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We construct quasi one-dimensional topological and non-topological three-band lattices with tun-
able band gap and winding number of the flat band. Using mean field (MF) and exact density
matrix renormalization group (DMRG) calculations, we show explicitly how the band gap affects
pairing and superconductivity (SC) in a Hubbard model with attractive interactions. We show ex-
cellent agreement between MF and DMRG. When a phase twist is applied on the system, a phase
difference appears between pairing order parameters on different sublattices, and this plays a very
important role in the SC density. The SC weight, Ds, on the gapped topological, W 6= 0, flat band
increases linearly with interaction strength, U , for low values, and with a slope that depends on
the details of the compact localized state at U = 0. As U → 0 for the gapped non-topological flat
band (W = 0), Ds decays with a power law faster than quadratic but slower than exponential. This
indicates that isolated non-topological flat bands are less beneficial to SC. In the gapless case (flat
band touching the band above it), we find at low U (both for W = 0 and W 6= 0) that Ds ∝ Uϕ

with ϕ < 1 contrary to the U ln (const./U) behavior reported in the literature. In other words, Ds
increases faster than linearly for low U thus favoring SC at weak interaction more than the gapped
case. For systems with touching bands, we observe that the one-body correlation length, ξ, diverges
as a power law as U → 0, while for the isolated flat band ξ(U → 0) is a constant smaller than one
lattice spacing. Both behaviors are distinct from the exponential divergence of ξ in the dispersive
case. Our results re-establish that the BCS mean field and quantum metric alone are insufficient to
characterize SC at weak coupling.

I. INTRODUCTION

Flat band physics has garnered wide interest since the
1990s, but this captivation has become exceptionally pro-
nounced following the experimental realization of uncon-
ventional superconductivity in twisted bilayer graphene
at a “magic angle”1–4 where the appearance of a flat band
is suspected to be the driving mechanism. The possibility
of revealing exotic quantum phases — in particular, su-
perconductivity on topological and non-topological flat
bands — can be attributed to a unique characteristic
of these dispersionless bands, where any finite interac-
tion will be much larger than the band width, leading to
strongly correlated physics at any value of the interac-
tion.

When a particle is loaded in a flat band, the high de-
generacy causes it to localize in a compact form within
a few sites whose geometry depends on the details of the
Hamiltonian; we will refer to this as the compact local-
ized state (CLS). Studies on topological models have ar-
gued that, at weak coupling, isolated flat bands enhance
pair formation and superconductivity (SC) and raise the
BCS transition temperature, Tc.

5–7 It was demonstrated,
with computational and mean field methods, that a par-
tially filled isolated flat band has superfluid weight, Ds,
linear in the interaction, U , for U much smaller than the
gap, where transport is dominated by the topology of the
flat band.6,8–11 Furthermore, the slope at linearity is not
simply given by the quantum metric but is accounted for,
very accurately, by a proper projection on the flat band

taking into account the inequivalent sublattices.9 Re-
cently, the quantum metric prediction for the slope was
improved by introducing the notion of minimal quantum
metric.10 For the sawtooth lattice at a filling of ρ = 0.5,
the quantum metric predicts the slope of Ds to be 0.6
compared to exact DMRG, multi-band MF, and proper
projection on the flat band, all of which yield slopes of
0.40.9 The minimal quantum metric10 gives a slope of
0.45 which brings it closer to the exact DMRG and MF
found in Ref.[9]. In dimensions two and above, this lin-
ear behavior of Ds with U was shown to lead to similarly
linear dependence of Tc on the coupling.5,7,12–14 We re-
call that in dispersive bands, Ds and Tc are exponentially
small as U → 0, with Ds ∼ e−a/U and Tc ∼ e−b/U .

Full multi-band mean field (MF) methods can accu-
rately describe the entire range of superconducting be-
havior, from weak to very strong interactions where par-
ticles behave effectively like hard-core bosons on a disper-
sive band. Despite the changing transport mechanisms
as U is increased, the full multi-band MF method, which
accounts for sublattice inequivalence, faithfully recovers
correct results across the entire range of U .9

When the lowest energy flat band just touches the
next dispersive band, any finite interaction will neces-
sarily involve both bands in transport. It has been
suggested, using the BCS mean field, quantum metric,
and the minimal quantum metric, that touching bands
can be beneficial to superconductivity10,15–17 resulting
in Ds ∝ U ln (const./U).

In this work, we address two main questions. First,
what is the role played in SC by topology as opposed
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to band flatness? In other words, suppose we have two
systems with very similar-looking band structures: the
lowest band is flat and separated from the next band
above it, but in one system the flat band has nonzero
winding number and in the other W = 0. We examine
how superconductivity differs in these two systems, and
further consider its dependence on the CLS of the flat
band.

The second question is: How do the answers to the
first question change when the flat band touches the band
above it, i.e. in the gapless case? Both these questions
are addressed in the case where the flat band filling is
less than full.

Such questions have been addressed previously. How-
ever, in the case of comparing topological and non-
topological flat bands, the systems that were compared
had different structures. For example, in Ref.[18], the
non-topological Lieb lattice was compared with the topo-
logical π-flux lattice; the former is a three-band sys-
tem with the flat band in between two dispersive bands,
whereas the latter is a two-band system with the flat
band in the ground state. So, the systems are quite differ-
ent; it would be instructive to compare two very similar
systems but with different topological properties.

To this end, we first focus on a quasi one-dimensional
three-band (i.e. three-orbital) system, where the wind-
ing number, W , the filling on the CLS, the flat band en-
ergy, and the band gap can all be tuned by engineering
the hopping parameters. We accomplish this by apply-
ing the method of Ref.[19]. We show how to obtain the
Hubbard Hamiltonian for a general three-band system,
and the full multi-band mean field required to describe
these systems accurately. We outline the construction of
new systems with the desired winding number, and with
the flat band as the lowest energy state, and the CLS
on two neighboring unit cells. With the chosen W , CLS,
and flat band energy, we still have the additional freedom
to tune the gap through free parameters controlling the
next dispersive band. We note that flat band systems
have been realized experimentally with photonic lattices
in two dimensions20,21 and in quasi one-dimension.22–24

With these tools in hand, our main results are as fol-
lows. For the gapped topological (W 6= 0) system we
show that, as in Ref.[9], the full multi-band MF method
agrees very well with exact DMRG in accounting for the
properties of the system over a wide range of coupling pa-
rameter and densities. In particular, we again find that
for U smaller than the band gap, Ds increases linearly
with U . At fixed W , band gap, and flat band energy,
the relative populations of the two unit cells on which re-
sides the CLS can be tuned and the largest slope (fastest
increase) of Ds as a function of U is achieved with a sym-
metric population on the CLS. We also found that the
slope of Ds(U) depends much more sensitively on the rel-
ative populations of the two unit cells than on the quan-
tum metric. Furthermore, unlike the Creutz and Saw-
tooth lattices,9 we establish, in general, the dependence
of the phase of the order parameters on the interaction

strength, U , and band gap. These properties are qualita-
tively the same for any W 6= 0. For the non-topological
W = 0, we show that a CLS on two neighboring unit cells
cannot be constructed—the CLS now resides in only one
cell. This then implies that transport requires the upper
band. This is confirmed by DMRG and MF calculations
which show that for low U , Ds is suppressed and increases
slower than linearly.

When the gap is closed and the flat band touches the
band above it, the upper band will be involved in pair-
ing and SC for any nonzero U . In this case we find that
for low U and for both topological (W = 0) and non-
topological (W 6= 0) bands, Ds ∝ Uϕ with ϕ < 1. This
means that, for small values of U , Ds increases faster
than linearly. This power law behavior is in disagree-
ment with the U ln (const./U) behavior reported in the
literature.10,15–17 In this paper we only consider particle
densities below full filling of the flat band. So, in a 3-band
system, we only consider total densities below 2/3.

