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We present a semi-analytical model to simulate bidirectional reflectance distribution function (BRDF)
spectra of a rough slab layer containing impurities. This model has been optimized for fast computation
in order to analyze hyperspectral data. We designed it for planetary surfaces ices studies but it could be
used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing
inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance gran-
ular material). The inclusions are supposed to be close to spherical, and of any type of other material
than the ice matrix. It can be any type of other ice, mineral or even bubbles, defined by their optical
constants. We suppose a low roughness and we consider the geometrical optics conditions. This model is
thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is
assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high
resolution hyperspectral data analysis. © 2015 Optical Society of America

OCIS codes: (010.5620) Radiative transfer ; (240.6490) Spectroscopy, surface; (110.4234) Multispectral and hyperspectral imaging
; (240.5770) Roughness ; (290.7050) Turbid media ; (080.2468) First-order optics
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1. INTRODUCTION

Hyperspectral imaging has become a major component in plane-
tary surface observation since the past decades. Earth and other
Solar system bodies are now observed in various spectral ranges
at various resolutions and from various heights.

As a photon come across a surface, it interacts in two major
ways. It can be either absorbed or deviated (scattering, diffrac-
tion, refraction). The objective of this radiative transfer model is
to describe the interactions using a realistic surface description.
In such descriptions, the reflectance of a surface is the result
of multiple interactions, with multiple irregular interfaces of
different materials. The exact resolution of the radiative transfer
equations turns out to be a highly difficult and time consuming
problem. This problem has been solved under certain hypoth-
esis : if the characteristic size of the particle is much smaller
than the wavelength, or if it is much bigger. In this study, we
consider the geometrical optics domain, where the particles are
much bigger than the wavelength. For example, in the visible
and near infrared range (400 nm− 5 µm), we suppose that the
average particle size does not fall below 10 µm. This is in general
valid for planetary surfaces [1]. Ray tracing algorithms [2–5] that
simulate the very complex paths of millions of photons through
these surface can show very accurate results, but they depend on
a huge number of parameters and are highly time consuming, se-

riously limiting the the interpretation of extensive hyperspectral
images. We aim at a radiative transfer model that is fast enough
to be able to deal with a vast amount of data, such as planetary
spectro-imaging databases. It is then necessary to make further
simplifying assumptions that enable the formulation of approxi-
mate analytic or semi-analytic solutions to the radiative transfer
problem. A possible simplification is to consider that the radia-
tive properties inside a media can be described statistically only
using local mean properties of scattering and absorption [6–8].
The media is assumed to be homogenous at a mesoscopic scale.
Another classical simplifying assumption considered in such
problem is the two stream approximation [6, 7, 9]. It has been
shown that under certain conditions, it did not affect too much
the solution compared to more accurate studies, but simplifies
greatly the calculations [10, 11]. To describe the reflectance of a
surface, one also have to consider the geometry of illumination
and observation. In our approach, these photometric effects
are modeled by the properties of the interface between the me-
dia and the exterior. These properties of roughness can also be
statistically described, using only one or a few parameters. Y.
Shkuratov [8] and B. Hapke [7] developed analytical radiative
transfer models for granular media, that are able to simulate the
bidirectional reflectance of various granular surfaces.

If the media cannot be described as homogenous, it is possible
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to consider it pieciwise continuus, constituted of homogeneous
strata. It is the case for example in the atmospheres, or stratified
surfaces. A family of models describe the radiative transfer in
stratified media, such as the DISORT algorithm [12]. In these
discrete-ordinate modelisations, each layer is considered ho-
mogenous, and the total reflectance is calculated iteratively, by
adding the contribution of each layer. This method has also been
adapted to the study of the ocean-atmosphere coupled system
with a rough surface [13].

Starting from Hapke model, improving it, and combining it
with a multi-layer method [12], S. Douté has also developed a
model for stratified granular surfaces [14]. Using the same strat-
egy, we developed a semi-analytical radiative transfer model for
a compact layer (solid matrix containing inclusions) overlaying
an optically thick granular layer. This two layers approach does
not require an iterative DISORT-like method, but only adding
coupling formulas. It is founded on three major assumptions
: (i) the geometric optics conditions are observed, (ii) the me-
dia is piecewise continuous and (iii) the inclusions are close to
spherical and homogeneously distributed in the matrix.

Model overview
We decompose the reflectance into two distinct contributions
: specular and diffuse. We chose the Hapke [15] probability
density function of orientations, as it well describes the statistic
distribution of slopes in the approximation of small angles. We
consider a collimated incident radiation, at an incident angle i.
We estimate the specular contribution, considering the geometry
and the surface description. The specular reflection of rough
surfaces have been studied in various cases [15–19]. We use
the same general idea of these methods, describing the rough
surface as constituted of multiple unresolved facets. The specu-
lar contribution will result from the integration of the specular
reflections on the facets, in the solid angles considered (i.e., the
light source and the detector) as described in figure 1a.

Then we estimate the diffuse contribution. The total reflec-
tion coefficient at the first rough interface, that determines the
amount of energy transmitted to the slab, is obtained by inte-
grating specular contributions in every emergent direction, at a
given incidence. We consider that the first transit through the
slab is anisotropic (collimated), and that there is an isotropisa-
tion at the second rough interface (i.e. when the radiation reach
the semi-infinite substrate). For the refraction and the internal
reflection, every following transit is considered isotropic. The
diffuse contribution is obtained using an analytical estimation
of Fresnel coefficients [14, 20], and a simple statistical approach.
The contribution of the semi infinite substrate is estimated using
Hapke model [21]. Finally, we consider that the slab is under a
collimated radiation from the light source, and under a diffuse
radiation from the granular substrate. We compute the resulting
total bidirectional reflectance using adding doubling formulas
(figure 1b).

