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ABSTRACT

The transition angles are defined to describe the vowel-
to-vowel transitions in the acoustic space of the Spectral
Subband Centroids, and the findings show that they are
similar among speakers and speaking rates. In this paper,
we propose to investigate the usage of polar coordinates in
favor of angles to describe a speech signal by character-
izing its acoustic trajectory and using them in Automatic
Speech Recognition. According to the experimental re-
sults evaluated on the BRAF100 dataset, the polar coordi-
nates achieved significantly higher accuracy than the an-
gles in the mixed and cross-gender speech recognitions,
demonstrating that these representations are superior at
defining the acoustic trajectory of the speech signal. Fur-
thermore, the accuracy was significantly improved when
they were utilized with their first and second-order deriva-
tives (∆, ∆∆), especially in cross-female recognition.
However, the results showed they were not much more
gender-independent than the conventional Mel-frequency
Cepstral Coefficients (MFCCs).

Keywords Automatic Speech Recognition, Spectral
Subband Centroid Frequency, Speaker Normalization

1 Introduction
Automatic Speech Recognition (ASR) plays a vital role
in human-computer interactions, particularly in voice as-
sistants. It allows such intelligent devices to translate a
speech signal into textual information to obtain seman-
tic comprehension before taking action. Due to the rapid
growth of related disciplines, ASR systems have remark-
ably improved and are extensively used in several sectors,
significantly improving work efficiency and reducing hu-
man demands.

Most state-of-the-art ASR systems based on Hidden
Markov Model (HMM) or Deep Learning characterize
the speech signal with acoustic features derived from the
absolute frequency measurements such as Mel-frequency
Cepstral Coefficients (MFCCs), Perceptual Linear Predic-
tive Cepstrum (PLP) and Mel-filter Bank [1, 2]. How-

ever, it is well known that the frequency space of speakers
varies greatly, especially if we compare that of men with
that of women or children: women and children produce
speech with higher frequencies than men [3, 4, 5, 6, 7].
Furthermore, if the physiological, emotional, or socio-
logical factors (i.e., age, speaking rate, accent) are con-
sidered, the acoustic space varies significantly due to the
inter-speaker and intra-speaker differences [8].

To take into account the large variability of speech (inter-
speaker variability, environmental variability, etc.), cur-
rent ASR systems require a very large amount of data for
their training. This is even more true in the case of sys-
tems based on Deep Learning. This is a major handicap
for developing such systems for poorly endowed or en-
dangered languages. It is, in fact, often quite challenging
and very costly to develop an ASR system for minority or
low-resource languages when a large dataset of the tran-
scribed speech does not exist [9, 10]. One research direc-
tion to reduce the training data size is to make the ASR
systems intrinsically speaker-independent. If this is pos-
sible for the acoustic part of the systems, only one speaker
would be sufficient for the learning phase.

This research proposes to describe the speech signal based
on “acoustic gestures”, with the hypothesis that it is more
robust and capable of improving the performance of ASR
systems, particularly with respect to the natural variability
of the speech. We suggest defining the acoustic gestures
of the speech signal using polar coordinates rather than
the transition angles on the acoustic space of the Spec-
tral Subband Centroid Frequency (SSCF). We anticipate
that the polar coordinates provide a better representation
of the speech because they can define not only the transi-
tion direction but also the acoustic trajectory of the speech
signal.

This paper is structured as follows: Section 2 includes re-
lated work. The proposed method is described in Section
3. The experiments are introduced in Section 4. Section
5 contains the results and discussions. Finally, section 6
presents the conclusion and future work.
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2 Related Work
The Spectral Subband Centroids (SSCs) were examined
and utilized as complement parameters to the cepstral fea-
tures for speech recognition. They have properties simi-
lar to the formant frequencies and are robust to additive
Gaussian noise [11]. The SSC frequencies (SSCFs) were
computed by dividing the frequency band into a number
of subbands and computing the centroid of each subband
using power spectrum of the speech signal (Equation 1).

