
HAL Id: hal-03871507
https://hal.science/hal-03871507

Submitted on 26 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ensemble quantification of short-term predictability of
the ocean dynamics at a kilometric-scale resolution: a

Western Mediterranean test case
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau,

Jean-Marc Molines, Quentin Jamet, Julien Le Sommer, Thierry Penduff,
Pierre Brasseur

To cite this version:
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau, Jean-Marc Molines, et al..
Ensemble quantification of short-term predictability of the ocean dynamics at a kilometric-scale res-
olution: a Western Mediterranean test case. Ocean Science, 2022, 18 (6), pp.1619-1644. �10.5194/os-
18-1619-2022�. �hal-03871507�

https://hal.science/hal-03871507
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Ocean Sci., 18, 1619–1644, 2022
https://doi.org/10.5194/os-18-1619-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Ensemble quantification of short-term predictability
of the ocean dynamics at a kilometric-scale resolution:
a Western Mediterranean test case
Stephanie Leroux1,2,3, Jean-Michel Brankart1, Aurélie Albert1,2, Laurent Brodeau1,2, Jean-Marc Molines1,
Quentin Jamet1, Julien Le Sommer1, Thierry Penduff1, and Pierre Brasseur1

1Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
2Ocean Next, Grenoble, France
3Datlas, Grenoble, France

Correspondence: Stephanie Leroux (stephanie.leroux@univ-grenoble-alpes.fr)

Received: 10 February 2022 – Discussion started: 17 February 2022
Revised: 8 October 2022 – Accepted: 13 October 2022 – Published: 21 November 2022

Abstract. We investigate the predictability properties of the
ocean dynamics using an ensemble of short-term numerical
regional ocean simulations forced by prescribed atmospheric
conditions. In that purpose, we developed a kilometric-scale,
regional model for the Western Mediterranean sea (MED-
WEST60, at 1/60◦ horizontal resolution). A probabilistic ap-
proach is then followed, where a stochastic parameterization
of model uncertainties is introduced in this setup to initialize
ensemble predictability experiments. A set of three ensemble
experiments (20 members and 2 months) are performed, one
with the deterministic model initiated with perturbed initial
conditions and two with the stochastic model, for two dif-
ferent amplitudes of stochastic model perturbations. In all
three experiments, the spread of the ensemble is shown to
emerge from the smallest scales (kilometric scale) and pro-
gressively upscales to the largest structures. After 2 months,
the ensemble variance saturates over most of the spectrum,
and the small scales (< 100 km) have become fully decorre-
lated across the ensemble members. These ensemble simula-
tions can provide a statistical description of the dependence
between initial accuracy and forecast accuracy for time lags
between 1 and 20 d.

The predictability properties are assessed using a cross-
validation algorithm (i.e., using alternatively each ensemble
member as the reference truth and the remaining 19 mem-
bers as the ensemble forecast) together with a given statistical
score to characterize the initial and forecast accuracy. From
the joint distribution of initial and final scores, it is then pos-
sible to quantify the probability distribution of the forecast

score given the initial score or reciprocally to derive condi-
tions on the initial accuracy to obtain a target forecast accu-
racy. The misfit between ensemble members is quantified in
terms of overall accuracy (CRPS score), geographical posi-
tion of the ocean structures (location score) and spatial spec-
tral decorrelation of the sea surface height 2-D fields (decor-
relation score). With this approach, we estimate for example
that, in the region and period of interest, the initial location
accuracy required (necessary condition) with a perfect model
(no model uncertainty) to obtain a location accuracy of the
forecast of 10 km with a 95 % confidence is about 8 km for
a 1 d forecast, 4 km for a 5 d forecast and 1.5 km for a 10 d
forecast, and this requirement cannot be met with a 15 d or
longer forecast.

1 Introduction

Operational services such as the Copernicus Marine Environ-
ment Monitoring Service (CMEMS) routinely provide anal-
yses and forecasts of the state of the ocean to serve a wide
range of marine scientific and operational applications. They
build on state-of-the-art representations of the various dy-
namical components of the ocean and aim at improving the
accuracy and the resolution of their products. However, with
the increase in the complexity and resolution of ocean mod-
els, new questions arise regarding the predictability of the
system. To what extent is it possible – and does it make sense
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– to forecast the very fine scales (∼ kilometric) as targeted
by the future generations of these operational systems? How
sensitive is such forecast to initial errors or to possible short-
comings or approximations in the model dynamics? These
questions are important for operational centers because they
can help to rationalize expectations for the future systems
and thus help driving future developments.

Historically, the question of the predictability of dynam-
ical systems has been addressed by considering only the ir-
reducible sources of error, which result from intrinsic model
instability combined to inevitable small initial errors. In a
deterministic framework, modeling errors can indeed be ex-
cluded from the analysis because they can be reduced by ad-
ditional modeling efforts, so that they do not represent a the-
oretical limitation on predictability. There is a long history of
studies along this line, starting with Lyapunov (1992), who
suggested looking for the fastest-growing unstable modes
(Lyapunov vectors) and their associated e-folding timescales
(Lyapunov exponents). This was extended in meteorology to
describe the largest error growth over a finite time (with sin-
gular vectors, Lorenz, 1965; Lacarra and Talagrand, 1988;
Diaconescu and Laprise, 2012), before it was recognized
that linear instability studies were quite often not sufficient
to provide a correct picture of the predictability patterns,
even for quite short time lags. Nonlinear model integrations
are needed to allow the fast instabilities to saturate and re-
veal the patterns that really matter over a given forecast time
(e.g., Lorenz, 1982; Brasseur et al., 1996). For this reason,
the bred vectors (Toth and Kalnay, 1993; Kalnay, 2003) have
been introduced as a practical way to identify the most rele-
vant perturbations to initialize ensemble forecasting systems.
In the meantime, ensemble forecast simulations, explicitly
performed with the full nonlinear model, have become the
standard approach to investigate predictability (e.g., Palmer
and Hagedorn, 2006; Hawkins et al., 2016). Performing an
ensemble forecast amounts to propagating a probability dis-
tribution in time, which includes the possibility of a non-
deterministic model. In this framework, it is thus possible
to go beyond the assumption that predictability is mainly
limited by unstable and chaotic behaviors and to include the
possibility that intrinsic model uncertainties can be an essen-
tial limiting factor to forecast accuracy, as also recognized
recently in the work of Juricke et al. (2018). In the last 2
decades, indeed, more and more studies have suggested that
uncertainties are intrinsic to atmosphere and ocean models,
since they cannot resolve the full diversity of processes and
scales at work in the system (e.g., Palmer et al., 2005; Fred-
eriksen et al., 2012; Brankart et al., 2015). Non-deterministic
modeling frameworks have been shown to be very helpful
to improve the accuracy of medium-range weather forecasts
(Buizza et al., 1999; Leutbecher et al., 2017), to enhance their
economical value (Palmer, 2002), to alleviate persistent bi-
ases in model simulations (Berner et al., 2012; Juricke et al.,
2013; Brankart, 2013; Williams et al., 2016), and to account
for some misfit between model and observations in data as-

similation systems (e.g., Evensen, 1994; Sakov et al., 2012;
Candille et al., 2015).

Our objective in this study is to build on a case study with
a realistic high-resolution (kilometric scale) regional model,
to evaluate in practice the intrinsic predictability of the ocean
fine scales in this model. To do so we apply a probabilistic
approach, based on ensemble simulations and on probabilis-
tic diagnostics, from which we can assess predictability as a
function of given irreducible sources of uncertainty to con-
sider in the system.

In our approach, both the effect of initial uncertainties and
model uncertainties are considered, either separately or to-
gether. We assume in both cases that they cannot be made
arbitrarily small in a given operational system: initial uncer-
tainties because observation and assimilation resources are
limited and model uncertainties because model resources are
limited. However, to simplify the problem, we only consider
one generic type of model uncertainty that primarily affects
the small scales of the system. By tuning the amplitude of
the perturbations, we can simulate different levels of model
accuracy and generate ensemble initial conditions with dif-
ferent levels of initial spread. With this assumption, we can
then quantify the accuracy of the forecast that is obtained, for
a given combination of initial and model uncertainties.

Reciprocally, we can expect that this set of experiments
can provide insight into the maximum level of initial and
model uncertainties that is required to obtain a given forecast
accuracy. The objective is to help us understand the level of
initial and model accuracy required to produce a useful fore-
cast of the small scales, as targeted in the future kilometric-
scale operational systems. In other words, the objective of
this paper is to compute an upper bound (or more generally,
necessary conditions) for the initial uncertainties, in order to
obtain a targeted forecast accuracy. We do so by using dif-
ferent types of metrics to quantify the forecast accuracy, in
order to emphasize that the definition of this metric is still a
subjective choice, which depends on the goal of every partic-
ular application. The influence of one possible source of ir-
reducible model uncertainty on this upper bound will also be
illustrated. However, it is important to keep in mind that this
influence will depend on the assumption made to simulate
uncertainties in the system. Although generic, and designed
to trigger perturbations in the small scales, they are still spe-
cific and cannot be expected to account for the full diversity
of uncertainties propagating in real operational systems.

It should be emphasized that the goal of the present study
remains to quantify the intrinsic predictability of the system
(as defined by Lorenz, 1995) and should not be confused with
that of quantifying the prediction skill of any given current
operational forecasting system (e.g., Robinson et al., 2002),
which would then incorporate all sources of error, such as
extrinsic errors that would result from coupling with the at-
mosphere, sea ice, etc. However, deriving predictability as an
upper bound or “necessary conditions”, as it is proposed in
the present case study, can provide useful guidance for the
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design of the future generations of operational systems that
will aim for such a kilometric resolution. As a perspective for
future work, this approach could also be used in the design
of a future observation network and the preparation for the
assimilation of future high-resolution observations, such as
wide-swath altimetry.