2. SURFACE ROUGHNESS - FACETS DISTRIBUTION

The first step is to describe the roughness of the surface. We
consider that it is composed of N facets that are not resolved,
with N � 1. These facets’ orientations follow a probability den-
sity a (ϑ, ζ), where ϑ is the zenital angle between the normal to
the facet and the local vertical direction, and ζ is the azimutal
angle. To make our approach as general as possible, we chose to
describe the surface as randomly rough. Such a roughness has
already been widely studied (see for example [15–19, 22] and the
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Fig. 1. Illustration of the radiative transfer in a rough slab.
(a) Radiative transfer for a slab ice layer only. Anisotropic
transit are represented in red, and named with a prime. On the
top left : illustration of the reflections and transmission at the
first interface, used in the calculations of variables S′e and fact,
Θ′. (b) Illustration of the adding coupling. The granular and
slab layers are artificially separated in this figure to help the
understanding of the coupling.
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reference cited in these papers). These studies show that a slope
distribution, with tan ϑ that is close to Gaussian is a good de-
scription of the surface. Such a description combines simplicity
and efficiency reproducing the photometric variations. For the
sake of simplicity and because it is widely used in the literature,
we chose the following probability distribution function [15] :

a (ϑ, ζ) =
1

π2 tan2 θ
exp

(
− tan2 ϑ

π tan2 θ

)
sec2 ϑ sin ϑ (1)

where

tan θ =
2
π

∫ π
2

0
a (ϑ) tan ϑ dϑ (2)

It is supposed that the azimutal distribution is uniform. The
angle θ representing the mean slope angle completely charac-
terizes the facets’ orientations and the surface roughness. This
slopes distribution considers the cases of small θ̄. Practically,
the threshold of validity can be determined depending on the
level of tolerance (see Figures 5 and 6. The expression of a (ϑ, ζ)
could be adapted in the future to extend the study to any type
of terrain, as discussed in section A.
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Fig. 2. The local coordinate system (~x,~y,~z) is centered at the
slab surface, with the~z axis vertically upward and the ~x axis
horizontally toward the sun. ~I and ~E are respectively the inci-
dent and the emergent directions. ~W f is the normal to the facet
A f .

3. SPECULAR REFLECTANCE

In this part we determine the specular contribution to the re-
flectance at the detector. We first establish the relations between
the orientation

(
ϑspec, ζspec

)
of a facet that is in specular condi-

tions and the geometry of observation (i, e, ψ), where i is the in-
cidence angle, e the emergence and ψ the azimuth (see Figure 2).
The total specular contribution is obtained by integrating these

relations, taking into account the geometry variations within
one pixel and the statistics of the slopes a (ϑ, ζ).

A. Specular conditions for one facet
For one facet A f to satisfy the specular reflection conditions,
then its normal ~W f must respect (see figure 2):

~E = −~I + 2〈~I| ~W f 〉 · ~W f (3)

where the operator 〈|〉 represents the scalar product. If we ex-
press Eq. 3 in the (~x,~y,~z) coordinates, :

xe = 2
(
sin i sin ϑspec cos ζspec + cos ϑspec cos i

)
sin ϑspec cos ζspec − sin i

ye = 2
(
sin i sin ϑspec cos ζspec + cos ϑspec cos i

)
sin ϑspec sin ζspec

ze = 2
(
sin i sin ϑspec cos ζspec + cos ϑspec cos i

)
cos ϑspec − cos i

(4)
where xe = sin e cos ψ, ye = sin e sin ψ and ze = cos e are the
coordinates of the emergent vector ~E in the (~x,~y,~z) frame. This
leads to :

tan2 ϑspec =
sin2 i+sin2 e+2 sin i sin e cos ψ

(cos i+cos e)2

cos ζspec = 1
sin i tan ϑspec

(
cos i+cos e

2
(
1 + tan2 ϑspec

)
− cos i

)
sin ζspec =

sin e sin ψ
(cos i+cos e) tan ϑ

(5)

B. Expression of the specular reflectance for one pixel
We consider a pixel of area A formed of N facets of same area
A f , orientated according the probability density a (ϑ, ζ), as de-
tailed in section 2, with N � 1. The number of facets satisfy-
ing the specular reflection conditions defined in section A will
be
∫∫
HC N a

(
ϑspec, ζspec

)
d(ϑ, ζ), where HC is the set of values

(ϑ, ζ) satisfying 5 within the range of observation geometries.
Indeed, there is a range of different geometry of observation
within one instruments’ pixel. Let χc be the emergence varia-
tions within a pixel. The facet orientation satisfying the specular
conditions for this geometry is

(
ϑspec, ζspec

)
given by Eq. 5. At

the incidence i, there is a range of orientations that satisfy specu-
lar condition within a pixel that is centered at

(
ϑspec, ζspec

)
and

has the size δ (ϑ, ζ). δ (ϑ, ζ) is determined using a function

gi :

 e

ψ

 7→
g1 (e, ψ) = ϑ

g2 (e, ψ) = ζ


that transforms (e, ψ) into (ϑ, ζ), for the incident angle i. Not
every facet that satisfy these conditions will send energy to
the captor. Indeed, the roughness of the surface introduces a
shadowing of the scene : some facets will not receive incident
light, or will not be visible by the captor, or both. A shadowing
factor S′ must be introduced at this point. Let Nspec be the
number of facets that satisfy both the geometrical condition
defined in section A and the visibility condition :

Nspec =
∫∫
HC

N a
(
ϑspec, ζspec

)
S′
(
i, e, ψ, θ

)
d(ϑ, ζ) (6)

with S′
(
i, e, ψ, θ

)
a shadowing factor that depends on the geom-

etry of observation and the roughness of the surface [15]. Each
one of these Nspec facets receives an incident power Pi and send
back a reflected power Pr :

Pi = FA f cos
(

α′

2

)
(7)
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Pr = Pi r f

(
α′

2

)
(8)

F being the incident power flux (e.g. : Solar flux) in the radi-

ation direction, A f cos
(

α′

2

)
the projection of the facet in the

plane orthogonal to the incident radiation, and r f

(
α′

2

)
the

Fresnel reflection coefficient in energy at the phase angle α′,
r f = R2

⊥ (α) + R2
‖ (α). As α′ does not depend on the facet ori-

entations, all these specular reflections will result in a specular
power Pspec = NspecPr, thus :

Pspec
(
i, e, ψ, θ

)
=
∫∫
HC

NFA f cos
(

α′

2

)
r f

(
α′

2

)
a
(
ϑspec, ζspec

)
S′
(
i, e, ψ, θ

)
d(ϑ, ζ) (9)

The reflectance factor R is the ratio between the bidirectional
reflectance r of the surface and the one rL of a perfectly lam-
bertian surface , thus R = π r

cos i . The bidirectional reflectance
r is the ratio between the radiance L of the surface and the
collimated incident power, perpendicularly to the incident di-
rection. Thus r = L