SSCFm =

∫ hm

lm
fwm(f)P γ(f) df∫ hm

lm
wm(f)P γ(f) df

(1)

Where lm and hm are the lower and upper bounds of sub-
bandm; wm is the subband filter; P (f) is the power spec-
trum at frequency bin f ; γ is a coefficient regulating dy-
namic range of the power spectrum.

The SSCFs were subsequently explored in Vietnamese
vowel-to-vowel (VV) transitions. Six subband filters were
proposed to capture more information about the speech
signal by splitting the frequency band in mel-scale into
the equals-size subbands. The study found that the SSCF
parameters have similar shape to the formant frequen-
cies and provide a good estimation and continuous values,
even during the consonant production [12].

The VV trajectories can be considered straight lines on
the SSCF1-SSCF2 plane (which corresponds roughly to
the F1-F2 plane) (see Figure 1). For each of these lines,
it is then possible to define an angle with reference to
the SSCF1 axis. For each pair of the transitions, V1V2
and V2V1, the sum of the two angles is equal to 180◦

(see Figure 2). Starting from this observation, the an-
gles were proposed to characterize the direction of the
vocalic transition between the adjacency frames on the
SSCF planes. The angles were measured by hand over
80% of the transition duration. According to the study,
the angles were asserted to be speaker-independent be-
cause they were roughly the same across diverse speakers,
including men and women, and similar results were ob-
tained for the different speaking rates (see Figure 3) [12].

3 Proposed Method
Previous work assumed that the spectral trajectories of
vowel-to-vowel transitions are quasi-straight lines on
SSCF1-SSCF2 plane. Thus it is possible to compute the
angles to define the vocalic transitions [12]. The angles
are generalized to calculate across all planes of SSCFi-
SSCFi+1.

In each SSCFi-SSCFi+1 plane, the angle between a
transition window of N frames are defined as in Equation
2.

Angle(j) =
π

180◦
arctan

(
∆SSCFi+1

∆SSCFi

)
(2)

Figure 1: The spectral transition of /ai/ on the SSCF1-
SSCF2 plane produced by a Vietnamese female speaker

Figure 2: The SSCF angles of six vowel-to-vowel tran-
sitions on the SSCF1-SSCF2 plane produced by a Viet-
namese male speaker (source [12]).

Where j is a frame at index j; ∆SSCFi is the difference
between SSCF on the ith axis at the end and the beginning
of the transition.

The transition angles are computed directly from the
arctan function, which has a discontinuity at −π and +π,
resulting in the steps throughout the transition (see Fig-
ure 4). Therefore, obtaining the angle directly from the
arctan function is not a continuous parameter. Our ex-
periments showed that using only arctan angles to define
the acoustic trajectory of the speech signal is probably not
a very good idea because the jumps will produce a kind of
“noise” in the data.

That is why we propose to characterize the spectral tra-
jectory in the acoustic space of the SSCFs using the polar
coordinates. We assert that they give a more accurate rep-
resentation because they are continuous variables and can
specify not only the transition direction but also the tra-
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Figure 3: The SSCF angles on the SSCF1-SSCF2 plane at
fast and normal rates produced by a Vietnamese male and
female (source [12]).

jectory of the spectrum. For a given frame, the two polar
parameters (angle and radius) on the SSCFi-SSCFi+1

plane are defined as in Equation 3.

Figure 4: The transition angles of /ai/ on the SSCF1-
SSCF2 plane produced by a Vietnamese female speaker.
The steps caused by the arctan function are highlighted
in red rectangular.

Angle(j) =
180◦

π
arctan

(
SSCFi+1

SSCFi

)
Radius(j) =

√
SSCF 2

i+1 + SSCF 2
i

(3)

Where j represents a frame at index j; SSCFi and
SSCFi+1 represent the axis of the SSCF plane, respec-
tively.

4 Experiments
The study made use of the Kaldi toolkit [13]. Note that
the language model was trained using SRILM [14] on the
transcripts of the speech corpus because we want to mea-

Table 1: Specification of BRAF100

Corpus Hour Transcript Speaker Vocab
BRAF100 28h 10,564 100 22,199

sure the effect of the acoustic model, not the effect of out-
of-vocabulary (OOV) words that existed in the test sets.
The lexicon was constructed from the vocabulary of the
language model using Phonetisaurus [15].