The paper’s structure is as follows. In Sect. 2, we present
the kilometric-scale regional model based on NEMO (Nu-
cleus for European Modelling of the Ocean, Madec et al.,
2002) over the Western Mediterranean sea that we set up for
this study. We then introduce the parametrization for model
uncertainties that is used to generate different levels of initial
spread and model accuracy. In Sect. 3 we present the three
ensemble experiments produced with these settings, and we
assess and compare their spread growth. Predictability diag-
nostics are then illustrated in Sect. 4 by applying different
types of metrics (probability scores, location errors, spectral
analysis) to characterize the dependence of the forecast accu-
racy to initial and model uncertainties. We finally summarize
the outcomes of this study in Sect. 5.

2 A kilometric-scale regional ocean model

2.1 Model specifications and spinup

In this section, we first describe the kilometric-scale regional
model of the ocean circulation based on NEMO that has
been developed. It covers the Western Mediterranean sea and
uses boundary conditions from a larger reference simulation
(covering the entire North Atlantic) at the same resolution
(eNATL60, Brodeau et al., 2020). The new regional model,
MEDWEST60, covers a domain of 1200 km× 1100 km,
from 35.1 to 44.4◦ N in latitude and from 5.7◦W to 9.5◦ E
in longitude (see Fig. 1). This configuration includes explicit
tidal motion (tidal potential) and is forced at the western and
eastern boundaries with hourly outputs from the reference
simulation eNATL60 (which also includes tides). By design,
all parameter choices for MEDWEST60 were made with the
idea to remain as close as possible from the reference simu-
lation eNATL60. The MEDWEST60 specifications are sum-
marized in Table 1. We use strictly the same horizontal and
vertical grids as eNATL60, meaning that there is no need for
spatial interpolation of the lateral boundary conditions. Com-
pared to the larger-domain simulation eNATL60, which was
forced at the lateral boundaries by the daily GLORYS re-
analysis (Lellouche et al., 2021) and an additional tidal har-
monic forcing from the FES2014 dataset (Lyard et al., 2020),
in MEDWEST60 we add no additional tidal forcing since
it is already explicitly part of the hourly boundary forcing
taken from the eNATL60 outputs. The model time step in
MEDWEST60 is also increased by a factor 2 compared to
eNATL60 (80 s versus 40 s, respectively).

By design, the MEDWEST60 model can be initialized
with an instantaneous, balanced 3-D ocean state archived
from the reference simulation eNATL60 on the same hori-
zontal and vertical grids. Our spinup protocol is thus as fol-
lows: from a NEMO restart file archived from eNATL60 on a
given date (here 25 January 2010), we extract the horizontal
and vertical domain corresponding to MEDWEST60. A first
regional simulation is then run for 5 d, started from the ex-
tracted restart file and using the same time step as eNATL60
(i.e., δt = 40 s). Five more days are then run with a doubled
time step of δt = 80 s, and a new MEDWEST60 restart file
is finally archived, to be used as the starting point on the
5 February 2010 for the following ensemble forecast experi-
ments.

2.2 Parameterization of model uncertainties

The model presented above is a deterministic model, in the
sense that the future evolution of the system is fully de-
termined by the specification of the initial conditions, the
boundary conditions and the forcing functions. This type of
model – deterministic – is the archetype of the models that
are currently mostly used in operational forecasting systems
(though not yet at kilometric scale). In a purely determin-
istic approach, forecast uncertainties can only be explained
by initial uncertainties, boundary uncertainties or forcing un-
certainties, usually amplified by unstable model dynamics.
However, as motivated in the introduction, the objective of
this study is to go beyond this assumption and include the
possibility of model errors impairing the predictability of the
finest scales.

We thus transform the deterministic model presented
above into a stochastic model, with the ambition to emulate
uncertainties that primarily affect the smallest scales of the
ocean flow and let them upscale to larger scales according
to the model dynamics. These uncertainties are likely to de-
pend on many possible sources, by embedding for instance
misrepresentations of the unresolved scales and approxima-
tions in the model numerics but also many others. A detailed
causal examination of the origin and interactions between
these various possible sources of error being quite impossible
to achieve, we propose to introduce here a bulk parameteri-
zation of these effects, by assuming that one of the most im-
portant dynamical consequence of these errors on the finest
scales is to generate uncertainty in the location of the oceanic
structures (currents, fronts, filaments . . . ).

In fluid mechanics, there is ample literature explaining that
the effect of unresolved scales in a turbulent flow can be de-
scribed by uncertainties in the location of the fluid parcels
(e.g., Griffa, 1996; Berloff and McWilliams, 2002; Ying et
al., 2019). This general idea is applied for instance in the
work of Mémin (2014) and Chapron et al. (2018), where the
Navier–Stokes equations are modified by adding a random
component to the Lagrangian displacement dX of the fluid
parcels (as in a Brownian motion).

https://doi.org/10.5194/os-18-1619-2022 Ocean Sci., 18, 1619–1644, 2022
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Figure 1. Bathymetry (in km) of the MEDWEST60 regional domain (x and y axes are model grid points). The full domain covers 883× 803
grid points in the horizontal, representing 1200 km× 1100 km, from 35.1 to 44.4◦ N in latitude and from 5.7◦W to 9.5◦ E in longitude. The
black squares localize three subregions which are referred to in the text and are used for various diagnostics or visualizations in the following.

Table 1. Technical specifications of the MEDWEST60 model.

Numerical code NEMO 3.6
Horizontal resolution 1/60◦

Grid spacing 883× 803 in the horizontal (1.20 km<1x < 1.55 km)
Vertical grid 212 levels (same as eNATL60)a

Time step 80 s
Atmospheric forcing 3-hourly ERA-interim (ECMWF)
Tidal potential On
Lateral boundary conditionsb (ocean) 1-hourly eNATL60 simulation (including tides)
Lateral boundary conditions at the coast No slip

a The vertical levels are defined exactly as in eNATL60, but only 212 levels are actually needed to include the deepest points in
the Western Mediterranean region (i.e., 3217 m at the deepest point), while 300 levels were used in eNATL60 to cover the depth
range in the North Atlantic basin. The following discretization is applied to the first 20 m below the surface: 0.48, 1.56, 2.79, 4.19,
5.74, 7.45, 9.32, 11.35, 13.54, 15.89, 18.40, 21.07 m. b The flow relaxation scheme (“frs”) is used for baroclinic velocities and
active tracers (simple relaxation of the model fields to externally specified values over a 12-grid-point zone next to the edge of the
model domain). The “Flather” radiation scheme is used for sea surface height and barotropic velocities (a radiation condition is
applied on the normal depth-mean transport across the open boundary).

In the present study, location uncertainties are introduced
in our ocean model according to a similar idea, but it is done
differently by applying directly the random perturbations to
the discrete model (rather than the mathematical equations),
in the form of stochastic fluctuations in the horizontal nu-
merical grid. In summary, the effect of the parameterization
is to perturb the horizontal metrics of the model (i.e., the size
of the horizontal grid cells 1x, 1y) using a multiplicative
noise with specified time and space correlation structure. The
stochastic perturbation is implemented using the stochastic
module of NEMO (Brankart, 2013) and expresses a random

second-order autoregressive process, of which we can set the
amplitude (i.e., its standard deviation) and the time and space
correlations. An extensive description and justification of this
parameterization is developed in Appendix A.

The two main effects that this parameterization is expected
to produce in the model are on the horizontal advection and
on the horizontal pressure gradient. In the advection scheme,
the stochastic part of the displacement dX of the fluid parcels
is directly accounted for by the displacement of the grid,
and in return, the transformed grid induces modifications
in the advection by the resolved scales. In addition, loca-
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tion uncertainties also produce fluctuations in the horizon-
tal pressure gradient (by shifting the position of the tracer
fields). It is therefore expected that these stochastic fluctua-
tions can bring a substantial limitation on the predictability
of the small-scale motions. Overall, we can see indeed that
non-deterministic effects are produced in several key com-
ponents of the model and that all of these effects consistently
derive from the sole assumption that the updated location of
the fluid parcels after a model time step is not exact but ap-
proximate.

In our application, the correlation scales of the stochastic
noise have been set to 1 d and 10 grid points, to be smooth
enough and nonetheless produce perturbations on the small-
scale side of the spectrum. The standard deviation of the
noise can also be tuned, so that it is easily possible to sim-
ulate different levels of model accuracy, as required in our
experiments to generate different levels of initial ensemble
spread (see Sect. 3). This standard deviation must however
remain small with respect to the size of the model grid cells
so that the perturbations do not impair the physics of the
model for the resolved scales (see Sect. 3.2). In practice, we
have used values of 1 % and 5 %. Given the typical size of the
model grid (1.4 km on average) and the correlation timescale
of the perturbations (1 d), the typical displacement of the grid
points is thus about 14 or 70 m d−1 in the two horizontal di-
rections in the experiment with a 1 % or 5 % perturbation,
respectively. The way this stochastic perturbation affects the
model solution will be assessed and discussed in Sect. 3.2.

