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Abstract. We investigate the predictability properties of the
ocean dynamics using an ensemble of short-term numerical
regional ocean simulations forced by prescribed atmospheric
conditions. In that purpose, we developed a kilometric-scale,
regional model for the Western Mediterranean sea (MED-
WESTG60, at 1/60° horizontal resolution). A probabilistic ap-
proach is then followed, where a stochastic parameterization
of model uncertainties is introduced in this setup to initialize
ensemble predictability experiments. A set of three ensemble
experiments (20 members and 2 months) are performed, one
with the deterministic model initiated with perturbed initial
conditions and two with the stochastic model, for two dif-
ferent amplitudes of stochastic model perturbations. In all
three experiments, the spread of the ensemble is shown to
emerge from the smallest scales (kilometric scale) and pro-
gressively upscales to the largest structures. After 2 months,
the ensemble variance saturates over most of the spectrum,
and the small scales (< 100 km) have become fully decorre-
lated across the ensemble members. These ensemble simula-
tions can provide a statistical description of the dependence
between initial accuracy and forecast accuracy for time lags
between 1 and 20d.

The predictability properties are assessed using a cross-
validation algorithm (i.e., using alternatively each ensemble
member as the reference truth and the remaining 19 mem-
bers as the ensemble forecast) together with a given statistical
score to characterize the initial and forecast accuracy. From
the joint distribution of initial and final scores, it is then pos-
sible to quantify the probability distribution of the forecast

score given the initial score or reciprocally to derive condi-
tions on the initial accuracy to obtain a target forecast accu-
racy. The misfit between ensemble members is quantified in
terms of overall accuracy (CRPS score), geographical posi-
tion of the ocean structures (location score) and spatial spec-
tral decorrelation of the sea surface height 2-D fields (decor-
relation score). With this approach, we estimate for example
that, in the region and period of interest, the initial location
accuracy required (necessary condition) with a perfect model
(no model uncertainty) to obtain a location accuracy of the
forecast of 10 km with a 95 % confidence is about 8 km for
a 1d forecast, 4 km for a 5d forecast and 1.5km for a 10d
forecast, and this requirement cannot be met with a 15d or
longer forecast.

1 Introduction

Operational services such as the Copernicus Marine Environ-
ment Monitoring Service (CMEMS) routinely provide anal-
yses and forecasts of the state of the ocean to serve a wide
range of marine scientific and operational applications. They
build on state-of-the-art representations of the various dy-
namical components of the ocean and aim at improving the
accuracy and the resolution of their products. However, with
the increase in the complexity and resolution of ocean mod-
els, new questions arise regarding the predictability of the
system. To what extent is it possible — and does it make sense
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— to forecast the very fine scales (~ kilometric) as targeted
by the future generations of these operational systems? How
sensitive is such forecast to initial errors or to possible short-
comings or approximations in the model dynamics? These
questions are important for operational centers because they
can help to rationalize expectations for the future systems
and thus help driving future developments.

Historically, the question of the predictability of dynam-
ical systems has been addressed by considering only the ir-
reducible sources of error, which result from intrinsic model
instability combined to inevitable small initial errors. In a
deterministic framework, modeling errors can indeed be ex-
cluded from the analysis because they can be reduced by ad-
ditional modeling efforts, so that they do not represent a the-
oretical limitation on predictability. There is a long history of
studies along this line, starting with Lyapunov (1992), who
suggested looking for the fastest-growing unstable modes
(Lyapunov vectors) and their associated e-folding timescales
(Lyapunov exponents). This was extended in meteorology to
describe the largest error growth over a finite time (with sin-
gular vectors, Lorenz, 1965; Lacarra and Talagrand, 1988;
Diaconescu and Laprise, 2012), before it was recognized
that linear instability studies were quite often not sufficient
to provide a correct picture of the predictability patterns,
even for quite short time lags. Nonlinear model integrations
are needed to allow the fast instabilities to saturate and re-
veal the patterns that really matter over a given forecast time
(e.g., Lorenz, 1982; Brasseur et al., 1996). For this reason,
the bred vectors (Toth and Kalnay, 1993; Kalnay, 2003) have
been introduced as a practical way to identify the most rele-
vant perturbations to initialize ensemble forecasting systems.
In the meantime, ensemble forecast simulations, explicitly
performed with the full nonlinear model, have become the
standard approach to investigate predictability (e.g., Palmer
and Hagedorn, 2006; Hawkins et al., 2016). Performing an
ensemble forecast amounts to propagating a probability dis-
tribution in time, which includes the possibility of a non-
deterministic model. In this framework, it is thus possible
to go beyond the assumption that predictability is mainly
limited by unstable and chaotic behaviors and to include the
possibility that intrinsic model uncertainties can be an essen-
tial limiting factor to forecast accuracy, as also recognized
recently in the work of Juricke et al. (2018). In the last 2
decades, indeed, more and more studies have suggested that
uncertainties are intrinsic to atmosphere and ocean models,
since they cannot resolve the full diversity of processes and
scales at work in the system (e.g., Palmer et al., 2005; Fred-
eriksen et al., 2012; Brankart et al., 2015). Non-deterministic
modeling frameworks have been shown to be very helpful
to improve the accuracy of medium-range weather forecasts
(Buizza et al., 1999; Leutbecher et al., 2017), to enhance their
economical value (Palmer, 2002), to alleviate persistent bi-
ases in model simulations (Berner et al., 2012; Juricke et al.,
2013; Brankart, 2013; Williams et al., 2016), and to account
for some misfit between model and observations in data as-
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similation systems (e.g., Evensen, 1994; Sakov et al., 2012;
Candille et al., 2015).

