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Abstract 

Design-of-experiment (DOE) approaches, originally 

conceived by J. Fischer, are widely applied in industry, 

particularly in the context of production for which have been 

greatly expended. In a research and development context, 

DOE can be of great use for method development. Specifically, DOE can greatly speed up instrument 

parameter optimization by first identifying parameters that are critical to a given outcome, showing parameter 

interdependency where it occurs, and accelerating optimization of said parameters using matrices of 

experimental conditions.  

While DOE approaches have been applied in mass spectrometry experiments, they have so far failed to gain 

widespread adoption. This could be attributed to the fact that DOE can get quite complex and daunting to the 

everyday user. Here we make the case that a subset of DOE tools, here after called SimpleDOE (sDOE), can 

make DOE accessible and useful to the Mass Spectrometry community at large.  We illustrate the progressive 

gains from a purely manual approach to sDOE through a stepwise optimization of parameters affecting the 

efficiency of top-down ETD fragmentation of proteins on a high-resolution Q-TOF mass spectrometer, where 

the aim is to maximize sequence coverage of fragmentation events. 
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Introduction:  

To carry out their functions, proteins are expressed in many flavors in vivo and in vitro. These flavors, called 

proteoforms, are isoforms resulting from sequence variability, post-translational modifications (PTMs), and/or 

modifications induced by exogenous agents such as radiations or chemicals. The precise localization of 

modifications and their quantification is becoming a major quest of biology. While the bottom-up proteomics 

approach based on proteolysis and peptide MS fragmentation can reliably be used to address this challenge 

[1], it presents some drawbacks, such as the loss of filiation between a modified peptide and its proteoform of 

origin [2]. The top-down approach based on the fragmentation of intact protein molecules leads not only to 

primary sequence information but also to positional identification of modifications [3,4], and potentially, to 

their quantification [5]. Since sequence coverage is paramount to a successful top-down characterization of 

proteoforms, extending fragmentation coverage (FC) becomes central to top-down strategies. 

In terms of sequencing, several fragmentation methods are readily available on commercial instruments such 

as collision-induced dissociation (CID), photodissociation (PD), electron-transfer dissociation (ETD), 

electron-capture dissociation (ECD), and (ExD). In CID, multiple collisions increase the internal energy of 

precursor ions, which can cause both internal fragmentation, a re-fragmentation of fragment ions, and loss of 

side-chain PTMs [6]. In ETD [7], a singly charged anion reagent known as the "reactant" transfers an electron 

to multiply protonated peptides/proteins, inducing fragmentation along the peptide backbone. In contrast to 

CID, this method achieves nonergodic fragmentation without prior redistribution of energy [6] and leads to a 

rapid bond cleavage predominantly at the sites where the electron was trapped [8], thereby promoting random 

N–Cα (alpha carbon) bond breakage while leaving side-chains and PTMs intact. Unlike CID, the outcome of 

ETD is affected by a number of parameters including but not limited to the amount of reagent and precursor 

ions, reaction time, and selected charge state [9]. Top-down, middle-down and bottom-up ETD fragmentation 

in a Q-TOF instrument can be used to characterize the structural heterogeneity of antibodies [10], to read out 

HDX results while minimizing scrambling [11] and to discriminate leucine from isoleucine, in a data-

independent analysis on peptides [12]. Top-down fragmentation presents a particular challenge as 

fragmentation of peptides bonds in the middle of the protein tends to be energetically unfavorable, resulting in 

a typical "middle-gap" coverage pattern, also known as the "dark zone" in fragmentation coverage along the 
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sequence. Achieving the high fragmentation coverage necessary to localize modifications anywhere for any 

kind of proteoform thus requires the careful optimization of ETD fragmentation conditions [4]. 

The principle of a rational design of experiments to give a sound statistical basis to experimental results 

interpretation was initially conceived by Fischer as exposed in his foundational book [13]. Design-of-

experiment (DOE) approaches per se were formalized by statisticians [14] and saw exponential growth in the 

1950s as a means to provide for fast, reliable, and objective optimization of production processes [15]. These 

methods are regularly used in the pharmaceutical and food industry [16]. Complex production processes 

depend on multiple parameters, some of which may be interdependent. The motivation for DOE in this context 

is based on the simple observation that the parameters which are critical to the performance of a product cannot 

necessarily be intuited based on past experience in production.  