3 A set of three ensemble forecast experiments

Three ensemble forecast experiments were performed with
MEDWEST60, to investigate predictability as a function of
both initial uncertainty and model uncertainty. In this sec-
tion, we give a description of these three ensemble experi-
ments and how they were initialized. We then assess how the
spread grows with time in those ensembles, comparing the
results from the stochastic model (with model uncertainty)
and from the deterministic model (no model uncertainty).
The predictability diagnostics will be presented in Sect. 4.

3.1 Generating the ensembles

Two experiments (ENS-1% and ENS-5%) are performed
with the stochastic model (i.e., including model uncertainty)
and starting from the same perfect initial conditions on the
5 February 2010. Those two ensemble experiments explore
two different amplitudes of the stochastic scheme described
in Sect. 2.2 and Appendix A. Experiments ENS-1% and
ENS-5% are set for a stochastic perturbation of standard de-
viation 1 % and 5 % of the horizontal grid spacing, respec-
tively (see illustration in Fig. 2). By design, the other param-
eters of the stochastic module are kept identical in all the ex-
periments: the time correlation is set to 1 d (1080 time steps),

and the Laplacian filter introducing spatial correlations is ap-
plied 10 times.

The third ensemble experiment performed (ENS-CI) is
the experiment with the deterministic model (i.e., no model
uncertainty) to study predictability under imperfect initial
conditions (ENS-IC). It is initialized from ensemble condi-
tions taken from experiment ENS-1% after 1 d of simulation
(i.e., on the 6 February 2010) when the states of the 20 mem-
bers have already slightly diverged on the fine scales. Note
that the choice is made to start experiment ENS-CI with
small initial errors, but this experiment also virtually gives
access to forecasts initialized with larger errors by consider-
ing day 1, day 2 . . . day 10, etc., of ENS-CI as many different
start times. This approach will be applied in the predictability
diagnostics proposed in the next section (Sect. 4). Following
the same idea, experiments ENS-1% and ENS-5% also virtu-
ally give access to forecasts accounting both for model error
and for some initial error by considering day 1, day 2, day 10,
etc., of the experiments as many different virtual start times
with increasing initial error.

Table 2 offers a summary of the three ensemble forecast
experiments and their characteristics.

3.2 Impact of the location uncertainty on the model
solution

In this section, we assess how the spread grows with time
in those three ensembles and how the stochastic perturbation
affects the model solutions.

Note that, in our approach, the stochastic perturbation is
applied on the model horizontal metrics, while the location
of the grid points themselves is assumed to be the same for
all members (see discussion in Appendix A). In other words,
the field itself is still considered to be located on the refer-
ence grid, for instance with respect to the bathymetry and
the external forcing, and the effect of the perturbation is only
taken into account in the model operator (e.g., for the dif-
ferential operations) and is neglected everywhere else. It im-
plies that ensemble statistics (mean, standard deviation, co-
variance matrix . . . ) can be computed as usual on the refer-
ence grid, while the perturbed metrics must be used to com-
pute any diagnostics involving a differential operator. In the
following, for instance, the perturbed metrics were used to
compute relative vorticity from the velocity fields, to be con-
sistent with the perturbed model dynamics, which is specific
to each member. For that purpose, the perturbed metrics were
archived with time, at the hourly frequency, in each ensemble
member.

3.2.1 Wavenumber power spectrum

The stochastic scheme used in this work is designed to intro-
duce uncertainty at the model grid scale, with a correlation
length scale of 10 grid points, i.e., about 14 km. Uncertainty
is thus introduced within the 10–18 km range of the Rossby

https://doi.org/10.5194/os-18-1619-2022 Ocean Sci., 18, 1619–1644, 2022
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Figure 2. Size of the model grid in the horizontal east–west dimension (1x): (a) unperturbed, from the standard NEMO grid at 1/60◦

resolution and (b) snapshot of the perturbed metric at a given date (stochastic perturbation set to a level of SD= 1 %).

Table 2. Characteristics of the three ensemble forecast experiments ENS-1%, ENS-5%, ENS-CI.

Experiment ENS-1% ENS-5% ENS-CI

Start date 5 February 2010 5 February 2010 6 February 2010
Length (in days) 60 60 60
Ensemble size 20 20 20
Initial cond. Identical Identical Perturbed∗

Restart from Spinup Spinup Day 1 of ENS-1%
Model type Stochastic Stochastic Deterministic
Stochastic param. 1x,1y 1x, 1y None
Amplitude SD= 1 % SD= 5 % –

∗ The “perturbed” ensemble initial conditions of experiment ENS-CI are taken from the restart files of
experiment ENS-1% after 1 d of simulation (see text).

radius of deformation in the region (Escudier, 2016), those
scales being here resolved by∼ 7 to 13 model grid cells. The
introduced uncertainty is then expected to develop and cas-
cade spontaneously toward larger scales through the model
dynamics. The design should be such that the introduced per-
turbation alters the behavior of the physical quantities simu-
lated by the model as little as possible. Figure 3 illustrates
that the simulated fields in the perturbed model do indeed
remain nearly unaltered and indistinguishable from the same
fields in the unperturbed model. Only in the zoomed snapshot
of relative vorticity (i.e., taking the Laplacian of sea surface
height, thus emphasizing gradients) from the strongest per-
turbation experiment do some visual alterations start to ap-
pear on the smallest scales (ENS-5%, Fig. 3f). Note that this
is why we did not propose any additional experiment with a
stronger perturbation than 5 % in our study.

Figure 4 also confirms that the stochastic perturbation does
not alter the spectral characteristics of the physical quantities
in the model. It compares the wavenumber power spectrum
(power spectral density, PSD) of SSH hourly snapshots from
the different experiments, with or without stochastic pertur-
bations, and also from the eNATL60 model (from which
the boundary conditions were taken). On average, over the

2 months of the experiments, the figure shows very consis-
tent SSH spectra from the perturbed and unperturbed models,
giving us confidence in our designed perturbation.

Note that the spread of the PSD around the ensemble mean
of each experiment is also shown by very thin lines in Fig. 4:
the members all have a PSD very consistent with their en-
semble mean (the spread is smaller than the thickness of the
ensemble mean line) on all scales up to ∼ 150 km. For larger
scales, some spread is seen between the members and it pro-
vides an idea of the sensitivity (significance) of such a spec-
tral analysis on the last few points of the spectrum (aliasing
effects). The spectra are computed here over a squared box of
L∼ 490 km (box a in Fig. 1), and spectral scales larger than
L/2∼ 250 km are not well resolved (gray shading in the fig-
ure). The ensemble spread interval appearing in the figure
thus provides some guidance as to how to interpret the sig-
nificance of the PSD variations in this scale range and over
this time period (a 2-month average here).

3.2.2 Growth of the ensemble spread

Figure 5 illustrates the evolution with time of the ensem-
ble spread in the three ensemble experiments performed.
The spread is computed here as the ensemble standard de-
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Figure 3. Hourly snapshots of sea surface temperature (a–c) and relative vorticity (d–f) from one example member after 60 d in the ensemble
experiments ENS-CI, ENS-1% and ENS-5% focusing on a 250×250 grid point subregion southeast of the Balearic Islands (box b in Fig. 1).

viation of the hourly SSH, then spatially averaged over the
entire MEDWEST60 domain, for each of the ensemble ex-
periments. As expected, the ensemble spread initially grows
faster in the perturbed experiment with the large model error
(ENS-5%) than with the smaller model error (ENS-1%) and
in the unperturbed experiment (ENS-CI). But after about 50 d
of simulation, the ensemble spread of all three experiments
(ENS-CI, ENS-1% and ENS-5%) has converged on a simi-
lar value. The spread is still growing at the end of the 60 d
experiments, but the curves have started to flatten, suggest-
ing that our experimental protocol was successful at initiat-
ing divergent enough ensembles on the targeted time range
(2 months). The saturation of the spread was further veri-
fied by extending one of the experiments by 2 more months
(not shown here). Note also that similar characteristics of the
spread growth have been seen in the other surface variables
(SST, SSS, relative vorticity, not shown here).

After 2 months, the three experiments have reached an
ensemble spread in SSH of about 2.5 cm on average over
the domain, but local maxima of spread values are found
around 10 cm (not shown). Further investigations discussed
in the following subsection (see “Spatial decorrelation”) also
confirm that the spatial decorrelation of the submeso- and
mesoscale features has been reached by the end of the 2-
month experiments.

After the first ∼ 10 d of simulation, the ensemble spread
in the three ensembles evolves in a similar manner, at more
or less the same rate, and almost linearly, until day 40–50,
when the curves then start to flatten and converge. Only in the
first few days does the presence of model uncertainty make
a difference in the growth rate, ENS-5% clearly showing a
faster growth than ENS-1% (the latter being slightly faster
than ENS-CI in the very first few days). This result suggests
that in the context of short-range forecasting (1–5 d), model
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Figure 4. Wavenumber spectrum (power spectral density, PSD) of
hourly SSH snapshots in the MEDWEST60 ensemble experiments,
in a box of 350× 350 grid points (see box a in Fig. 1), corre-
sponding to a size L∼ 490 km. Comparison is also made with the
eNATL60 simulation. The PSD of SSH [m2 cpkm−1 (cpkm – cy-
cle per kilometer)] is averaged in time over 241 hourly snapshots of
SSH, 1 hourly spectrum every 6 h, over the 2 months of simulation
and over all members of the given ensemble (thick lines). The PSDs
of all individual members are also shown as thin lines, in the same
color as their ensemble mean. The gray shading indicates where the
spatial scales are not fully resolved within the considered region
(scales larger than L/2∼ 250 km).

uncertainties might play a role as much as uncertain initial
conditions and should be taken into account in operational
systems.

