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Estimation of Systemic Shortfall Risk Measure using

Stochastic Algorithms∗

Sarah Kaakäı † Anis Matoussi ‡ Achraf Tamtalini §

Abstract

Systemic risk measures were introduced to capture the global risk and the corresponding

contagion effects that is generated by an interconnected system of financial institutions. To

this purpose, two approaches were suggested. In the first one, systemic risk measures can

be interpreted as the minimal amount of cash needed to secure a system after aggregating

individual risks. In the second approach, systemic risk measures can be interpreted as the

minimal amount of cash that secures a system by allocating capital to each single institution

before aggregating individual risks. Although the theory behind these risk measures has

been well investigated by several authors, the numerical part has been neglected so far. In

this paper, we use stochastic algorithms schemes in estimating MSRM and prove that the

resulting estimators are consistent and asymptotically normal. We also test numerically the

performance of these algorithms on several examples.

Keywords: Multivariate risk measures, shortfall risk, stochastic algorithms, stochastic root

finding, risk allocations.

Introduction

The axiomatic theory of risk measures, first initiated by the seminal paper of Artzner et al.

(1999), has been widely studied during the last years. Value-at-Risk(VaR) is one of the most
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known and common risk measures used by practitioners and regulation authorities. However,

VaR lacks one important property: it does not take into account the diversification effect.

To circumvent this problem, the VaR was replaced by the Conditional Value-at-Risk (CVaR)

and a more general framework of improved risk measures has been introduced: Utility-based

Shortfall Risk (SR). Nevertheless, when it comes to a system of financial institutions or

portfolios, the question about how to assess the global risk as well as individual risks arise.

Following the 2008 crisis, the traditional approach of measuring systemic risk that consists

in considering each institution as a single entity isolated from other institutions, has shown

its own limits. Indeed, with this approach, the risk associated to a vector of positions

X = (X1, ..., Xd) can be written as:

R(X) :=
d∑
i=1

ηi(Xi),

where each ηi is a univariate risk measure. Then, Chen et al. (2013) proposed an approach

that is very close in spirit to the axiomatic framework initiated by Artzner et al. (1999).

They showed that any systemic risk measure verifying certain axioms is the composition of

a univariate risk measure η and an aggregation Λ, i.e.,

R(X) = η(Λ(X)).

The previous representation is known as the “Aggregate then Add Cash” approach as it

consists first in aggregating the positions X1, ..., Xd through the aggregation function Λ and

then to apply a univariate risk measure. One of the most common ways to aggregate the

outcomes Xi is to simply take the sum, that is to consider, Λ(x) =
∑d

i=1 xi. It is worth

noticing that, while summing up profit and losses might seem reasonable from the point

of view of a portfolio manager because portfolios profits and losses compensate each other,

this aggregation rule seems inadequate from the point of view of a regulator where cross-

subsidization between institutions is not realistic since no institution will be willing to pay

for the losses of another one.

Motivated by these considerations, Biagini et al. (2019) proposed another approach to mea-

sure the systemic risk. They first considered the systemic risk as the minimal capital that

secures the system by injecting capital into the single institutions, before aggregating the

individual risks:

R(X) := inf{
d∑
i=1

mi, Λ(X +m) ∈ A}, (0.1)

where A is an acceptance set. This approach, known as “Add Cash then Aggregate” consists

in adding the amount mi to the financial position Xi before the corresponding total loss

Λ(X + m) is computed. The systemic risk is then measured as the minimal total amount∑d
i=1mi injected into the institutions to make it acceptable. With this approach, a joint
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measure of total risk as well as individuals risk contributions to systemic risk is obtained. If

m∗ = (m∗1, ...,m
∗
d) is an optimum, that is R(X) =

∑d
i=1m

∗
i and Λ(X + m∗) ∈ A, one could

order the m∗i ’s and hence be able to say that institution i requires more cash allocation or is

riskier that institution j if m∗i ≥ m∗j .
In this article, we are interested in the numerical approximation of the multivariate shortfall

risk measure (MSRM) that was introduced in Armenti et al. (2018). They are an extension

of univariate SR and can be obtained by taking the aggregation function Λ(x) = lS(−x)

where lS is a multivariate loss function (see Section 1) and the acceptance set A = {X ∈
L0(R), E[X] ≤ 0}.
To meet the regulatory requirements, financial institutions need to develop a reliable risk

management framework to face all kind of financial risks associated to their portfolios. Most

of the time, financial institutions use the standard VaR and CVaR although it suffers from

some deficiencies. The most common method used to compute VaR is the inversion of the

simulated empirical P&L distribution function using Monte Carlo or historical simulation

tools (see Glasserman (2004) and Glasserman et al. (2008)). Another idea to compute VaR

and CVaR comes from the fact that they are solutions and the value of the same convex

optimization problem as pointed out in Rockafellar and Uryasev (2000). Moreover, as they

can be expressed as an expectation, this led Bardou et al. (2009) to define consistent and

asymptotically normal estimators of both quantities using a classical Robbins-Monro (RM)

procedure. Since VaR and CVaR are both related to the simulation of rare events, they

also introduced a recursive and adaptive variance method based on importance sampling

paradigm.

RM algorithms have been the subject of an enormous literature, both theoretical and ap-

plied. The basic paradigm in its simplest form is the following stochastic difference equation:

Zn+1 = Zn + γnYn, where Zn takes its values in some Euclidean space, Yn is a noisy observ-

able variable, and γn > 0 is the step size that goes to zero as n → ∞. The original work

was motivated by the classic problem of finding a root of a continuous function z → g(z),

which is unknown but such that, we are able to take only “noisy” measurements at any

desired value z. This is the case when the function g can be expressed as an expectation,

that is g(z) = E[G(X, z)], where X is some random variable. In such situation, the noisy

observation variable is simply Yn = G(Xn+1, Zn), where (Xn) is a sequence of i.i.d random

variables with the same law as X. If moreover, the random variable X is not directly simu-

latable, but can only be approximated by another easily simulatable random variable, Frikha

(2016) recently extended the scope of multi-level Monte Carlo to the framework of stochastic

algorithms and proved central limit theorems.

In many cases, the analysis of these algorithms uses the so-called ODE (Ordinary Differ-

ential Equation) method introduced by Ljung (1977). The main idea is to show that, in

the long run, the noise is eliminated so that, asymptotically, the behaviour of the algorithm

is determined by that of the “mean” ODE: ż = g(z). An introductory approach to RM
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algorithms and their convergence rate can be found in Duflo (1996) and Benveniste et al.

(1990). To ensure the convergence of RM algorithms to the root of the function g, it does

not require too restrictive assumptions except for one: the sub-linear growth of the function

g. One way to deal with this restrictive assumption is to use projection techniques. This

consists in using the projection into a compact K each time the sequence Zn goes out of K.

This procedure was first introduced by Kushner and Sanvicente (1975) in order to deal with

problems of convex optimization with constraints. Another way to deal with this constraint

in the framework of variance reduction using importance sampling method was proposed in

Lemaire and Pagès (2010). They have showed that under some regularity assumption on the

density of the law of X, we can obtain almost-surely convergence result and central limit

theorems. In this paper, for the sake of simplicity, we will rather use projection techniques.

An excellent survey on projection techniques, their links with ordinary differential equation

(ODE) and stochastic algorithms can be found in Kushner and Yin (2003).

SR can be characterized as the unique root of a function g : R 7→ R that is expressed as an

expectation. Therefore, a straightforward approach for estimating SR consists in, first, using

a deterministic root finding algorithm that would converge to the root, and second, design-

ing an efficient Monte Carlo procedure that estimates g(s) at each given argument s ∈ R.

One could also use variance reduction techniques in order to accelerate the estimation of

the function g at each argument s ∈ R. This idea is very close to sample average methods

in stochastic programming. For more details, see, for example, Kleywegt et al. (2001), Lin-

deroth et al. (2006), Mak et al. (1999), Shapiro and Nemirovski (2005), Verweij et al. (2003a)

and Verweij et al. (2003b). An alternative to this combination of Monte Carlo method and

deterministic root finding schemes is to use stochastic algorithm as presented in Dunkel and

Weber (2010). In their work, they did not assume the sub-linear growth of the function g,

and therefore used projection techniques to prevent the algorithm from explosion.