The paper is organized as follows. In section II we dis-
cuss the model Hamiltonian and how we construct it with
the desired CLS and values of W , flat band energy and
gap. We also summarize our full multi-band mean field
method. In section III we discuss the properties of the
gapped and gapless topological systems, W 6= 0, while in
section IV we examine the non-topological, W = 0, case.
Our conclusions are discussed in section V. Additional
details and results are discussed in five appendices.

II. MODEL AND METHODS

A. Hubbard Hamiltonian: Methods

The Hubbard Hamiltonian with attractive on-site in-
teraction on a general quasi one-dimensional three-band
system is described by

H =
∑
i,j,α,σ

(
tα,α

′

ij cα†i,σc
α′

j,σ + h.c.
)
− U

∑
j,α

cα†j,↓c
α†
j,↑c

α
j,↑c

α
j,↓

− µ
∑
j,α,σ

cα†j,σc
α
j,σ,

(1)
where i, j are unit cell labels, α, α′ = A,B,C are sublat-

tice (orbital) indices and tα,α
′

ij is the hopping parameter

between lattice sites (i, α) and (j, α′), as shown in Fig. 1.

The operator cαj,σ (cα†j,σ) destroys (creates) a spin σ =↑, ↓
fermion on site i, α. The onsite Hubbard interaction pa-
rameter between a spin-↑ and spin-↓ fermions is U > 0; µ
is the chemical potential. Choosing the hopping param-
eters judiciously (see below) yields a highly degenerate
flat band. We define the filling, ρ, to be the average

number of fermions per site, i.e. ρ =
N↑+N↓

3L where L
is the number of unit cells. The superconducting be-
havior of these systems is probed by applying a phase
gradient cαj,σ → cαj,σe

iφj , where φ is the phase gradient
Φ/L, and Φ the phase twist. A defining quantity of SC,
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FIG. 1. (Color online) The lattice with intra-cell hopping
parameters t1, t2, t3 and inter-cell hopping parameters labeled
from ta to ti. We consider three sublattice sites, A,B,C,
per unit cell (shown in the shaded rectangle) on a quasi one-
dimensional chain.

the superfluid density Ds, can then be computed from
the second derivative of the thermodynamic grand po-
tential, or equivalently the ground state energy at zero
temperature25–29,

Ds = πL
d2EGS(Φ)

dΦ2

∣∣∣∣
Φ=0

. (2)

Superconducting transport in one-dimensional attractive
Hubbard systems has also been shown to be purely pair
transport30 and, consequently, the single particle Green’s
function decays exponentially while the pair Green’s
function decays as a power:

Gαα
′

σ (r) = 〈cαj+r,σc
α′†
j,σ 〉 ∼ e

−r/ξ, (3)

Gαα
′

pair(r) = 〈cαj+r,↓cαj+r,↑c
α′†
j,↑ c

α′†
j,↓ 〉 ∼ r

−ω, (4)

where ξ is the correlation length and ω is the power law
decay exponent.

To study the ground state properties of this system,
we use exact DMRG computation as implemented in the
ALPS library,31,32 and full multi-band MF. To calculate
the Green’s functions with DMRG, we use open bound-
ary conditions (OBC) up to a system size of L = 100
unit cells. To calculate Ds, we need to apply a phase
gradient to induce superflow which necessitates periodic
boundary conditions (PBC). To this end, we employ the
method of Ref.[8] where special boundary terms are used
which are effectively equivalent to PBC. In the MF de-
scription of the Hubbard Hamiltonian, we decompose the

quartic operator term, cα†j,↓c
α†
j,↑c

α
j,↑c

α
j,↓, with the full multi-

band mean field expression (Appendix A) yielding the

MF Hamiltonian,

HMF =
∑
i,j,α,σ

(
tα,α

′

ij cα†i,σc
α′

j,σ + h.c.
)

− U
∑
j,α

ρα↑ c
α†
j,↓c

α
j,↓ + ρα↓ c

α†
j,↑c

α
j,↑

−
∑
j,α

∆αcα†j,↓c
α†
j,↑ + ∆α∗cαj,↑c

α
j,↓

− µ
∑
j,α,σ

cα†j,σc
α
j,σ

+ L
∑
α

Uρα↑ ρ
α
↓ + |∆α|2/U.

(5)

The order parameter, ∆α/U = 〈cαj,↑cαj,↓〉, is com-
plex, in general, and sublattice-dependent. The av-

erage filling on sublattice α is ρα↑(↓) = 〈cα†j,↑(↓)c
α
j,↑(↓)〉.

Fourier transforming, we define the Nambu spinor,

Ψ†k =
(
cA†k↑ cB†k↑ cC†k↑ cA−k↓ cB−k↓ cC−k↓

)
and write the

Bogoliubov-de Gennes Hamiltonian

HMF (Φ) =
∑
k

Ψ†kMk(Φ)Ψk

+ L
∑
α

(
Uρα↑ ρ

α
↓ + |∆α|2/U − Uρα↓ − µ

)
,

(6)

where the momentum k is summed over the Brillouin
zone (BZ) and Mk(Φ) is a 6 × 6 Hermitian matrix for
the three-band system (Appendix A). The phase twist
Φ enters the expression through the inter-cell hopping
terms. Diagonalizing the MF Hamiltonian, Eq.(6), and
solving the self-consistent equations for the order param-
eters and site-dependent fillings, we find the ground state
energy EGS(Φ) and obtain the superfluid density Ds.

We emphasize that the full multi-band MF is crucial to
describe accurately the behavior of multi-band systems.9

This means that, in the most general form, (a) the order
parameters are sublattice-dependent and complex, and
(b) the sublattice-dependent filling must be taken into
account as a mean-field parameter. Without these two
ingredients, the agreement between MF and exact calcu-
lations deteriorates, as shown in Appendix E.

In what follows, all energies are measured in terms of
our energy scale |t3|, the hopping parameter between A
and C sublattices on the same unit cell.

B. Flat Band Construction

We construct the flat band lattices using the method of
Ref.[19] which we outline in Appendix B. With a choice
of the CLS localized on two adjacent unit cells in a quasi
one-dimensional three-band lattice, we can obtain lat-
tices with a flat band as the lowest energy state. Here,
we represent the (not normalized) CLS wavefunctions on
two neighboring unit cells in their most general form in
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real space:

|Ψ1〉 =

 a
beiβ

ceiγ

 , |Ψ2〉 =

xeiχyeiτ

zeiζ

 , (7)

where each element is the probability amplitude on the
sublattices. We can then compute the winding number,
W , of the flat band, through

W =
i

π

∫ 2π

0

dk 〈Ψk|∂kΨk〉

=
1

2π

∫ 2π

0

dk(1 +
x2 + y2 + z2 − a2 − b2 − c2

2 cos(k) + a2 + b2 + c2 + x2 + y2 + z2
)

= 1 +
x2 + y2 + z2 − a2 − b2 − c2√

(a2 + b2 + c2 + x2 + y2 + z2)2 − 4

,

(8)
where |Ψk〉 is the normalized Bloch state corresponding
to the CLS (Appendix B). With the condition in Eq.(8),
we have the freedom to construct lattices with winding
numbers of our choice (Appendix D). We write the kinetic
energy part of the Hamiltonian as HKE , and H0 (H1) is
the intra(inter)-cell kinetic energy (see Fig. 1),

H0 =

 0 t1 t3
t1 0 t2
t3 t2 0

 , (9)

H1 =

ta tb tc
td te tf
tg th ti

 , (10)

HKE =


H0 H1 0 · · · 0 H†1
H†1 H0 H1 0 · · · 0

0 H†1 H0 H1
. . .

...
. . .