From Fig. 5, it appears that the presence of model uncer-
tainty is associated with some oscillatory behavior in the en-
semble spread evolution, at a period close to half a day, and
with amplitude growing with the amplitude of the model er-
ror (barely visible in ENS-1% but appearing more clearly in
ENS-5%). These oscillations might reflect some slight spu-
rious numerical effects due to the horizontal grid distortions
imposed in these experiments with the parametrization. The
period close to tidal or inertial period might suggest some
effect related to partial wave reflection in the buffer zone at
the lateral boundaries of the domain, but further investigation
would be needed to be able to draw any conclusions.

Note also that these experiments are initiated in the win-
ter time (February) when mesoscale activity is expected to
be the largest in the region. We have also performed an ad-
ditional test experiment (not shown), identical to ENS-1%
except for the start date, taken in August, when mesoscale
activity is expected to be low. We found that the growth of

Figure 5. Time evolution of the ensemble standard deviation of the
hourly SSH, then spatially averaged over the entire MEDWEST60
domain for the three ensemble experiments (ENS-1%, ENS-5%,
ENS-1%-S, ENS-CI): (a) over 60 d; (b) focus on the first 5 d of
simulation.

the ensemble spread in this case is significantly slower than
with winter initial conditions. It is consistent with the idea
that the seasonal level of mesoscale turbulence plays a sig-
nificant role in the ensemble spread of the forecast and thus
in the quantification of predictability. In this paper we do not
investigate the dependence on seasonality, as our main objec-
tive is to propose a methodology to quantify predictability as
a function of both initial uncertainty and model uncertainty.
We thus choose to focus on the winter season where the dy-
namics of the system are expected to maximize the growth of
the ensemble spread for a given initial uncertainty.

3.2.3 Spatial decorrelation

Figure 6 illustrates how the relative vorticity fields diverge
with time in hourly snapshots from two different members
of experiment ENS-CI. The focus here is on a 250×250 grid
point subregion in order to better emphasize the smallest sim-
ulated ocean features. At a short time lag (+1 d), the ocean
states in the two example members are barely distinguishable
from each other. With a +20 d time lag, differences start to
appear in the exact location of the small features and their
shape. After 60 d, the differences have become more obvious
even on larger features and eddies, and many features do not
even have a corresponding feature in the other member. At
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the end of the experiment, the ocean state of the two mem-
bers appears clearly distinct from each other.

In order to investigate more systematically the evolution
with time of the spread between the members of an ensemble
and its wavenumber spectral characteristics, we now consider
the forecast “error”, which we assess here as the difference in
SSH hourly snapshots taken between all pairs of members in
the ensemble and at each time lag. In other words, each mem-
ber is alternatively taken as the truth and compared to the
19 remaining members, taken as the ensemble forecast for
that given truth. We then compute the power spectral density
(PSD) of each pair difference at each time lag and then aver-
age over the 20× 19 permuted pairs to obtain the systematic
error. Figure 7 presents this mean PSD, characterizing the
systematic forecast error, as a function of forecast time lag, in
all three ensemble experiments. For reference, the ensemble-
mean PSD of the full-field SSH at time lag +60 d is also
plotted in the same figure.

After just 1 h of simulation starting from perfect initial
conditions with the stochastic model in ENS-1% (yellow
curve in Fig. 7b), the wavenumber spectrum of the forecast
error peaks in the small scales around λ= 15 km and is still 2
orders of magnitude smaller than the level of spectral power
in the full-field SSH (shown as reference as a thick black line
in the figure). The same behavior is observed for ENS-5%
(Fig. 7c), except that the level of spectral power is 1 order
of magnitude larger than in ENS-1% (since the spread grows
faster in ENS-5% than in ENS-1%). With increasing time
lag, the shape of the PSD becomes more “red”, with more
spectral power cascading to the larger scales. By the end of
all three experiments (+60 d time lag), the PSD of the fore-
cast error has almost converged on the reference full-field
SSH PSD, suggesting that the members of each ensemble
have become decorrelated on the spatial scale range consid-
ered here, i.e., 10–200 km. Note that we do not necessarily
expect a full spatial decorrelation between the members in
this type of experiment since all members see the same sur-
face forcing and lateral boundary conditions. From Fig. 7 it
is also noteworthy that the evolution in time of the forecast-
error spectrum in ENS-CI (Fig. 7a) and ENS-1% (Fig. 7b) is
very similar in amplitude and shape, except for the first time
lag (+1 h), where the curve in ENS-CI is already smoother
than in ENS-1% and does not show the λ= 15 km peak as in
the latter. This is because ENS-CI is by design started from
initial conditions from day +1 of ENS-1% (see Sect. 3). In
any case, by a time lag of 5 d, both ENS-CI and ENS-1%
have converged into a very similar forecast-error spectrum
and evolve in the same manner.

Overall, we thus find that after 2 months, the ensemble
variance saturates over most of the spectrum, and the small
scales (< 100 km) have become fully decorrelated between
the ensemble members. This set of ensemble simulations
is thus confirmed to be appropriate to provide a statistical
description of the dependence between initial accuracy and

forecast accuracy for time lags between 1 and 20 d, consis-
tently with the diagnostics proposed in the following.

4 Predictability diagnostics

In this section, we present predictability diagnostics where
we quantify predictability, based on a given forecast score
measuring both the initial and forecast accuracy. Although
any specific score of practical significance could have been
used, we focus here on a few simple and generic scores char-
acterizing the misfit between ensemble members, in terms
of (1) overall accuracy (Sect. 4.1: Probabilistic score), in
terms of (2) geographical position of the ocean structures
(Sect. 4.2: Location score) and in terms of (3) spatial decorre-
lation of the small-scale structures (Sect. 4.3: Decorrelation
score).

4.1 Probabilistic score

A standard approach to evaluate the accuracy of an ensemble
forecast using reference data (Candille and Talagrand, 2005;
Candille et al., 2007) is to compute probabilistic scores char-
acterizing the statistical consistency with the reference (re-
liability of the ensemble) and the amount of reliable infor-
mation it provides (resolution of the ensemble). For instance,
in meteorology, ensemble forecasts can be evaluated a pos-
teriori using the analysis as a reference. In the framework
proposed in this study, a consistent approach to assess pre-
dictability is thus to compute the probabilistic scores that
can be expected for given initial and model uncertainty. In
this case, we can use one of the ensemble members as a ref-
erence, by assuming that it corresponds to the true evolution
of the system, and then compute the score using the remain-
ing ensemble members as the ensemble forecast to be tested.
Furthermore, by repeating the same computation with each
ensemble member as a reference, as in a cross-validation al-
gorithm, we can obtain a sample of the probability distribu-
tion for the score. All members of the ensemble are thus used
successively as a possible truth, for which the other members
provide an ensemble forecast. This procedure is very simi-
lar to the ensemble approach introduced in Germineaud et al.
(2019) to evaluate the relative benefit of observation scenar-
ios in a biogeochemical analysis system. In this framework,
the probabilistic score can be viewed as a measure of the re-
sulting skill of a given observation scenario.

4.1.1 CRPS score

A common measure of the misfit between two probability
distributions of a one-dimensional random variable x is the
area between their respective cumulative distribution func-
tions (CDFs) F(x) and Fref(x):

1=

∞∫
−∞

|F(x)−Fref(x)| dx. (1)
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Figure 6. Hourly snapshots of relative vorticity from two example members (top and bottom, respectively) after 1, 20 and 60 d (from left
to right, respectively) in the ensemble experiment ENS-CI, focusing on a 250× 250 grid point subregion southeast of the Balearic Islands
(box b in Fig. 1).

In our application, the reference CDF Fref(x) is a Heaviside
function increasing by 1 at the true value of the variable, and
the ensemble CDF F(x) is a stepwise function increasing
by 1/m at each of the ensemble values (where m is the size
of the ensemble). Thus the further the ensemble values from
the reference, the larger 1, and the unit of 1 is the same as
the unit of x.

The continuous rank probability score (CRPS) is then de-
fined (Hersbach, 2000; Candille et al., 2015) as the expected
value of 1 over a set of possibilities. In practical applica-
tions, the expected value is usually replaced by an aver-
age of 1 in space and time. In our application, the cross-
validation algorithm would give the opportunity to make an
ensemble average and thus be closer to the theoretical defini-
tion of CRPS. However, the ensemble size is too small here
to provide an accurate local value of CRPS, so that we prefer
computing a spatial average as would be done in a real sys-

tem and compute an ensemble of spatially averaged CRPS
scores. In the following, CRPS scores will be computed by
averaging over a subregion of the domain basin southeast of
the Balearic Islands (100× 100 grid point region labeled as
box c in Fig. 1).

4.1.2 Evolution in time

We first investigate the ensemble experiment performed with
the deterministic model and uncertain (i.e., perturbed) initial
conditions (ENS-CI). The additional effect of model uncer-
tainties will be diagnosed in a second step.

Figure 8 shows the time evolution of the CRPS score for
SSH, SST and SSS as obtained in experiment ENS-CI. It is
computed for each of the 20 permuted cases taking an ensem-
ble member as the reference truth and the rest of the mem-
bers as the ensemble forecast. The CRPS score starts from
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Figure 7. Ensemble-mean wavenumber power spectrum density
(PSD) of the hourly SSH at day 60 (black thick line) compared
to the mean PSD of the forecast error in experiments (a) ENS-CI,
(b) ENS-1% and (c) ENS-5%. The forecast error is assessed as the
difference in the hourly SSH fields between all pairs of members in
the given ensemble, and the mean is taken of the PSDs of all the
20× 19 permuted pairs at each time (time increasing from yellow
to blue colors); see text in Sect. 4.3 for more details. The time lag
labeled “Day 0” is taken after 1 h of the experiment. The gray shad-
ing indicates where the spatial scales are not fully resolved within
the considered region (scales larger than L/2∼ 250 km).