To reach a certain level of performance to match a specific research aim, mass spectrometrists likewise need 

to optimize instrument parameters and quickly face a multiplicity of parameters, complexity, and 

interdependency. ETD fragmentation, alone or in combination with other fragmentation modes, is a good 

illustration of this type of situation. Figure 1 shows the main components a typical ETD fragmentation cycle. 

Hereafter, we will refer to precursor intensity as PI, reagent intensity as RI, and reaction time as RT. 

 

Figure 1. Overview of input and output parameters. The ETD cycle includes the 4 following steps: 1) 

Accumulation of precursor ions, 2) Accumulation of reagent ions, 3) ETD  Reaction, 4) Fragment transfer and 

5) Detection of fragment ions. An additional step was considered: 6) Data processing. Image inspired from 

Bruker Daltonics illustration, with permission. 

 

Different strategies can be applied to optimize multiple parameters for a given desired outcome ("response" in 

DOE terms), such as maximum protein fragmentation coverage. The simplest and most frequent strategy is 

sequential optimization of parameters or "change one at a time", which can be described as the "manual" 

approach. This approach obviously consumes large amounts of resources, including sample quantities and 

time. After the first round of optimization, each parameter may need to be readjusted because its optimum has 
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shifted in response to the change in at least one other parameter which interferes with it. One way to attempt 

circumvention of this problem is to plan a "co-optimization" experiment, by making a 2D table of values for 

two parameters to be tested jointly. Co-optimization has its own limits: first, the choice of parameters to co-

optimize relies on assumptions about which co-dependencies are most relevant, and second, it is still time-

consuming and sample-intensive. Faced with this problem, some authors have proposed to use a "brute-force" 

approach to scan for all possible combinations of parameters in the instrument, or a large subset thereof [17]. 

Automatizing the optimization process requires scripting of instrument parameter setups. This approach, 

however, still requires both large amounts of time and sample.  

In a research context, samples are often scarce, so we looked for an alternative to make the process less time-

consuming and sample-intensive. DOE, by cleverly combining a subset of conditions to test parameters effects, 

offers just such an alternative. Here we show how it can be used to optimize the efficiency of ETD 

fragmentation, in comparison with the "manual" and "co-optimization" parameter optimization approaches. 

We give concrete examples of building matrices, performing experiments, and calculating effects of different 

parameters. This allows us to identify parameters that are critical to the outcomes of interest, mainly 

fragmentation coverage, and to show parameter interdependency. In this first paper we show how a selection 

of DOE tools, which we call sDOE, can offer the user a large part of the benefits of DOE, without necessarily 

delving into the more complex aspects of the method. 

 

Methods 

 

Reagents 

Acetonitrile and formic acid were from Biosolve (Dieuze, France). 18 Mpurified water (MilliQ reagent 

grade system, Millipore) was used to prepare the ionization solution. Ubiquitin and apomyoglobin were 

purchased from Sigma (St. Louis, MO). Recombinant human Phosphatidyl Ethanolamine Binding Protein 1 

(hPEBP1) was cloned and overexpressed in BL21DE3 E.coli as previously described by Schoentgen and 

coworkers [18]. The protein was purified without tag using the protocol originally developed by Bernier and 

Jolles [19]. HUalpha-beta protein was a kind gift from Dr Bertrand Castaing at CBM. 
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Top-down mass spectrometry fragmentation 

Top-down MS sequencing of proteins was performed using ESI-QTOF ETD fragmentation method. Samples 

were diluted at 0.5 µM in a solution of 50% acetonitrile, 49.8% water and 0.2% formic acid and were analyzed 

by direct infusion in a 4-GHz MaXis ultra high resolution quadrupole-TOF mass spectrometer (Bruker 

Daltonics) equipped with an electrospray ion source. Spectra were acquired in positive ion MS mode over a 

115–3000 m/z range and were externally calibrated with the ESI-L Low Concentration Tuning Mix (Agilent 

Technologies). Mass spectra were processed using DataAnalysis 3.1 software (Bruker Daltonics). When 

applied, the smoothing parameters were Savitzky Golay algorithm, width 0.05 Da and 1 cycle. Peaks were 

annotated using the SNAP algorithm with a quality factor of 0.5. Fragmentation coverage (FC) was obtained 

using Biotools software (Bruker). The c, c-1, c+1, z, z+1 and z+2 fragment ions were considered.  