F , with L = P
ΩA cos e , A being the illuminated

surface and Ωc the solid angle subtended by a pixel. Finally,
Rspec = π

rspec
cos i = π

Lspec
F cos i =π

Pspec
Ωc AF cos i cos e , thus :

Rspec
(
i, e, ψ, θ

)
=
∫∫
HC

π
NA f cos

(
α′

2

)
Ωc A cos i cos e

S′
(
i, e, ψ, θ

)
r f

(
α′

2

)
a
(
ϑspec, ζspec

)
d(ϑ, ζ) (10)

where Ωc is the solid angle subtended by an instrument’s pixel.
A is the sum of the horizontal projection of all the facets : A =
NA f 〈cos ϑ〉. The term 〈cos ϑ〉 is included in the shadowing
function S

(
i, e, ψ, θ

)
described by B. Hapke [15]. Thus we can

simplify Eq. 10 as

Rspec
(
i, e, ψ, θ

)
=
∫∫
HC

π
cos

(
α′

2

)
ΩC cos i cos e

S
(
i, e, ψ, θ

)
r f

(
α′

2

)
a
(
ϑspec, ζspec

)
d(ϑ, ζ) (11)

d(ϑ, ζ) is derived from the integration angles e and ψ that are
the emergence and azimuth angles. There is a bijection between
ΩC andHC because 5 admits a unique solution for every (e, ψ).
Considering that the incidence angle i is a constant, we can
rigorously express Ri

spec as :

Ri
spec (i, e, ψ) =

π

Ωc

∫∫
Ωc

cos
(

α′

2

)
cos i cos e

S
(
i, e, ψ, θ

)
r f

(
α′

2

)
a
(
ϑspec, ζspec

) ∣∣∣det Jgi
(e, ψ)

∣∣∣ de dψ (12)

∣∣∣det Jge (e, ψ)
∣∣∣ is the Jacobian of the function gi. This expres-

sion 12 assumes that the incidence i is a constant. In reality, the
light source is almost never completely collimated, but ranges
inside a solid angle (e.g. : the Solar disk). Let ΩS be the solid

angle of the source. Then the total specular contribution within
one pixel will be :

Rspec (i, e, ψ) =
1

ΩS

∫∫
ΩS

Ri
spec (i, e, ψ)

∣∣∣det Jge
(i, ψ)

∣∣∣ sin i di dψ

(13)
where

∣∣∣det Jge (i, ψ)
∣∣∣ is the Jacobian of the function

ge :

 i

ψ

 7→
g1 (i, ψ) = ϑ

g2 (i, ψ) = ζ


that transforms (i, ψ) into (ϑ, ζ), for the given emergence angle
e.

4. DIFFUSE REFLECTANCE

We consider a two layers model, with a slab overlaying a semi-
infinite granular substrate. The collimated radiation from the
sun is transmitted to the slab with an external reflection coeffi-
cient S′e (the prime here represent the anisotropy). We suppose
an isotropisation at the second interface. The slab is modeled
as a compact isotropic and homogeneous matrix. It contains
inclusions that are close to spherical and not identical to the ma-
trix. The inclusions are the main contributors to the scattering
of radiation in the layer. They are distributed homogeneously
in the matrix. The determination of the Fresnel coefficients at
the interface matrix/inclusion or inclusion/matrix is a key to
estimate the transmission and reflection factors of the layer. An
internal and external reflection coefficient Sik and Sek for each
type of inclusion k must be defined.

In this part we describe the radiative transfer in the media.
First we will characterize the transmission of light into the slab.
By energy conservation this is equivalent to calculating the to-
tal reflected power which, normalized by the incident energy,
stands for the reflexion coefficient (section A). Then we will de-
scribe the scattering of light by the inclusion during the transfer
through the slab. This requires the calculation of the external
and internal reflection coefficients of these inclusions (section B).
Once the basic optical properties of the inclusions are known,
we can consider fluxes of energy within the whole slab that will
be governed by the radiative properties of the slab (section E).
Solving this radiative transfer problem within the slab with an
upper and lower optical interfaces will give the overall reflec-
tion and transmission factors of the slab (section F). Finally the
radiative interaction of the two layers (substrate and slab) are
considered and solved by adding doubling leading to the final
result (section G).

A. Reflection coefficients for the slab
Anisotropic case Let S′e be the external reflection coefficient in
a collimated case (interface atmosphere/ice matrix). It corre-
sponds to the ratio between the incident power Pi and the total
reflected power, in every direction Ptot

r . The total reflected power
can be estimated integrating the specular contributions for every
emerging direction, at the given incidence angle i.

S′e =

∫∫
2π dPspec

AF cos i
(14)

dPspec being the specular contribution in a given geometry. Us-
ing Eq. 9, the expression of S′e becomes

S′e =
∫∫
H

cos
(

α′

2

)
r f

(
α′

2

)
a
(
ϑspec, ζspec

)
S
(
i, e, ψ, θ

)
cos i

d(ϑ, ζ)

(15)
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where H is the set of values taken by ϑ and ζ throughout the
integration. Exactly like in section B, d(ϑ, ζ) is derived from the
integration angles e and ψ that are the emergence and azimuth
angles. There is now a bijection between B andH, B being the
superior hemisphere that is the domain of variation of e and
ψ. Considering that the incidence angle i is a constant, we can
express S′e as :

S′e =
∫ π

2

0

∫ 2π

0

cos
(

α′

2

)
r f

(
α′

2

)
a
(
ϑspec, ζspec

)
S
(
i, e, ψ, θ

)
cos i

×∣∣∣det Jgi
(e, ψ)

∣∣∣ de dψ (16)

where
∣∣det Jg (e, ψ)

∣∣ is the Jacobian of the function

gi :

 e

ψ

 7→
g1 (e, ψ) = ϑ

g2 (e, ψ) = ζ


that transforms (e, ψ) into (ϑ, ζ), for the incident angle i.

The internal reflection coefficient S′i in a collimated case at
the interface ice matrix/atmosphere is not considered as we
suppose an isotropisation of the radiation at the second interface
(ice/granular regolith).

Isotropic case In the isotropic case, the internal reflection co-
efficient Si is obtained integrating the Fresnel equations at the
surface for the all geometries:

Si =

π
2∫

0

[
R2
⊥ (α) + R2

‖ (α)
]

cos α dα (17)

where R⊥ (α) and R‖ (α) are Fresnel reflectivites for perpendic-
ular and parallel polarization with respects to the propagation
plan, for an incidence angle α and will be detailed later.

