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Existence of minimizers for the Dirac-Fock model of crystals

Isabelle Catto* Long Meng' Eric Paturel? Eric Séré®

Abstract

Whereas many different models exist in the mathematical and physical literature for ground
states of non-relativistic crystals, the relativistic case has been much less studied and we are not
aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we
introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This
model is inspired both from a recent definition of the Dirac-Fock ground state for atoms and
molecules, due to one of us, and from the non-relativistic Hartree-Fock model for crystals. We
prove the existence of a ground state when the number of electrons per cell is not too large.

1 Introduction

For solids with heavy atoms, relativistic shifts may affect the bonding properties and the optical
properties. It is shown in [37] that the yellow color of gold is a result of relativistic effects. Furthermore,
by studying the relativistic band structure in solids, it is shown in [11, 12] that the relativistic shifts
of the 5d bands relative to the s — p bands in gold change the main interband edge by more than 1 eV.

A natural way to build quantum models for the crystal phase is to consider the so-called ther-
modynamic limit of quantum molecular models. Roughly speaking it consists in considering a finite
but large piece of an (infinite and neutral) crystal. The thermodynamic law predicts that the ground
state energy of the obtained large neutral molecule is proportional to the volume of this finite piece
(which turns out to be also proportional to the total number of particles composing the molecule).
The energy for the whole crystal is then identified with the limit—if it exists—of the energy per unit
volume (or equivalently per particle) of the large molecule when the size of the considered piece goes
to infinity. This method was applied successfully by different authors for several well-known models
from quantum chemistry [9, 8, 6, 32]-see also [7] for a review—but always for non-relativistic crystals.

The Dirac-Fock model (DF) was introduced in atomic physics by Swirles [41] in 1935. Tt is widely
used in relativistic quantum chemistry, and gives numerical results on atoms and molecules in excellent
agreement with experimental data [13, 20, 30]. Its relation with QED was investigated by Mittleman
[35]. Mittleman’s approach was studied mathematically in [2—4, 18, 34]. To our knowledge the Dirac—
Fock model has not been extended to crystals: there exist fully relativistic treatments of crystals in
the physics literature, but they use the Kohn—Sham approach (see [15, 28] and the references therein).

The first rigorous existence results for the atomic and molecular Dirac-Fock equations were obtained
in [16, 36]. Compared to the non-relativistic models, the situation is different: the existence of bound
states has only been proved when the total number of protons does not exceed 124, for the physical
value a &~ 1/137 of the fine structure constant. Moreover, the Dirac-Fock energy functional is strongly
indefinite and the notion of ground state has to be handled very carefully [16]. These difficulties
exclude a thermodynamic limit approach to derive the Dirac—Fock model for crystals.

In [17] it was shown that certain solutions of the (relativistic) Dirac—Fock equations converge
towards the energy-minimizing solutions of the (non-relativistic) Hartree—Fock equations when the
speed of light tends to infinity. This validates a posteriori the notions of ground state solutions and
ground state energy for the Dirac—Fock equations. In the approach of [17], the multi-electronic state
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is modeled by a Slater determinant of mono-electronic wavefunctions. On the other hand, Huber and
Siedentop use a density matrix formulation and a fixed-point iteration to define and construct ground
states of the Dirac—Fock model [27]. Unfortunately their assumptions do not cover the physical value
of a. Recently, in [39] one of us gave a new definition and an existence proof for the ground state
of the Dirac—Fock model in atoms and molecules, under assumptions covering the physical value of
a, thanks to a density matrix formulation and a retraction technique combined with a minimization
principle. Inspired by this work and by the analysis of the periodic Hartree-Fock model due to Le
Bris, Lions, and one of us [8], we propose a definition for the ground state of the Dirac—Fock model
for crystals which is a relativistic analogue of Lieb’s variational principle for the Hartree—Fock model
[1, 31], and we prove the existence of minimizers. In addition, we show that these minimizers solve
a self-consistent equation. Our method can be used to calculate the ground state of neutral crystals
with at most 17 electrons per cell. However, some estimates used in this paper are not optimal, and
we strongly believe that this limiting bound can be improved.

The minimization problem under consideration in this paper combines several difficulties related
to compactness issues. The Dirac operator, hence the Dirac—Fock energy functional, is not bounded
from below and the kinetic energy term is of the same order as the Coulomb-type potential energy
terms, a standard feature of Coulomb-Dirac-Fock type models. Our proof of existence of minimizers
for crystals is neither a straightforward adaptation of the one for atoms and molecules in [39] nor of the
one for crystals in Hartree-Fock theory in [8]: a major issue arises from the compactness of the density
matrices and of the self-consistent operators in the momentum variable &, resulting from the Bloch
decomposition of the space. Compactness in the momentum variable is crucial to deal with the (non-
linear) exchange term in the DF periodic functional and with the nonlinear constraint ensuring that
the electrons lie in the positive spectral subspace of the self-consistent periodic Dirac—Fock operator.
Our results rely on a careful analysis of the periodic exchange potential. In passing, we have corrected
some wrong estimates on the exchange term in [8] and improved the regularity results therein (see
Appendix B). Furthermore, we provide an asymptotically optimal constant for the Hardy inequality
associated with the periodic Coulomb potential that is new in the literature, as far as we know.