4.1 Datasets

The BRAF100 corpus [16] was used for French speech
recognition. It contains around 28 hours of recordings
from 100 native speakers (50 are men) aged from 15 to
63. Each speaker recorded between 102 and 105 differ-
ent sentences and a common extract of “La Science et
l’Hypothèse” of Henry Poincarée. The specification of
the corpus is given in Table 1.

The corpus was prepared into three sets, each contain-
ing the train and test sets with comparable speaker sizes.
The first set is for normal speech recognition, and the
ASR model was trained and evaluated on the dataset of
male and female speakers. The remaining two sets are
for cross-gender speech recognition. The ASR model
is trained on a male dataset and evaluated on a fe-
male dataset in cross-male recognition, whereas cross-
female recognition does the opposite. The specification
of datasets are specified in the Table 2.

4.2 DNN-HMM Model

The ASR systems were constructed using a hybrid DNN-
HMM model. The overall architecture of the DNN is
given in Figure 5. The network takes nine consecutive
contextual frames as the input and feeds them into three
hidden layers, each consisting of 512 neurons, and the hy-
perbolic tangent function (tanh) was employed as an ac-
tivation function. These hidden layers are used to learn
the representation of the spliced input features. The out-
put from the hidden layers was then fetched into a fully
connected (FC) layer to estimate the state of the triphone
HMM using the softmax function.

Figure 5: Overview architecture of the DNN
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Table 2: The experimental datasets constructed from BRAF100

Experiment
Train Set Test Set

Hour Transcript Speaker Hour Transcript Speaker
Normal recognition 12h 4,657 22 males, 22 females 3h 1,036 5 males, 5 females

Cross-male recognition 12h 4,661 44 males 1.5h 519 5 females

Cross-female recognition 13h 5,278 44 females 1.5h 517 5 males

Three training steps were conducted to produce the DNN-
HMM model. First, a context-independent model (Mono-
phone) was trained on the input features using 1K Gaus-
sians over 40 iterations. Then, context-dependent (Tri-
phone) training was performed over 35 iterations, utiliz-
ing 2K states and 10K Gaussians. Finally, the triphone
DNN training was conducted across 20 epochs on the
aligned training data from the context-dependent model.
The initial and final learning rates of 0.01 and 0.001 were
used during the training.

4.3 Feature Configuration

In this study, the angles and the polar coordinates were
evaluated for characterizing the spectral trajectory of the
speech signal on the SSCF planes and compared to the
classical MFCC, the most widely used acoustic feature
for speech recognition.

The angles were defined over a window size of one. The
SSCFs were computed from short-time frames of 25 ms
length with a 10 ms overlap, and the moving average was
applied across a three-frame window to reduce the influ-
ence of the noise. A pre-emphasis factor of 0.97 and a
Hamming window were utilized during feature extraction.

The MFCC with 6 and 13 dimensions were used as the
baseline features. They were computed using 6 and 13
subband filters on the short-time frames with the same
configuration as SSCFs, and a cepstral liftering coefficient
of 22 was used while extracting the features.

5 Results and Discussions

The results in word error rate (WER) of normal and cross-
gender speech recognitions are presented in Table 3. In
normal recognition cases, the MFCC significantly outper-
formed the angle and polar coordinate. As expected, the
13 MFCC produced a greater result than the 6 MFCC be-
cause it captured more signal information (higher preci-
sion in the frequency domain). In addition, the perfor-
mance was marginally improved when speed and acceler-
ation were used (∆,∆∆).

The angle had the greatest error rate of 94%, demonstrat-
ing that it is not a good parameter due to its discontinuity.
However, the estimation of transition trajectory using po-
lar coordinate surpassed angle by a wide margin. Further-

more, the performance was significantly improved when
it was combined with speed and acceleration, particularly
in cross-female recognition.

In the transgender recognition cases, similar patterns were
obtained if the different types of parameters were com-
pared. Nevertheless, all parameters had significantly
higher error rates in all cases. It can be seen that the
recognition rates for one gender are poorer if the learn-
ing is performed with speakers of the other gender. This
shows that these parameters are not really independent of
gender.

