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Abstract:

In this paper, we study the problem of scheduling robotized tasks in the context of Agriculture
4.0. The objective is to optimize the treatment tasks of plants against an evolving disease
(mildew) within a greenhouse. The treatment is performed using a type-C ultraviolet radiation
(UV-C) by an UV-Robot. We propose a semi-dynamic simulation-optimization approach based
on a Markovian model of the disease behavior in the greenhouse. Two variants of simulation-
optimization hybridization are tested and analyzed.
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1. INTRODUCTION

Long before, and then in parallel with the successive
revolutions of the industrial sector, agriculture has evolved
in a gradual and long-term process, often summarized by 4
eras, named “Agriculture 1.0” to “Agriculture 4.0”, where
each is characterized by a significant technological advance
(Zhai et al., 2020). Agriculture 1.0 corresponds to the era
of traditional agriculture, which relies mainly on human
labor and animal power.

During the 19-th century, steam engines were invented, im-
proved and became widely used to provide new resources in
all areas of life and industry, including agriculture. In this
era of Agriculture 2.0, various agricultural machines were
manually operated by farmers and many chemicals were
used. Obviously, Agriculture 2.0 has greatly increased the
efficiency and productivity of agricultural work.

In the 20-th century, Agriculture 3.0 was born with the
rapid development of computers and electronics. Some
also call it “biotechnology revolution”, and some others
“green revolution”. In particular, a reasonable distribution
of labor between agricultural machines has reduced the
use of chemicals, improved the precision of irrigation, etc.
Today, agriculture is experiencing its fourth revolution,
thanks to the use of current new technologies, such as
the Internet of Things, Big Data, artificial intelligence,
cloud computing, remote sensing, etc. Applications of
these technologies can significantly improve the efficiency
of agricultural activities in terms of production, yield,
food quality, and environmental and social impacts. In
parallel to what is happening in industry, Agriculture 4.0
is characterized by the “massive” use of robotics.

Several types of robotic systems have been developed,
both in the research field and on the market, such as
harvesting robots, processing robots, monitoring robots
and spraying robots. However, these systems need to
be optimized, not only during their design phase, but
also during their operation and maintenance phase to
reach the expected objectives in terms of performance
and return on investment. In particular, the complexity
of robotic systems has emerged several research problems
related to their supervision and control and the integrated
optimization of their activities as an element of a more
global productive system.

In this paper, we study the problem of scheduling robo-
tized tasks in the context of Agriculture 4.0. The objec-
tive is to optimize the treatment tasks of plants against
an evolving disease (mildew) within a greenhouse. The
treatment is performed using a type-C ultraviolet radia-
tion (UV-C) by a UV-Robot. We propose a semi-dynamic
simulation-optimization approach based on a Markovian
model of the disease behavior in the greenhouse.

The rest of the article is composed as follows. The fol-
lowing section (2) describes the system, states the studied
problem, and gives a brief overview of the most relevant
literature related to this work. Section 3 details the pro-
posed approach and the models implemented to solve the
problem of dynamically scheduling treatment tasks that
are evolving stochastically over time. Some experiments
are presented and discussed in section 4 and a summary
of this work and its perspectives are given in section 5.
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2. PROBLEM STATEMENT AND RELATED WORKS

We consider a system composed of a greenhouse with
n rows of I plants each. The plants are subject to a
disease that appears and evolves stochastically following
a predefined Markov process characterized by a transition
matrix P; proper to each plant i € {1,..,n x I} in the
greenhouse. The treatment is performed using a type-C
ultraviolet radiation (UV-C) by a robot carrying type-
C UV lamps to expose plants to a certain dose of UV-
C. To ensure better operation of the robot, an optimized
scheduling is needed to manage dynamically the treatment
tasks of the greenhouse with the robot. The difficulty of
this system lies in the behavior of the disease that the
robot must treat. A solution of task scheduling in a static
case, where the disease does not evolve in the greenhouse
during the treatment, has already been studied by Mazar
et al. (2020).