 

Design of experiments 

The Design Of Experiments (DOE) method is an efficient and structured way to maximize information while 

minimizing resources. It is used to develop a process that will 1) identify the factors that have the largest effect 

on the studied output (also known as the response) and 2) adjust them to achieve an optimal response. In the 

present work, we focus on the first step and the output of interest is the fragmentation coverage.  

In the first step, screening experiments are designed to gauge the relative effects of the factors studied. This 

allows for a first coarse selection of the most interesting factors, characterized as "crucial" or "critical" [20], 

in other words, factors which strongly affect the studied process. In mass spectrometry, factors could be 

instrumental parameters, sample conditions, or any other factor thought to influence the outcome of the 

experiment. To set up factor selection experiments, we can use a) a full factorial design or b) a fractional 

factorial design. A full factorial design also gives access to interference effects between parameters, while a 

fractional factorial design only gives access screening of individual factors, albeit with fewer experiments. 

When measuring a response, the general principle of a factorial design is to plan to vary 2 or more factors at 

the same time. As shown in Table 1, a matrix is built by choosing for each factor two numerical or 

alphanumeric values called levels -1 and +1. Level -1 can be the "base level", i.e. a starting quantitative or 

qualitative value based on prior data. If the design is orthogonal, i.e. if factors are varied independently, then 
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the effect of a factor can be calculated independently of the effect of other factors. Mathematically, two factors 

are orthogonal if the sum of their columns in standard format (+1, -1) equals 0. In the present work we used 

two full factorial designs of 4 and 5 factors to quickly highlight important parameters for FC. The building of 

experimental runs for a full 4-factor design is shown in Table 1.  

Table 1. Full factorial matrix for 4 factors with 2 levels. 

Experiment # X1 X2 X3 X4 Response y 

1 -1 -1 -1 -1 y1 

2 -1 -1 -1 1 y2 

3 -1 -1 1 -1 y3 

4 -1 -1 1 1 y4 

5 -1 1 -1 -1 y5 

6 -1 1 -1 1 y6 

7 -1 1 1 -1 y7 

8 -1 1 1 1 y8 

9 1 -1 -1 -1 y9 

10 1 -1 -1 1 y10 

11 1 -1 1 -1 y11 

12 1 -1 1 1 y12 

13 1 1 -1 -1 y13 

14 1 1 -1 1 y14 

15 1 1 1 -1 y15 

16 1 1 1 1 y16 

 

In the 4 factors matrix, factors were protein identity, reaction time, isCID and charge state (CS), while in the 

5 factors matrix, we picked PI, number of precursor ions (NPI), CS, RT, and number of accumulated spectra 

(NAS). The rationale for picking these factors is described in the results section. 

For the DOE experiments presented herein, the effect of a parameter is calculated as the sum of the products 

of the level (-1 or +1) and the outcome (FC) of a given experiment, divided by the number of the experiments 

(n) as represented by the following equation: 

𝐸𝑓𝑓𝑒𝑐𝑡 =  
∑ (𝑙𝑒𝑣𝑒𝑙𝑖 × 𝐹𝐶𝑖)𝑛

𝑖=1

𝑛
 

Once key factors have been identified, in the second step finer experiments focusing on these key factors are 

needed to find the set of factor values that will maximize the response, i.e. the optimal combination. These 

optimization experiment designs can rely on full factorial design if one the factors is qualitative, or on response 

surface design, if all the factors are quantitative. In these experiments, it may be advisable to test more than 

two levels for certain factors, for example when the response to a given factor is suspected of being non-linear.  
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Results  

To get a useable ETD fragmentation reaction, one basically needs to optimize precursor intensity (PI), reagent 

intensity (RI) and reaction time (RT). PI is however directly dependent on the precursor accumulation time 

(AT), just as RI is dependent on the reactant reagent injection time (RgT). Since our instrument is not equipped 

with automatic ion gain control, the accumulation time needs to be adjusted manually to reach a given intensity. 