 . (11)

Further details are outlined in Appendix B. In the exam-
ples we cover, we only consider (positive and negative)
real values for the probability amplitudes in Eq.(7).

III. TOPOLOGICAL FLAT BANDS: W 6= 0

In this section, we focus on topological flat bands with
nonzero winding number, W 6= 0. We propose two lat-
tices, lattice A and lattice B, both of which have a fixed
flat band energy EFB but variable dispersive bands, al-
lowing us to tune the band gap.

Here, the properties of the system when there is a gap
between the flat lowest energy band and the dispersive
band above it are analyzed, and distinguished from the
effects when these two bands touch. In addition, we study
at fixed gap and W , the effect of asymmetry in the pop-
ulations of the two unit cells of the CLS, and the effect
of changing W .

We first choose a CLS with symmetric but nonuniform
populations on the two unit cells. We refer to this as
lattice A and its CLS is given by,

|Ψ1〉 =

 √2

−
√

3

−
√

2

 , |Ψ2〉 =

 √2√
3

−
√

2

 , (12)

where |Ψ1〉 and |Ψ2〉 are the states on the two neighboring
unit cells where the CLS is found. The populations on the
two unit cells are the same, but within a unit cell, sublat-
tice B has a higher population than the equal populations
of sublattices A and C, shown in Fig. 2. Using Eq.(8),
we show that this choice yields a winding of W = 1.
The hopping parameters for this CLS are t1 = t2 =

√
7,

t3 = 1, ta = ti = 1
8 + κ, tb = tf = 1

2 (
√

7 −
√

6),

tc = 1
8 (13−2

√
42)+κ, td = th = 1

2 (
√

7+
√

6), te = 2, and

tg = 1
8 (13 + 2

√
42) + κ (Appendix B). The free parame-

ter κ is used to control the band gap, as shown in Fig.2.
Fourier transforming HKE , we obtain the eigenvalues, λi,
which describe the band structure in Eq.(13).

The flat band energy is fixed at EFB = −4, indepen-
dent of κ. For the gapped case we put κ = 0, while for
the gapless cases, κ = −0.375 which has the lower two

bands touching at k = 0 (∂
2λ2

∂k2 |k=0 = 4
5 ) and κ = 0.375

is gapless at k = π (∂
2λ2

∂k2 |k=π = 3
2 ), depicted in Fig. 2.

λ1 = −4

λ2 = 1
8

(
16 + 18 cos (k) + 16κ cos(k)−

√
6 · (299 + 272 cos (k) + 27 cos (2k)) + 2 (128κ2 cos2(k)− 128κ cos(k) + 160κ cos2(k))

)
λ3 = 1

8

(
16 + 18 cos (k) + 16κ cos(k) +

√
6 · (299 + 272 cos (k) + 27 cos (2k)) + 2 (128κ2 cos2(k)− 128κ cos(k) + 160κ cos2(k))

)
(13)

A. Gapped Case

We study first the gapped case with Egap ≈ 0.7625
(κ = 0). Figure 3 shows the superfluid density, Ds, versus
the interaction strength, U , computed with DMRG and
MF for two fillings, ρ = 1/4 and ρ = 1/3, where ρ = 1/3

gives a half-filled flat band. The agreement is excellent
between DMRG and MF for both densities and over the
entire wide range of U values. In addition, the hard-core
boson (HCB) approximation33 agrees with exact and MF
values of Ds at very large U , when the Cooper pairs are
tightly bound. In this limit, the transport of effective
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FIG. 2. (Color online) Top: Compact localized states (CLS)
for Lattice A, Eq.(12), symmetric on both unit cells. The area
of the blue discs is proportional to the density on the site.
Bottom: Band structure for κ = 0.375 (gapless at k = π),
κ = 0 (Egap ≈ 0.7625), κ = −0.375 (gapless at k = 0). The
winding number is W = 1.

hard-core bosons is governed by a dispersive model with
repulsive nearest-neighbour interaction.33 At low U , Ds

rises linearly with U , as has been established for isolated
flat bands. The slope of Ds against U is 0.538 for ρ = 1/4
and 0.618 for ρ = 1/3. In addition to Ds, the order pa-
rameters and sublattice fillings also show excellent agree-
ment between MF and DMRG results at Φ = 0, as we
show in Appendix C.

Furthermore, while the above features are similar to
ones we have observed previously9, this system exhibits
a property not encountered before. In the case of the
Creutz flat band system we found that ∆A = ∆B and
both can be taken to be real; for the sawtooth system,
we found that ∆A 6= ∆B , so that in general one can be
taken real but the other complex.9 In addition, we found
for the sawtooth lattice, that when a phase gradient is
applied, the phase difference between the order parame-
ters on the two sublattices was constant and equal to the
phase gradient. In the present case, we see from Eq.(12)
that sublattices A and C have equal fillings, and MF

FIG. 3. (Color online) Lattice A (W = 1) gapped case (κ =
0): the superfluid density, Ds, computed with DMRG and
MF for ρ = 1/4 and ρ = 1/3. DMRG and MF agree for the
entire range of U for both fillings, approaching the hard-core
boson (HCB) limit at strong interaction.

FIG. 4. (Color online) Lattice A (W = 1): Proportionality
factor mα(U), Eq.(14), versus U for the gapped and gapless
band structures of lattice A. At large U , mα → 1 and the
U -dependence saturates. The filling is ρ = 1/3. The same
behavior is observed at other fillings.

shows that they also have the same magnitude of the
complex order parameter. However, they do not have
the same phase when a phase twist is applied, Φ 6= 0.
By doing a global gauge transformation, the phase of
∆B =

∣∣∆B
∣∣eiθB can be put to 0. We then find that for

∆A =
∣∣∆A

∣∣eiθA(U) and ∆C =
∣∣∆C

∣∣eiθC(U), the magni-

tudes are equal,
∣∣∆A

∣∣ =
∣∣∆C

∣∣ 6= ∣∣∆B
∣∣, and when θB = 0,

θA = −θC . Therefore, while sublattices A and C ap-
pear to be equivalent, the phases of the order parameters
are opposite in sign. This can be proved as follows. For
the lattice we are considering, both matrices H0 and H1,
Eqs.(9,10), are real matrices, so that one can easily prove
that for each sublattice, ∆α(−φ) = ∆α∗(φ), a situation
similar to a system invariant under time reversal. In addi-
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tion, the structure of H0 and H1 is such that exchanging
sublattices A and C amounts to a parity-like symmetry,
i.e. changing i → −i and φ → −φ, in the Hamiltonian.
When combined with the preceding properties, this al-
lows us to show that ∆A∗(φ) = ∆C(φ) and thereby that
|∆A| = |∆C | and θA = −θC .