Thus, to optimize the scheduling of treatment tasks, it is
necessary to simulate the dynamic behavior of the disease
in the greenhouse environment (Mazar et al., 2018). The
use of simulation allows to exploit the space of time and to
follow the behavior of the systems on large horizons, but
simulation has a myopia in the space of state. Optimization
allows to exploit the state space and helps to find the
best solution for various problems, but optimization has
a myopia in time. The proposed approach studied in
this article is to merge simulation and optimization. This
coupling allows to exploit the time space and the state
space.

The simulation allows to study the real environment of the
system, especially if the behavior of its entities are well
integrated in the simulator. The evolution of the disease
behavior in the greenhouse is a stochastic process, this
behavior makes the solution of the treatment problem dif-
ficult. The disease behavior is modeled with Markov chains
that allow to find the transition probabilities between the
disease states on each plant (Mazar et al., 2021). The
objective of the optimization is to make the scheduling
of the best missions of treatment of plants with the UV
robot.

2.1 Coupling simulation and optimization

A simulator is a tool that allows to reproduce the behavior
and interactions of the components of real systems in order
to see their evolution over time. When using a simulator
integrating a certain number of decisions during simula-
tion, these decisions are based on one or several param-
eters of the system. The simulation-optimization allows
to optimize these parameters to improve the functioning
of the simulated system. This method is used by several
researchers to represent, analyze and improve a complex
system: it is a system where it is impossible to define
exactly its next state (because of the randomness, the
number of agents, the internal dynamics, ...), based on
different techniques. Generally, a meta-heuristic adapted
to the system is chosen, such as Genetic Algorithm, Ant
Colony or Simulated Annealing.

The approach of coupling simulation and optimization
appeared for the first time in the 90s’ (Carson and Maria,
1997). It takes several forms, which will be detailed later.

In Farzanegan and Vahidipour (2009), the authors studied
the integration of the genetic algorithm with a pre-existing

grinding circuit simulator, called ball milling circuits sim-
ulator (BMCS), in the MATLAB environment.

We will study the importance of the decision time in a
specific state for optimization algorithms. We distinguish
three types of coupling between simulation and optimiza-
tion. In the first type of coupling, the simulator is con-
sidered as the evaluation function for the optimization
algorithm. The optimization allows to modify the input
parameters of the simulator until the parameters of the
optimized solution are obtained (Sahnoun et al., 2016). In
the second type of coupling, at each decision time during
the simulation, the optimization improves the behavior
of a state of the system (Fu, 2002). In the third type of
coupling, the optimization makes a decision at time T by
considering the probable impact at time T+41 (Campi and
Garatti, 2018). Sim-optimization allows to estimate the
next state according to the current decision based on the
history of the system (Powell, 2005), (Powell, 2008) and
(Wu et al., 2003).

In this paper there is a study on two optimization algo-
rithms that are integrated in the simulator, the first one is
the GA (Genetic Algorithm), and the second one is a HA
(Heuristic Algorithm) based on the glutton. GA makes a
decision at the beginning of processing for all missions,
while HA makes a decision for each mission.

2.2 Dynamic Scheduling

In our work, it will be a matter of determining the tasks of
the robot, including which rows should be visited to treat
the disease. Scheduling is the process of finding the best
combination to assign tasks to resources, resources that
can be robots. Generally, the objective is to optimize the
execution time of all tasks. The use of robots, which are
autonomous entities, with automatic supervision systems,
requires to be adopted scheduling models and resolving
methods. The level of the disease is constantly changing,
which makes it difficult to change the processing plan be-
tween the time of decision-making and its implementation.
It is therefore important to study dynamic scheduling.