The external reflection coefficient Se is estimated the same
way :

Se =

π
2∫

0

[
R2
⊥ (α) + R2

‖ (α)
]

cos α dα (18)

B. Reflection coefficients for the inclusions
In the case of a spherical inclusion of the type k, the internal
reflection coefficient Sik is obtained in the usual fashion inte-
grating the Fresnel equations (see [21] Hapke, 2012, sect. 5.4.4,
pp.78-95)

Sik =

π
2∫

0

[
R2
⊥ (α) + R2

‖ (α)
]

cos α sin α dα (19)

For the estimation of the external reflection coefficient Sek,
a differential absorption factor is taken into account. Indeed,
as we deal with inclusions in an absorbing matrix, the parallel
rays we consider in the integration touch the inclusion after
different optic paths. For a ray that touches the inclusion with
an incidence α, the differential path length in the matrix is ν =
ρk cos α, where ρk is the radius of the spherical inclusion. Thus
the differential absorption factor is e−amρk(1−cos α), where am is
the absorption coefficient of the matrix. Writing the matrix’s
optical index nm + i km, the dispersion relation gives am = 4π

λ km.

Finally, the external reflection coefficient Sek at the interface
matrix/inclusion is :

Sek =

π
2∫

0

[
R2
⊥ (α) + R2

‖ (α)
]

e−amρ(1−cos α) cos α sin α dα (20)

This differential absorption effect is already taken into account
in the expression of R⊥ (α) and R‖ (α) in the case of the internal
reflection at the interface inclusion/matrix.

C. Fresnel coefficients
The Fresnel reflectivities for perpendicular and parallel polar-
ization with respects to the propagation plane, for an incidence
angle α, R⊥ (α) and R‖ (α), are derived from Snell’s law (see [21]
Hapke, 2012, sect. 4.3, pp.46-60) :

R⊥ (α) =
(cos α− G1)

2 + G2
2

(cos α + G1)
2 + G2

2

(21)

R‖ (α) =
[(

n2 − k2) cos α− G1
]2

+ [2nk cos α− G2]
2

[(n2 − k2) cos α + G1]
2 + [2nk cos α + G2]

2 (22)

using n = n1n2+k1k2
n2

1+k2
1

and k = n1k2−n2k1
n2

1+k2
1

, with n1 + ik1 and n2 + ik2

the complex refractive indexes of the media considered.

G2
1 =

1
2

[[
n2 − k2 − sin2 α

]
+

[(
n2 − k2 − sin2 α

)2
+ 4n2k2

] 1
2
]

(23)

G2
2 =

1
2

[
−
[
n2 − k2 − sin2 α

]
+

[(
n2 − k2 − sin2 α

)2
+ 4n2k2

] 1
2
]

(24)

D. Integration
S. Chandrasekhar showed (see Chandrasekhar, 1960, sect. 22,
pp. 61-69 [20]) that many radiative transfer integration can be
approximated using the Gauss quadrature formulae. If f (µ) is
a polynomial of order 2m− 1, then

1∫
−1

f (µ) dµ =
m

∑
j=1

cj f
(

µj

)
(25)

where µ1, ..., µm are the zeros of the Legendre polynomials
P1, ..., Pm of order 1, ..., m, and c1, ..., cj are the associated Christof-
fel numbers :

cj =
1

P′m
(

µj

) 1∫
−1

Pm (µ)

µ− µj
dµ (26)

Equation 25 is exact if f (µ) is a polynomial of order 2m − 1.
When f (µ) is not a polynomial, then the quadrature formulae
gives an approximation that converges to the exact value when
m → ∞. The order m of the approximation directly governs
its quality. We estimate analytically the internal and external
reflection coefficients in the isotropic case Si an Se using the
roots of the 32th order Legendre’s polynomial and the associ-
ated Christoffel’s numbers as detailed in [23]. We use a simple
change of variable to transform the integration interval from
[0, π

2 ] into [−1, 1]. All the integrations are performed using the
Gauss quadrature formulae, except S′e and Rspec. In these cases,
the integration being a double one, we cannot use the Gauss
quadrature. We chose after numerical tests an adaptive grid and
the rectangle method.
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E. Radiative properties of a slab containing inclusions
We suppose an homogeneous distribution of isotropic inclu-
sions inside the slab. The inclusions type is noted by k, with
Ni different types, defined by different geometrical and optical
properties.

E.1. Proportions of inclusions

We define the slab compactness γc as the volume of the ice
matrix per unit of volume. We also defineN the total number of
inclusions per unit of volume, and Nk the number of inclusions
of the type k per unit of volume. The proportion of each type of
inclusion is Pk = Nk

N . Immediate geometrical calculations give :

N =
3 (γc − 1)

4π ∑Ni
k=1 Pkρk

(27)

E.2. Cross sections

We suppose close to spherical inclusions. The scattering effi-
ciency for a sphere has been described by B. Hapke ([21] Hapke,
2012, sect. 5.6, pp.95-99, eq 5.52a) in his equivalent slab model.
For an inclusion of the type k :

Qsk = Sek + (1− Sek)
(1− Sik)

1− SikΘik
Θik (28)

where Sik and Sek are respectively the internal and external re-
flection coefficients of an inclusion expressed in equations 19
and 20, and Θik is the internal transmission coefficient of and
inclusion. In the two stream approximation, and assuming the
isotropy of the phase function of the internal scatterers in an
inclusion ([21] Hapke, 2012, sect. 6.5, pp.122-144, Eq. 6.26) the
expression of Θik can be reduced simply to :

Θik =
rik + exp

(
−ρk

√
aik (aik + sik)

)
1 + rik exp

(
−ρk

√
aik (aik + sik)

) (29)

aik being a type k inclusion’s absorption coefficient, sik its scat-
tering coefficient, and

rik =
1−

√
aik

aik+sik

1 +
√

aik
aik+sik

(30)

The scattering cross section σsk for one inclusion is

σsk = σkQsk (31)

where σk is the geometrical cross section : σk = πρ2
k . Let 〈σs〉 be

the mean cross section of the inclusions :

〈σs〉 =
Ni

∑
k=1

Pkσsk (32)

We do the approximation of geometric optics, so the extinction
cross section σek correspond to the geometrical cross section σk.