We also find here that, contrary to the sawtooth case,
the phases of the order parameters are not constant but
are U -dependent. At constant U , they are proportional
to the phase gradient,

θα(U) = mα(U)φ, (14)

where mα(U) is a U -dependent proportionality factor.
This is shown in Fig. 4 where we see that at large U ,
mα(U) → 1, exhibiting in that saturated limit behavior
similar to that of the sawtooth lattice where the phases
are not U -dependent. Note that mα(U) changes very
rapidly for small U where Ds is linear in U . This em-
phasizes, yet again, the importance of including three
distinct sublattice-dependent, complex order parameters
(in addition to the sublattice-dependent fillings) when

describing these systems with mean field methods.
At this point, we have examined the properties of a

specific choice for the CLS, lattice A, Eq.(12). However,
as mentioned above, there is a lot of freedom in |Ψ1〉 and
|Ψ2〉 while keeping constant EFB , W , and the gap. An
interesting case to consider is a CLS with uniform site
densities on all sublattices and both unit cells. We call
this lattice B, and its CLS is given by,

|Ψ1〉 =

 1
−1
1

 , |Ψ2〉 =

1
1
1

 . (15)

This choice has W = 1 and intra- and inter-cell hop-
ping Hamiltonians,

H0 =

 0 −1 −1
−1 0 1
−1 1 0

 , H1 =

 ν −1 −1− ν
0 1 1
−ν 0 ν

 , (16)

where ν is a parameter used to tune the gap. The eigen-
values describing the three bands are,

λ1 = −2

λ2 = 1 + cos(k) + 2ν cos(k)−
√

4ν2 cos2(k) + cos2(k) + 4 cos(k) + 3

λ3 = 1 + cos(k) + 2ν cos(k) +
√

4ν2 cos2(k) + cos2(k) + 4 cos(k) + 3

(17)

These bands touch at k = 0 for ν = −0.5 (∂
2λ2

∂k2 |k=0 =
4
3 ) and k = π for ν = 0.5 (∂

2λ2

∂k2 |k=π = 2) with a flat band
energy EFB = −2, independent of ν. For the gapped
case, we choose ν = −1/12 for a band gap of Egap = 1.

Figure 5 shows that, in the gapped case (ν = −1/12),
Ds is again linear in U for lattice B and small U with a
slope of 0.619. Naively, one might expect the uniformity
of site fillings to persist when U 6= 0. On the contrary, we
find that for any finite U , the uniform density of the CLS
of lattice B (Eq.(15)) is broken and the sublattices again
become distinct. This is seen clearly in Fig. 6 where
(for W = 1, the case we examine here) ∆A/U 6= ∆B/U
and ρA 6= ρB for all U > 0. The phases of the order
parameters, ∆A and ∆C , behave in the same way as for
lattice A, i.e. they are equal and opposite in sign when
the global gauge is fixed so that ∆B is real.

For lattices A and B with symmetric CLS on both unit
cells, we obtain approximately equal slopes of Ds against
U for the gapped case (Fig. 5 and Fig. 7) despite the
differences in band gap, hopping potentials and flat band
energy. One might argue that this should be obvious, as
transport is dominated by the flat band and they have
equal winding numbers. However, with the freedom of
constructing asymmetric CLS with the same W , Egap,
and EFB as the symmetric ones, we demonstrate the
dominant effect of the CLS symmetry on SC properties.
In Appendix D, we show in detail that a symmetric CLS
on the flat band is the most favourable in terms of opti-

mising the SC, for W = 1. Maintaining a winding of 1,
EFB = −4, and Egap ≈ 0.7625, we find that the more
asymmetric the CLS is, the slower Ds increases with U .
Very interestingly, as the slope of the linear part of Ds(U)
(which we denote by S) decreases due to the asymmetry,
the value of the integral over the BZ of the quantum
metric remains rather constant: The slope is much more
sensitive to the CLS than to the quantum metric (Ap-
pendix D). Additionally, the site fillings, order parame-
ters, and band structures do not vary much across the
cases considered, despite the significant difference in Ds.

As mentioned above, the winding number of the flat
band can be tuned. To illustrate this, we constructed
Hamiltonians with W = 1/2, for several CLS configura-
tions, and performed a similar study as W = 1 (Lattices
D1,D2,D3 in Appendix D). When W = 1/2, Eq.(8) dic-
tates that the CLS must be asymmetric. Qualitatively,
the behavior of Ds is similar to the W = 1 case in that it
exhibits a linear part at low U . ∆A, ∆B , ∆C and their
phases are unequal for all sublattices and dependent on
U . As we reduce the filling on one unit cell of the CLS,
increasing the asymmetry, we find the slope, S, of Ds(U)
decreases. In other words, for the same sublattice, the
occupation must be comparable on both unit cells of the
CLS to increase Ds.

We thus conclude this subsection by stating that to
optimize Ds on the isolated topological flat band, one
should identify the case with the most symmetric CLS.
Specifically, when W = 1, the occupation on the opti-
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FIG. 5. (Color online) Lattice B (W = 1): Ds vs U with
ν = −1/12 (Egap = 1), ν = −0.5 (gapless at k = 0), ν = 0.5
(gapless at k = π). We observe a linear relation for the gapped
case and Ds ∼ Uϕ with ϕ < 1 for the touching bands. The
filling is ρ = 1/3.

mized CLS will be truly symmetric.

B. Gapless Cases

It has been argued that non-isolated flat bands
may be beneficial to SC10,15–17 with Ds increasing as
U ln(const./U) for small U , i.e. faster than linear. Here,
we study this situation where a dispersive band touches
the flat band below it and what effect it has on SC. To
this end, we consider our lattices A and B both with
W = 1. The former has a symmetric CLS but with site
densities which are not uniform, Eqs.(12,13); the latter
has a CLS with uniform site densities, Eqs.(15,16,17).
For lattice A we take κ = −0.375 (bands touching at
k = 0) and κ = 0.375 (bands touching at k = π; for
lattice B, we take ν = −1/2, (bands touching at k = 0)
and ν = 1/2 (bands touching at k = π).

In Figs. 5 and 7 we exhibit the behavior of Ds at low
values of U for both these gapless systems and we also
include the corresponding linear gapped case for compar-
ison. We see that for all gapless cases (bands touching at
k = 0, π), a power law fit, Ds ∝ Uϕ with ϕ < 1, describes
the dependence very well for both DMRG and MF. This
means that for small U , Ds increases faster with U when
the bands touch than when there is a gap where the be-
havior is linear; this favors SC because the carrier density
is higher at low U . However, in both gapped and gap-
less cases, the ∆s increase linearly with U . In the quasi

FIG. 6. (Color online) MF order parameters and fillings on
sublattices A and B for isolated topological (lattice B,W =
1) and non-topological (lattice C,W = 0) flat bands with
Egap = 1 and equal filling on all sites of CLS. Lattice B with
W = 1 has ∆A 6= ∆B and ρA 6= ρB for any finite U . For
lattice C (W = 0), the sublattice dependent order parameters
and fillings go smoothly to equal values as U → 0. In both
cases,

∣∣∆A
∣∣ =

∣∣∆C
∣∣ and ρA = ρC , but the order parameters

on all three sublattices have different phases at φ 6= 0. When
W = 0, ∆B (ρB) is smaller than ∆A = ∆C (ρA = ρC), in
contrast to the topologicalW = 1 cases. The filling is ρ = 1/3.

one-dimensional case we examine here, there is no finite
temperature transition between SC and a normal phase:
true SC is present at T = 0 only. If the Ds ∝ Uϕ with
ϕ < 1 and ∆α ∝ U behavior persists in higher dimen-
sions, that would mean that Tc may not be enhanced
when the bands touch, since ∆α ∝ U , even though the
carrier density itself is enhanced. In the bottom panel of
Fig. 7, we compare the quality of fits of the power law
and the U ln(const./U). We find the power law to be in
much better agreement with MF and DMRG and over
a wider range of U ; we therefore argue that the power
law is more appropriate than the logarithmic form to
describe Ds. We point out two main differences between
our systems and those discussed in Refs.[10, 15–17] where
the logarithmic behavior is observed: (a) our systems
are quasi one-dimensional where as those in Refs.[10, 15–
17] are two-dimensional, and (b) in our systems, unlike
the two-dimensional ones, when the gap between the flat
band and the second band shrinks, the CLS remains un-
changed and, consequently, the quantum metric and its
BZ integral remain constant. In the two-dimensional sys-
tems mentioned, the logarithmic behavior of Ds has been
attributed to a logarithmic divergence of the BZ integral
of the diagonal quantum metric.10,15–17 In our case, as
we mentioned, the CLS remains unchanged as the gap
shrinks and the bands touch, and consquently no such
divergence occurs.