0 and the initial increase is about exponential, with a dou-
bling time of about 4 d. After typically 20 d, the evolution
of the score becomes more irregular, globally increasing but
also sometimes decreasing in time, depending on the partic-
ular situation of the system. During the initial exponential
increase, the diversity of possible evolutions of the score re-
mains moderate: the score only increases a bit faster or a bit
slower according to the member that is used as a reference.
In the second period, however, the evolution becomes very
diverse, with the score sometimes increasing with time for a
given reference member and decreasing for another reference
member. This shows the importance of accounting for the di-
versity of possible situations in the description of predictabil-
ity. With time, anomalous situations can emerge, which can
produce different predictability patterns. Predictability thus
needs to be described as a probability distribution of the score
for given conditions of initial uncertainty (and/or of model
uncertainty).

4.1.3 Predictability diagrams

Using the time evolution of the ensemble CRPS score ob-
tained in the previous section, it is then possible to describe
predictability for a given time lag1t by the joint distribution
of the initial and final score CRPS(t) and CRPS(t +1t), re-
spectively. From this distribution, we can indeed obtain the
conditional distribution of the final score given the initial
score and reciprocally the conditional distribution of the ini-
tial score required to obtain a given final score.

Figure 9 describes predictability for three time lags 1t =
2, 5 and 10 d, for SSH, SST and SSS, by plotting the forecast
CRPS score (y axis) conditioned on the initial CRPS score
(x axis) of the same variable. The figure is plotted for experi-
ment ENS-CI, i.e., without model uncertainty. It is in fact just
a reshuffling of the data from Fig. 8, gathering all couples of
scores with time lag 1t . It must be kept in mind that the
figure mixes forecasts starting at a different initial time (in
the range of the 2-month experiment), which can correspond
to various situations of the system, in particular to different
atmospheric forcings. The resulting probability distribution
thus encompasses this set of possibilities, the only conditions
being on the time lag1t and the initial CRPS score. To put a
condition on the initial time would have required performing
a large number of ensemble forecasts from that initial time
with various levels of initial error and would have been far
too expensive.

The first thing to note from Fig. 9 is that for a given initial
score, there can be a large variety of final scores after a 1t
forecast, which again shows the importance of a probabilistic
approach. What we obtain is a description of the probability
distribution of the final score given the initial score or, re-
ciprocally, the probability distribution of the initial score to
obtain a required final accuracy. These are just two differ-
ent cuts (along the y axis or along the x axis) in the two-
dimensional probability distribution displayed in the figure.
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Figure 8. Time evolution of the CRPS score (y axis) for SSH (meters), SST (degree Celsius) and SSS (psu) from experiment ENS-CI. The
score is computed for each of the 20 permuted cases (thin lines) taking an ensemble member as the reference truth and the rest of the members
as the ensemble forecast. The blue shading represents the minimum-to-maximum envelop of the 20 scores computed for the experiments.
Two example lines are plotted thicker (solid and dotted lines) in each panel to illustrate how individual scores can evolve with time.

From this probability distribution, it is then possible to com-
pute the initial score required to have a 95 % probability that
the final score is below a given value (with imperfect accu-
racy where the spread is large, as a result of the limited size of
the ensemble). This result, corresponding to the green curve
in the figure, can be viewed as one possible answer to the
question raised in the introduction about the initial accuracy
required to obtain a given forecast accuracy.

4.1.4 Effect of model uncertainties

To explore the potential additional effect of model uncertain-
ties (as represented by the stochastic scheme described in
Sect. 2.2) on predictability, we can compare the CRPS diag-
nostics described above for the three ensemble experiments
performed: ENS-CI (no model uncertainty), ENS-1% (mod-
erate model uncertainty) and ENS-5% (larger model uncer-
tainty). To that end, Fig. 10 shows the time evolution of the
CRPS score for these three experiments. We observe that
forecast uncertainty increases faster with model uncertainty
included in the system (especially in ENS-5%), although the
asymptotic behavior of the score is very similar in all three
simulations. Model uncertainty mainly matters for a short-
range forecast (less than ∼ 15 d) when the initial condition
is very accurate. Of course, this conclusion only holds for
the kind of location uncertainty that we have introduced in
NEMO here, with short-range time and space correlation. A
long-standing effect of model uncertainty on predictability
would be expected for large-scale perturbations, as in the at-
mospheric forcing, for example (in this study though, we do
not consider atmospheric forcing uncertainty, as the ocean
model is forced by a prescribed and presumably “true” at-
mosphere).

The consequence of this specific impact of model uncer-
tainty is that the predictability diagrams displayed in Fig. 9
remain very similar for all three experiments, only becom-
ing a bit more fuzzy when model uncertainty is included. To
see the difference, we need to focus on the short time lag
(1t = 2 d) and on the small initial and final scores (which
correspond to the beginning of the experiments). Figure 11
compares the results obtained for SSH in ENS-CI, ENS-1%
and ENS-5%, and we can observe that with larger model un-
certainty, a smaller initial score (i.e., a more accurate initial-
ization from observations) is generally needed to obtain a
given final score (i.e., a given target of the forecasting sys-
tem). If this model uncertainty is irreducible (as argued in
Sect. 2.2 if it represents the effect of unresolved scales), it
can thus represent an intrinsic limitation on predictability (at
that resolution), at least in the specific case of a short time
lag and a small initial error.

4.2 Location score

In the previous section, a probabilistic score has been used to
describe the accuracy of the initial condition that can be as-
sociated with any given observation or assimilation system.
However, in many applications, what matters is not so much
the accuracy of the value of the ocean variables, but the lo-
cation of the ocean structures (fronts, eddies, filaments . . . ).
Moreover, the acuteness of the positioning of ocean struc-
tures that can be obtained in the initial condition of the fore-
cast can be thought to be rather directly related to the resolu-
tion of the observation system that is available for the opera-
tional forecast (in situ network or satellite imagery).

For these reasons, in this section, we will introduce a sim-
ple measure of location uncertainties in an ensemble forecast,
which will be used in the same way as the CRPS score in the
previous section. The same type of diagnostics will be com-
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Figure 9. Final CRPS score (y axis) as a function of the initial CRPS score (x axis), for three time lags 1t = 2, 5, and 10 d (from top
to bottom) for SSH (meters), SST (degree Celsius) and SSS (psu). The green line corresponds to the initial score required to have a 95 %
probability that the final score is below a given value.

puted to provide a similar description of predictability but
from a different perspective.

4.2.1 Misfit in field locations

To obtain a simple quantification of the position misfit be-
tween two ocean fields (one ensemble member and a refer-
ence truth), we are looking for an algorithm to compute at
what distance the true value of the field can be found. Ideally,
what we would like is to find the minimum displacement that
would be needed to transform a given ensemble member into
the reference truth. However, it is important to remark that

this does not amount to computing the distance between cor-
responding structures in the two fields. This would indeed
require an automatic tool to identify coherent structures in
the two fields and would be much more difficult to achieve
in practice. In general, if the two fields are not close enough
to each other, such an identification would even be impossi-
ble, since ocean structures can merge, appear, disappear or
be transformed to such extent that no one-to-one correspon-
dence can be found.

In addition, to further simplify the problem, we do not con-
sider the original continuous fields but modified fields that
have been quantized on a finite set of values. Figure 12, for
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Figure 10. CRPS score as a function of time for (a) SSH (meters), (b) SST (degree Celsius) and (c) SSS (psu), compared for the three
simulations: ENS-CI (no model uncertainty, blue shading), ENS-5% (larger model uncertainty, orange shading) and ENS-1% (small model
uncertainty, gray lines). Only the minimum-to-maximum envelop of all the 20 individual CRPS scores is represented for each experiment
(the 20 individual scores are omitted).

Figure 11. Forecast CRPS score (y axis) as a function of the initial CRPS score (x axis) for SSH (meters) at time lag 1t = 2 d. The green
line corresponds to the initial score required to have a 95 % probability that the final score is below a given value. The figure compares the
three simulations (a) ENS-CI (no model uncertainty), (b) ENS-1% (small model uncertainty) and (c) ENS-5% (larger model uncertainty) for
the small CRPS scores (smaller than 0.01 m).

instance, shows the salinity field from two example mem-
bers of the ENS-CI simulation (after 15 d), together with
their quantized version. The quantized version is obtained by
computing the quantiles of the reference truth, for instance
19 quantiles here (from the distribution of all values in the
map), and then by replacing the value of the continuous field
by the index of the quantile interval to which it belongs (be-
tween 1 and 20). In this case, a value of 1 means that the
field is below the 5 % quantile and a value of 20 means that
the field is above the 95 % quantile. From these quantized
fields, it is then easy to find the closest point where the index
is equal to that of the reference truth and thus where the field
itself is close to the truth (to a degree that can be tuned by
changing the number of quantiles).