Our objective in this study is to build on a case study with
a realistic high-resolution (kilometric scale) regional model,
to evaluate in practice the intrinsic predictability of the ocean
fine scales in this model. To do so we apply a probabilistic
approach, based on ensemble simulations and on probabilis-
tic diagnostics, from which we can assess predictability as a
function of given irreducible sources of uncertainty to con-
sider in the system.

In our approach, both the effect of initial uncertainties and
model uncertainties are considered, either separately or to-
gether. We assume in both cases that they cannot be made
arbitrarily small in a given operational system: initial uncer-
tainties because observation and assimilation resources are
limited and model uncertainties because model resources are
limited. However, to simplify the problem, we only consider
one generic type of model uncertainty that primarily affects
the small scales of the system. By tuning the amplitude of
the perturbations, we can simulate different levels of model
accuracy and generate ensemble initial conditions with dif-
ferent levels of initial spread. With this assumption, we can
then quantify the accuracy of the forecast that is obtained, for
a given combination of initial and model uncertainties.

Reciprocally, we can expect that this set of experiments
can provide insight into the maximum level of initial and
model uncertainties that is required to obtain a given forecast
accuracy. The objective is to help us understand the level of
initial and model accuracy required to produce a useful fore-
cast of the small scales, as targeted in the future kilometric-
scale operational systems. In other words, the objective of
this paper is to compute an upper bound (or more generally,
necessary conditions) for the initial uncertainties, in order to
obtain a targeted forecast accuracy. We do so by using dif-
ferent types of metrics to quantify the forecast accuracy, in
order to emphasize that the definition of this metric is still a
subjective choice, which depends on the goal of every partic-
ular application. The influence of one possible source of ir-
reducible model uncertainty on this upper bound will also be
illustrated. However, it is important to keep in mind that this
influence will depend on the assumption made to simulate
uncertainties in the system. Although generic, and designed
to trigger perturbations in the small scales, they are still spe-
cific and cannot be expected to account for the full diversity
of uncertainties propagating in real operational systems.

It should be emphasized that the goal of the present study
remains to quantify the intrinsic predictability of the system
(as defined by Lorenz, 1995) and should not be confused with
that of quantifying the prediction skill of any given current
operational forecasting system (e.g., Robinson et al., 2002),
which would then incorporate all sources of error, such as
extrinsic errors that would result from coupling with the at-
mosphere, sea ice, etc. However, deriving predictability as an
upper bound or “necessary conditions”, as it is proposed in
the present case study, can provide useful guidance for the
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design of the future generations of operational systems that
will aim for such a kilometric resolution. As a perspective for
future work, this approach could also be used in the design
of a future observation network and the preparation for the
assimilation of future high-resolution observations, such as
wide-swath altimetry.

The paper’s structure is as follows. In Sect. 2, we present
the kilometric-scale regional model based on NEMO (Nu-
cleus for European Modelling of the Ocean, Madec et al.,
2002) over the Western Mediterranean sea that we set up for
this study. We then introduce the parametrization for model
uncertainties that is used to generate different levels of initial
spread and model accuracy. In Sect. 3 we present the three
ensemble experiments produced with these settings, and we
assess and compare their spread growth. Predictability diag-
nostics are then illustrated in Sect. 4 by applying different
types of metrics (probability scores, location errors, spectral
analysis) to characterize the dependence of the forecast accu-
racy to initial and model uncertainties. We finally summarize
the outcomes of this study in Sect. 5.