We started by optimizing AT using two calibrant proteins, namely ubiquitin (Mmono = 8 560 Da) and 

apomyoglobin (Mmono = 16 941 Da) (Figure 2A). The dependency of PI upon AT values can be seen to be 

protein-dependent, which is the first clue that the ETD optimization process may have to be performed anew 

for each type of protein sample.  

 

Figure 2. Manual optimization of precursor accumulation time and isolation width. A. Precursor intensity 

as a function of accumulation time for ubiquitin and apomyoglobin, B. Precursor intensity as a function of 

isolation width for ubiquitin. The accumulation time used in the isolation width study was 300 ms. 

 

Precursor isolation width is commonly optimized and shows a saturation effect (Figure 2B). After further 

optimization based on reagent time, a FC of 55.9% was obtained on the hPEBP1 protein. From this number, it 

is immediately apparent that in this example, "manual" optimization of parameters yields insufficient FC for 

most PTM localization applications. Apart from favorable cases such as ubiquitin and from thorough, time 

consuming manual optimization of the parameters, in ETD such manual approach may frequently yield a FC 

that is indeed too low for these applications. Thus, we looked into parameters that may benefit from a "co-

optimization" approach. 
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Using ubiquitin as an "expendable" model protein, we set up experiments varying both PI and RT. For this 

model system, the FC varies between 60 and 98%, while a co-optimum can be seen at PI = 74 000 and RT = 

8 ms (Figure 3A).  

 

Figure 3. 2D plots of co-optimization of parameters for maximizing FC. A. Fragmentation coverage as a 

function of pairs of (PI,RT) values. B. Fragmentation coverage as a function of pairs (RI,RT) of values. 
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To evaluate the repeatability of measurements, we performed a decaplicate experiment. The distributions of 

FC for ubiquitin and apomyoglobin are shown as a box plot (Figure 4).  

 

Figure 4. Distribution of FC for ETD decaplicate experiments on ubiquitin and apomyoglobin.  

 

Standard deviations for FC were 3.9% for ubiquitin and 1.8% for apomyoglobin, respectively. These values 

can give an order of magnitude for the degree of variability for FC determination, which can give some context 

when evaluating the result of manual or co-optimization. We also noted that reagent accumulation time and 

reaction time cannot be completely independent because, as can be seen in Figure 1, the reaction of 

proteins/peptides with the ETD reactant can start as soon as the reactant is introduced into the fragmentation 

chamber. Co-optimization of these parameters proved useful as well. The plotted surface shows a co-optimum 

area from 70 000 to 76 000 for the reagent intensity and from 8 ms to 20 ms for the reaction time (Figure 3B). 

To further our understanding of which parameters have the largest effect on the output and/or interfere with 

one another, we next set up a DOE experiment to start exploring this tool. A set of 4 parameters can be tested 

with a relatively simple full factorial matrix as shown in Table 1. For each parameter, some prior knowledge 

of the system is preferable to assist in choosing two different levels per factor, hereafter labeled as the "+1" 

and "-1" conditions.  

We included as parameters the identity of the protein, reaction time, the voltage for in-source collision-induced 

dissociation (isCID), and the charge state, all of which seemed to affect FC during manual optimizations (Table 

2).  

Table 2. Determination of the main effects and interactions. Full factorial matrix with two levels per factor. 

Reagent intensity was set at 70 000 and precursor intensity at 75 000. Proteins were HU alpha chain (M = 9535 

Da) and apomyoglobin at 0.5 µM. For apomyoglobin the charge states used were 21+ and 25+, while for HU 

they were 11+ and 14+. 
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For the value of zn, the charge state with the highest intensity in the charge state distribution of a previous 

experiment was chosen. Since by increasing the number of charges, we can expect to improve the yield of the 

ETD reaction, for the second charge state value we chose to test a value corresponding to a 20% increase in z, 

called znx1.2. The criterion for choosing 20% as the increase is a compromise between a higher charge state 

and a usable intensity. The 25+ and 14+ charges states of apomyoglobin and HU respectively, fit well with 

these specifications.  