In this paper, we will see that the optimal allocations of multivariate shortfall risk measures

can also be characterized as the root of a function that is expressed as an expectation. More

precisely, the optimal allocations are characterized as the solution of the first order condition

of the Lagrangian associated to the multivariate risk measure. Again, because we do not

want to reduce drastically the scope of application, we will use stochastic algorithms with

projection to approximate the optimal allocations.

The paper is organized as follows. The next section, is dedicated to MSRM and the def-

initions related to them. The main theorem that characterizes the optimal allocations for

MSRM is presented. In Section 2, we explain the ODE method and recall some stability

results that we will use later to establish convergence results. Finally, section 3 is devoted to

some numerical experiments of our procedures. We present a first testing example with an

exponential loss function, where we have a closed formula for optimal allocations. We also

give a second example using a loss function with a mixture of positive part and quadratic

functions.
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1. About Multivariate Risk Measures

1 About Multivariate Risk Measures

Let (Ω,F, P ) be a probability space, and denote by L0(Rd) the space of F-measurable d-

variate random variables on this space with d ≥ 2. For x, y ∈ Rd, we say that that x ≥ y

( x > y resp.) if xk ≥ yk (xk > yk resp.) for every 1 ≤ k ≤ d. We denote by || · || the

Euclidean norm, and x · y =
∑
xkyk. For a function f : Rd 7→ [−∞,∞], we denote by

f∗(y) = supx{x · y − f(x)} the convex conjugate of f . The space L0(Rd) inherits the lattice

structure of Rd and therefore, we can use the classical notations in Rd in a P -almost-sure sens.

We say, for example, for X,Y ∈ L0(Rd), that X ≥ Y (or X > Y resp.) if P (X ≥ Y ) = 1 (or

P (X > Y ) = 1 resp.). To simplify the notation, we will simply write L0 instead of L0(Rd).
Now, let X = (X1, ..., Xd) ∈ L0 be a random vector of financial losses, i.e., negative values

of Xk represents actually profits. We want to assess the systemic risk of the whole system

and to determine a monetary risk measure, which will be denoted R(X), as well as a risk

allocation RAk(X), k = 1, ..., d among the d risk components. Inspired by the univariate case

introduced in Föllmer and Schied (2002), Armenti et al. (2018) introduced a multivariate

extension of shortfall risk measures by the means of loss functions and sets of acceptable

monetary risk allocations.

Definition 1.1. A function l : Rd 7→ (−∞,∞] is called a loss function if:

(A1) l is increasing, that is l(x) ≥ l(y) if x ≥ y;

(A2) l is convex and lower-semicontinuous with inf l < 0;

(A3) l(x) ≥
∑
xk − c for some constant c.

Furthermore, a loss function l is said to be permutation invariant if l(x) = l(π(x)) for every

permutation π of its components.

Comment: The property (A1) expresses the normative fact about the risk, that is, the

more losses we have, the riskier is our system. As for (A2), it expresses the desired property

of diversification. Finally, (A3) says that the loss function put more weight on high losses

than a risk neutral evaluation.

Example 1. Let h : R 7→ R be one dimensional loss function satisfying condition (A1),

(A2) and (A3). We could build a multivariate loss function using this one dimensional loss

function in the following way:

(C1) l(x) = h(
∑
xk);

(C2) l(x) =
∑
h(xk);

(C3) l(x) = αh(
∑
xk) + (1− α)

∑
h(xk) for 0 ≤ α ≤ 1.

More specifically, in (C1), we are aggregating losses before evaluating the risk, whereas in

(C2), we evaluate individual risks before aggregating. The loss function in (C3) is a convex
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1. About Multivariate Risk Measures

combination of those in (C1) and (C2).

One of the main examples we will be studying in this paper are the two following ones:

h(x) =
1

α+ 1
(
∑
i

eβxi + αeβ
∑
xi)− α+ d

α+ 1
, h(x) =

∑
i

xi +
1

2

∑
i

(x+
i )2 + α

∑
i<j

x+
i x

+
j ,

where the coefficient α > 0 is called the systemic weight and β > 0 is a risk aversion

coefficient.

In the following, we will consider multivariate risk measures defined on Orlicz spaces (see

Rao and Ren (1991) for further details on the theory of Orlicz spaces). This has several

advantages. From a mathematical point of view, it is a more general setting than L∞,

and in the same time, it simplifies the analysis especially for utility maximization problems.

Therefore, we will consider loss vectors in the following multivariate Orlicz heart:

M θ = {X ∈ L0 : E[θ(λX)] <∞, ∀λ > 0},

where θ(x) = l(|x|), x ∈ Rd. See Appendix in Armenti et al. (2018) for more details about

Orlicz spaces.

Next, we give the definition of multivariate shortfall risk measures as it was introduced in

Armenti et al. (2018).

Definition 1.2. Let l be a multivariate loss function and X ∈M θ, we define the acceptance

set A(X) by:

A(X) := {m ∈ Rd : E[l(X −m)] ≤ 0}.

The multivariate shortfall risk of X ∈M θ is defined as:

R(X) := inf
{∑

mk : m ∈ A(X)
}

= inf
{∑

mk : E[l(X −m)] ≤ 0
}
. (1.1)

Remark 1.3. When d = 1, the above definition corresponds exactly to the univariate shortfall

risk measure in Föllmer and Schied (2002).

The following theorem from Armenti et al. (2018) shows that the multivariate shortfall

risk measure has the desired properties and admits a dual representation as in the case of

univariate shortfall risk measure. We introduce Qθ
∗

the set of measure densities in Lθ
∗
, the

dual space of M θ:

Qθ
∗

:=

{
dQ

dP
:= (Z1, ..., Zd), Z ∈ Lθ

∗
, Zk ≥ 0 and E[Zk] = 1 for every k

}
.

Theorem 1.4. [Theorem 2.10 in Armenti et al. (2018)] The function

R(X) := inf
{∑

mk : m ∈ A(X)
}
,

is real-valued, convex, monotone and translation invariant. Moreover, it admits the dual
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1. About Multivariate Risk Measures

representation:

R(X) = max
Q∈Qθ∗

{EQ[X]− α(Q)}, X ∈M θ,

where the penalty function is given by

α(Q) = inf
λ>0

E

[
λl∗
(
dQ

λdP

)]
, Q ∈ Qθ∗ .

Now, we address the question of existence and uniqueness of a risk allocation which are

not straightforward in the multivariate case. Armenti et al. (2018) showed that if the loss

function is permutation invariant, then risk allocations exist and they are characterized by

Kuhn-Tucker conditions. We denote by Z = {m ∈ Rd,
∑
mi = 0} the zero-sum allocations

set.

Definition 1.5. A risk allocation is an acceptable monetary risk allocation m ∈ A(X) such

that R(X) =
∑
mk. When a risk allocation is uniquely determined, we denote it by RA(X).

We make the following assumption on the loss function l and the vector of losses X ∈M θ:

(Al) i. For every m0, m 7→ l(X −m) is differentiable at m0 a.s.;

ii. l is permutation invariant.

Theorem 1.6. [Theorem 3.4 in Armenti et al. (2018)] Let l be a loss function and X ∈
M θ such that assumption (Al) holds. Then, risk allocations m∗ ∈ Rd exists and they are

characterized by the first order conditions:

1 = λ∗E[∇l(X −m∗)], E[l(X −m∗)] = 0,

where λ∗ ≥ 0 is a Lagrange multiplier. If moreover l(x+ ·) is strictly convex along zero sum

allocations for every x such that l(x) ≥ 0, the risk allocation is unique.

Comment: Let f0(m) =
∑d

i=1mi and f1(m) := E[l(X − m)], for m ∈ Rd and X ∈ M θ.

The assumption (Al)-i. together with the convexity of the function m 7→ l(X −m), we have

that, by Theorem 7.46 in Shapiro et al. (2009), f1 is differentiable at every m ∈ Rd and that,

∇f1(m) = −E[∇l(X −m)], m ∈ Rd.

Therefore, the first order conditions given in the above theorem are equivalent to :∇f0(m∗) + λ∗∇f1(m∗) = 0,

λ∗f1(m∗) = 0.