Figure 13 shows the resulting maps of location misfit, in
kilometers, for salinity in ENS-CI after 5, 10 and 15 d. We
see that the location misfit increases with time as the two en-

semble members diverge from each other. At +10 d, misfit
values of 5–10 km are sparsely seen in the SSS field, featur-
ing a thin elongated pattern that likely illustrates the arising
misfit in the location of a NW–SE front (sharp gradient in
the SSS field, as seen in Fig. 12c–d). At +15 d, the loca-
tion misfit has increased in amplitude and now covers most
of the subregion, with maximum values of 15–20 km. From
such maps, it is then possible to define a single score from
the distribution of distances. For the purpose of this study,
we simply define our location score as the 95 % quantile of
this distribution, which means that location error has a 95 %
probability of being below the distance given by the score.

4.2.2 Evolution in time

We start by analyzing the time evolution of the location score
in ensemble experiment ENS-CI, where the only source of
uncertainty comes from the initial conditions (no model un-
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Figure 12. Surface sea salinity (SSS) hourly snapshots from two example members of experiment ENS-CI after 15 d, focusing on a 100× 100
subregion southeast of the Balearic Islands: box (c) in Fig. 1. The original continuous fields are shown in the top row (a, b) and their quantized
version (c, d) in the bottom row.

certainty; the model is deterministic). Figure 14 shows the
evolution in time of the location score for SST and SSS,
considering each pair of members in the ensemble, which
amounts to a total of m(m− 1)= 20× 19= 380 curves dis-
played in the figure. The two panels, for (a) SST and (b) SSS,
both show a similar distribution of the time evolutions, con-
firming that our quantification of location uncertainty is con-
sistent for these two tracers. Figure 14 also shows that during
about the first half of the experiment (the first 30 d), the lo-
cation score increases towards saturation, with a spread that
also increases with time, whereas in the second half of the
experiment, the score has reached the asymptotic distribu-
tion, which is characterized by a large location uncertainty
and a large spread of the score. It means that there is no more
information about the location of the ocean structures in the
forecast and that the score can be either moderate (down to
20 km) or very large (up to 80 km and more) depending on

chance. In the following, we thus mostly focus on the range
of scores, between 0 and 20 km, where a valuable forecast ac-
curacy can be expected (for the small-scale tracer structures
that are resolved by the model).

4.2.3 Predictability diagrams

From the time evolution of the score described in the previ-
ous section, we can then deduce predictability diagrams, fol-
lowing exactly the same approach as for CRPS in Sect. 4.1.3.
Figure 15 describes predictability (computed from SST
fields) for six time lags (1t = 1, 2, 5, 10, 15 and 20 d), by
showing the final location score (y axis) as a function of
the initial location score (x axis). Again, this figure is just
a reshuffling of the data from Fig. 14, gathering all couples
of scores with time lag 1t , using the same assumption al-
ready discussed in Sect. 4.1.3. Note that the longest time lags
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Figure 13. Location misfit (in km) between the surface salinity fields of two example members in the ensemble experiment ENS-CI after 5,
10 and 15 d (from left to right), focusing on a subregion southeast of the Balearic Islands: box (c) in Fig. 1.

Figure 14. Time evolution of the location score (y axis, in km) for (a) SST and (b) SSS in experiment ENS-CI. The score is computed for
each of the 20× 19 permutated pairs (blue lines) considering one ensemble member as the reference truth and each of the 19 remaining
ensemble members as a forecast. The blue shading represents the minimum-to-maximum envelop of all the 20× 19 scores computed for the
experiment. Two example lines are plotted thicker (solid and dotted lines) in each panel to illustrate how individual scores can evolve with
time.

considered here (> 10 d) are relevant only in the present con-
text of forced ocean experiments (as a forecasted atmosphere
would also become a major source of uncertainty for ocean
predictability in a real operational forecast context at those
time lags).

The interpretation of Fig. 15 follows the same logic as the
previously discussed predictability diagrams for CRPS. But
the structure of the diagrams is even more directly under-
standable here, and the loss of predictability with time ap-
pears more clearly. For instance, if one seeks a forecast accu-
racy of 10 km with a 95 % confidence (i.e., a y value of the
green curve equal to 10 km), then Figure 15 shows that the

initial location accuracy required (necessary condition but
not sufficient; see the “Summary and conclusion” section)
is about 8 km for a 1 d forecast, 6 km for a 2 d forecast, 4 km
for a 5 d forecast and 2 km for a 10 d forecast and that this
target is impossible to achieve in a 15 and 20 d forecast. In
the two latter cases, however, the impossibility to achieve the
targeted accuracy might just be due to the absence of small
enough initial errors in our sample (since ENS-CI was ini-
tialized using ENS-1% after 1 d). But this should not make
any practical difference since such small initial errors would
be impossible to obtain in a real system anyway.
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4.2.4 Effect of model uncertainties

As for the CRPS score, we then explore the possible ad-
ditional effect of model uncertainty, by comparing the re-
sults from experiment ENS-CI (no model uncertainties) with
those from ENS-1% (small model uncertainties) and ENS-
5% (larger model uncertainties). Figure 16 first compares the
time evolution of the location score for ENS-CI (in blue) and
ENS-5% (in orange), and we again observe that model uncer-
tainty mainly matters at the beginning of the simulation by a
faster increase in the forecast uncertainty, towards a similar
asymptotic behavior for the two simulations.

As for the CRPS score, the predictability diagrams are
only substantially different between the experiments for short
time lags and small initial and final scores. This is illustrated
in Fig. 17 by comparing the predictability diagrams obtained
for SST in (a) ENS-CI, (b) ENS-1% and (c) ENS-5% for
1t = 5 d and scores below 20 km. Again, we can detect a
moderate effect of model uncertainty (as simulated here) on
predictability here. For instance, if one seeks a forecast ac-
curacy of 10 km with a 95 % confidence, the initial location
accuracy required decreases from about 4 km in ENS-CI to
about 3 km in ENS-5%.

As expected, our results show that the initial location accu-
racy plays a major role in driving the forecast location accu-
racy, but irreducible model uncertainties can also play a role
for short time lags and accurate initial conditions.

4.3 Decorrelation score

To complement the information provided by the location
score above on the “misfit” of the ocean structures, we also
investigate the decorrelation of the ensemble members in
spectral space.

4.3.1 Decorrelation as a function of spatial scale

The idea behind this additional score is to compare the spec-
tral content of the forecast error to the spectral content of the
reference field (here considering SSH). The forecast error is
assessed as the difference in SSH maps (hourly averaged) be-
tween a given member taken as the truth and another mem-
ber regarded as the forecast. All the 20×19 combinations of
pairs are alternatively considered, following the same cross-
validation algorithm as described in the previous sections.
The misfit of the ocean structures is here quantified in spec-
tral space with a ratio R of decorrelation, computed for each
time lag as

R = 1−
〈PSDdiffssh〉

2×〈PSDssh〉
, (2)

where PSDssh is the power spectral density of the full-field
SSH at that given time lag and PSDdiffssh is the PSD of the
forecast error on SSH at that given time lag. The brackets
〈. . .〉 denote the ensemble mean operation over the 20 mem-
bers or over the 20×19 combinations of pairs. The PSDs are

computed in the squared box ofL∼ 450 km shown as box (a)
in Fig. 1. By design, R is expected to tend to 0 when the en-
semble members are fully decorrelated and to be close to 1
when the members are fully correlated. The factor 2 in the
definition of R comes from the fact that we compare here the
PSD of a difference between two given fields with the PSD
of the reference field. For example, if the ensemble mem-
bers are strictly independent and uncorrelated in space on all
scales, then for all combinations of a pair of members (t , f )
where t would be considered the truth and f the forecast, the
space variance (var) of the difference f − t can be expressed
as

〈var(f − t)〉 = 〈var(f )+ var(t)− 2covar(f, t)〉, (3)
〈var(f − t)〉 = 〈var(f )〉+ 〈var(t)〉, (4)
〈var(f − t)〉 = 2〈var(f )〉, (5)

where the factor 2 appears.

4.3.2 Evolution in time

In Sect. 3.2, we have already discussed the evolution with
time of the spatial spectral content of the forecast error
(Fig. 7). Now Fig. 18 shows the evolution in time of the ratio
R, computed at different time lags from experiment ENS-CI
in panel a. By design, values of R are close to 1 when the
members are strongly correlated: this is indeed the case in
the figure at very short time lags (< 5 d, yellow line). With
time increasing, R decreases (the members are less and less
spatially correlated), starting from small scales and cascad-
ing to larger scales. At the end of the 2-month experiment,
R has decreased to 0 for scales in the range of 10–60 km,
consistently with what we had already deduced from Fig. 7.
Full decorrelation is not yet reached for larger scales, but we
do not necessarily expect a full spatial decorrelation between
the members in this type of experiment since all members
see the same surface forcing and lateral boundary conditions.
Also, note that the size of the box on which the spatial spec-
tral analysis is performed is about 350 km2, so the left part of
the spectrum is not expected to be very significant for scales
larger than ∼ 150 km (aliasing effect, also see Fig. 4 and as-
sociated text).

On the right side of the spectrum, on very small scales
(< 6 km), it is noteworthy that R remains larger than 0.5 af-
ter 2 months of simulation. This behavior is consistent in the
three experiments (see panels a, b, c in Fig. 18), so it cannot
just result from a spurious effect of the stochastic perturba-
tion (which is not present in experiment ENS-CI). Specific
investigations would be needed to understand better the rea-
sons for this behavior, but note that it might just result from
numerical noise (such as truncation errors, etc.), given the
small amplitude of the signal (see Fig. 7) on the range of
scales considered here (< 6 km).
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Figure 15. Final SST location score (y axis, in km) as a function of the initial SST location score (x axis, in km) for experiment ENS-CI for
six time lags 1t = 1, 2, 5, 10, 15 and 20 d (from a–f). The green line corresponds to the initial score required to have a 95 % probability that
the final score is below a given value.