We note that the power law exponents are larger when
the curvature of the dispersive band is larger which, for
these two lattices, happens at k = π. In Fig. 8 we show
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Ds over a very wide range of U for two densities when
the bands touch at k = 0. We see, again, that agreement
between our multi-band MF and exact DMRG is excel-
lent over the entire range of U , as it was in the gapped
case. The order parameters are shown in Appendix C. In
addition, we use this case to illustrate the inaccuracy of
MF when the site densities are not included as variational
MF parameters (Appendix E).

As a result of pairing, the single particle Green’s func-
tions exhibit exponential decay, while the pair Green’s
functions decay with a power law since the system is
SC30, Eq.(3). The correlation length, ξ, extracted from
the decay exponent of the single particle GF obtained
with our MF method agrees very well with that obtianed
with DMRG, which we show for Lattice B in Fig. 9(a).
Recalling that the correlation length typically diverges
exponentially for dispersive bands30 as U → 0; we find
here a different behavior for the correlation length on the
gapped and gapless flat bands. As previously established
in Ref.[9] for the Creutz and sawtooth lattices, the cor-
relation length goes to a constant, less than one lattice
spacing for the isolated flat band as U → 0. We observe
here this same behavior in the gapped case. However, in
the gapless case, the single particle correlation length, ξ,
diverges as a power law ξ ∼ U−P , as U → 0, i.e. much
slower than in the dispersive case. The power law decay
of the pair Green’s function is characterized by the ex-
ponent ω which we calculate with DMRG. We find that
ω increases with U and is larger in the gapped case than
in the gapless case. The lower values of ω in the gapless
case is consistent with the larger values of Ds than for the
isolated flat band in the same range of U . (Fig. 5). In
other words, the smaller ω is, the slower the decay of the
quasi-long range order and the larger the Ds. We men-
tion that the pair Green’s functions cannot be obtained
using MF.

IV. NON-TOPOLOGICAL FLAT BANDS: W = 0

In this section we study pairing and superconductivity
in a system with a non-topological flat band with zero
winding number, W = 0. To this end, we exploit the
tunability of the winding number in the approach we ex-
plained above, and tune the CLS to yield a Hamiltonian
with W = 0 for the flat band. We found that to ac-
complish this, the CLS must be localized within only one
unit cell rather than two neighboring unit cells as is the
case for the topological bands (details in Appendix B).
We call this non-topological case lattice C. We choose it
to have equal sublattice densities on all sites, and a flat
band energy EFB = −2. The CLS is given by,

|Ψ1〉 =

1
1
1

 , (18)

FIG. 7. (Color online) Top: The low U behavior of Ds for
Lattice A for ρ = 1/3, with κ = −0.375 (touching at k = 0),
κ = 0 (gapped), and κ = 0.375 (touching at k = π) show
that touching bands can drastically improve superconductiv-
ity at weak attraction. There is a clear power law dependence,
with power exponent less than 1 for both κ = −0.375 and
κ = 0.375. Bottom: comparing power law, Ds ∝ Uϕ, and
Ds ∝ U ln(const./U) fits. The data are inconsistent with a
U ln(const./U) behavior.
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FIG. 8. (Color online) Lattice A (W = 1) gapless at k = 0
(κ = −0.375). The superfluid density obtained with MF and
exact DMRG for two fillings, ρ = 1/4 and ρ = 1/3. Even
with touching bands, our MF agrees very well with DMRG.

FIG. 9. (Color online) Lattice B. (a) Correlation length ξ
with fitted functions for both MF and DMRG (L = 100). For
U = 0.2, we include the extrapolated value ξ(L → ∞) for
touching bands, where finite size effects result in a slightly
increased discrepancy between MF and DMRG at low U . (b)
Pair Green’s function power law decay exponent, ω obtained
from DMRG, as a function of U for the cases where Egap =
1, ν = −1/12 and gapless at k = 0, ν = −0.5. The filling is
ρ = 1/3.

the hopping terms are

H0 =

 0 −1 −1
−1 0 −1
−1 −1 0

 ,

H1 = QKQ,

Q =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2

 .

(19)

K in this case is an arbitrary nonzero 3 × 3 matrix. To
have a band gap of 1, a possible, but not unique, choice
for K is,

K =

0 0 0
0 0 0
2 0 0

 , (20)

which gives the eigenvalues

λ1 = −2,

λ2 =
1

3

(
3− 2 cos(k)−

√
14 + 2 cos(k)

)
,

λ3 =
1

3

(
3− 2 cos(k) +

√
14 + 2 cos(k)

)
,

(21)

For the gapless case, we use the construction

K =

 0 0 3/2 + %
0 0 0

3/2− % 0 0

 , (22)

for the bands touching at k = 0, and

K =

 0 0 −3/2 + %
0 0 0

−3/2− % 0 0

 , (23)

for the bands touching at k = π, where % is a parameter
which controls the upper bands and consequently, their
curvature. We then arrive at

λ1 = −2,

λ2 = 1∓ cos(k)−
√

6

3

√
(3− %2) cos(2k) + 3 + %2,

λ3 = 1∓ cos(k) +

√
6

3

√
(3− %2) cos(2k) + 3 + %2,

(24)

for the gapless case, − (+) for band touching at k = 0
(k = π), in λ2 and λ3, and we can calculate exactly the
curvature of the second band.

Before examining the properties arising from filling lat-
tice C, we point out some apparent differences between
the band structures of the W 6= 0 and W = 0 cases.
For the W 6= 0 lattices, we had the option of having the
bands touch at k = 0 or at k = π, but did not have the
freedom to tune the curvature at the point where they
touch. Here, we can control both the touching point and
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the curvature. For a fixed %, the band curvature is equal
where they touch — at k = 0 and k = π.

First, we highlight the differences between lattices B
(W = 1 with uniform site densities in the CLS) and C
(W = 0 with uniform site densities in the CLS), in terms
of sublattice equivalence. For comparison, we use the
isolated bands case. Figure 6 shows that for any nonzero
U , no matter how small, the order parameters and site
densities are no longer uniform in the W = 1 case de-
spite supporting a uniform CLS. On the other hand, for
W = 0, we see that as U → 0, the order parameters on
the two sublattices approach each other and merge at low
U . The same behavior is observed for the site densities.
Furthermore, while the magnitude of pairing order pa-
rameter on sublattices A and C are equal, their phases
for Φ 6= 0 are not. We thus reiterate that even when the
CLS is uniform, it is prudent always to consider inde-
pendent complex order parameters and site densities as
variational parameters when applying the MF method.

Even though the pairing parameters, ∆A,B/U , are fi-
nite as U → 0 in the isolated flat band case (Fig. 6),
indicating robust pairing for any U , the superfluid den-
sity itself is suppressed: It decays as a power as U → 0.
For Egap = 1, MF yields Ds = 0.028U2.32 This power
law decay of Ds can be understood through projecting
the MF onto the flat band and examining the terms that
contribute.9 The leading term proportional to U vanishes
for W = 0 under this construction, which has a CLS lo-
calized on one unit cell. As a result, the first nonzero
term is of a higher order. DMRG convergence becomes
increasingly difficult and time consuming at low values of
U . The flat non-topological band can neither contribute
to transport through the band curvature nor topology,
resulting in an increased number of DMRG sweeps and
states required at low U where band mixing is highly
suppressed.