Individually, the identity of the protein (which contains its sequence data and physicochemical profile) was 

found to have the largest effect, with over twice the effect observed for the next-most important factor, namely 

RT (Table 3). Factors that can make ETD fragmentation protein-dependent, may include protein size, sequence 

and residual gas phase structure. Protein sequence affects the distribution of polar, apolar, positively and 

negatively charged amino acids along the sequence, which may influence the transfer of electrons in the ETD 

process. A fully unfolded structure should allow full access to peptide bonds for electron transfer. However, 

the sequence of a protein affects its folding in solution, and unfolding kinetics in solvents and during transfer 

to the fragmentation cell is also protein-dependent. As a consequence, any structure that survives denaturing 

solvent conditions as well as transfer to the gas phase may influence ETD fragmentation, as was shown for 

example for ECD [21].  

- 1 +1 

Protein identity HU alpha ApoMyo 

Reaction Time ( ms ) 5 50 

isCID (eV) 10 50 

Charge state z n z n × 1.2 
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Table 3. Effect of individual parameters and their interactions on fragmentation coverage. 

 

Interestingly, the largest interference effects where seen for the charge state x RT effects and the protein 

identity x charge state effects, so that both of the largest observed interference effects involve the charge state 

of the precursor. While the interpretation of interference effects can be challenging, some hypotheses based on 

the distribution of positively charged sites on the protein can be formulated. For the interference of the charge 

state with RT, since the reactant brings an electron for transfer, electrostatic effects between positively charged 

sites and the reactant affect the transfer of electrons to the backbone, and the charge state affects the distribution 

of positively charged sites. As a consequence, for a given efficiency of transfer for a given charge state, reaction 

time may need to be adjusted to compensate for these electrostatic effects, and the adjustment would then 

depend on the charge state. From the point of view of the sequence, protein identity may also affect the 

efficiency of transfer of electrons to the backbone, as the identity of amino acid residues has a direct bearing 

on the ionization of residues. This may explain the interplay between charge state and protein identity. 

Next we moved to optimizations for a more scarce protein, the hPEBP1 metastasis suppressor. For this single 

protein and 5 different parameters, a full factorial matrix consisting of 25 = 32 partially randomized top-down 

MS experiments was constructed (Table 4). After co-optimization, the best FC values were obtained with a RI 

of 70000-76000 which correspond to a reagent accumulation time of approximately 10 ms. Since the maximum 

reagent intensity and the length of reagent injection time are dependent on the amount of reagent in the 

cartridge, and the reagent gets consumed over time, keeping reagent intensity at 70000 makes it possible to do 

multiple experiments without being limited in reachable reagent intensity. Increasing the reagent injection time 

Factor Effect (%) 

 Protein identity - 10.8 

Reaction time 4.7 

isCID - 2.5 

Charge state 4.4 

Protein identity x Reaction time - 0.1 

Protein identity x  isCID 0.3 

Protein  identity  x Charge state - 2.0 

Reaction time x  isCID - 1.7 

Reaction time x Charge state - 2.3 

isCID x Charge state 0.5 
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would also have had an adverse impact on the length of the duty cycle. Thanks to the co-optimization results, 

the RI parameter was set at 70000 for subsequent experiments. 

Table 4. Full factorial matrix with two levels per factor. Reagent intensity was set at 70 000. Protein was 

hPEBP1 (M = 20926 Da) at 0.5 µM.  

 

The first 4 parameters are randomized, meaning fragmentation sequences are programmed in random order in 

the analysis. Upon closer examination of experimental data, we noticed that the fragmentation segments we 

programmed in the instrument had a variable number of spectra. This is due to the effect of variations in protein 

accumulation times and reaction time on duty cycle length. To test the effect of this parameter (number of 

averaged spectra), we constructed a 5-parameter matrix by picking either 200 spectra, or the following 800 

spectra within the same segment, which means that the NAS parameter is not randomized with respect to the 

others. In DOE, mixing randomized and non-randomized parameters is allowed. As can be seen in Table 5, PI 

and NAS are in a draw as the main parameter to optimize. In this representation, each X factor (parameter) 

interference with another X factor is shown. The major interference, PI with RT, is quite far ahead of all others. 