E.3. Single scattering albedo and optical thickness

The single scattering albedo ω of an absorbing and scattering ob-
ject is defined as the ratio of the total amount of power scattered
to the total amount of power removed to the wave (absorbed or
scattered). We propose a simple statistical approach to express
the single scattering albedo of a unit of volume of slab contain-
ing inclusions. We use the same method as [21] Hapke, 2012, sect.
7.4, pp.158-169, but we modify the medium description. After

a travel of length dν, the probability p1 for a photon to meet an
inclusion and be scattered is:

p1 = 1− exp
(
−N 〈σs〉

ln γc

γc − 1
dν

)
(33)

The probability p2 that this photon has not been absorbed by the
matrix before is:

p2 = exp (−amdν) (34)

Thus the probability ps for a photon to be only scattered per unit
of length is:

ps =
1

dν
exp (−amdν)

[
1− exp

(
−N 〈σs〉

ln γc

γc − 1
dν

)]
(35)

that becomes for an infinitesimal length dν:

ps = N 〈σs〉
ln γc

γc − 1
+ ◦ (1) (36)

equally, the probability p3 for a photon to be absorbed or scat-
tered by an inclusion throughout dν is:

p3 = exp (−amdν)

[
1− exp

(
−N 〈σe〉

ln γc

γc − 1
dν

)]
(37)

and the probability p4 to be absorbed by the matrix during dν is:

p4 = 1− exp (−amdν) (38)

so the probability of extinction pe per unit of length is:

pe =
1

dν

[
1− exp

(
−
(
N 〈σe〉

ln γc

γc − 1
+ am

)
dν

)]
(39)

when dν is close to 0, it becomes:

pe = N 〈σe〉
ln γc

γc − 1
+ am + ◦ (1) (40)

Finally we obtain the single scattering albedo of a slab containing
inclusions dividing ps by pe:

ω =
N 〈σs〉

N 〈σe〉+ γc−1
ln γc

am
(41)

Equation 39 gives the expression of the optical depth τ of a slab
with inclusion :

τ =

(
N 〈σe〉

ln γc

γc − 1
+ am

)
ν (42)

F. Diffuse reflectance and transmission factors of the contam-
inated slab

F.1. Diffuse reflectance of a slab under collimated illumination

In this section, we suppose that the slab is under a collimated
radiation. As in section 2, we suppose that the surface is con-
stituted of N unresolved facets that have a slope distribution
given by the probability density function a (ϑ, ζ). Each facet
will receive an illumination at an incidence i f depending on its
orientation. We consider in that case that the first transit in the
slab is collimated and will transmit rays of light into the slab at
different inclinations. Our goal at this point is to determine the
mean transmission path D′ trough a slab of a given roughness
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θ̄ and a given thickness D. For a facet with the orientation de-
fined by (ϑ, ζ) using Snell-Descartes law gives D′ = fact(ϑ, ζ)D,
with:

fact (ϑ, ζ) =
1∣∣∣− 1

nm
cos i + cos ϑ

(
1

nm
cos i f −

√
1− 1

n2
m

(
1− cos2 i f

))∣∣∣
(43)

i f being the incidence angle on the facet (i.e. the angle be-
tween the facet’s normal and the incident radiation). Using
basic trigonometric relations gives [21]:

cos i f = sin i sin ϑ cos ζ + cos ϑ cos i (44)

We consider that only the first transit in the slab is anisotropic.
The internal absorption factor for the first anisotropic transit
Θ′ will depend on the mean length L′ of this transit, with
D′ =factD , and

fact =
2π∫
0

π
2∫

0

fact (ϑ, ζ) a (ϑ, ζ) dϑ dζ (45)

thus

fact = 1
π2 tan θ̄

×

2π∫
0

π
2∫

0

e−
tan2 ϑ

π tan2 θ̄ sec2 ϑ sin ϑ∣∣∣− 1
nm

cos i + cos ϑ
(

1
nm

cos i f −
√

1− 1
n2

m

(
1− cos2 i f

))∣∣∣ dϑ dζ

(46)

and

Θ′ =
rm + exp

(
−D′

√
am (am + ps)

)
1 + rm exp

(
−D′

√
am (am + ps)

) (47)

where ps is given by Eq. 36, rm = 1−
√

1−ω
1+
√

1−ω
, and ω is given by

Eq. 41.
The internal absorption factor for an isotropic transit is ([21],

Hapke, 2012 Eq. 6.26)

Θ =
rm + exp

(
−2D

√
am (am + s)

)
1 + rm exp

(
−2D

√
am (am + s)

) (48)

Every following transit is considered isotropic. As illustrated
on figure 1, we can express the reflectance of the slab under a
collimated radiation R′′0 as

R′′0 = S′e +
(
1− S′e

)
Θ′SiΘ (1− Si)

[
1 +

∞

∑
n=1

(ΘSi)
2

]
(49)

Si being the internal reflection coefficient of the slab. The term S′e
represents the integration over the sky of the specular reflectance,
and the other represents the diffuse reflectance. Thus we can
express the diffuse reflectance of the slab as

R′0 =
(1− S′e)Θ′SiΘ (1− Si)

1− (ΘSi)
2 (50)

The diffuse transmission of the slab under a collimated radiation
T′0 is obtained the same way :

T′0 =
Θ′ (1− S′e) (1− Si)

1− (ΘSi)
2 (51)

F.2. Diffuse reflectance of a slab under isotropic illumination

In this section we suppose that the slab is under an isotropic
radiation. Indeed, at the lower interface, it is illuminated isotrop-
ically from below by the substratum. R0 and T0 have their usual
expressions in this case :

R0 = Se +
(1− Se) SiΘ2 (1− Si)

1− (ΘSi)
2 (52)

T0 =
Θ (1− Se) (1− Si)

1− (ΘSi)
2 (53)

G. Bidirectional reflectance of a contaminated slab overlaying
a semi-infinite granular media

In realistic conditions, a slab will receive a collimated radiation
from the solar disk, and a diffuse radiation from the granular
medium underneath. There is a coupling between the two layers,
illustrated on Figure 1. Using adding doubling formulas [14],
we can express the total diffuse reflectance of the slab over a
granular substrate as :

RDi f f = R′0 + T′0T0rs

∞

∑
n=0

(R0rs)
n

= R′0 +
T′0T0rs

1− R0rs
(54)

where rs = 1−
√

1−ωs
1+
√

1−ωs
is the lambertian reflectance of the sub-

strate [14]. ωs is the single scattering albedo of the granular
substrate. The last step is to simulate the diffuse contribution
for one measurement. The total reflectance (BRDF) of the sur-
face measured by the instrument is the sum of the specular and
diffuse contributions :

Rtot = Rspec + RDi f f (55)

where Rspec is determined by Eq. 13 and RDi f f by Eq. 54.