2 A Kkilometric-scale regional ocean model
2.1 Model specifications and spinup

In this section, we first describe the kilometric-scale regional
model of the ocean circulation based on NEMO that has
been developed. It covers the Western Mediterranean sea and
uses boundary conditions from a larger reference simulation
(covering the entire North Atlantic) at the same resolution
(eNATL60, Brodeau et al., 2020). The new regional model,
MEDWEST60, covers a domain of 1200km x 1100 km,
from 35.1 to 44.4° N in latitude and from 5.7°W to 9.5°E
in longitude (see Fig. 1). This configuration includes explicit
tidal motion (tidal potential) and is forced at the western and
eastern boundaries with hourly outputs from the reference
simulation eNATL60 (which also includes tides). By design,
all parameter choices for MEDWEST60 were made with the
idea to remain as close as possible from the reference simu-
lation eNATL60. The MEDWEST60 specifications are sum-
marized in Table 1. We use strictly the same horizontal and
vertical grids as eNATL60, meaning that there is no need for
spatial interpolation of the lateral boundary conditions. Com-
pared to the larger-domain simulation eNATL60, which was
forced at the lateral boundaries by the daily GLORYS re-
analysis (Lellouche et al., 2021) and an additional tidal har-
monic forcing from the FES2014 dataset (Lyard et al., 2020),
in MEDWEST60 we add no additional tidal forcing since
it is already explicitly part of the hourly boundary forcing
taken from the eNATL60 outputs. The model time step in
MEDWEST®60 is also increased by a factor 2 compared to
eNATL60 (80 s versus 40 s, respectively).

https://doi.org/10.5194/0s-18-1619-2022

By design, the MEDWEST60 model can be initialized
with an instantaneous, balanced 3-D ocean state archived
from the reference simulation eNATL60 on the same hori-
zontal and vertical grids. Our spinup protocol is thus as fol-
lows: from a NEMO restart file archived from eNATL60 on a
given date (here 25 January 2010), we extract the horizontal
and vertical domain corresponding to MEDWEST60. A first
regional simulation is then run for 5d, started from the ex-
tracted restart file and using the same time step as eNATL60
(i.e., 6t =40s). Five more days are then run with a doubled
time step of 6t = 80s, and a new MEDWEST60 restart file
is finally archived, to be used as the starting point on the
5 February 2010 for the following ensemble forecast experi-
ments.

2.2 Parameterization of model uncertainties

The model presented above is a deterministic model, in the
sense that the future evolution of the system is fully de-
termined by the specification of the initial conditions, the
boundary conditions and the forcing functions. This type of
model — deterministic — is the archetype of the models that
are currently mostly used in operational forecasting systems
(though not yet at kilometric scale). In a purely determin-
istic approach, forecast uncertainties can only be explained
by initial uncertainties, boundary uncertainties or forcing un-
certainties, usually amplified by unstable model dynamics.
However, as motivated in the introduction, the objective of
this study is to go beyond this assumption and include the
possibility of model errors impairing the predictability of the
finest scales.

We thus transform the deterministic model presented
above into a stochastic model, with the ambition to emulate
uncertainties that primarily affect the smallest scales of the
ocean flow and let them upscale to larger scales according
to the model dynamics. These uncertainties are likely to de-
pend on many possible sources, by embedding for instance
misrepresentations of the unresolved scales and approxima-
tions in the model numerics but also many others. A detailed
causal examination of the origin and interactions between
these various possible sources of error being quite impossible
to achieve, we propose to introduce here a bulk parameteri-
zation of these effects, by assuming that one of the most im-
portant dynamical consequence of these errors on the finest
scales is to generate uncertainty in the location of the oceanic
structures (currents, fronts, filaments . ..).

In fluid mechanics, there is ample literature explaining that
the effect of unresolved scales in a turbulent flow can be de-
scribed by uncertainties in the location of the fluid parcels
(e.g., Griffa, 1996; Berloff and McWilliams, 2002; Ying et
al., 2019). This general idea is applied for instance in the
work of Mémin (2014) and Chapron et al. (2018), where the
Navier—Stokes equations are modified by adding a random
component to the Lagrangian displacement dX of the fluid
parcels (as in a Brownian motion).