Table 5. Effect of individual parameters and their interactions on hPEBP1 fragmentation coverage 

Factors -1 1

X1 Precursor intensity 75 000 135 000

X2 Charge state 26+ 30+

X3 Number of precursor ion peaks 1 3

X4 Reaction Time (ms) 20 60

X5 Number of averaged spectra 200 800
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Figure 5 shows the extent of progress that could be achieved with manual optimization (upper panel) versus 

co-optimization (middle panel) versus this first DOE step (lower panel). A fragmentation coverage of 76.3% 

is reached with the following parameter setting: PI = 135 000, CS = 26+, NPI = 1, RT = 60 ms, NAS = 800.  

  

Factor Effect (%) 

Precursor intensity 6.6% 

Charge state - 1.9% 

Number of precursor ion peaks - 0.9% 

Reaction Time ( ms ) 0.7% 

Number of averaged spectra 6.4% 

Precursor intensity x Charge state - 0.4% 

Precursor intensity  x Nbr of precursor ion 

  

0.8% 

Precursor intensity  x Reaction Time   2.3% 

Precursor intensity  x Nbr of av. spectra 

  

- 1.2% 

Charge state x Nbr of precursor ion  0.4% 

Charge state x Reaction Time   - 0.2% 

Charge state x Nbr of av. spectra  - 1.0% 

Nbr of precursor ion  x Reaction Time   - 0.4% 

Nbr of precursor ion x Nbr of av. spectra  - 0.6% 

Reaction Time x Nbr of av. spectra   - 0.8% 
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Figure 5. Effect of the optimization strategy on optimum fragmentation coverage of hPEBP1 protein. 

A. ETD spectrum and fragmentation coverage after manual optimization. The spectrum was not smoothed. 

The parameters are CS = 26+, NPI = 1, PI = 145 000, RI = 100 000, RT = 80ms, NAS = 440. B. ETD spectrum 

and fragmentation coverage after co-optimization. The spectrum was smoothed. The parameters are CS = 26+, 

NPI = 1, PI = 150 000, RI = 70 000, RT = 64ms, NAS = 140. C. ETD spectrum and fragmentation coverage 

after first step DOE optimization. The spectrum was smoothed. The parameters are CS = 26+, NPI = 1, PI = 

135 000, RI = 70 000, RT = 20ms, NAS = 800. For all the spectra, the MS/MS tolerance was 0.1 Da for the 

fragmentation coverage determination. 

 

Discussion 

If we define fragmentation coverage (FC), as the percentage of amino acids bonds in the sequence where at 

least one fragmentation event is observed through fragment ions, the difficulty of achieving close to 100% FC 

in top-down sequencing increases with respect to protein size [22]. Fragmentation occurs predominantly at the 

ends of the protein, leaving an area at the center without corresponding fragments, which is termed "dark zone" 

to indicate the lack of sequence information. Dark zones can also occur outside the center area in a sequence. 

For an exhaustive census of modified residues, dark zones are an obvious impediment to reaching the stated 

goal. When faced with incomplete fragmentation coverage, several responses are possible. The first is to 

abandon the study of a protein showing imperfect coverage and to focus on systems that behave perfectly on 

the first try. This "low-hanging fruit" approach has serious limitations, as the mass spectrometry community 

will quickly run out of such ideal systems. Moreover, this analysis ethics runs counter to the goal of science, 
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which is to go beyond the tip of the iceberg to explore both emerged and immerged parts of the factual berg, 

and counter to the social compact, which is to provide information that is useful for human health, wellbeing, 

the environment, and economics. Therefore, to achieve high FC for any kind of protein and proteoform, ETD 

fragmentation requires careful optimization. In the present paper, we compare several strategies for 

optimization on an UHR-QTOF MS instrument with ETD fragmentation, with a final focus on a simple version 

of DOE. Ultimately, the reasoning could also apply to any number of MS techniques were multiple input 

parameters affect the outcome of the analysis. To improve the efficiency of top-down ETD fragmentation of 

proteins on a high-resolution Q-TOF mass spectrometer with the aim of maximizing FC, we started from 

single-parameter optimization, then moved to co-optimization of parameters. Through a peak-and-valley 

visualization of the optimization landscape, we could see the importance of interdependency (Figure 3). Yet 

co-optimization still only deals with 2 parameters at a time.  