When the flat band touches the band above it, we
find that Ds is strongly enhanced and grows as a power,
Ds ∝ Uϕ with the exponent ϕ < 1, Fig. 10. In-
terestingly, this is exactly the same behavior we found
when the topological flat band touches the band above
it. In addition, as mentioned above, in this case we
also have the freedom to tune the curvature of the sec-
ond band. In our construction, the limits of the cur-
vature are (while avoiding band crossing) at % = 3/

√
2

(∂
2λ2

∂k2 |k=0 = 0) and % = 0 (∂
2λ2

∂k2 |k=0 = 3). We show in
Fig. 10 three examples of curvatures (the aforementioned

and % = 1.5, ∂
2λ2

∂k2 |k=0 = 1.5) and their corresponding
Ds. Transport is dominated by the upper band in the
non-topological case and the effective mass of fermions
on the upper band decreases with increasing band cur-
vature. However, with the bands touching and degen-
erate states supported by the flat band, the behavior of
Ds as U → 0 is unlike the exponential decay of a dis-
persive band. Consequently, increasing the curvature of
the second band decreases the power exponent, ϕ, with
Ds ∝ Uϕ, where the steepest curvature of the second
band is most beneficial towards optimizing the superfluid

behavior.
In all cases, the phases of the order parameters behave

similarly to Fig. 4, in that they differ for all three sub-
lattices and are dependent on the interaction strength.
We notice that the isolated band case has significantly
smaller SC density, Ds, than the gapless case for the en-
tire range of U , unlike the W 6= 0 case where the SC
densities are comparable once there is band mixing, i.e.
once U is of the order of the gap energy.

When the bands touch at k = π, we observe iden-
tical behavior, where for the same % and upper band
curvature, values of Ds, order parameters and sublat-
tice fillings are equal to when the bands touch at k = 0.
This highlights the fact that the superfluid weight on the
gapless, non-topological flat band is only controlled by
the upper band curvature. Additionally, the correlation
length on non-topological flat bands as U → 0 is identical
to that in Fig. 9, with power law divergence for touching
bands and a constant, less than one lattice spacing, for
isolated flat bands.

We remark that while for W = 0 the qualitative agree-
ment between MF and DMRG is excellent, the quanti-
tative agreement for W 6= 0 is much better. We believe
this is due to the fact that the CLS for W = 0 is on a
single unit cell with the consequence that hopping be-
tween unit cells, i.e. transport, requires the participation
of the higher band which is a higher order process. On
the other hand, for W 6= 0, the CLS is spread over two
unit cells to begin with, which makes transport easier.

V. CONCLUSIONS

In this work we have extended the method of Ref[19]
and showed how to generate flat-band Hamiltonians with
tunable winding number for the flat band, and tunable
gap and CLS configuration. We then used our construc-
tion to study, in three-band systems, the effects on pair-
ing and superconductivity of the winding number, the
CLS configuration, and the gap between the flat band
and the first band above it, for both topolgical and non-
topological flat bands. To this end we used both full
multi-band MF and exact DMRG calculations and found
excellent agreement between them especially in the topo-
logical cases. Our results lead us to emphasize again that,
in order to get accurate MF results, it is crucial to con-
sider both the order parameters and the site densities as
separate variational MF parameters on all sublattices.

Specifically, we found for the gapped topological case,
W 6= 0, that, for low U values, Ds grows linearly with a
slope which depends sensitively on the choice of the CLS
fillings even when W and the integral over the BZ of the
quantum metric remain fixed. The optimal CLS choice
(the one which gives the largest slope) is for symmetric
site densities on the two unit cells. Interestingly, if the
CLS is chosen with uniform site densities on all sites, the
uniformity breaks down for any U 6= 0: Sublattices A and
C continue to have the same density but not sublattice
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FIG. 10. (Color online) Ds vs U for W = 0 isolated and
non-isolated flat band. Top: MF shows that when the bands
touch, the curvature and optimization of Ds(U) depend on
the curvature of the second band, controlled by %. Inset:
Band structure of Lattice C for % = 0, 1.5, 3/

√
2 in the gapless

case. Increasing % decreases the curvature of the second band.
Bottom: Suppressed superconductivity in the gapped case
behaves as a power law, with the fit Ds = 0.028U2.32 at low
U for MF. While DMRG and MF differ numerically, the power
dependence of Ds obtained from both methods agree (shown
for % = 1.5). DMRG: Ds = 0.612U0.53, MF: Ds = 0.7U0.55.
The filling is ρ = 1/3.

B. In the case of gapped non-topological flat band, we
find that Ds is suppressed for U smaller than the gap; it
grows slowly as a power larger than 2 until U is of the
order of the band gap at which point band mixing helps
superconductivity.

In the gapless case, when the bands touch, we showed
clear evidence of a power law dependence Ds ∼ Uϕ

(ϕ < 1), not the logarithimic form Ds ∼ U ln(const./U),
for both topological and non-topological flat bands. Su-
perconductivity at low U is therefore enhanced when the
topological or non-topological flat band touches the band
above it.

In all cases we studied, the order parameter ∆α/U ac-

quires large values for any finite U , as long as ρα 6= 0.
The phase difference of the order parameters was found
to depend on Φ, U , and the band structure, unlike pre-
vious two-band cases studied.9 Furthermore, we showed
that, as U → 0, the single-particle correlation length (ex-
tracted form the single particle Green’s function) which
is a measure of the pair size, diverges as a power when
the bands touch, but tends to a constant less than one
lattice spacing in the gapped case. The pairs remain very
small when the system is gapped, and their size diverges
in the gapless case — but the divergence is slower than
in the dispersive band case where it is exponential.

Our results here offer insight into enhancement of su-
perconductivity in quasi-one dimensional systems and a
methodology to finding optimized Hamiltonians. With
the increasing experimental ability to realize designer sys-
tems governed by model Hamiltonians exhibiting a flat
band,20–24 our results can provide a practical road map.

The Hamiltonians we studied here do not have a chiral
symmetry. It is possible to construct such models19, but
due to the chiral symmetry, the band structure must be
symmetric about zero energy. This means that if we want
a flat band in the ground state, the system must have an
even number of orbitals. An example of the two-band sys-
tem (the Creutz lattice) was studied in Ref.[9]. The next
step would be to study the four-band model (four coupled
chains). Our multi-band MF method can be easily ap-
plied in this situation, but exact DMRG calculations will
be rather challenging due to the large number of sites.
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Appendix A: Multi-band Mean Field Hamiltonian

The full multi-band mean field is derived by decom-
posing the quartic interaction term in the Hamiltonian
with mean field parameters — ∆α and ρασ — for each
sublattice. As in Ref.[9], but with three independent sub-
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lattices, we write a trial Hamiltonian

Htrial = HK

− U
∑
j,α

ρα↑ c
α†
j,↓c

α
j,↓ + ρα↓ c

α†
j,↑c

α
j,↑

−
∑
j,α

∆αcα†j,↓c
α†
j,↑ + ∆α∗cαj,↑c

α
j,↓,

HK =
∑
i,j,α,σ

(
tα,α

′

ij cα†i,σc
α′

j,σ + h.c.
)

− µ
∑
j,α,σ

cα†j,σc
α
j,σ,

(A1)

with mean field parameters ∆α and ρασ . The Gibbs-
Bogoliubov inequality34 gives,