Furthermore, we also know, thanks to Theorem 28.3 in Rockafellar (1970), that the above

conditions are equivalent to saying that (m∗, λ∗) is a saddle point of the Lagrangian associated

7



2. Multivariate Systemic Risk Measures and Stochastic Algorithms

to the problem in (1.1), i.e.,

L(m,λ) := f0(m) + λf1(m) =

d∑
i=1

mi + λE[l(X −m)]. (1.2)

Under the assumptions of the above theorem z∗ := (m∗, λ∗) is the unique solution of h(z) = 0,

where:

h(z) :=

λE[∇l(X −m)]− 1

E[l(X −m)]

 , z = (m,λ) ∈ Rd × [0,∞[.

Thus, in order to find the unique risk allocation m∗, we can look for the zeros of the function

h. We suggest here to use stochastic algorithms as they present the advantage of being incre-

mental, less sensitive to dimension, and offer a flexible framework that can be conveniently

combined with features such as importance sampling (see Dunkel and Weber (2010))and

model uncertainty.

2 Multivariate Systemic Risk Measures and Stochas-

tic Algorithms

Let l be a loss function satisfying assumption (Al) and a vector of losses X ∈ M θ. We

recall that in order to have the uniqueness of risk allocations, we need to add the convexity

condition:

(A′l) i. For every m0, m 7→ l(X −m) is differentiable at m0 a.s.;

ii. l is permutation invariant;

iii. m 7→ E[l(X −m)] is strictly convex.

Under (A′l), Theorem 1.6 ensures that there exists a unique risk allocation m∗ such that

z∗ = (m∗, λ∗) is the unique root of the function h(z) := E[H(X, z)], where we set

H(X, z) =

(
λ∇ml(X −m)− 1

l(X −m)

)
, X ∈M θ. (2.1)

In all the following, we will work under the assumption (A′l). The aim of this section is

to construct an algorithm that converges to the root z∗ = (m∗, λ∗) under some suitable

assumptions. As pointed out in the introduction, we will not use a regular Robbins-Monro

algorithm as it requires the sublinearity of the function h, and consequently will not offer a

general framework that is flexible enough to cover a wide range of loss functions. In order

to be able to use the ODE method (see Section 4.1 for more details), we suggest instead the
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2. Multivariate Systemic Risk Measures and Stochastic Algorithms

projected Robbins-Monro (RM) Algorithm:

Zn+1 = ΠK [Zn + γnH(Xn+1, Zn)], Z0 = z0 ∈ K

= ΠK [Zn + γnh(Zn) + γnδMn],
(2.2)

where δMn = H(Xn+1, Zn)− h(Zn). In the sequel, we denote Fn = σ(Z0, Xi, i ≤ n). δMn is

a martingale difference sequence with respect to the filtration F = (Fn). We assume that K

is hyperrectangle such that z∗ is in the interior of K: K = {m ∈ Rd, ai ≤ mi ≤ bi} × [0, A].

(Xn)n≥1 is an i.i.d sequence of random variables with the same distribution as X, independent

of Z0 and (γn)n≥1 is a deterministic step sequence decreasing to zero and satisfying:∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞. (2.3)

In the sequel, we will take γn = c
nγ where c is a positive constant and γ ∈]1

2 , 1].

2.1 Properties of z∗

Before giving the results about the almost surely convergence, let us give some properties

of z∗. From paragraph 4.1 in Section 4, we know that (2.2) is associated with the following

ODE:

ż = h(z) + C(z), C(z) ∈ −C(z), (2.4)

where C(z) is the convex cone determined by the outer normals to the faces that need to

be truncated at z and C(z) is the minimum force needed to bring back z to K (For more

details about concepts related to the ODE method and stability results, see Section 4). Now,

since z∗ is interior to K and h(z∗) = 0, z∗ is an equilibrium point for the projected ODE

2.4. In order to study the asymptotic stability of the equilibrium z∗, one needs to find some

convenient Lyapunov function V . A natural and classical choice for this type of problems is

V (z) = ||z − z∗||2. It is obvious that V is positive definite. The following proposition shows

that its derivative along any state trajectory is negative semi-definite on K.

Proposition 2.1. The function V (z) = ||z−z∗||2 is such that z → V̇ (z) = 〈∇V (z), h(z)+C〉
is negative semi-definite on K with the respect to the ODE in (2.4).

Proof. First, let z = (m,λ) ∈ int(K) so that V̇ (z) = 〈∇V (z), h(z)〉 = 2〈z − z∗, h(z)〉, and

define L the Lagrangian as defined in (1.2). We have:

〈z − z∗, h(z)〉 = 〈m−m∗, λE[∇l(X −m)]− 1〉+ (λ− λ∗)E[l(X −m)]

= 〈m−m∗, ∂mL(m,λ)〉+ (λ− λ∗)∂λL(m,λ).

Now, thanks to the convexity of L with respect to m, we have: L(m∗, λ) ≥ L(m,λ) + 〈m∗ −
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2. Multivariate Systemic Risk Measures and Stochastic Algorithms

m, ∂mL(m,λ)〉. This in turn implies that

L(m∗, λ)− L(m,λ) + (λ− λ∗)∂λL(m,λ) ≥ 〈m∗ −m, ∂mL(m,λ)〉+ (λ− λ∗)∂λL(m,λ).

But, we also have,

L(m,λ) =
∑

mi + λE[l(X −m)] =
∑

mi + λ∗E[l(X −m)] + (λ− λ∗)E[l(X −m)]

= L(m,λ∗) + (λ− λ∗)∂λL(m,λ).

The previous inequality becomes then

〈m−m∗, ∂mL(m,λ)〉 − (λ− λ∗)∂λL(m,λ) ≥ L(m,λ∗)− L(m∗, λ)

The RHS of the last inequality is non-negative, because, (m∗, λ∗) is a saddle point, that is

L(m∗, λ) ≤ L(m∗, λ∗) ≤ L(m,λ∗). Moreover, because L is strictly convex with respect to m,

it is also negative if m 6= m∗. Therefore, we get that,

〈z − z∗, h(z)〉 ≤ 0. (2.5)

Note that this is true irrespective of whether z ∈ int(K) or not. Now, if zi = bi and hi(z) > 0

for some i, then Ci = −hi(z), and hence (zi − z∗i )Ci ≤ 0. This shows that in this case, V̇ (z)

is less than the LHS of 2.5 and it is in turn negative. This can be easily generalized for all

other boundary cases. As a conclusion, we have shown that V̇ is negative semi-definite on

K.

Remark 2.2. We cannot conclude that V̇ is negative definite on K, because z 6= z∗ does not

imply that m 6= m∗. Besides, if z = (m∗, λ) such that λ 6= λ∗, we have V̇ (z) = 0 and z 6= z∗.

Proposition 2.3. The equilibrium point z∗ of the ODE (2.4) is asymptotically stable.

Proof. A direct application of Theorem 4.8, allows us to conclude that z∗ is stable. Still,

due to the previous remark, we cannot say that it is asymptotically stable. This is where

the use of the invariant set Theorem 4.11 and its Corollary 4.12 come in. Indeed, by taking

Ω = K in Corollary 4.11, we deduce that, provided that the largest invariant set M in

R = {z ∈ K, V̇ (z) = 0} is the singleton {z∗}, every trajectory originating in K converges

to z∗ and hence the asymptotic stability of z∗. Now, we need to explore the set R and find

the largest invariant set M in R. Let z = (m,λ) ∈ M ⊆ R ⊆ K. As discussed in the proof

of Proposition 2.1, if z = (m,λ) ∈ K such that V̇ (z) = 0, then necessarily m = m∗, that

is R ⊆ I := {z = (m,λ) ∈ K, m = m∗}. Since M is an invariant set, every trajectory

originating in M should remain in M for all future times, and therefore in I. In other

words, if z(0) = (m∗, λ) for some λ ≥ 0, then z(t) = (m(t), λ(t)) = (m∗, λ(t)) for all t ≥ 0.
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2. Multivariate Systemic Risk Measures and Stochastic Algorithms

Furthermore, z(·) is solution of the following ODE,
dm(t)

dt
= λ(t)E[∇l(X −m(t))]− 1 + C(m(t)), t ≥ 0,

dλ(t)

dt
= E[l(X −m(t)] + C(λ(t)), t ≥ 0.