In the literature, there are two different approaches used
to solve dynamic scheduling problems: a planning-based
dynamic approach (used in manufacturing flow lines), and
a best-effort dynamic approach (Suresh and Chaudhuri,
1993), (Ouelhadj and Petrovic, 2009) and (Barenji et al.,
2017). The authors made their study on the dynamic
behavior related to the customers’ demands. They defined
the negative points of the manufacturing machine operat-
ing system as: static scheduling (Huff et al., 2021), lack
of machine autonomy (Abosuliman and Almagrabi, 2021),
lack of real-time scheduling to ensure the flexibility of the
system in the face of dynamic customer demands (Karimi
et al., 2021), and the scheduling system that does not react
to internal system disturbances (Shi et al., 2021). In (Ren
et al., 2021), the authors proposed a proactive-reactive
scheduling methodology that adapts to dynamic changes
in work environments in the case of joint scheduling of
machine tools and transportation resources. A mixed in-
teger programming model taking into account production
efficiency and transportation constraints is proposed along
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with a particle swarm optimization algorithm to respond
to dynamic events and generate the rescheduling plan.
Tubilla and Gershwin (2021) studied production schedul-
ing in a failure-prone multi-product machine with setup
times. The objective is to minimize the average inventory
and backlog costs.

3. PROPOSED APPROACH AND MODELS
3.1 Simulation

In order to understand the behavior of the system studying
and to evaluate various UV-C treatment strategies, we
chose a simulation approach based on multiagent systems
(MAS).

An MAS is a system composed of a set of agents (a process,
a robot, a human being, a plant, etc.), active in a certain
environment and interacting according to certain rules. An
agent is an entity characterized by the fact that it is, at
least partially, autonomous, which excludes a centralized
control of the global system.

The field of MAS is currently a research area that is
attracting a lot of interest. This field was born at the
end of the 70’s and beginning of the 80’s, from the
idea of distributing knowledge and control in Artificial
Intelligence systems. This idea emerged on the one hand
from the need to face the increasing complexity of systems
and was favored on the other hand by the emergence
of models and parallel machines, making possible the
operational implementation of distribution (Hassas, 2003).

The interest of the MAS in this work is in the framework of
the simulation which makes it possible to easily represent
the behavior of the populations such as it is the case of the
plants of a same greenhouse. They also allow to separate
the entities which intervene in the system and to give the
level of intelligence and autonomy necessary to each agent.
In the studied system, the robot and the supervisor are
presented as active entities with two different levels of
intelligence. We will try to evoke the different concepts
related to the domain before considering the MAS as a
simulation tool.

The simulation model based on MAS is divided on 7
agents: robot, plants, greenhouse, horticulturist, UV-C
lamps, charging station and supervisor (Mazar et al.,
2020). There are several interactions between the agents,
which are the following:

e Farmer - Supervisor: the farmer can define and con-
trol the execution of the missions by interacting with
the Supervisor agent.

e Supervisor - Robot: the supervisor (Supervisor agent)
plans missions for the robot.

e Robot - Supervisor: the robot sends information (bat-
tery status, location, plant disease level) to the super-
vision.

e Robot - UV-C lamps: according to the presence, or
not, of the disease in the plants, the robot turns on
and off the lamps.

e UV-C lamps - Robot: each lamp is installed on a
robot.

e Robot - Plants: the robot treats the diseases on the
plants by using the UV-C lamps.

e Robot - Greenhouse: the robot moves in the green-
house.

e Robot - Charging station: after each mission, the
robot returns to the charging station to recharge.

e Plants - Greenhouse: the plants are in the greenhouse,
where they evolve and are treated.

e Charging station - Greenhouse: the charging station
is in the greenhouse.

The evolution of the infection level of the plant by mildew
directly influences the UV-C dose to be applied, i.e. the
duration of the treatment. To adjust the UV-C treatment
doses, the robot changes its speed according to the infec-
tion level of the plant. When the infection level is high,
the robot treats the plant at low speed. This ensures that
the plant receives a sufficient dose of UV-C radiation.
Therefore, the energy consumption of the robot is pro-
portional to the applied treatment dose. Since the UV-C
lamps account for most of the robot’s energy consumption,
when the robot moves slowly with lamps activated, they
consume more energy while the movement consumption is
much lower.