5. DISCUSSION

A. Energy conservation

At the first interface We checked the conservation of the energy
at different points in the model. We first checked it at the first
interface, as it contains a complex numerical integration. To test
the conservation of the energy at the first interface, we force the
value of the Fresnel’s reflection coefficient r f in Eq. 16 to one.
Thus, all the energy is supposed to be sent back, and we have to
obtain Q = 1 to have the energy conserved, where

Q =
∫ π

2

0

∫ 2π

0

cos
(

α′
2

)
a (ϑs, ζs) S

(
i, e, ψ, θ

)
cos i

∣∣∣det Jgi
(e, ψ)

∣∣∣ de dψ

(56)
that is Eq. 16 where the Fresnel reflection coefficient is put to
one. Figure 3 shows the value Q as a function of the incidence
angle. Different roughness parameters θ̄ were tested, ranging
from θ̄ = 0.01° to θ̄ = 45°. Only values ranging from θ̄ = 0.15°
to θ̄ = 3.5° are displayed on Figure 3. This test illustrates the
dependance of the validity of the model on both the incidence
angle and the roughness parameter.



Research Article Applied Optics 8

Fig. 3. Q as a function on the incidence angle i, when forcing
the value of the Fresnel’s reflection coefficient r f in Eq. 16 to
one. A value of one means that the conservation of energy is
respected. This figure shows that in the cases of a roughness
parameter ranging from θ̄ = 0.15° to θ̄ = 3.5°, the energy is
fairly well conserved for incidences below 85°, and a rough-
ness parameter below θ̄ = 2.5°. Thus, this model will not be
applicable to very high incidences values, and roughness over
θ̄ = 2.5°

For the complete model To test the conservation of the energy
for the whole model, we first have to set the complex value of
the optical constant of the slab and the granular substrate to 0, to
make the surface non absorbent. Then we integrate the energy
sent back toward the sky. This energy must equal the incoming
energy. To test this practically in the model, we set the sensor’s
angular aperture to a value that is equal to the integration step.

Figure 4 show the value of Q = 2
π

∫ π
0

∫ π
2

0 Rtot cos e sin e de dψ.
Practically, the energy is conserved if this integral equals 1. In-
deed, the energy conservation gives

∫
sky

LA cos e
FA cos i

dΩ = 1 (57)

where L is the surface radiance (W.m−2.sr−1) A is the surface of
a pixel , F is the incident flux in the incident direction (W.m−2)
and i and e are the incidence and emergence angles. The relation
R = π L

F cos i between the reflectance factor and the radiance
brings

1
π

2π∫
0

π
2∫

0

Rtot cos e sin e de dψ = 1 (58)

The symmetry of the model in azimuth leads to the quantity Q
displayed in Figure 4. This figure shows that it is mostly the
roughness parameter θ̄ and the incidence angle i that control the
validity of the model.

Figure 5 shows the error in the energy conservation in percent,
as a function of the roughness parameter θ̄ and the incidence i.
This gives the range of validity of the model according to a given
tolerance. Roughness parameters larger than θ̄ = 11°, always
exhibiting error larger than 10 %, are not represented. For small
slab real optical index (i.e. close to one), these errors decrease.

Fig. 4. Q as a function on the incidence angle i, where Er is
the energy sent back from the surface, integrated over the
hemisphere, and Ei the incident energy.

Fig. 5. Error in the energy conservation as a function of θ̄ and
i.
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A.1. Slope distribution

As mentioned in section 2, this model is limited to the case of
small θ̄. Figure 5 gives a quantification of that limitation. This
is mostly due to the fact that the probability density function
a (ϑ, ζ) that defines the repartition of slopes only makes sense if∫∫

(ϑ,ζ) a (ϑ, ζ)dϑ dζ = 1, which means that

1
2π

∫ π
2

0

a (ϑ)dϑ = 1 (59)

or that the value of I =
∫ π

2

0

2
π tan2 θ

exp
(
− tan2 ϑ

π tan2 θ

)
sec2 ϑ sin ϑ dϑ

must be equal to 1. Figure 6 shows the value of I versus
the roughness parameter θ̄. The function a (ϑ, ζ) only makes
sense as a probability function if I = 1. For values of rough-
ness larger than θ̄ = 2°, I begins to fall to values below one.
In a further development, we could extend the applicability
of the model by defining a new probability density function
aNorm (ϑ, ζ), that would be the normalization of the function
a (ϑ, ζ) : aNorm (ϑ, ζ) = 1

I(θ̄)
a
(
θ̄,ϑ, ζ

)
.

Fig. 6. I versus θ̄. For values of θ̄ larger than θ̄ = 2°, the
probability density function for the slopes begins to drop. At
θ̄ = 10°, I = 0.957.

B. Behavior of the model
B.1. Specular reflection

This model is built to simulate observations. Thus, the specular
spot characteristics will depend not only on the illumination
divergence and the geometry, but also on the observation de-
vice. This model is designed to be adaptable to both conditions.
Figure 7 shows a zoom on the specular spot for a water ice slab
at 1 µm with a roughness parameter θ̄ = 0.5°, illuminated at an
incidence angle i = 50° illuminated with different light sources,
and observed with two distinct detectors. In the first case (in Fig-
ure 7a), the surface is illuminated with a light source that has an
aperture of 0.4° and observed with a sensor that has an aperture
of 4.2°. It represents the conditions of a laboratory measurement
with the instrument described in [24]. In the second case (in Fig-
ure 7b), the surface is illuminated with a light source that has an
aperture of 0.2° and observed with a sensor that has an aperture
of 6.92.10−2°. It represents the conditions of a measure with the
OMEGA imaging spectrometer instrument orbiting the planet
Mars [25]. Both cases represent actual measurement situations.

As shown on Figure 7, both the amplitude and the shape of the
specular spot depend on the characteristics of the illumination.