(2.6)

Now, since ∀t ≥ 0,m(t) = m∗ and z∗ ∈ int(K), we get that, C(m(t)) = 0 and dm(t)
dt = 0, ∀t ≥

0. Moreover, we have ∀t ≥ 0, E[l(X −m(t))] = E[l(X −m∗)] = 0 (recall that h(z∗) = 0),

we obtain again that C(λ(t)) = 0 and dλ(t)
dt = 0 and consequently t → λ(t) is a constant

function, i.e., λ(t) = λ,∀t ≥ 0 . But we also know that, dm(t)
dt = 0, ∀t ≥ 0 which implies that

the right hand side of the first equation in (2.6) is 0, i.e. λE[∇ml(X −m∗)]−1 = 0. Finally,

we deduce that λ = λ∗ given that (m∗, λ∗) is the unique z such that h(z) = 0.

We have then showed that the largest invariant set is simply {z∗} and therefore z∗ is asymp-

totically stable equilibrium for the ODE (2.4).

2.2 Almost Surely Convergence

In the current section, we prove consistency of the algorithm (2.2). Let σ2(·), Σ(·) and

m2+p(·), for p > 0, be defined as follows:
σ2(z) = E[||H(X, z)− h(z)||2];

m2+p(z) = E[||H(X, z)− h(z)||2+p];

Σ(z) = E[(H(X, z)− h(z))(H(X, z)− h(z))ᵀ].

We make the following assumption:

(Aa.s.) i. h is continuous on K;

ii. sup
z∈K

σ2(z) <∞.

Theorem 2.4. Assume that the sequence (Zn) is defined by the algorithm (2.2) and that

assumptions (A′l) and (Aa.s.) hold. Then, Zn → z∗ P - almost surely as n→∞.

Proof. We already know that, because z∗ is asymptotically stable, the trajectory given by

the ODE (2.4) converges to z∗. Thus, z∗ is the only limiting for the ODE. Theorem 5.2.1 in

Kushner and Yin (2003) implies that Zn → z∗ as n → ∞ if we can verify their conditions

(A2.1)-(A2.5). (A2.1) is guaranteed by the second assumption in (Aa.s.). (A2.2), (A2.3),

(A2.4) and (A2.5) are verified thanks to the first point in (Aa.s.) and (2.3).

2.3 Asymptotic normality

(Aa.n.) i. m 7→ E[∇l(X − m)] is continuously differentiable. Let A := Dh(z∗) (Jacobian

matrix of h at z∗);

11



2. Multivariate Systemic Risk Measures and Stochastic Algorithms

ii. (H(Xn+1, Zn)1|Zn−z∗|≤ρ) is uniformly integrable for small ρ > 0;

iii. For some p > 0 and ρ > 0, sup
|z−z∗|≤ρ

m2+p(z) <∞;

iv. Σ(·) is continuous at z∗. Let Σ∗ := Σ(z∗) .

Theorem 2.5. Assume that γ ∈ (1
2 , 1) and that assumptions (A′l), (Aa.s.) and (Aa.n.) hold.

Then,
√
nγ(Zn − z∗)→ N

(
0, c2

∫ ∞
0

ecAt Σ∗ ecA
ᵀtdt

)
.

If furthermore, cA+ I
2 is a Hurwitz matrix and cI −P is positive definite with P solution to

the Lyapunov’s equation: AᵀP + PA = −I, then,

√
n(Zn − z∗)→ N

(
0, c2

∫ ∞
0

e(cA+ I
2

)t Σ∗ e(cAᵀ+ I
2

)tdt

)
.

Proof. We will verify that the assumptions (A2.0)-(A2.7) in Theorem 10.2.1 in Kushner

and Yin (2003) hold. First, let us start with the case γ ∈ (1
2 , 1). Assumption (A2.0) is

automatically verified. (A2.1) is satisfied by assumption (Aa.n.)-ii.. (A2.2) is a consequence

of Theorem 2.4 and the fact that z∗ is stable as shown in Section 2.1. (A2.4) follows from

Taylor’s expansion and (Aa.n.)-i.. (A2.5) follows from the fact that h(z∗) = 0. The first and

second parts of (A2.7) are guaranteed thanks to (Aa.n.)-iii. and (Aa.n.)-iv.. (A2.3) follows

easily from Theorem 10.4.1 of Kushner and Yin (2003) since all their assumptions (A4.1)-

(A4.5) are satisfied. It remains to show that (A2.6) hold, that is the matrix A is a Hurwitz

matrix. In fact, we have:

A =

 λ∗DE[∇l(X −m∗)] E[∇l(X −m∗)]

−E[∇l(X −m∗)] 0

 = −

 Â − 1
λ∗

1
λ∗ 0

 ,

where Â := −λ∗DE[∇l(X − m∗)] corresponds to the second derivative of the Lagrangian

L with respect to m. Note that L is strictly convex with respect to m due to the strict

convexity of m 7→ E[l(X −m)]. This implies that Â is positive definite matrix. Thanks to

Theorem 3.6 in Benzi et al. (2005), we deduce that A is a Hurwitz matrix.

For the case γ = 1, we need to verify some extra conditions related to assumptions (A2.3) and

(A2.6). Indeed, the additional condition that appears in (A2.6) is satisfied since we assumed

that cA + I
2 is a Hurwitz matrix. The condition cI − P is positive definite guarantees that

the condition (A4.5) in Theorem 10.4.1 in Kushner and Yin (2003) is satisfied so that the

assumption (A2.3) is still verified in this case.

Remark 2.6.

1. Note that, for convex optimization problems, where the matrix A is symmetric negative

definite, the two additional conditions reduce to the classical condition cA+ I
2 is negative

12



2. Multivariate Systemic Risk Measures and Stochastic Algorithms

definite. Indeed, in this case, the solution of the Lyapunov’s equation AᵀP + PA = −I
is simply P = −A−1/2 and the condition cI −P is positive definite, becomes equivalent

to cA+ I
2 is negative definite.

2. From a formal point of view, the choice γ = 1 gives the best rate of convergence. The

asymptotic variance in this case depends on the constant c. We need to choose it such

that cA+ I
2 is a Hurwitz matrix and cI−P is positive definite. Setting c too small may

lead to no convergence at all, while setting it too large, may lead to slower convergence

as the effects of large noises early in the procedure might be hard to overcome in a

reasonable period of time.

3. The choice of the constant c is a burning issue. One way to bypass this problem is

to premultiply A by a conditioning matrix Γ, nonsingular, that will make A close to

a constant times the identity. This can be done by considering γn = Γ/n and we can

draw the same conclusions as in Theorem 2.5 as soon as ΓA+ I
2 is a Hurwitz matrix.

This will lead to the following asymptotic behaviour:

√
n(Zn − z∗)→ N

(
0,

∫ ∞
0

e(ΓA+ I
2

)t ΓΣ∗Γᵀ e(AᵀΓᵀ+ I
2

)tdt

)
.

The optimal choice of the conditioning matrix Γ, which is also called the gain matrix,

is the one that will minimize the trace of asymptotic covariance:∫ ∞
0

e(ΓA+ I
2

)t ΓΣ∗Γᵀ e(AᵀΓᵀ+ I
2

)tdt.

This is done by taking Γ = −A−1 which yields the asymptomatic optimal covariance:

A−1Σ∗(A−1)ᵀ.

4. The optimal choice of Γ depends on the function h and the equilibrium point z∗ which

are unknown to us. Adaptive procedures that choose the matrix Γ dynamically by esti-

mating Dh(z∗) adaptively have been suggested in the literature (see for example Ruppert

(1991)), but are generally not as efficient as the Polyak-Ruppert averaging estimators

discussed in the following section.

2.4 Polyak-Ruppert Averaging principle

In order to ease the tuning of the step parameter which known to monitor the numerical

efficiency of RM algorithms, we are led to modify our algorithm and to use an averaging pro-

cedure. Averaging algorithms were introduced by Ruppert (see Ruppert (1991)) and Polyak

(see Polyak and Juditsky (1992)) and then widely investigated by many authors. Kushner

and Yin (2003) and Kushner and Yang (1995) studied these algorithms in combination with

projection and proved a Central Limit Theorem (CLT) for averaging constrained algorithms.