The reproduction of the disease behavior in the simulator
is the most important point of the UV-Robot system
environment. Because to study the stochastic process of
the evolution of blight in greenhouses, the simulation of
its behavior must be close to reality. A Markov model was
developed to have a local behavior of the disease specific to
each plant, allowing to reproduce a global behavior target
of the greenhouse (Kemeny and Snell, 1976). Simulation
tests of the disease behavior with Markovian transition
matrices have given good results. This study is done in
(Mazar et al., 2021), where the disease behavior repro-
duced in the simulator is close to the real behavior in the
greenhouse.

In this paper, we will study the system in a semi-dynamic
case, where the disease behavior is stable for 24 hours.
In order to respect the evolution of the disease behavior
developed by the Markov model, a temporary variable has
been added in the plant agent that allows to compute the
dynamic evolution of the disease but without touching the
real plant level in the simulator. After each 24 hours, the
temporary variable replaces the real disease level variable
of each plant, to allow a disease evolution that respects
the real behavior of blight.

The figure 3 shows the graphic interface of the simu-
lator. It is developed with NetLogo software, which is
a multiagent programmable modeling environment. The
user can observe the evolution of the robot treatment and
can control it using all the green button and can observe
some indicators on the yellow ones. The level of mildew is
represented by different color of plants. The user can define
the size of the greenhouse by choosing the total number of
plants, and the number of plants in each row. He can also
define the horizon of the simulation, the rate of diseased
plants at the beginning of the simulation, and he can
choose an optimization algorithm. If the chosen algorithm
is the genetic one, the user can modify the parameters of
this algorithm. There are other choices, like the treatment
type scenario. If the chosen treatment type is preventive,
he can choose the treatment period and the speed of the
robot during the treatment. Finally, he can define the
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days and time of treatment. NetLogo is very useful for
our application because of its flexibility in developing al-
gorithms and accepting the external language. In the case
of this study, we have developed optimization algorithms
and integrated them into the code of the monitoring agent.
These algorithms will be presented in the next section.

3.2 Optimization

In order to optimize and analyze the UV-Robot system
in the semi-dynamic case, we have developed a greedy
heuristic and a meta-heuristic, which is the genetic algo-
rithm. These algorithms have been evaluated in a previous
work in a static case by comparing their results with the

exact solution obtained by the commercial solver ” rFico®
Xpress” in Mazar et al. (2020).

Heuristic Algorithm (HA):

This heuristic is a greedy algorithm close to Best-Fit,
where it first selects rows that have maximum energy
consumption. When a row cannot be selected in a mission,
the algorithm looks for another row that requires a lower
amount of energy. It goes through all the rows until it
has finished completing the mission. When a mission is
completed, it moves on to the next one.

The proposed heuristic (cf. figure 1) is a greedy algorithm
that assigns processing tasks to robot missions iteratively.
At the beginning of each iteration, the algorithm initializes
the vector of energy consumption of tasks Ve, which
corresponds to the diagonal of the matrix W (line 2), the

battery charge F and the task list TASKS=[] are initialized
as empty (line 3 and 4). To be sure that the robot can
return to the charging station, a safety power (Mazjwyo)
will be removed, it corresponds to the power needed to
travel the maximum distance between the charging station
and the furthest row (line 6). The assignment rule for
selecting tasks for a mission is as follows: the first task with
the highest energy consumption that can be added (lines
8 and 9), it must be less than or equal to the remaining
energy capacity minus the power needed to travel to its
row from the row of the last added task. If the power
is sufficient, the processing of the selected row is added
to the task (line 11) and the corresponding energy is
removed from E (line 12), and this process continues until
all remaining rows are tested.