B.2. Influence of the parameters

To give a feeling on how the model behaves according to the
different parameters, we chose a set of parameters, and plotted
the dependence of the reflectance to the variation of one parame-
ter around this first set. We chose arbitrary optical constants for
the matrix and inclusions. We chose for the matrix n = 1.3 and
k = 1.10−3, that are approximately the values for water ice at
270 K, and at the 1 µm wavelength. We selected as our standard
set of parameter a 10 mm thick slab layer containing 1000 ppmv
of 100 µm wide inclusions, overlaying a semi infinite granular
layer of the same nature that the matrix. We tested the behavior
of the model for various types of inclusions. We describe two
types of behavior. The first type is when the absorption coef-
ficient of the inclusions is smaller than the one of the matrix.
This includes the particular case of a matrix contaminated with
bubbles. It is illustrated in the figure 8, 10 and 9 with the green
curves. In this case, the real part n of the optical index of the
inclusions has very little influence. The second case is when the
absorption in the inclusion is bigger than in the matrix (blue and
red curves). In this case, the real optical index of the inclusions
plays an important role.

Figure 8 shows the dependence of the reflectance on the thick-
ness of the slab layer in different cases. In the case of an uncon-
taminated slab, the reflectance approaches 0 when the thickness
increases. On the contrary, the reflectance of a slab containing
inclusions will saturate at a value depending on the properties
of the impurities. In the first case of a low absorption in the
inclusions (green curve) the reflectance is higher than the re-
flectance of an uncontaminated layer whatever thickness the
slab has. On the other case of high absorption in the inclusions,
when the slab layer is thin, then the reflectance is lower than
one of an uncontaminated slab, but as thickness increases, the
value saturates, due to the scattering of light by the inclusions.
This value gives an idea of the penetration depth of the light
into a contaminated slab layer (i.e. the depth from which the
layer becomes optically thick). Figure 9 show the dependence
of the reflectance on the radius of inclusions in the slab layer.
This illustrates the scattering properties of the inclusions. The
reflectance factor of an uncontaminated at this geometry is ap-
proximately R = 0.372. In this figure, the volumetric proportion
of inclusions in the matrix is held constant, so as the grain size
increases, the number of inclusions per unit of volume decreases.
Thus the scattering power decreases as well as a function of the
grain size. In the case of inclusions with higher absorption than
the matrix, at some point, the grain size reaches a value where
the absorption in the inclusions becomes more efficient than the
scattering effect, and the reflectance falls below the reference
value of the uncontaminated slab (around 10 µm for the blue
curve and 20 µm for the red one). Then, the decreasing proba-
bility of encountering an inclusion when grain sizes become too
high make the reflectance approach the value of the uncontami-
nated slab. Indeed, when the grain size of the inclusion equals
the thickness of the layer (at the extreme right of the plot), the
probability of encountering one, knowing the the volumetric
proportion is 1000 ppmv becomes very low and the influence of
the inclusions become negligible.

Figure 10 shows the evolution of the reflectance in different
cases where scattering or absorption dominates. On Figure 10a,
the absorption is the dominant effect. In the case of inclusions
with a higher absorption coefficient than the matrix, this makes
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(a)

(b)

Fig. 7. Zoom on the specular spot for a water ice slab at 1 µm
with a roughness parameter θ̄ = 0.5°, (a) illuminated at an
incidence angle i = 50° with a light source that has an aperture
of 0.4°, and observed with a detector that has an aperture of
4.2°, such as in the conditions of a laboratory measurement
with the instrument described in [24], and (b) illuminated at
an incidence angle i = 50° with a light source that has an aper-
ture of 0.2°, and observed with a detector that has an aperture
of 6.92.10−2°, such as in the conditions of a measure with the
high resolution spectro imaging imaging instrument OMEGA
orbiting Mars described in [25].

Fig. 8. Reflectance factor of a slab of water ice containing
various types of inclusions, at a wavelength λ = 1 µm, as a
function of the thickness of the slab layer, other parameters
fixed. Black curve is the uncontaminated reference, and col-
ored curves represent different optical indexes of inclusions.

Fig. 9. Reflectance factor of a slab of water ice containing
various types of inclusions, at a wavelength λ = 1 µm, as a
function of the grain size of the inclusions, other parameters
fixed. Colored curves represent different optical indexes of
inclusions. When the absorption coefficient is higher in the
inclusions than in the matrix (blue and red curves), there is a
competition between scattering and absorption. The dominant
effect depend on the grain size. The reflectance factor of an
uncontaminated at this geometry is approximately R = 0.372.
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(a)

(b)

Fig. 10. Reflectance factor of a slab of water ice containing
various types of inclusions, at a wavelength λ = 1 µm, as
a function of the volumetric proportion of inclusions, other
parameters fixed. Colored curves represent different optical
indexes of inclusions. (a) absorption is the dominant effect
for blue and red curves. (b) scattering is the dominant effect
for red curve, and scattering and absorption are of the same
order of magnitude (blue curve). The reflectance factor of an
uncontaminated at this geometry is approximately R = 0.372.

Fig. 11. Reflectance factor of a 20 mm thick slab of water ice
containing 1000 ppm of 100 µm wide inclusions as a function
of the roughness parameter θ̄, other parameters fixed. The
optical indexes of the inclusions are n = 1.1 and k = 1.10−3.
The reflectance decrease as the roughness increase. This is
due to the fact that a bigger roughness means more facets in
specular conditions and thus less energy inserted into the
system. The roughness parameter have a smaller impact on
the diffuse reflectance than the other parameters of the model.

the reflectance drop when the proportion of inclusions increases
(blue and red curves). For the green curve, both absorption and
scattering contribute in increasing the reflectance of the slab,
thus it increases with the proportion of inclusions. Figure 10b
shows more complexity. It is the same as Figure 10a except that
the grain size of the inclusions is 10 µm instead of 100 µm. The
green curve still represents the case of a lower absorption in the
inclusion. Absorption and diffusion both tend to increase the
reflectance, thus it increases with the proportion of inclusions.
The red curve represents a case of higher absorption in the in-
clusions, when the scattering contribution is dominant. In this
case, as diffusion limits the penetration of light into the layer, the
reflectance increases with the proportion of impurities. The blue
curve represents the limit case where diffusion and absorption
contributions are of the same order of magnitude, leading to
strong non-linear behavior.