F ≤ Ftrial

−

〈
U
∑
j,α

cα†j,↓c
α†
j,↑c

α
j,↑c

α
j,↓

〉
trial

+

〈
U
∑
j,α

ρα↑ c
α†
j,↓c

α
j,↓ + ρα↓ c

α†
j,↑c

α
j,↑

〉
trial

+

〈∑
j,α

∆αcα†j,↓c
α†
j,↑ + ∆α∗cαj,↑c

α
j,↓

〉
trial

,

(A2)

where 〈. . . 〉trial denotes expectation values with re-
spect to the weight e−βHtrial/Ztrial with Ztrial =
Tr e−βHtrial = e−βFtrial . Minimizing the right hand side
with respect to the MF variational parameters, we obtain
an upper bound on the true free energy, which we define
as the mean field free energy, FMF :

FMF = Ftrial + UL
∑
α

(
ρα↑ ρ

α
↓ + |∆α/U |2

)
, (A3)

where FMF = 〈HMF 〉 and Ftrial = 〈Htrial〉 at T = 0.
The mean field parameters can be expressed, following
the optimization, as

ρασ = 〈cα†j,σc
α
j,σ〉,

∆α = U〈cαj,↑cαj,↓〉.
(A4)

This defines HMF to be

HMF =
∑
i,j,α,σ

(
tα,α

′

ij cα†i,σc
α′

j,σ + h.c.
)

− U
∑
j,α

ρα↑ c
α†
j,↓c

α
j,↓ + ρα↓ c

α†
j,↑c

α
j,↑

−
∑
j,α

∆αcα†j,↓c
α†
j,↑ + ∆α∗cαj,↑c

α
j,↓

− µ
∑
j,α,σ

cα†j,σc
α
j,σ

+ L
∑
α

Uρα↑ ρ
α
↓ + |∆α|2/U.

(A5)

With equal population of ↑- and ↓-spins, we can choose
to replace ρα↑ = ρα↓ = ρα. To study the superfluid be-
havior of the system, we apply a phase twist Φ with
cαj,σ → cαj,σe

ijΦ/L. In general, we can write the Fourier
transformed mean-field Hamiltonian with a phase gradi-
ent as

HMF (Φ) =
∑
k

Ψ†kMk(Φ)Ψk

+ L
∑
α

(
Uρα↑ ρ

α
↓ + |∆α|2/U − Uρα↓ − µ

) (A6)

with Ψ†k =
(
cA†k↑ cB†k↑ cC†k↑ cA−k↓ cB−k↓ cC−k↓

)
the Nambu

spinor, and the block matrix

Mk(Φ) =

(
K(φ+ k) D
D∗ −KT (φ− k)

)
. (A7)

The block D simply takes into account the pairing order
parameter,

D =

∆A 0 0
0 ∆B 0
0 0 ∆C

 . (A8)

The block K(φ ± k) expresses the hopping terms and
sublattice-dependent filling as a modification to the
chemical potential

K(φ+ k) =

K11 − µ̃A K12 K13

K21 K22 − µ̃B K23

K31 K32 K33 − µ̃C

 , (A9)

where the sublattice-dependent chemical potential µ̃α =
µ + ραU is crucial to describe accurately a system with
non-identical sublattices. K11 = 2ta cos(φ+ k), K22 =
2te cos(φ+ k), K33 = 2ti cos(φ+ k) are inter-cell hop-
ping terms on the same sublattice. K12 = t1 +tbe

i(φ+k) +
tde
−i(φ+k) = K∗21, K23 = t2 + tfe

i(φ+k) + the
−i(φ+k) =

K∗32, K13 = t3 + tce
i(φ+k) + tge

−i(φ+k) = K∗31.

Appendix B: Construction of Flat Band
Hamiltonians

We now outline the method to construct Hamiltonians
with a flat band in the ground state19 and show how to
fix the windining number. The most general form of the
CLS on two unit cells is

Ψ1 =

 a
beiβ

ceiγ

 ,Ψ2 =

xeiχyeiτ

zeiζ

 (B1)

The first condition is to have19

〈Ψ1|Ψ2〉 = axei(χ) + byei(τ−β) + czei(ζ−γ) = 1. (B2)
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We obtain the Bloch state by Fourier transforming, which
can be written as

|Ψk〉 =
1

R

 a+ xei(χ−k)

beiβ + yei(τ−k)

ceiγ + zei(ζ−k)

 . (B3)

To normalize the Bloch state, the expression which gives
R is

R2 = 2 cos(k) + a2 + b2 + c2 + x2 + y2 + z2. (B4)

Differentiating the normalized Bloch state with respect
to the lattice momentum, we obtain

|∂kΨk〉 =
1

R3

 (a+ xei(χ−k)) sin(k)− iR2xei(χ−k)

(beiβ + yei(τ−k)) sin(k)− iR2yei(τ−k)

(ceiγ + zei(ζ−k)) sin(k)− iR2zei(ζ−k)

 .

(B5)
The winding number is given by,

Wπ = i

∫ 2π

0

dk 〈Ψk|∂kΨk〉 ,

=
1

2

∫ 2π

0

dk(1 +
x2 + y2 + z2 − a2 − b2 − c2

2 cos(k) + a2 + b2 + c2 + x2 + y2 + z2
),

= π +
π(x2 + y2 + z2 − a2 − b2 − c2)√

(a2 + b2 + c2 + x2 + y2 + z2)2 − 4
.

(B6)
We see that by choosing Ψ1 and Ψ2 appropriately, one
can tune to the desired value of W . The integral over
the Brillouin zone of the quantum metric can now be
expressed as

Q =
1

2π

∫ 2π

0

Re(g(k))dk =
[a2 + b2 + c2 + x2 + y2 + z2][(a2 + b2 + c2)2 + (x2 + y2 + z2)2 − 2]

((a2 + b2 + c2 + x2 + y2 + z2)2 − 4)
3
2

. (B7)

With g(k) = 2(〈∂kΨk|∂kΨk〉 − |(〈Ψk|∂kΨk〉|2) the
quantum geometric tensor, and its real part the quantum
metric. To find the hopping potentials, we choose a flat
band energy EFB and satisfy the conditions in Ref.[19].

For real CLS, the two equations to solve for intra-cell
hopping terms are,

EFB = 〈Ψ2|H0 |Ψ1〉 ,
= t1(bx+ ay) + t2(cy + bz) + t3(cx+ az),

(B8)

and

〈Ψ1|EFB −H0 |Ψ1〉 = 〈Ψ2|EFB −H0 |Ψ2〉 . (B9)

The expression for H1 is

H1 =
(EFB −H0) |Ψ1〉 〈Ψ2| (EFB −H0)

〈Ψ1|EFB −H0 |Ψ1〉
+Q12KQ12.

(B10)
The term K is arbitrary and Q12 is constructed from the
CLS.

Q12 = R12Q1,

Qi = I− |Ψi〉 〈Ψi|
〈Ψi|Ψi〉

,

R12 = I− Q1 |Ψ2〉 〈Ψ2|Q1

〈Ψ2|Q1 |Ψ2〉
.

(B11)

In general, for a chosen winding number, there is thus
an infinite number of flat band lattices that can be con-
structed.