The following theorem describes the Polyak-Ruppert algorithm for MSRM and states its

13



2. Multivariate Systemic Risk Measures and Stochastic Algorithms

asymptotic normality. It is a direct consequence of theorem 11.1.1 in Kushner and Yin

(2003).

Theorem 2.7. Assume γ ∈ (1
2 , 1) and that assumptions (A′l), (Aa.s.) and (Aa.n.) hold. For

any arbitrary t > 0, we define

Z̄n =
γn
t

n+t/γn−1∑
i=n

Zi, (2.7)

where any upper summation index u ∈ R+ is interpreted as its integer part. If Σ∗ is positive

definite, then we have the following CLT:√
t

γn

(
Z̄n − z∗

)
→ N

(
0, V +O

(
1

t

))
, (2.8)

where V = A−1Σ∗(A−1)ᵀ.

Remark 2.8.

1. In (2.7), the window of averaging is t/γn for any arbitrary real t > 0. Equivalently, γn×
(size of window) does not go to infinity as n→∞, hence the name “minimal window”

of averaging. In contrast, the “maximal window” of averaging allow to take a window

size qnt such that γnqn →∞. A natural and a classical choice is taking γn = c/nγ and

qn = n. In the case of maximal window of averaging, under some extra conditions, we

are able to achieve the optimal asymptotic variance without an extra term O(1/t)(see

Theorem 11.3.1 in Kushner and Yin (2003)).

2. Two sided averages can also be used instead of the one-sided average in (2.7).

2.5 Estimator of asymptotic variance

The previous CLT theorems assert that, under some suitable conditions, our RM and PR

algorithms converge to the root z∗ with a corresponding rate. More specifically, in Theorem

2.7, the asymptotic variance V depends on Σ∗ and A. In practice, these two quantities

are unknown and need to be approximated in order to derive confidence intervals for our

estimators. In Theorem 2.5, in both cases, γ = 1 and γ ∈ (1
2 , 1), the asymptotic variance is

expressed as an infinite integral that involves Σ∗ and A. The numerical evaluation of these

integrals is a non-trivial exercise even when Σ∗ and A are known. In Hsieh and Glynn (2002),

they described an approach that produces confidence regions and that avoids the necessity

of having to explicitly estimate these integrals.

In the following proposition, we provide consistent estimators of these two quantities. The

proof relies mainly on the Martingale Convergence Theorem.

Proposition 2.9. Assume (A′l), (Aa.s.) and (Aa.n.) hold.

14



2. Multivariate Systemic Risk Measures and Stochastic Algorithms

If z → E[||H(X, z)||4] is locally bounded around z∗, then,

Σn :=
1

n

n∑
k=1

H(Xk, Zk−1)H(Xk, Zk−1)ᵀ → Σ∗ a.s. (2.9)

Let Aεn the matrix whose elements Aεn(i, j) for i, j ∈ {1, ..., d+ 1} are defined as follows:

Aεn(i, j) :=
1

εn

n∑
k=1

Hi(Xk, Zk−1 + εej)−Hi(Xk, Zk−1),

then,

lim
ε→0

lim
n→∞

Aεn = A a.s. (2.10)

Proof. Let (Sn)n∈N∗ be the sequence defined as:

Sn = H(Xn, Zn−1)H(Xn, Zn−1)ᵀ − Σ(Zn−1)− h(Zn−1)h(Zn−1)ᵀ, n ≥ 1

(Sn)n∈N∗ is a martingale difference sequence adapted to F and consequently the following

sequence (Mn)n∈N∗ defined as:

Mn =
n∑
i=1

Si
i
, n ≥ 1,

is a F-martingale. Moreover, the boundedness of z → E[||H(X, z)||4] around z∗ and assump-

tions (Aa.s.)-i. and (Aa.n.)-iv. imply that:

sup
n≥1

E[||Sn||2|Fn−1] <∞ a.s.

Thus, the martingale convergence theorem ensures the existence of a finite random variable

M∞ such that Mn → M∞ a.s. Kronecker’s lemma then guarantees that 1
n

∑n
i=1 Si → 0.

Now, since,

Σn =
1

n

n∑
i=1

Si +
1

n

n∑
i=1

Σ(Zi−1) +
1

n

n∑
i=1

h(Zi−1)h(Zi−1)ᵀ,

we deduce that Σn → Σ∗.

The proof of (2.10) follows using the same arguments above.

Remark 2.10.

1. Instead of averaging on all observations, one could modify the estimators above and

average only on recent ones. This might improve the behaviour of these estimators.

2. If we denote Vn := A−1
n Σn(A−1

n )ᵀ, then we obtain an approximate confidence interval

for PR estimator with a confidence of 1− α in the following form:[
Z̄j,n −

√
Vjj,n
tnγ

qα, Z̄j,n +

√
Vjj,n
tnγ

qα

]
, j ∈ {1...d}, γ ∈ (0, 1), (2.11)
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3. Numerical examples

where qα is the 1 − α
2 quantile of a standard normal random variable. Note that this

confidence interval has the advantage of being obtained with one simulation run. For

RM estimators, confidence intervals could be estimated empirically.

3 Numerical examples

In this section, we test the performance of the proposed stochastic algorithms schemes for

MSRM. In Armenti et al. (2018), the optimal allocations were estimated by using a combina-

tion of Monte Carlo/Fourier method to estimate the expectation in (1.1) and deterministic

built-in search algorithm in Python to find the optimal allocations. Although their method

provides good approximations, it does not provide any rate of convergence and therefore

one cannot say anything about the confidence interval of their estimations. In this section,

we will first test the consistency properties of the different estimators and then their normal

asymptotic behaviour with and without averaging. Two examples are considered. In the first

one, we consider a loss function of an exponential type coupled with a normal distribution.

This example is relevant for our numerical analysis as we can explicitly express the optimal

allocations in a closed form. In the second example, we consider a loss function that involves

positive part function with a Gaussian and a compound Poisson distributions.

In the following, n will denote the number of steps in one simulation run and N the number

of simulations. We introduce the following sequences:

D̄n :=
√
tnγ(Z̄n − z∗) γ ∈ (

1

2
, 1), (3.1)

Dn :=
√
nγ(Zn − z∗), γ ∈ (

1

2
, 1]. (3.2)

3.1 Toy example

As a first simple example, we will consider a exponential loss function of the following form:

l(x1, ..., xd) =
1

1 + α

[
d∑
i=1

eβxi + αeβ
∑d
i=1 xi

]
− α+ d

α+ 1
(3.3)

We will set d = 2 and consider a bivariate normal vector X = (X1, X2) ∼ N(0,M) with

M =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. α is a systemic weight parameter taken to be non negative and

β > 0 is the risk aversion coefficient. In this case, we can explicitly solve the first order

conditions and derive closed formulas for optimal allocations (see Section 4.2). This will be
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useful to test our algorithms:

m∗i =


βσ2

i

2
, if α = 0,

βσ2
i

2
+

1

β
SRC(ρ, σ1, σ2, α, β), if α > 0.

This shows that, in the case α > 0, the risk allocations are disentangled into two components:

an individual contribution
βσ2

i
2 and a Systemic Risk Contribution (SRC) given by:

SRC(ρ, σ1, σ2, α, β) = ln

(
αeρβ

2σ1σ2

−1 +
√

1 + α(α+ 2)eρβ2σ1σ2

)
.

Note that taking α → 0 makes the SRC null as expected because, the systemic weight α is

responsible of the systemic contribution in the loss function l. One can also show, by easy

calculations, that the SRC is increasing with respect to ρ: the higher the correlation is, the

more costly the acceptable monetary allocations are. This could be explained by the fact

that, with a higher correlation between the two components, the losses of one will induce the

loss of the other and consequently the system will become riskier. Note also that we could

also express in a closed form the Jacobian matrix A and Σ∗.

In all this example, we fix α = 1, β = 1 and σ1 = σ2 = 1. With ρ ∈ {−0.5, 0, 0.5}, we obtain

the exact values in the table below. Note that since we have X1 ∼ X2 ∼ N(0, 1) and l is

permutation invariant, it follows that m∗1 = m∗2.

Table 1: Exact optimal risk allocations.