Figure 11 shows the dependence of the reflectance of a 20 mm
thick slab of water ice containing 1000 ppm of 100 µm wide inclu-
sions on the roughness parameter θ̄. The optical indexes of the
inclusions are n = 1.1 and k = 1.10−9. The diffuse reflectance of
a slab decreases as the roughness increases. A bigger roughness
means a bigger diversity in the slope distribution at the surface.
This leads to an increased number of facets satisfying the specu-
lar reflection conditions defined in section A. Finally, less energy
is inserted into the surface, and the diffuse reflectance is smaller.
The dependance of the diffuse reflectance on the roughness if
smaller compared to the dependance on the other parameters.
This can be attributed to the relatively small range of values
of θ̄. On the contrary the roughness parameter θ̄ has a strong
influence on the specular contribution.
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6. CONCLUSIONS

We developed a radiative transfer model to simulate the bidi-
rectional reflectance of a rough slab with inclusions. Typical
calculation time is 1.10−2 s per spectrum, considering 10000
wavelengths. Nevertheless, it can vary greatly depending on the
sets of parameters desired.

Most of the constituting elements of this model have already
been numerically [14] or experimentally validated [21] but we
adapted them to build a new model. In this study we tested
numerically the conservation of energy and characterized the
domain of validity of the model. We conducted sensibility stud-
ies in the case of a matrix containing only one type of inclusion.
This shows the complexity and non linearity of the model with
respect to its parameters. The sensibility study in the case of
several types of inclusions were not conducted because of the
great number of parameters. The experimental validation will
be conducted in a following paper.

This model is designed to analyze massive hyperspectral
data in the planetary science domain. In our favorite applica-
tion, it calculates the radiative transfer in a contaminated ice
slab overlaying an optically thick granular medium. The con-
tamination in the slab can be of any type : ice, minerals or even
bubbles. The matrix can be constituted as well of any ice. Thus
our model can be applied on Earth with water ice, but also on
Mars polar region covered with CO2 ice [26], on icy bodies, such
as Jupiter’s moon Europa (water ice), Neptune’s moon Triton
or dwarf planet Pluto (N2 ice). Other applications in biology or
industry are possible, as soon as the optical constants of each
material are known.

We considered in all the calculations every wavelength in-
dependently. Thus, a spectrum in any spectral range can be
built by computing every wavelength contribution at very high
spectral resolution. The final objective is the comparison of the
simulation to actual data, for analysis purposes. This makes this
approach suitable for any spectroscopic measurement of slabs
(made of ice or other material), overlaying optically thick mate-
rial (granular or other material), from laboratory to spatial probe
measurement. For the planetary science case, these results will
be down-sampled at the instrument’s wavelength resolution,
using its PSFs.

One major hypothesis in this work is that we suppose an
isotropic behavior of the inclusions. In the future, we plan to add
the particles phase function to improve this point. We also plan
to normalize the probability distribution function describing
the roughness of the surface, to extend the applicability of the
model.
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NOTATIONS

α′ phase angle (°)

γc compactness of the matrix : volume of matrix per
unit of volume

ζ slope azimuth angle (°)

ζspec slope azimuth angle of a facet in specular condi-
tions (°)

θ̄ roughness parameter (°)

ϑ slope angle (°)

ϑspec slope angle of a facet in specular conditions(°)

Θik transmission factor of a type k inclusion

Θ transmission factor of the slab containing inclusion
under isotropic illumination

Θ′ transmission factor of the slab containing inclusion
under collimated illumination

ν optical path (m)

ρk radius of a type k inclusion (m)

σk geometrical cross section for type k inclusions (m2)

σek extinction cross section for type k inclusions (m2)

〈σe〉 mean extinction cross section (m2)

σsk scattering cross section for type k inclusions (m2)

〈σe〉 mean scattering cross section (m2)

τ optical depth of the matrix containing inclusions

ψ azimuth angle (°)

ω single scattering albedo of the matrix containing
inclusions

ωs single scattering albedo of the granular substrate

ΩC Solid angle subtended by the sensor (sr)

ΩS Solid angle subtended by the source (sr)

am absorption coefficient of the matrix

aik absorption coefficient a type k inclusion

a (ϑ, ζ) probability of occurrence for the slope(ϑ, ζ)

A Surface of a pixel (m2)

A f Surface of a facet (m2)

D thickness of the slab layer (m)

D′ apparent length of the first transit through the slab
layer for one ray (m)

D′ mean apparent length of the first transit through
the slab layer for one ray (m)

e emergence angle (°)

F incident power flux in the radiation’s direction
(W.m−2)

i incidence angle (°)

km Imaginary part of the optical index of the matrix

kik Imaginary part of the optical index of a type k in-
clusion

L radiance (W.m−2.sr−1)

nm Real part of the optical index of the matrix

nik Real part of the optical index of a type k inclusion

N number of facets within a pixel : N � 1

Nspec number of facets within a pixel satisfying specular
conditions

N total density of inclusions inside the matrix

Nk density of inclusions of type k inside the matrix

p probability or probability per unit of length

P power (W)

Qsk scattering efficiency for type k inclusions

r bidirectional reflectance (sr−1)

rik diffusive reflectance for a type k inclusion

rm diffusive reflectance of the matrix

rs diffusive reflectance of the granular substrate

r f Fresnel reflection coefficient r f = R2
⊥ + R2

‖

R⊥ Fresnel reflectivites for perpendicular polarization

R‖ Fresnel reflectivites for perpendicular and parallel
polarization

R0 reflection factor of the slab containing inclusion
under isotropic illumination

R′′0 reflection factor of the slab containing inclusion
under collimated illumination

R′0 R′′0 − S′e

RDi f f diffuse reflectance factor of a slab containing inclu-
sion over a granular substrate

Rspec specular reflectance factor of a slab containing in-
clusion over a granular substrate

Rtot reflectance factor of a slab containing inclusion over
a granular substrate

S shadowing function

S′e external reflection coefficient of the slab under colli-
mated illumination

Se external reflection coefficient of the slab under
isotropic illumination

Si internal reflection coefficient of the slab under
isotropic illumination

Sek external reflection coefficient of a type k inclusion

Sik internal reflection coefficient of a type k inclusion

T0 transmission factor of the slab containing inclusion
under isotropic illumination

T′0 transmission factor of the slab containing inclusion
under collimated illumination
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