Ocean Sci., 18, 1619-1644, 2022
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Figure 1. Bathymetry (in km) of the MEDWEST®60 regional domain (x and y axes are model grid points). The full domain covers 883 x 803
grid points in the horizontal, representing 1200 km x 1100 km, from 35.1 to 44.4° N in latitude and from 5.7° W to 9.5° E in longitude. The
black squares localize three subregions which are referred to in the text and are used for various diagnostics or visualizations in the following.

Table 1. Technical specifications of the MEDWEST60 model.

Numerical code
Horizontal resolution
Grid spacing
Vertical grid

NEMO 3.6

1/60°

883 x 803 in the horizontal (1.20km < Ax < 1.55 km)
212 levels (same as eNATL60)?

Time step 80s

Atmospheric forcing 3-hourly ERA-interim (ECMWF)

Tidal potential On

Lateral boundary conditions? (ocean) 1-hourly eNATL60 simulation (including tides)
Lateral boundary conditions at the coast  No slip

@ The vertical levels are defined exactly as in eNATL60, but only 212 levels are actually needed to include the deepest points in
the Western Mediterranean region (i.e., 3217 m at the deepest point), while 300 levels were used in eNATL60 to cover the depth
range in the North Atlantic basin. The following discretization is applied to the first 20 m below the surface: 0.48, 1.56, 2.79, 4.19,
5.74,7.45,9.32, 11.35, 13.54, 15.89, 18.40, 21.07 m. b The flow relaxation scheme (“frs”) is used for baroclinic velocities and
active tracers (simple relaxation of the model fields to externally specified values over a 12-grid-point zone next to the edge of the
model domain). The “Flather” radiation scheme is used for sea surface height and barotropic velocities (a radiation condition is
applied on the normal depth-mean transport across the open boundary).

In the present study, location uncertainties are introduced
in our ocean model according to a similar idea, but it is done
differently by applying directly the random perturbations to
the discrete model (rather than the mathematical equations),
in the form of stochastic fluctuations in the horizontal nu-
merical grid. In summary, the effect of the parameterization
is to perturb the horizontal metrics of the model (i.e., the size
of the horizontal grid cells Ax, Ay) using a multiplicative
noise with specified time and space correlation structure. The
stochastic perturbation is implemented using the stochastic
module of NEMO (Brankart, 2013) and expresses a random

Ocean Sci., 18, 1619-1644, 2022

second-order autoregressive process, of which we can set the
amplitude (i.e., its standard deviation) and the time and space
correlations. An extensive description and justification of this
parameterization is developed in Appendix A.

The two main effects that this parameterization is expected
to produce in the model are on the horizontal advection and
on the horizontal pressure gradient. In the advection scheme,
the stochastic part of the displacement dX of the fluid parcels
is directly accounted for by the displacement of the grid,
and in return, the transformed grid induces modifications
in the advection by the resolved scales. In addition, loca-

https://doi.org/10.5194/0s-18-1619-2022
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tion uncertainties also produce fluctuations in the horizon-
tal pressure gradient (by shifting the position of the tracer
fields). It is therefore expected that these stochastic fluctua-
tions can bring a substantial limitation on the predictability
of the small-scale motions. Overall, we can see indeed that
non-deterministic effects are produced in several key com-
ponents of the model and that all of these effects consistently
derive from the sole assumption that the updated location of
the fluid parcels after a model time step is not exact but ap-
proximate.

In our application, the correlation scales of the stochastic
noise have been set to 1d and 10 grid points, to be smooth
enough and nonetheless produce perturbations on the small-
scale side of the spectrum. The standard deviation of the
noise can also be tuned, so that it is easily possible to sim-
ulate different levels of model accuracy, as required in our
experiments to generate different levels of initial ensemble
spread (see Sect. 3). This standard deviation must however
remain small with respect to the size of the model grid cells
so that the perturbations do not impair the physics of the
model for the resolved scales (see Sect. 3.2). In practice, we
have used values of 1 % and 5 %. Given the typical size of the
model grid (1.4 km on average) and the correlation timescale
of the perturbations (1 d), the typical displacement of the grid
points is thus about 14 or 70md~" in the two horizontal di-
rections in the experiment with a 1 % or 5 % perturbation,
respectively. The way this stochastic perturbation affects the
model solution will be assessed and discussed in Sect. 3.2.