Other authors have made the case that sequential, manual optimization or co-optimization of MS/MS 

experiments is too slow and incomplete. Jensen et al had to deal with multiple parameters when using a 

combination of CID, HCD, ETD, ETciD, EThcD, and UVPD for top-down protein fragmentation on an 

Orbitrap instrument [17]. The solution the authors proposed and successfully applied was to first narrow down 

the set of parameters they thought would most affect the outcome (FC), then to use a "brute-force" approach 

to scan for all possible combinations of these parameters in the instrument. This required the development of 

the “topdownr” R-package to automate multimodal MS/MS analyses as well as data treatment, which basically 

scripts instrument parameter setups to allow for automation of the  data acquisition and filtering of thousands 

of MS/MS datasets [17]. This approach, however, requires both time and large amounts of sample, which are 

often scarce in a research context, prompting us to search for an alternative. 

DOE, by cleverly combining a subset of conditions to test parameters effects, offers just such an alternative. 

Experimental plans are designed as matrices of conditions to run experiments. DOE can be used to maximize 

the efficiency of ETD fragmentation, or in principle any combination of MS/MS fragmentation methods. In 

addition to parameters that are selected and randomized prior to the experiment, parameters can be added to 

the analysis a posteriori as non-randomized parameters. This provides some flexibility in the exploitation of 

data, for a limited cost in data independence. Different sets of DOE tools have been successfully applied for 

optimization in an industrial [23] or academic [24,25,26,27,28,29,30,31] context, and/or for method validation 

[32,33]. 
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A number of reviews [20,34] have sought to make full sets of DOE tools accessible and attractive to the 

analytical sciences community. Hibbert produced a detailed and instructive guide on how to choose and apply 

tools in DOE [21]. Hecht et al. wrote an extensive review with case studies to "enable a post-doctorate mass 

spectrometrist to utilize DOE to design and execute an optimization study independently and without a 

statistician consultant" [34]. Despite the clarity and pedagogy displayed in these reviews, DOE as a general 

set of tools may still seems quite complex and daunting to the everyday user. Yet, DOE should attract a much 

larger audience since a subset of these tools potentially yields a large portion of useful information for a fraction 

of the time and sample costs. 

The present work furnishes concrete examples of building matrices, performing experiments, and calculating 

the relative effects of different parameters. This allows us to identify parameters that are critical to FC, the 

outcome of interest, and to show parameter interdependency for the purpose of adjusting critical parameters 

for the best possible outcome.  

In comparison to manual optimization methods, DOE enables a relatively fast screening of crucial parameters 

and interactions thereof. Although DOE can be made into quite a complex and powerful tool, in its simplest 

form, shown here as simpleDOE (sDOE), it can be leveraged quickly, with a lower learning curve, to solve 

the type of problems faced in the mass spectrometry lab.  

In its simplest form, sDOE consists in creating a full-factorial matrix to determine the most relevant parameters 

and interference between them. In this work for example, some general knowledge of relevant parameters was 

acquired through 16 experiments, followed by a protein-specific optimization using 10 experiments.  

In principle, this sDOE step can be followed by co-optimization of the top two parameters, without necessarily 

going to the modeling step. For experiments considered as critical or in the context of regulation, additional 

statistical tests on replicates may be needed to evaluate the significance of the result, although replication on a 

single set of conditions can be enough to derive measurement errors [34]. Where necessary, further FC 

optimization towards maximal coverage could be reached by multi-level optimization of relevant parameters 

followed by modeling of the equation for each parameter's influence. These sDOE-2 steps will be covered in 

a future publication. 

In many cases, sDOE shows great potential for rapid and efficient optimization of experimental conditions and 

instrumental setup in mass spectrometry and associated techniques.  
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