Figure 16. Time evolution of the location score (y axis, in km) for (a) SST and (b) SSS, from two of the experiments: ENS-CI (no model
uncertainty, in blue) and ENS-5% (larger model uncertainty, in orange). Only the minimum-to-maximum envelop of all the 20× 19 individual
location scores is represented for experiment ENS-CI as the individual 20× 19 individual scores are already plotted in Fig. 14. The individual
scores and the minimum-to-maximum envelope are superposed here for experiment ENS-5%.
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Figure 17. Final location score (y axis, in km) as a function of the initial location score (x axis, in km) for SST and time lag 1t = 5 d. The
green line corresponds to the initial score required to have a 95 % probability that the final score is below a given value. The figure compares
the three simulations ENS-CI (no model uncertainty, a), ENS-1% (small model uncertainty, b) and ENS-5% (larger model uncertainty, c) for
the small location scores (smaller than 20 km).

4.3.3 Evolution in time and predictability diagrams

To provide an example of a predictability diagram based on
this spectral analysis, we finally consider the mean ratio R,
averaged over two given ranges of scales (10–30 and 60–
100 km) from experiment ENS-CI in Fig. 19, following the
same methodology as for the CRPS and location scores. The
value of R after a given forecast time lag, R(t+1), where1
is the time lag, is plotted as a function of the initial value
R(t). For each given scale range (panel a 10–30 km and
panel b 60–100 km), the figure thus provides some objec-
tive information about the spatial decorrelation between the
members (here in the case with no model uncertainty).

In the 10–30 km scale range for example, it appears that
even with very small initial errors (initial R close to 1), the
members become nearly decorrelated after a time lag of ∼
10 d (i.e., R(t +1) < 0.5) on these scales. For the larger-
scale range, 60–100 km, the threshold of R(t +1) < 0.5 is
reached for time lags above ∼ 15 d. Note however that only
the uncertainty in initial conditions is taken into account here.
A faster decorrelation would be expected if other types of
uncertainties in the forecast system were taken into account,
such as uncertainty in the atmospheric forcing.

The kind of predictability diagrams proposed in Fig. 19
might also be relevant in the context of preparing for the
assimilation of wide-swath high-resolution satellite altime-
try such as expected from the future SWOT mission (Mor-
row et al., 2019). This mission is expected to measure sea
surface height (SSH) with high precision and resolve short
mesoscale structures as small as 15 km on a wide swath of
120 km. However the time interval between revisits will be
within 11 to 22 d, depending on the location. Our results
above tend to show that, for time lags longer than 10 d, the
forecasting system considered in the present study will have
lost most of the information in the initial condition regard-
ing SSH structures in the smallest-scale range (10–30 km).

With a perfect model and a very good assimilation system
that would ensure an initial ratio R0 close to 1 (say 0.9 for
the sake of the numerical application here) the spectral co-
herence ratio R of the forecast after 5 d drops down to 0.5
for scales in the range 10–30 km, while it remains above 0.8
for scales in the range 60–100 km at the same time lag. Or
to put it differently, if the target for the spectral decorrelation
was to remain above R = 0.5 for all scales in the range 10–
100 km, then a revisit time of the satellite between 5 and 10 d
would be necessary (and even shorter with current imperfect
models). This is why nadir altimeter data will remain a key
component of the satellite constellation complementing the
wide-swath SWOT measurements in space and time.

5 Summary and conclusions

The general objective of this study was to propose an ap-
proach to quantify how much of the information in the initial
condition a high-resolution NEMO modeling system is able
to retain and propagate correctly during a short- and medium-
range forecast.

For that purpose, a kilometric-scale, NEMO-based re-
gional model for the Western Mediterranean (MEDWEST60,
at 1/60◦ horizontal resolution) has been developed. It has
been defined as a subregion of a larger North Atlantic model
(eNATL60), which provides the boundary conditions at an
hourly frequency at the same resolution. This deterministic
model has then been transformed into a probabilistic model
by introducing an innovative stochastic parameterization of
location uncertainties in the horizontal displacements of the
fluid parcels. The purpose is primarily to generate an ensem-
ble of initial conditions to be used in the predictability stud-
ies, and it has also been applied to assess the possible im-
pact of irreducible model uncertainties on the accuracy of
the forecast.
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Figure 18. Mean coherence ratio R (see text for definition) from experiments ENS-CI, ENS-1% and ENS-5%. The ratio is computed at
different time lags: time increasing from yellow to blue colors. The gray shading indicates where the spatial scales are not fully resolved
within the considered region (scales larger than L/2∼ 250 km).
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Figure 19. Mean wavenumber spectral coherence ratio R of the ensemble forecast as a function of the coherence of the ensemble initial
conditions, for different forecast time lags (+2, 5, 10, 15, 20 d), computed from hourly SSH in experiment ENS-CI. The mean ratio R is
taken over scales of (a) 10–30 km and (b) 60–100 km. A gray horizontal line marks the value of the coherence ratio R at 0.5, at which we
consider the decorrelation of the ensemble members as effective. The R0 = Rforecast line is also marked in gray.

With this regional model, 20-member and 2-month ensem-
ble experiments have been performed, first with the stochas-
tic model for two levels of model uncertainty and then with
the deterministic model from perturbed initial conditions. In
all experiments, the spread of the ensemble emerges from
the smallest model scales (i.e., kilometric) to progressively
develop and cascade upscale to the largest structures. After 2
months, the ensemble variance has saturated over most of the
spectrum (10–100 km) and the ensemble members have be-
come decorrelated in this scale range. These ensemble simu-
lations are thus appropriate to provide a statistical description
of the dependence between initial accuracy and forecast ac-
curacy over the full range of potentially useful forecast time
lags (typically, between 1 and 20 d). Of course, the ensemble
size can be a limitation of the accuracy of the conclusions.
In our case, with N = 20 members, we can expect a ∼ 16 %
accuracy (1/

√
2N ) in the ensemble standard deviation as an

approximation to the true standard deviation, which is not
perfect but sufficient to draw meaningful conclusions.

From these experiments, predictability has then been
quantified statistically, using a cross-validation algorithm
(i.e., using alternatively each ensemble member as a refer-
ence truth and the remaining 19 members as forecast ensem-
ble) together with a few example scores to characterize the
initial and forecast accuracy. From the joint distribution of
initial and final scores, it was then possible to diagnose the
probability distribution of the forecast score given the ini-
tial score, or reciprocally to derive conditions on the initial
accuracy to obtain a target forecast accuracy. Although any

Table 3. Initial SST accuracy required (CRPS score, in ◦C) to ob-
tain the target final accuracy (CRPS score, left column) with a 95 %
confidence for different forecast time lags: 2, 5 and 10 d.

Target forecast score (◦C) 2 d 5 d 10 d

0.025 ◦C 0.016 0.006 0.001
0.05 ◦C 0.037 0.027 0.010
0.075 ◦C 0.056 0.039 0.023
0.1 ◦C 0.077 0.059 0.033

specific score of practical significance could have been used,
we focused here on simple and generic scores describing the
misfit between ensemble members in terms of overall accu-
racy (CRPS score), geographical position of the ocean struc-
tures (location score) and spatial decorrelation.

Tables 3 and 4 give a quantitative illustration of the condi-
tions obtained on the initial accuracy to obtain a given fore-
cast accuracy if the model is assumed to be perfect (as in
experiment ENS-CI), using the CRPS score and the location
score. For example, Table 4 shows that, for our particular
region and period of interest, the initial location accuracy re-
quired with a perfect model (deterministic operator) to obtain
a forecast location accuracy of 10 km with a 95 % confidence
is about 8 km for a 1 d forecast, 6 km for a 2 d forecast, 4 km
for a 5 d forecast and 1.5 km for a 10 d forecast and that this
target is unreachable for a 15 and a 20 d forecast (more pre-
cisely, in these two cases, the required initial accuracy would
be unrealistically small and was not included in our sample).
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With model uncertainties (stochastic operator, as in experi-
ment ENS-1% or ENS-5%), the requirement on the initial
condition can be even more stringent, especially for a short-
range and high-accuracy forecast.

However, it is important to remember that this only pro-
vides necessary conditions but not a sufficient conditions on
the initial model state. The reason for this is that the condition
is put on one single score for one single variable, whereas the
quality of the forecast obviously depends on the accuracy of
all variables in the model state vector. In the examples given
in the tables, we used the same model variable for both target
score and the condition score, but we could also have looked
for a necessary condition on another variable (for instance
velocity) to obtain a given forecast accuracy for SST or any
other model diagnostic. In this way, for any forecast target,
we could have accumulated many necessary conditions on
various key properties of the initial conditions, especially ob-
served properties, but this would never become a sufficient
condition.

Furthermore, these necessary conditions on observed
quantities can then be translated into conditions on the de-
sign of ocean observing systems, in terms of accuracy and
resolution, if a given forecast accuracy is to be expected
(e.g., on the wide-swath altimetry mission SWOT, as dis-
cussed in Sect. 4.3).

But, again, these conditions are only necessary conditions,
as the accuracy of the initial model state also depends on the
ability of the assimilation system to interpret properly the
observed information and to produce an appropriate initial
condition for the forecast. Checking this ability would have
required performing observation system simulation experi-
ments (OSSEs) using the operational assimilation system,
which lay beyond the scope of the present work.