3 A set of three ensemble forecast experiments

Three ensemble forecast experiments were performed with
MEDWEST®60, to investigate predictability as a function of
both initial uncertainty and model uncertainty. In this sec-
tion, we give a description of these three ensemble experi-
ments and how they were initialized. We then assess how the
spread grows with time in those ensembles, comparing the
results from the stochastic model (with model uncertainty)
and from the deterministic model (no model uncertainty).
The predictability diagnostics will be presented in Sect. 4.

3.1 Generating the ensembles

Two experiments (ENS-1% and ENS-5%) are performed
with the stochastic model (i.e., including model uncertainty)
and starting from the same perfect initial conditions on the
5 February 2010. Those two ensemble experiments explore
two different amplitudes of the stochastic scheme described
in Sect. 2.2 and Appendix A. Experiments ENS-1% and
ENS-5% are set for a stochastic perturbation of standard de-
viation 1 % and 5 % of the horizontal grid spacing, respec-
tively (see illustration in Fig. 2). By design, the other param-
eters of the stochastic module are kept identical in all the ex-
periments: the time correlation is set to 1 d (1080 time steps),
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and the Laplacian filter introducing spatial correlations is ap-
plied 10 times.

The third ensemble experiment performed (ENS-CI) is
the experiment with the deterministic model (i.e., no model
uncertainty) to study predictability under imperfect initial
conditions (ENS-IC). It is initialized from ensemble condi-
tions taken from experiment ENS-1% after 1 d of simulation
(i.e., on the 6 February 2010) when the states of the 20 mem-
bers have already slightly diverged on the fine scales. Note
that the choice is made to start experiment ENS-CI with
small initial errors, but this experiment also virtually gives
access to forecasts initialized with larger errors by consider-
ing day 1,day 2 ... day 10, etc., of ENS-CI as many different
start times. This approach will be applied in the predictability
diagnostics proposed in the next section (Sect. 4). Following
the same idea, experiments ENS-1% and ENS-5% also virtu-
ally give access to forecasts accounting both for model error
and for some initial error by considering day 1, day 2, day 10,
etc., of the experiments as many different virtual start times
with increasing initial error.

Table 2 offers a summary of the three ensemble forecast
experiments and their characteristics.

3.2 Impact of the location uncertainty on the model
solution

In this section, we assess how the spread grows with time
in those three ensembles and how the stochastic perturbation
affects the model solutions.

Note that, in our approach, the stochastic perturbation is
applied on the model horizontal metrics, while the location
of the grid points themselves is assumed to be the same for
all members (see discussion in Appendix A). In other words,
the field itself is still considered to be located on the refer-
ence grid, for instance with respect to the bathymetry and
the external forcing, and the effect of the perturbation is only
taken into account in the model operator (e.g., for the dif-
ferential operations) and is neglected everywhere else. It im-
plies that ensemble statistics (mean, standard deviation, co-
variance matrix ...) can be computed as usual on the refer-
ence grid, while the perturbed metrics must be used to com-
pute any diagnostics involving a differential operator. In the
following, for instance, the perturbed metrics were used to
compute relative vorticity from the velocity fields, to be con-
sistent with the perturbed model dynamics, which is specific
to each member. For that purpose, the perturbed metrics were
archived with time, at the hourly frequency, in each ensemble
member.

3.2.1 Wavenumber power spectrum
The stochastic scheme used in this work is designed to intro-
duce uncertainty at the model grid scale, with a correlation

length scale of 10 grid points, i.e., about 14 km. Uncertainty
is thus introduced within the 10—18 km range of the Rossby

Ocean Sci., 18, 1619-1644, 2022
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(a) Deterministic model (unperturbed model grid)
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(b) Probabilistic model (1%-perturbed model grid)
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Figure 2. Size of the model grid in the horizontal east-west dimension (Ax): (a) unperturbed, from the standard NEMO grid at 1/60°
resolution and (b) snapshot of the perturbed metric at a given date (stochastic perturbation set to a level of SD =1 %).

Table 2. Characteristics of the three ensemble forecast experiments ENS-1%, ENS-5%, ENS-CI.

