reciprocal transformation of dispersal probabilities to
compare them against Fobs

st =ð1� Fobs
st Þ with linear models. As such,

dispersal probabilities are linearized and transformed into modelled
Fst ( F

mod
st ) following:

Fmod
st =

1

α*PG
AB +

1
max Fobs

stð Þ�minðFobs
st Þ

+min Fobs
st

� �

ð6Þ

where PG
AB is the symmetrical dispersal probability of connection

between localities A and B for a fixed number of generations G (derived
either from single-generation explicit or multi-generation explicit or
implicit dispersal models); α is a coefficient modulating the reciprocal
transformation. The sensitivity of Fmod

st to a wide range of α value has
been thoroughly tested in order to retain the optimal value for each
study (see Supplementary Fig. 4 and 5). The maximal and minimal Fobs

st

values averaged across the meta-analysis are included so that (i) when
the dispersal probability is null, the reciprocal transformation returns a
Fmod
st equals to the mean maximal Fobs

st (i.e., the average of all maximal
Fobs
st values of the 58 compiled studies, which is 0.1414) and (ii) when the

probability of connection is 1, the Fmod
st tends toward themeanminimal

Fobs
st (i.e., the average of all minimal Fobs

st values of the 58 compiled
species, which is 0.0127). Note that our goal here is not to scale each
study’s reciprocal transformation of pairwise probabilities into Fmod

st by
its own extrema Fobs

st , but rather to optimize robustness across the
meta-analysis using the mean maximal and minimal Fobs

st over 58
population genetics studies.

Screening for the best models predicting observed genetic
differentiation
We test for the predictions of Fobs

st =ð1� Fobs
st Þ by Fmod

st derived from
multi-generation dispersal models for 1 to 500 generations for all
studies of the meta-analysis using maximum-likelihood population-
effects (MLPE) linear mixed models. In addition of enabling the cross-
comparison of several models for their predictive abilities, this statis-
tical approach accounts for non-independence of pairwise compar-
isons, a distinguished feature of Fst between localities8,34,36,68. We also
search for correlationsbetween Fmod

st and Fobs
st =ð1� Fobs

st Þ using classical
Mantel tests (see Supplementary Tables 7, 8 and 9). For each study, we
parametrize our models by (i) selecting the optimal α value for which
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the model AIC displays the lowest value (Supplementary Figs. 4 and 5,
Supplementary Tables 7, 8 and 9) and (ii) selecting the optimal number
of generations for which the AIC displays the lowest value (Supple-
mentary Figs. 6 and 7, Supplementary Tables 7, 8 and 9). In addition,
we perform Isolation-By-Distance (IBD) analyses of all compiled
genetic structures with two proxies of distance between locality-pairs:
the Euclidian distance (i.e., straight-line geographical distances) and
the sea-least-cost distance, which corresponds to the length of the
shortest path considering onlymaritime areas. Sea-least-cost distances
are calculated thanks to the Marmap package90 (version 1.0.4) on R
(version 4.0.2). For the IBD analyses, we consider a two-dimensional
dispersal model and thus test for predictions of Fobs

st =ð1� Fobs
st Þ by

loge(distance)
48,54.

Toestimate thequality (predictivepower) of eachmodel relative to
each of the other models, we also test for predictions of Fobs

st =ð1� Fobs
st Þ

by Fmod
st obtained with the dispersal models (one-generation explicit,

multi-generation explicit, and multi-generation implicit). We fit the five
predictors to Fobs

st =ð1� Fobs
st Þ with MLPE linear mixed models, con-

sidering a random effect on the locality level, thanks to the ‘lmer’
function of the lmerTest package (version 3.1.3). The coefficient of
determinationR2 is computedwith the function ‘r.squaredGLMM’of the
MuMIn package (version 1.43.17). All these tests are computed using the
R software (version 4.0.5). For each study, we compare MLPE model
predictions to determine the best model ability to predict gene flow.
More specifically, we compute for each study the relative likelihood
exp((AICmin−AICi)/2) todetermine theprobability of eachmodel i (IBDs,
one-generation explicit, multi-generation explicit and multi-generation
implicit) to minimize the information loss of being the best one. We
cross-compare model predictions across the entire meta-analysis by
computing (i) the relative likelihood for each model against the four
others (i.e., AICmin being theminimal value among IBDs, one-generation
explicit, multi-generation explicit, and multi-generation implicit mod-
els) and (ii) the non-symmetrical pairwise relative likelihood difference
(i.e., AICmin being the minimal value among both models under com-
parison). For example, formodelsAandBwhose relative likelihoodare 1
and 0.7 respectively, the relative likelihood difference between A and B
is 0.3 and the relative likelihood difference between B and A is −0.3.

We test the sensitivity of MLPE model results (R2 and p-values)
against species-specific (taxonomic group, PLD, spawning season) and
studies-specific (marker, number of sampled localities, Dbtw and Fobs

st

range) factors with ANOVA and linear regressions (Supplementary
Table 10). Sensitivity tests are performed using the Matlab software
(version 9.4).

Throughout the entire manuscript, asterisks inform about the sig-
nificance of all statistical tests, as follows: *≤0.05; **≤0.005; ***≤0.0005
and “ns” stands for statistically non-significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The population genetic data generated in this study is provided as a
Supplementary Information (Supplementary Data 1). Genetic popula-
tion studies references areprovided as a Supplementary Information, as
well as literature references used to categorize species characteristics
(Supplementary Methods 1). We also used FishBase (https://www.
fishbase.se/search.php) and Doris (https://doris.ffessm.fr/) websites for
global information about the species of interest. Source and raw data
relevant for each figure are provided with this paper. Source data are
provided with this paper.

Code availability
The Python codes used to compute multi-generation explicit and
implicit dispersal probabilities have been already published (Ser-

Giacomi et al.44; https://doi.org/10.1103/PhysRevE.103.042309) and are
available online here: https://github.com/serjaaa/cumulated-net-conn.
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