Equation (B6) shows how to tune the winding number
to a desired value. To obtain W = 0, we obtain the
condition

|Ψ1|2|Ψ2|2 = (a2 + b2 + c2)(x2 + y2 + z2) = 1. (B12)

This gives the normalization condition

〈Ψ1|Ψ2〉 = 1 = |Ψ1||Ψ2| cos(θ) = cos(θ), (B13)

which implies that |Ψ1〉 = M |Ψ2〉, where M is a con-
stant. M can simply be expressed through

|Ψ1〉 = |Ψ2〉 〈Ψ1|Ψ1〉 . (B14)

From Eq.(B10), we consider the denominator 〈Ψ1|EFB−
H0 |Ψ1〉,

〈Ψ1|EFB −H0 |Ψ1〉 ,
= EFB 〈Ψ1|Ψ1〉 − 〈Ψ1|H0 |Ψ1〉 ,
= EFB 〈Ψ1|Ψ1〉 − 〈Ψ1|H0 |Ψ2〉 〈Ψ1|Ψ1〉 ,
= EFB 〈Ψ1|Ψ1〉 − EFB 〈Ψ1|Ψ1〉 ,
= 0.

(B15)

This means that for a finite H1, we have an additional
condition that (EFB − H0) |Ψ1〉 〈Ψ2| (EFB − H0) = 0.
To determine H1 = Q12KQ12, we can work out that
Q1 |Ψ2〉 = 0 and R12 = I. To show that the CLS is
localized within one unit cell,

H1 |Ψ1〉 = Q1KQ1 |Ψ1〉 = 0. (B16)

For a lattice with W = 0 and a chosen real CLS and
EFB , there is a unique solution for the intra-cell hopping
terms, and we can only have the CLS localized within
one unit cell.
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FIG. 11. (Color online) The order parameter and sublattice
fillings for the isolated flat band of Lattice A (κ = 0) with
ρ = 1/3. Top: Order parameters acquire a large nonzero value
for any finite U , and ∆A/U = ∆C/U for Φ = 0. Bottom: ρα

are shown to be sublattice dependent, and this can only be
properly reproduced with MF when ρα are considered as MF
parameters.

FIG. 12. (Color online) The order parameter and sublat-
tice fillings for the non-isolated flat band of Lattice A (κ =
−0.375) with ρ = 1/3. Top: Order parameters are sublattice
depedendent with ∆A/U = ∆C/U for Φ = 0. Bottom: ρα,
sublattice fillings.

Appendix C: Band Structure and Order Parameters

1. Lattice A

Figures 11 and 12 show the agreement between DMRG
and full MF for the order parameters and sublattice fill-
ings for both the gapped and gapless cases of Lattice
A (W = 1) studied in Section III. Note that the order
parameters ∆α/U acquire a large finite value once U is
nonzero, while ∆α ∝ U linearly. An important point to

FIG. 13. Band structure of Lattice B

note is the sublattice fillings, where sublattices A and C
have equal filling but sublattice B is different. This is
only faithfully reproduced in the MF that we propose,
and not when BCS MF is employed (Appendix E).

2. Lattice B

The band structures of Lattice B (W = 1), for cases
where we computed Ds (Figure 5) are shown in Fig. 13.
The bands touch at k = 0 for ν = −0.5 and k = π for
ν = 0.5; the gapped case with Egap = 1 has ν = −1/12.

3. Lattice C

In Fig. 14, we show, for lattice C touching bands
with % = 1.5, that although Ds computed with MF and
DMRG agree well qualitatively but less so quantitatively
for the non-topological flat bands (W = 0), the pairing
order parameter and sublattice fillings are modelled very
well by the full mean field. The agreement between MF
and DMRG for ∆α and ρα was also observed for the iso-
lated non-topological flat band.

Appendix D: Other lattices

Here, we show that Ds is strongly dependent on the
CLS. We consider lattice A (W = 1) and tune the CLS

while keeping EFB = −4, Egap ≈ 0.7625, t2 =
√

7 and
t3 = 1 constant, through the change of H1 and t1. The
CLS and band structures that we consider are shown in
Fig. 15, labeled lattices A,A2,A3,A4, with increasing
asymmetry of the CLS.

We compute Ds, sublattice fillings and order param-
eters with MF for these lattices, and show that while
ρα and ∆α do not vary significantly (Fig. 16 (b) and
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FIG. 14. Pairing order parameter and sublattice fillings for
Lattice C (W = 0), touching bands with % = 1.5. While
the values of Ds calculated using MF and DMRG methods
agree well qualitatively and less well quantiatively, the order
parameter and sublattice fillings are accounted for very well
by the full mean field method. (ρ = 1/3)

(c)), Ds changes substantially across the cases consid-
ered, Fig. 16 (a). In general, the slope is largest for
the most symmetric CLS, which also has the fastest ex-
ponential decay of the Wannier function (not shown).
This hints towards optimizing superconductivity by en-
gineering the Hamiltonian which corresponds to the most
symmetric localized state. We emphasize that while the
winding number is constant, and the integral over the BZ
of the quantum metric does not vary much (QA = 0.505,
QA2 = 0.507, QA3 = 0.509, QA4 = 0.516), the slopes
of Ds, Fig. 16(a), are evidently distinct. Additionally,
for lattice B with symmetric CLS and equal filling on all
CLS sites, the slope at low U is equal to that of lattice
A.

The MF and DMRG agreement extends to lattices with
non-integer, finite winding. Again, with equal Egap = 1,
EFB = −4 and similar band structures, we show that Ds

is dependent on the CLS. For a winding of W = 0.5, we
obtain asymmetric CLS and give three examples: lattices
D1,D2 and D3. Note that for W = 0.5, the CLS cannot
be symmetric but the degree of the asymmetry can be
tuned. To eliminate the effects contributed through the
uppermost band, we focus on the range 0 < U ≤ 4. We
propose that the optimization of Ds is contingent on oc-
cupation of CLS, where one should identify the model
with filling most symmetric on all sublattices. This
means that if some sublattice occupations of the CLS
are zero, Ds will be significantly reduced.

FIG. 15. (Color online) CLS is increasingly asymmetrical
from lattice A to A4. The flat band energy is kept constant
at −4 and the band gap is Egap ≈ 0.7625, and W = 1.

Appendix E: Failing of MF without ρα as a MF
parameter

We have insisted repeatedly on the importance of in-
cluding the site-dependent fillings as MF parameters.
Here we show how the BCS approach fails when taken
with the correct complex order parameters but without
the site densities. In the BCS MF approach, which has
been extensively employed by many studies10,15–17, the
Hubbard interaction term is simply decomposed as

−Ucα†j,↓c
α†
j,↑c

α
j,↑c

α
j,↓ = −∆αcα†j,↓c

α†
j,↑ + ∆α∗cαj,↑c

α
j,↓ +

|∆α|2

U
.

(E1)
In general, for the BCS MF, the site densities will go

to the same value ρα → ρ as U increases. As a result, the
order parameters ∆α for the sublattices will also tend to
the same value at large U . This is both qualitatively and
quantitatively wrong, as we have presented in Appendix
C, where sublattices continue to be inequivalent even at
large U .

As an example, we show in Fig. 18 a comparison of
full multi band MF, BCS MF and DMRG results for
the gapless case (κ = −0.375) of Lattice A (W = 1).
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FIG. 16. (Color online) Ds, ρα and ∆α for lattices
A,A2,A3,A4 (Fig. 15) obtained through MF computation.
The pairing order parameters, site fillings and integral over
the BZ of the quantum metric vary slightly, while the su-
perfluid density is evidently distinct for the cases considered.
(ρ = 1/3)

At weak coupling, we find that the BCS MF does
not capture the actual behavior of Ds well, with the
inaccurate power dependence evident in the inset. As
U increases, the disagreement becomes increasingly
apparent.

Consequently, while one can focus on the superfluid
weight (and its relation to the quantum metric) calcu-
lated through the BCS MF and argue that it is an accept-
able agreement, a closer look at the sublattice equivalence
and properties reveals the break down of this approach.
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Review B 98, 155142 (2018).
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