In cross-male recognition, the 13 MFCC performed worse
than the 6 MFCC, and the situation was quite similar when
used with delta features (∆,∆∆). However, this was not
the case for cross-female recognition.

Overall, we still find that recognition rates are similar be-
tween the polar parameters and the MFCC (particularly
for the 6 MFCC) compared to the angles.

However, the polar parameters characterizing the spectral
trajectories do not seem much more gender-independent
than the classical MFCC. This may be due to several as-
pects that we have not yet investigated in this first study:

1) We considered SSCF0 (roughly corresponding to the
fundamental frequency F0) participating in the same way
as the other SSCFi similar to the formants. However, it
is well known that the fundamental frequency F0 is quite
different between men and women. Moreover, calculating
a trajectory angle between SSCF0 and SSCF1 (F0 and F1)
is probably not judicious because it does not correspond
to real physical phenomena that SSCF0 (F0) character-
izes the vibration of vocal cords, whereas the other SSCF
characterize the resonances of the vocal tract.

2) A second point to investigate concerns the fact that
characterizing the trajectories only by angles. If this is
valid in the SSCF1-SSCF2 (F1-F2) plane where the tra-
jectory during vowel-vowel transitions is indeed a quasi-
straight line, it is not the case for the other SSCFi-
SSCFi+1 planes for i > 2. We must consider charac-
terizing this trajectory by another means.

3) A dynamic gesture is classically characterized by its
trajectory and speed (and acceleration) of the movement
on the trajectory. It is therefore important to character-
ize velocity and acceleration more judiciously than simply
computing the first and second derivatives (∆,∆∆).

4
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Table 3: Experimental results on BRAF100 in WER(%)

Experiment Parameter Dimension MONO TRI DNN

Normal recognition

6 MFCC 6 62.00 31.24 10.90

6 MFCC, ∆, ∆∆ 18 26.70 11.20 08.65

13 MFCC 13 41.90 17.09 08.39

13 MFCC, ∆, ∆∆ 39 20.83 09.10 07.14

Angle 5 97.12 94.02 94.19

Polar 10 71.62 42.35 16.44

Polar, ∆, ∆∆ 30 46.17 21.10 13.01

Cross-male recognition

6 MFCC 6 67.41 39.58 16.51

6 MFCC, ∆, ∆∆ 18 32.19 14.84 11.51

13 MFCC 13 62.65 41.04 20.58

13 MFCC, ∆, ∆∆ 39 36.39 23.12 16.74

Angle 5 96.87 97.29 94.60

Polar 10 79.25 56.81 28.43

Polar, ∆, ∆∆ 30 57.85 33.86 21.51

Cross-female recognition

6 MFCC 6 73.71 51.54 20.44

6 MFCC, ∆, ∆∆ 18 35.63 17.59 15.30

13 MFCC 13 66.96 43.92 18.62

13 MFCC, ∆, ∆∆ 39 32.55 16.49 13.45

Angle 5 93.78 94.15 93.51

Polar 10 85.73 74.24 41.09

Polar, ∆, ∆∆ 30 64.31 48.24 29.20

6 Conclusion

In this work, we investigated the use of polar coordinates
in SSCF planes to describe the speech signal based on
its acoustic trajectory. The finding showed that they sig-
nificantly outperformed angles in both normal and cross-
gender recognitions, demonstrating that the polar repre-
sentation provides better information in characterizing the
acoustic elements of the speech signal.

Even though the polar coordinates produced more signif-
icant results, there is still room for improvement. Our
experiments showed that they are not significantly more
gender-independent than the classical MFCC. We pro-
pose several directions for investigation in order to bet-
ter account for the dynamic aspects of speech produc-
tion. Examining how the cochlear system works will
provide us with more useful ideas for characterizing the
time aspect. Furthermore, it is desirable to investigate
how to efficiently manage SSCF0 because using it directly
with higher SSCFs is irrelevant. Finally, the SSCF0 must
be normalized to account for spectral variation between
speakers, particularly between male and female voices.
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