Experiment ENS-1% ENS-5% ENS-CI

Start date 5 February 2010 5 February 2010 6 February 2010
Length (in days) 60 60 60

Ensemble size 20 20 20

Initial cond. Identical Identical Perturbed™
Restart from Spinup Spinup Day 1 of ENS-1%
Model type Stochastic Stochastic Deterministic
Stochastic param.  Ax,Ay Ax, Ay None

Amplitude SD=1% SD=5% -

* The “perturbed” ensemble initial conditions of experiment ENS-CI are taken from the restart files of

experiment ENS-1% after 1 d of simulation (see text).

radius of deformation in the region (Escudier, 2016), those
scales being here resolved by ~ 7 to 13 model grid cells. The
introduced uncertainty is then expected to develop and cas-
cade spontaneously toward larger scales through the model
dynamics. The design should be such that the introduced per-
turbation alters the behavior of the physical quantities simu-
lated by the model as little as possible. Figure 3 illustrates
that the simulated fields in the perturbed model do indeed
remain nearly unaltered and indistinguishable from the same
fields in the unperturbed model. Only in the zoomed snapshot
of relative vorticity (i.e., taking the Laplacian of sea surface
height, thus emphasizing gradients) from the strongest per-
turbation experiment do some visual alterations start to ap-
pear on the smallest scales (ENS-5%, Fig. 3f). Note that this
is why we did not propose any additional experiment with a
stronger perturbation than 5 % in our study.

Figure 4 also confirms that the stochastic perturbation does
not alter the spectral characteristics of the physical quantities
in the model. It compares the wavenumber power spectrum
(power spectral density, PSD) of SSH hourly snapshots from
the different experiments, with or without stochastic pertur-
bations, and also from the eNATL60 model (from which
the boundary conditions were taken). On average, over the

Ocean Sci., 18, 1619-1644, 2022

2 months of the experiments, the figure shows very consis-
tent SSH spectra from the perturbed and unperturbed models,
giving us confidence in our designed perturbation.

Note that the spread of the PSD around the ensemble mean
of each experiment is also shown by very thin lines in Fig. 4:
the members all have a PSD very consistent with their en-
semble mean (the spread is smaller than the thickness of the
ensemble mean line) on all scales up to ~ 150 km. For larger
scales, some spread is seen between the members and it pro-
vides an idea of the sensitivity (significance) of such a spec-
tral analysis on the last few points of the spectrum (aliasing
effects). The spectra are computed here over a squared box of
L ~490km (box a in Fig. 1), and spectral scales larger than
L /2 ~ 250 km are not well resolved (gray shading in the fig-
ure). The ensemble spread interval appearing in the figure
thus provides some guidance as to how to interpret the sig-
nificance of the PSD variations in this scale range and over
this time period (a 2-month average here).

3.2.2 Growth of the ensemble spread
Figure 5 illustrates the evolution with time of the ensem-

ble spread in the three ensemble experiments performed.
The spread is computed here as the ensemble standard de-

https://doi.org/10.5194/0s-18-1619-2022
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(a) ENS-CI SST (b) ENS-1% SST
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(c) ENS-5% SST
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Figure 3. Hourly snapshots of sea surface temperature (a—c) and relative vorticity (d—f) from one example member after 60 d in the ensemble
experiments ENS-CI, ENS-1% and ENS-5% focusing on a 250 x 250 grid point subregion southeast of the Balearic Islands (box b in Fig. 1).

viation of the hourly SSH, then spatially averaged over the
entirce MEDWEST60 domain, for each of the ensemble ex-
periments. As expected, the ensemble spread initially grows
faster in the perturbed experiment with the large model error
(ENS-5%) than with the smaller model error (ENS-1%) and
in the unperturbed experiment (ENS-CI). But after about 50d
of simulation, the ensemble spread of all three experiments
(ENS-CI, ENS-1% and ENS-5%) has converged on a simi-
lar value. The spread is still growing at the end of the 60d
experiments, but the curves have started to flatten, suggest-
ing that our experimental protocol was successful at initiat-
ing divergent enough ensembles on the targeted time range
(2 months). The saturation of the spread was further veri-
fied by extending one of the experiments by 2 more months
(not shown here). Note also that similar characteristics of the
spread growth have been seen in the other surface variables
(SST, SSS, relative vorticity, not shown here).
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After 2 months, the three experiments have reached an
ensemble spread in SSH of about 2.5cm on average over
the domain, but local maxima of spread values are found
around 10 cm (not shown). Further investigations discussed
in the following subsection (see “Spatial decorrelation”) also
confirm that the spatial decorrelation of the submeso- and
mesoscale features has been reached by the end of the 2-
month experiments.

After the first ~ 