ρ m∗1 = m∗2

−0.5 0.3868

0 0.5

0.5 0.6364

For RM/PR algorithms, we used a number of steps n = 105. As for the compact K,

we took K = [0, 2]3 and Z0 was taken uniformly on K. We run the different algorithms for

γ = 1 and γ = 0.7. We chose an averaging parameter t = 10 and we set c = 2 in a first step.

Figure 1 shows that, for different values of ρ ∈ {−0.5, 0, 0.5}, our RM algorithm with γ = 1

converges relatively quickly to the optimal allocations, whereas when γ = 0.7, noise is still

persisting. This is due to the step parameter c as discussed in the previous section. In order

to get a smoother numerical behaviour, two solutions are available to us: either we use PR

averaging (c.f. Figure 1), or we reduce the value of the parameter c. This is shown in Figure

2.
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Figure 1: Consistency of RM/PR estimators with for different values of ρ.
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Figure 2: Consistency of RM estimators with c = 0.1 for different values of ρ.

Note that we can easily verify that all conditions in (Aa.s.) and (Aa.n.) hold. We can also

verify thanks to the exact formula of Σ∗, that this matrix is positive definite for the different

values of ρ used. This is a condition needed in Theorem 2.7.
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For any random estimator, constructing confidence intervals is important to assess the error

in the estimation. For PR estimator, confidence interval can be obtained in one simulation

run after estimating matrices Σ∗ and A and hence the asymptotic variance matrix V . Figure

3 shows the convergence, in the case ρ = 0, of the estimator of Vn = A−1
n Σn(A−1

n )ᵀ where

An and Σn are as introduced in Proposition 2.9.
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Figure 3: Convergence of the estimator Vn.

In the following table, we give the estimated confidence interval for PR estimator with a

confidence coefficient of 95%:

Table 2: Confidence intervals for PR estimators.

ρ CI for m∗1 CI for m∗2

−0.5 [0.3772, 0.4047] [0.3679, 0.3949]

0 [0.4962, 0.5259] [0.4912, 0.5213]

0.5 [0.6194, 0.6629] [0.6203, 0.6665]

As for RM estimators, it is difficult to estimate the asymptotic covariance matrix due to

its complexity. In order to visualize the normal behaviour of these estimators, we give the

empirical probability density function (EPDF) in both cases γ = 1 and γ = 0.7. To this end,

we use again a number of steps n = 100000 and we repeat the procedureN = 10000 times. We

restrict our attention to the case ρ = 0. Figure 4 shows that Dn,i =
√
nγ(mn,i−m∗i ), i ∈ {1, 2}

are very close to a normal distribution.
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Figure 4: Empirical cumulative density function of mn −m∗.

In order to appreciate the quality of convergence of RM estimators, we also give the

empirical cumulative density function (ECDF) of the error mn −m∗.
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Figure 5: Empirical cumulative density function of mn −m∗.

From the two figures above, the width of the 90% confidence interval of the RM estimator

for the case γ = 0.7 is approximately 8% and for the case γ = 1 is roughly 2%.

3.2 Second example

As a second example, we will consider consider the following loss function used in Armenti

et al. (2018):

l(x1, ..., xd) =

d∑
i=1

xi +
1

2

d∑
i=1

(x+
i )2 + α

∑
i<j

x+
i x

+
j .

3.2.1 First case: Gaussian distribution and d = 2

We start by a simple case where we fix d = 2 and use standard two dimensional Gaussian

distribution for the loss vector X. We take K = [0, 2]3, n = 105, t = 10, α = 1 and c = 6.

Again, we compare RM and PR estimators for different values of ρ. The following figure 6
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allows us to draw the same conclusions as in the previous example: RM estimator with γ = 1

and PR estimator are better than RM estimator with γ = 0.7. RM estimator with γ = 0.7

is noisy and one can remediate to this by choosing a smaller value of c as we did in the first

example.
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Figure 6: Consistency of RM/PR estimators with for different values of ρ.

In order to assess the accuracy of our PR estimator, we give the confidence interval with

a 95% confidence coefficient, using the estimators of Proposition 2.9.

Table 3: Confidence intervals for PR estimators.

ρ m∗1 = m∗2 CI for m∗1 CI for m∗2

−0.5 0.188 [0.1790, 0.2089] [0.1746, 0.2045]

0 0.21 [0.1963, 0.2303] [0.2044, 0.2385]

0.5 0.25 [0.2415, 0.2769] [0.2424, 0.2777]

For RM estimator, we plotted the EPDF of Dn,i, i ∈ {1, 2} as well as the ECDF of the

error mn − m∗ for the case ρ = 0 and γ = 1. These figures shows that the length of the

confidence interval of 90% in the case γ = 0.7 is much higher that in the case γ = 1 (approx

0.2 against 0.04).
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Figure 7: Empirical cumulative density function of mn −m∗.
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Figure 8: Empirical cumulative density function of mn −m∗.

3.2.2 Second case: Compound Poisson Distribution and higher dimensions

In this section, we propose to use compound Poisson processes to model the loss vector

X. The scope of application of compound Poisson processes is very wide. It ranges from

statistical physics and biology to financial mathematics. In biology, they are used to study

dynamics of populations. In the modern financial modeling, compound Poisson processes

are used to describe dynamics of risk factors such as interest rates (see for instance Li

et al. (2017)), foreign exchange rates and option pricing (see Jaimungal and Wang (2006)).

In actuarial science, compound processes are extensively used to model claims sizes and

to compute the ruin probability, i.e. the probability that the initial reserves increased by

premiums received from clients and decreased by their claims, drops below zero.

More precisely, given a final time T , we consider a multivariate Poisson random vector NT =

(NT
1 , ..., N

T
d ), where each NT

i ∼ P(λiT ) and the loss corresponding to the ith component is

Xi =
∑NT

i
k=1G

k
i and (Gki )k is an i.i.d sequence representing the jump sizes and independent of

NT
i . We will take two examples for the distribution of the jumps sizes: One with a Gaussian

distribution and another one with an exponential one. The correlation between the different

components of X will be done through the correlations between components of NT . In
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what follows, we detail the method of generating a multivariate Poisson random vector,

N = (N1, ..., Nd) with a vector of corresponding intensities (λ1, ..., λd). To do so, we will use

a method that is based on the Gaussian vectors. More precisely, denote η = (η1, ..., ηd) to be

a Gaussian random vector having a centered normal distribution with correlation matrix R =

(ρkl) and Φ to be the standard normal cdf. Then, the random vector ξ = (Φ(η1), ...,Φ(ηd))

has a multivariate distribution with standard uniform marginal distributions. Let Pλ(x) =∑[x]
j=0(λj/j!)e−λ be the cdf of the Poisson distribution with parameter λ. Now, consider

the vector ζ = (ζ1, ..., ζd) where ζk = P−1
λk

(Φ(ηk)), k = 1, ..., d. ζ has therefore Poisson

marginal distributions with intensities (λ1, ..., λd). We can express the correlation coefficient

ρ∗kl = corr(ζk, ζl) as a function of ρkl = corr(ηk, ηl):

ρ∗kl =
E(ζkζl)− E(ζk)E(ζl)

σ(ζk)σ(ζl)

=
E(ζkζl)− λkλl√

λkλl
.

We need to express the expectation E(ζkζl) as a function of ρkl. We have:

E(ζkζl) = E
[
P−1
λk

(Φ(ηk))P
−1
λl

(Φ(ηl))
]

=

∞∑
m=1

∞∑
n=1

mn P (ζk = m, ζl = n)

=
∞∑
m=1

∞∑
n=1

mn P (ukm−1 ≤ Φ(ηk) ≤ ukm, uln−1 ≤ Φ(ηl) ≤ uln),

where uij = Pλi(j), i, j = 1, ..., d. It remains to explicit the probabilities in the last equality.