Genetic algorithm (GA):

The chromosome of the genetic algorithm is coded as a

matrix containing several missions. Each row of the matrix
is a mission and each column represents a row of the
greenhouse. If the robot has to process the row j during
the mission 4, the value of the element (gene) (4, j) is equal
to one, otherwise it is equal to zero.
The flowchart of the genetic algorithm is given in the (cf.
figure 2). The algorithm starts by generating Sp matrices
of individuals which constitute the initial population. As
long as the stopping condition (number of generations) is
not satisfied, a new generation is created. In each gener-
ation, ordinary genetic operators are used to constitute
each population. After each crossing of the two parents,
the algorithm takes the obtained children to perform a
mutation. After the mutation, each child is evaluated
through the calculation of its fitness function. If it does
not satisfy the constraints, it will not be selected in the
new generation. At the end, the algorithm returns the
best individual, which contains the minimum number of
missions.

4. EXPERIMENTS AND DISCUSSIONS

GA and HA optimization algorithms are tested in a semi-
dynamic case, to see which one is more efficient when the
disease evolves every 24 hours. The simulation tests show
the difference in the approach of coupling simulation and
optimization with HA and GA, i.e. the difference between
the use of decision-making at each state (the case of HA),
and a global decision-making in a time T in order to
improve the system state in T+1 (the case of GA). The
experimental design is defined according to the following
parameters:

e Optimization algorithm: GA and HA

e Disease evolution: semi-dynamic (evolution every 24
hours)

e Number of robots: 1

e Robot autonomy: 3 hours of treatment for 2 hours
and 30 min of loading

e Robot speed: the robot adapts its speed for each

disease level

Greenhouse size: 100 rows

Initial infection rate (IR°): 50% and 100%.

Number of scenarios: 5

100 plants per row

Simulation horizon: 8 days.
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e Treatment threshold > average blight in the green-
house = 3
e Time of treatment: 5.00 pm to 7.00 am

The simulation tests are launched on 10 different green-
houses: 5 greenhouses with an initial average disease rate
of 50% and 5 others with a rate of 100% (all plants are
infected). The simulator is run for a period of 8 days
for each test. The disease is updated every 24 hours.
Treatments are performed only during the night because
we assume that UV-C doses are more effective during the
darkness (Janisiewicz et al., 2016).

Figure 4 shows the evolution over time of the average level
of mildew in the greenhouse and the robot’s battery level
with the two optimization algorithms HA and GA with two
values of initial infection rate of the green house. We can
observe that, when looking to the average level of mildew
is the greenhouse, the GA outperforms the HA. In fact,
for both initial infection rates TR® = 0.5 and TR® = 1,
the treatment tasks scheduling using the GA allows to
decrease the average level of mildew more importantly and
more rapidly than the HA. As it can be observed in sub-
figures 4 (a) and (c), the average level of mildew reaches
zero at the both during the third day. Whereas, we can see
in sub-figures 4 (b) and (d) that it is not the same effect
with the HA. However, the HA makes it possible to better
manage energy consumption by respecting the minimum
battery level of 20%, which should not be exceeded in order
to prolong its life and avoid the risk of the robot “running
out of power” in the middle of the greenhouse.

5. CONCLUSION

We studied the problem of scheduling robotized tasks in
the context of Agriculture 4.0 with the objective of opti-
mizing the treatment tasks of plants against an evolving
disease (mildew) within a greenhouse. The treatments are
performed using a robot to expose the infected plants to
a specific dose of type-C ultraviolet radiation (UV-C). We
proposed a hybrid semi-dynamic simulation-optimization
approach based on a Markovian model of the disease
behavior in the greenhouse. Two variants of hybridization
approach are tested, and the results are analyzed to show

mean [level-mildiew] of sum [level-mildiew] of | [energy] of n
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the effectiveness of the approach and to understand the
effect of some parameters of the model.
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