More generally, however, what this study suggests is that
an ensemble forecasting framework should become an im-
portant component of operational systems to provide a sys-
tematic statistical quantification of the relation between the
system operational target (a useful forecast accuracy) and the
available assets: the observation systems, with their expected
resolution and accuracy, and the modeling tools, with their
target resolution and associated irreducible uncertainties.

Appendix A: Location uncertainties

The purpose of this appendix is to describe the stochastic pa-
rameterization that has been used in this paper to simulate
model uncertainties in experiments ENS-1% and ENS-5%.
Uncertainties are assumed to occur on the location of the
fluid parcels as explained in Sect. A1. The further assump-
tions that are made to implement the resulting stochastic for-
mulation in NEMO are presented in Sect. A2.

A1 Stochastic formulation

Location errors in a field ϕ(x, t), function of the spatial co-
ordinates x and time t , occur if the field ϕ displays the
correct values but not at the right location. More precisely,
this means that the field ϕ(x, t) can be related to the true
field ϕt(x, t) by the transformation:

ϕt(x, t)= ϕ
[
xt(x, t), t

]
, (A1)

where xt(x, t) is a transformation of the coordinates
(anamorphosis) defining the location where to find the true
value of ϕ(x, t). With respect to the true field ϕt, the values
of ϕ are thus shifted by

δx(x, t)= xt(x, t)− x, (A2)

which defines the location error.
If the field ϕ(x, t) is evolved in time, over one time

step 1t , with the model M,

ϕ(x, t +1t)=M [ϕ(x, t), t] , (A3)

we can make the assumption that one of the effects of the
model is to generate location uncertainties. In an advection-
dominated regime, this means for example that the displace-
ment of the fluid parcels can be different from what the de-
terministic model predicts. With this assumption, the model
transforms to

ϕ[x+ δx(x, t +1t), t +1t]

=M {ϕ[x+ δx(x, t), t], t} , (A4)

where the location error δx(x, t) can be simulated for in-
stance by a stochastic process P:

δx(x, t +1t)= P [δx(x, t),ϕ(x, t), t] , (A5)

where an explicit dependence on ϕ and t has been included
here to keep the formulation general.

In ocean numerical models, the coordinates x are usually
discretized on a constant grid. To implement the stochastic
model of Eqs. (A4) and (A5) on this numerical grid, one pos-
sibility would be to remap the updated field ϕ[x+ δx(x, t +
1t), t +1t] on this constant grid at each model time step.
This remapping would correspond to a stochastic shift in the
model field accounting for the presence of location uncer-
tainties. However, this solution may be computationally in-
effective, and it is much easier to keep track of the modi-
fied location of the grid points (described by δx) and use this
modified grid to implement the model operator M. In prac-
tice, to avoid deteriorating the model numerics, this solution
requires that location errors remain small with respect to the
size of the grid cells and that their variations over one time
step1t are kept small enough to avoid undesirable numerical
effects.

This simple approach to simulate location uncertainties in
ocean models has a close similarity to the work of Mémin
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Table 4. Initial location accuracy required (location score) to obtain the target final location accuracy (location score, left column) with a
95 % confidence for different forecast time lags between 1 d and 20 d.

Target forecast score 1 d 2 d 5 d 10 d 15 d 20 d

2 km 1.6 km 1.4 km – – – –
5 km 3.9 km 3.1 km 1.4 km – – –
10 km 7.9 km 6.2 km 4.4 km 1.4 km – –
15 km 11.7 km 10.4 km 6.3 km 3.1 km 1.4 km –
20 km 16.2 km 14.9 km 10.5 km 5.4 km 2.3 km 1.4 km

(2014) and Chapron et al. (2018), where it is argued that the
effect of unresolved processes in a turbulent flow can be sim-
ulated by adding a random component to the Lagrangian dis-
placement dX of the fluid parcels (as in a Brownian motion):

dX = v(x, t)dt + σ (x, t)dB, (A6)

where v(x, t) is the velocity (as resolved by the model).
σ (x, t)dB is a stochastic process uncorrelated in time but
correlated in space, with a general formulation of the spa-
tial correlation structure. σ (x, t) defines the amplitude and
structure of the random displacement. The purpose of their
study is then to examine the effect of this modified mate-
rial derivative (with the stochastic displacement added) when
transformed into an Eulerian framework (i.e., in a constant
coordinate system). In a nutshell, from this assumption, the
authors manage to derive modified Navier–Stokes equations,
with additional deterministic and stochastic terms depending
on σ .

A2 Implementation in NEMO

To implement location uncertainties in NEMO, we explic-
itly make the assumption that the location errors δx remain
small with respect to the size of the grid cells, so that the
nodes of the modified grid just follow a small random walk
around the nodes of the original grid. Consistently with this
assumption, we make the approximation that the model in-
put data (bathymetry, atmospheric forcing, open-sea bound-
ary conditions, river runoffs . . . ) keep the same location with
respect to the model grid, which means that these data are not
remapped on the moving grid. Such a tiny shift in the data
(much smaller than the grid resolution) would indeed repre-
sent a substantial computational burden, with many possible
technical complications, and would only produce small ad-
ditional perturbations to the model solution, which do not
correspond to the main effect that we want to simulate.

Since the model grid is assumed to be fixed with respect to
the outside world, we need only represent the displacement
of each model grid point relative to its neighbors. In NEMO,
this relative displacement of the model grid points can easily
be obtained by transforming the metrics of the grid, which is
numerically represented by the distance between the neigh-
bor grid points. A stochastic metric, describing relative lo-
cation uncertainties in the model operator M, corresponds

to the main effects that we want to simulate, because it can
represent both physical and numerical uncertainties. On the
one hand, the stochastic metric is an explicitly Lagrangian
transcription of Eq. (A6) in the model dynamics, which de-
scribes physical uncertainties that upscale from unresolved
processes. On the other hand, since the metrics is used ev-
erywhere in the model to evaluate differential and integral
operators, making it stochastic can also be viewed as a simple
approach to simulate numerical uncertainties simultaneously
in all model components.

In practice, to obtain a stochastic metric in NEMO, we
must transform the arrays describing the horizontal size of
the grid cells into time-dependent stochastic processes. Thus,
if1xi(t)= [1xi(t),1yi(t)] is the size of grid cell number i
at time t , we must define stochastic processes Pi such that

1xi(t +1t)= Pi
[
1x1(t), . . .,1xj (t), . . .

]
. (A7)

A very simple approach to define Pi is then to use first-order
autoregressive processes ξ i(t) as a multiplicative noise ap-
plied to the reference model grid 1x0

i :

1xi(t)=1x
0
i ◦
[
1+ ξ i(t)

]
, (A8)

with

ξ i(t +1t)= a ◦ ξ i(t)+ b ◦w, (A9)

where ◦ is the Hadamard product, w is a vector of indepen-
dent Gaussian white noises, and a and b are constant coef-
ficients governing the standard deviation and the correlation
length scale of the ξ i . The components of ξ i are thus assumed
to be independent, which means that the grid is deformed in-
dependently along the two horizontal dimensions.

The use of autoregressive processes ξ i(t) to simulate the
stochastic distortion of the model grid makes the imple-
mentation of the scheme straightforward in NEMO, since
we can directly apply the tools developed by Brankart et
al. (2015) to generate the ξ i . This tool was indeed meant
to be generic enough to trigger various sorts of stochas-
tic parameterizations in NEMO and has already been used
to simulate various sources of uncertainty, including the ef-
fect of unresolved scales in the seawater equation of state
(Brankart, 2013; Bessières et al., 2017; Zanna et al., 2019)
and in the biogeochemical equations (Garnier et al., 2016)
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or the effect of parameter uncertainties in the sea ice model
(Brankart et al., 2015). This tool only requires specifying a
few parameters to characterize the stochastic processes ξ i(t):
the standard deviation (σ ), the correlation timescale (τ ), the
number of passes (P ) of a Laplacian filter applied to the ξ i
and the order (n) of the autoregressive processes. The two
last parameters go beyond the formulation of Eq. (A9), which
describes first-order processes (AR1) uncorrelated in space.
The application of a Laplacian filter (with a correction factor
to restore the original standard deviation) introduces space
correlation and makes the distortion of the grid smoother in
space, and the use of ARn rather than AR1 processes mod-
ifies the time correlation structure and makes the distortion
of the grid smoother in time. It must also be noted that the
use of ARn processes is also more general than Eq. (A7) by
making the processes Pi depend on the n previous time steps
rather than just the previous time step.

In the present study, the distortion of the grid has been
limited to horizontal displacements of the model grid points,
with the same displacements applied to all model fields and
along the vertical. This reduces the number of stochastic
fields to generate to two two-dimensional fields, one for each
of the horizontal coordinates 1xi(t) and 1yi(t). However,
since the NEMO fields are shifted according to the rules of
the Arakawa C grid, the stochastic metric is first computed
for the T grid and then transformed to the other grids (by
linear interpolation) to be consistent with the shifted position
of the grid points. In the application, the standard deviation is
set to a relatively small value σ = 1 % or 5 %, to be consistent
with the assumption of small location errors, and the corre-
lation timescale is set to 1080 time steps (1 d) to be consis-
tent with the assumption of a small variation in the grid over
one time step. Some effort is also made to keep the perturba-
tion smooth in space and time by applying P = 10 passes of
a Laplacian filter and by using second-order autoregressive
processes (n= 2).
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