If we denote Φ2(·, ·, ρkl) the bivariate Normal distribution function, we get finally that,

Zmn(ρkl) := P (ukm−1 ≤ Φ(ηk) ≤ ukm, uln−1 ≤ Φ(ηl) ≤ uln)

= Φ2(Akm, B
l
n, ρkl)− Φ2(Akm−1, B

l
n, ρkl)− Φ2(Akm, B

l
n−1, ρkl) + Φ2(Akm−1, B

l
n−1, ρkl)

where Akm = Φ−1(Pλk(m)) and Bl
n = Φ−1(Pλl(n)). As a conclusion, we obtain,

∞∑
m=1

∞∑
n=1

mnZmn(ρkl) = λkλl + ρ∗kl
√
λkλl. (3.4)

The equation (3.4) gives an implicit relation between ρ∗kl and ρkl. It also involves two infinite

sums which makes it hard to solve. In practice, one needs to truncate this sum and choose

some appropriate upper-limits M∗ and N∗. We are then able to compute the elements of the

correlation matrix ρ of the Gaussian vector given the correlation matrix ρ∗ of the vector N .

However, there is a problem of sufficient conditions for a given positive semi-definite matrix

to be a correlation matrix of a multivariate Poisson random vector. This issue is tackled in
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Griffiths et al. (1979) where it is shown that each ρ∗kl has to be in a certain range,

− 1 < ρmin
kl ≤ ρ∗kl ≤ ρmax

kl ≤ 1. (3.5)

Algorithm 1: Algorithm for generating a sample of X with Compound Poisson Distri-

bution

Input: (λi)i=1,...,d, (σi)i=1,...,d, T , and ρ∗ correlation matrix of NT ;

Ensure: For each k > l, ρ∗kl verifies the inequality in (3.5);

1 Solve the equation (3.4) to find ρ the correlation of the Gaussian vector η = (η1, ..., ηd);

2 Generate a sample of Gaussian vector η with correlation matrix ρ and for i = 1, ..., d;

3 for i = 1, ..., d do

4 Set NT
i = P−1

λiT
(Φ(ηi));

5 Generate a i.i.d sample of Gki of size NT
i ;

6 Set Xi =
∑

k=1G
k
i .

Output: X;

The following figure shows the covariance matrix for the loss vector X of dimension d = 10

obtained by generating a random correlation matrix (ρkl) and using a Gaussian distribution

for the jump sizes, i.e. Gki ∼ N(1, 1). The intensity vector was taken uniformly in [1, 3]10.
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Figure 9: Correlation matrix of the vector loss X with Gaussian jump sizes with means and
variances equal to 1.

Setting K = [−20, 20]10 × [0, 20], the averaging parameter t = 10 and c = 6, γ = 0.7 and

the number of steps n = 100000, we obtain the following optimal allocations for both cases

α = 0 and α = 1.
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Figure 10: PR estimators for optimal allocations.

The above figure shows that there are components with the same optimal allocations

for the case α = 0. This is something we expect to see, since with α = 0, correlations

between components are not involved, so components with the same variance should have

the same optimal allocations. This is the case for components 4− 5 and components 9− 10.

However, once α is taken non null, we see that the same components have no longer the same

optimal allocations. For instance, component 10 has higher optimal allocation than 9 when

α = 1. This could be explained by the fact that component 10 is more correlated with other

components that have high variances, such as components 4 and 5, than component 9. We

now consider an exponential distribution for jump sizes as a second example, i.e. Gki ∼ E(ai).

The parameters ai were generated randomly in [0.2, 1.2]. As for the other paramaters in this

example, we took again K = [−20, 20]10 × [0, 20], c = 6, t = 10 and γ = 0.7. Covariance

matrix of the loss vector X in this case and estimators of the optimal allocations obtained

through PR algorithms with a number of steps n = 100000 together with corresponding

confidence intervals are given in the following figures.
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Figure 11: Correlation matrix of the vector loss X with exponential distribution for the law of
jump sizes.
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Figure 12: PR estimators for optimal allocations together with bounds of CI.

4 Appendix

4.1 ODE method and related concepts

Suppose we want to find the zeros of a function h. If we had a closed formula for h, under

some classical conditions, we could use the following algorithm that ensures that at each

step, we are going in the right direction: Zn+1 = Zn ± γnh(Zn), where (γn) could be a

constant sequence or decreasing toward 0. However, if we do not have access to h, but only

to random estimates Yn that are close to h on average, then we could replace h(Zn) by

Yn: Zn+1 = Zn + γnYn. This is typically the case when h is expressed as an expectation:

h(z) = E[H(X, z)] with X is a random variable. An estimate of h at step n + 1, given all

the (Zi)i=0,..,n, is Yn = H(Xn+1, Zn), where Xn+1 is a random variable that haves the same
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law as X. Then we could write the algorithm as:

Zn+1 = Zn + γnH(Xn+1, Zn). (4.1)

If we denote by (Fn) the following filtration:

Fn = σ(Z0, Xi, i ≤ n),

and rewrite:

Yn = h(Zn) + δMn,

where δMn = Yn − h(Zn). Observe that h(Zn) = E[Yn|Fn] implies that δMn is a martingale

difference sequence. Therefore, another way to write the (4.1) is as the following:

Zn+1 = Zn + γnh(Zn) + γnδMn.

The algorithm (4.1) is the regular Robbins-Monro (RM) procedure with mean function h.

In order, to obtain a.s. convergence of the algorithm toward the z∗, one crucial condition

among others, is the sublinearity of h, which is very constraining on the type of functions

h we can use. Consequently, we will drop the classical version of RM and will adopt the

ordinary differential equation (ODE) point of view which offers more flexibility. The ODE

method has its own drawbacks: it requires the sequence (Zn)n≥1 to be in a compact set K

for non-explosion reasons. Still, this is not very constraining: In fact, each time Zn goes out

of K, we will replace it by the closest point to Zn in K, using projection. In general, the

behaviour of the algorithm (4.1) is determined by that of the associated ODE ż = h(z). In

what follows, we recall some stability concepts of ODEs that we have used in the article.

4.1.1 Concepts of stability of an ODE

As we have seen in the previous section, to study the behaviour of the sequence (Zn), we need

to study the behaviour of the associated ODE. In this section, we recall some key concepts of

the stability of an ODE ż = h(z). We start by giving the definition of an equilibrium point

for the ODE.

Definition 4.1. A state z∗ is an equilibrium of the ODE if h(z∗) = 0. In other words, this

means that once z(t) is equal to z∗ it remains equal to z∗ for all future times.

To describe the behaviour of the system around the equilibrium, a number of stability

concepts are needed. Let us first introduce the basic concepts of stability. To alleviate the

notations, we will take 0 as an equilibrium state.

Definition 4.2. The equilibrium z∗ = 0 is said to be stable, if for any R > 0, there exists

r > 0 such that if ||z(0)|| < r, then ||z(t)|| < R for all t ≥ 0. Otherwise, the equilibrium is

unstable.
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Essentially, this means, the system can be kept arbitrarily close to the origin by starting

sufficiently close to it. This is also know as Lyapunov stability. In some applications, Lya-

punov stability is not enough: we not only want the system to remain in a certain range but

we also want it to converge to the equilibrium. This behaviour is captured by the concept

of asymptotic stability.

Definition 4.3. An equilibrium point z∗ = 0 is asymptotically stable if it is stable, and if in

addition, there exists some r > 0 such that ||z(0)|| < r implies that z(t)→ 0 as t→∞. The

ball Br is called a domain of attraction of the equilibrium point.

The above definitions are formulated to characterize the local behaviour of the system,

i.e., how the state evolves after starting near the equilibrium point. Local properties tell

little about how the system will behave when the initial state is some distance away from

the equilibrium. Global concepts are required for this purpose.

Definition 4.4. If asymptotic stability holds for all initial states, the equilibrium is said to

be globally asymptotically stable.

In the case of a linear system, i.e. described by ż = Az, where A is a Rd × Rd non-

singular matrix, the solution is given by: ∀t ≥ 0, z(t) = z(0) exp(tA). Therefore, the stability

behaviour of the equilibrium point z∗ = 0 is stated by the eigenvalues of A. More precisely,

the equilibrium point z∗ = 0 is globally asymptotically stable if and only if all eigenvalues of

A have negative real parts. Moreover, if at least one eigenvalue of A has positive real part,

then the equilibrium is unstable.

For nonlinear systems, Lyapunov’s linearization method states that a nonlinear system should

behave similarly to its linearized approximation locally around the equilibrium. For instance,

consider the system ż = h(z) where h : Rd 7→ Rd is supposed to be continuously differentiable.

Then, the system dynamics can be rewritten as:

ż =
∂h

∂z

∣∣∣∣
z=0

z + hh.o.t(z),

where hh.o.t stands for higher-order terms in z. Let us denote A the Jacobian matrix of h at

0, A = ∂h
∂z

∣∣
z=0

. Then, the system ż = Az is called the linearization of the original system

at the equilibrium point 0. The following result (see Theorem 3.1 in Slotine and Li (1991))

establishes the relationship between the stability of the linear system and that of the original

nonlinear system.

Theorem 4.5 (Theorem 3.1 in Slotine and Li (1991)).

• If all eigenvalues of A, the Jacobian matrix at 0, have negative real parts, then the

equilibrium point is asymptotically stable for actual nonlinear system.

• If at least one eigenvalue of A has positive real part, then the equilibrium is unstable

for the nonlinear system.
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The linearization method tells little about the global behaviour of stability of nonlinear

systems. This motivates a deeper approach, known as Lyapunov’s direct method.

4.1.2 Lyapunov’s Direct Method

The intuition behind Lyapunov’s direct method is a mathematical extension of a fundamental

physical observation: if the total energy of a mechanical or electrical system is continuously

dissipated, then the system must eventually settle down to an equilibrium point. The basic

procedure of Lyapunov is to generate an energy-like scalar function for the system and

examine the time variation of that scalar function. This way, we may draw conclusions

on the stability of differential equations without using the difficult stability definitions or

requiring explicit knowledge of solutions.

The first property that need to be verified by this scalar function is positive definiteness.

Definition 4.6. A scalar continuous function V (z) is said to be locally positive definite if

V (0) = 0 and in around 0, we have, z 6= 0⇒ V (z) > 0.

If the above property holds over the whole state space, then V (z) is said to be globally positive

definite.

The above definition implies that the function V has a unique minimum at the origin

0. Actually, given any function having a unique minimum point in a certain ball, we can

construct a locally positive definite function by simply adding a constant to that function.

Next, we define the “derivative of V” with respect to time along the system trajectory.

Assuming that V is differentiable, this derivative is defined as:

V̇ (z) =
dV (z)

dt
= ∇V, ż = ∇V · h(z).

Definition 4.7. Let V be a positive definite function and continuously differentiable. If its

time derivative along any state trajectory is negative semi-definite, i.e.,

V̇ (z) = ∇Vz · h(z) ≤ 0, ∀z,

then V is said to be a Lyapunov function for the system.

4.1.3 Equilibrium Point Theorems

The relations between Lyapunov functions and the stability of systems are made precise in

a number of theorems in Lyapunov’s direct method. Such theorems usually have local and

global versions. The local versions are concerned with stability properties in the neighbor-

hood of equilibrium point and usually a locally positive definite function. The next theorem

(see Theorem 3.2 in Slotine and Li (1991)) gives a precise relation between Lyapunov function

and stability.
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Theorem 4.8 (Theorem 3.2 in Slotine and Li (1991)). If, around 0, there exists a scalar

function V with continuous derivative such that:

• V is locally positive definite;

• V̇ is locally negative semi-definite.

Then, the equilibrium point 0 is stable. Moreover, if V̇ is locally negative definite, then the

stability is asymptotic;

The above theorem applies to the local analysis of stability. In order to assess the global

asymptotic stability of a system, one might expect naturally that the local conditions in the

above theorem has to be expanded to the whole state space. This is indeed necessary but not

enough. An additional condition on the function V has to be satisfied: V must be coercive.

We give more details in the following theorem (See Theorem 3.3 in Slotine and Li (1991)).

Theorem 4.9 (Theorem 3.3 in Slotine and Li (1991)). Assume that there exists a scalar

function V continuously differentiable such that:

• V is positive definite;

• V̇ is negative definite;

• V (z)→∞ when ||z|| → ∞.

Then, the equilibrium at origin is globally asymptotically stable.

Note that the coercive condition along with the negative definiteness of V̇ , implies, that

given any initial condition z0, the trajectories remain in the bounded region defined by

V (z) ≤ V (z0).

4.1.4 Invariant Set Theorems

It is important to realize that the theorems in Lyapunov analysis are all sufficiency theorems.

If for a particular choice of Lyapunov function candidate V , one of the conditions is not met,

one cannot draw any conclusions on the stability of the system. In this kind of situations,

fortunately, it is still possible to draw conclusions on asymptotic stability, with the help of

the invariant set theorems introduced by La Salle. The central concept in these theorems is

that of invariant set, a generalization of the concept of equilibrium point.

Definition 4.10. Let z(·) be a solution of some ODE. A set G is said to be an invariant set

for this ODE if z(0) ∈ G implies that z(t) ∈ G, ∀t ≥ 0.

For instance, the singleton {z∗} where z∗ is an equilibrium point is an invariant set. Its

domain of attraction is also an invariant set. One other trivial invariant set is the whole

state-space, ∪
z0
{z(t), t > 0, z(0) = z0}. We first discuss the local version of the invariant set

theorems as follows(see Theorem 3.4 of Slotine and Li (1991)).
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Theorem 4.11 (Theorem 3.4 of Slotine and Li (1991)). Consider the following ODE: ż =

h(z) and assume that h is continuous. Let V be a scalar function continuously differentiable

such that:

• For some l > 0, the region Ωl := {z, V (z) < l} is bounded.

• V̇ (z) ≤ 0 for all z ∈ Ωl.

Let R be the set of all points within Ωl where V̇ (z) = 0 and M be the largest invariant set in

R. Then, every solution z(·) originating in Ωl tends to M as t→∞.

Note that La Salle’s invariance theorem is only about convergence and not stability.

The stability will be guaranteed once the condition of positive definiteness of V is satisfied.

However, La Salle’s theorem allow us to draw conclusions about the asymptotic behaviour

of the system when Lyapunov’s direct method cannot be applied.

Corollary 4.12. Let V be a scalar function continuously differentiable and assume that in

a certain neighborhood Ω of the origin:

• V is locally positive definite;

• V̇ is negative semi-definite;

• The largest invariant set in R := {z ∈ Ω, V̇ = 0} is reduced to {0}.

Then, the equilibrium point 0 is asymptotically stable.

The above corollary replaces the negative definiteness condition on V̇ in Lyapunov’s local

asymptotic stability theorem by a negative semi-definiteness condition on V̇ , combined with

a third condition on the trajectories within R.

The above invariant set theorem and its corollary can be easily extended to a global result

by requiring again the radial unboundedness of the scalar function V .

4.2 Closed Formulas for the first example

In this subsection, we give the closed formulas obtained for the optimal risk allocations in

the first example when α > 0. Recall that d = 2 and

l(x1, x2) =
1

1 + α

[
eβx1 + eβx2 + αeβ(x1+x2)

]
− α+ 2

α+ 1

and the loss vector X is taken to follow a centered normal distribution with a covariance

matrix M =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. The optimal risk allocations m∗i are characterized by the

first order conditions given in Theorem 1.6, i.e.
λ∗

1 + α
E
[
eβ(Xi−m∗

i ) + αeβ(X1+X2−m∗
1−m∗

2)
]

= 1, i = 1, 2,

1

1 + α
E
[
eβ(X1−m∗

1) + eβ(X2−m∗
2) + αeβ(X1+X2−m∗

1−m∗
2)
]
− α+ 2

α+ 1
= 0.
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The two first equations implies that E[eβ(X1−m∗
1)] = E[eβ(X2−m∗

2)], which in turn gives that,

βσ2
1

2
−m∗1 =

βσ2
2

2
−m∗2. (4.2)

The third equation gives e
β2σ21

2
−βm∗

1 + e
β2σ22

2
−βm∗

2 + αeρβ
2σ1σ2+β2

2
(σ2

1+σ2
2)−β(m∗

1+m∗
2) = 2 + α.

Thanks to (4.2) and denoting Q = e
β2σ2i

2
−βm∗

i , we get that, αeρβ
2σ1σ2Q2 + 2Q− (2 + α) = 0.

Taking the positive solution of the last equation gives Q =
−1+

√
1+α(α+2)eρβ

2σ1σ2

αeρβ
2σ1σ2

. Now,

denoting by SRC = − log(Q), we obtain that m∗i =
βσ2

i
2 + 1

βSRC.
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