In addition, compared with existing results for crystals’ ground state energy, such as the Hartree—
Fock model [8], we provide a new method to prove the existence of minimizers for crystals: based on
the spectral analysis of the self-consistent periodic DF operator, we build minimizing sequences that
feature both a uniform dependence with respect to the momentum £ and a better regularity in the
space variables, and we rely on it to improve the relative compactness of subsequences in the periodic
energy space.

Before ending this section, let us mention the Bogoliubov—Dirac-Fock (BDF) model proposed by
Chaix and Iracane in [10] as an alternative to Dirac—Fock for heavy atoms and molecules, and later
studied in a series of mathematical works (see the review paper [25] and references therein, see also
the more recent works [21, 22, 24]). Compared with DF, the BDF model has several advantages: the
corresponding energy is bounded from below, so the notion of ground state becomes straightforward;
vacuum polarization effects are taken into account; the derivation of the model as a mean-field ap-
proximation of no-photon QED is more convincing. However the mathematical definition of the BDF
energy involves a rather complex functional framework as well as an ultraviolet regularization, and a
renormalization procedure is needed to interpret the equations. Thus, in the present work we restrict
ourselves to the conceptually simpler DF model, and the study of relativistic crystals in the BDF
approximation is left for future research.

2 General setting of the model and main result

2.1 Preliminaries and functional framework

Throughout the paper, we choose units for which m = ¢ = A = 1, where m is the mass of the electron,
c the speed of light and A the Planck constant. For the sake of simplicity, we only consider the case
of a cubic crystal with a single point-like nucleus per unit cell, which is located at the center of the
cell. The reader should however keep in mind that the general case could be handled as well. Let
£ > 0 denote the length of the elementary cell Q, = (—%, %]3. The nuclei with positive charge z are
treated as classical particles with infinite mass that are located at each point of the lattice £Z3. The
electrons are treated quantum mechanically through a periodic density matrix. The electronic density

is modeled by a Q-periodic function whose L' norm over the elementary cell equals the “number of



electrons” ¢ (the electrons’ charge per cell is equal to —g). When ¢ = z, electrical neutrality per cell is
ensured.

In this periodic setting, the Qg-periodic Coulomb potential G, resulting from a distribution of
point particles of charge 1 that are periodically located at the centers of the cubic cells of the lattice
is defined, up to a constant, by

—AGy =4r [—Elg + Z 5%] . (2.1)

keZ3
By convention, we choose Gy such that
Gydx = 0. (2.2)
Qe
The function Gy is actually the Green function of the periodic Laplace operator on ;. The Fourier

series of Gy writes

2im

p-xT

1 ]

Go(x) = 7 Z %, for every = € R3. (2.3)
peZ3\{0}

Under the convention (2.2), the periodic Coulomb potential changes sign, but is bounded from be-

low (see Lemma A.1 in Appendix A).

Remark 2.1. The size £ of the unit cell does not play a specific role here. It is however involved in
the study of the Hardy-type inequalities for the periodic Coulomb potential (see Section 4.1). When £
goes to infinity, one expects to recover the Dirac—Fock model for atoms.

The free Dirac operator is defined by D? = —i Z§=1 o, 0r + 3, with 4 x 4 complex matrices oy, ag, a3
and 3, whose standard forms are 8 = (102 (i ), oy = ((S %r> where 15 is the 2 x 2 identity matrix
—12 r

and the o,’s, for r € {1,2,3}, are the well-known 2 x 2 Pauli matrices o1 = <0 1> , Oy = (O Z),

1 0 1 0
(10
0'3—0_1.

The operator D° acts on 4—spinors; that is, on functions from R3 to C*. It is self-adjoint in
L?(R?;CY), with domain H'(R?;C*) and form domain H'/?(R?;C*) (denoted by L?, H' and HY? in
the following, when there is no ambiguity). Its spectrum is o(D°) = (—c0, —1] U [+1, +0). Following
the notation in |16, 36], we denote by A™ and A~ = 172 —A™ respectively the two orthogonal projectors
on L?(R3;C*) corresponding to the positive and negative eigenspaces of D?; that is

DOA+ = ATDO = AT —A = T — AA+;
DA~ =A D= A VI—A=-vI_AA.

According to the Floquet theory [38], the underlying Hilbert space L?(R?; C*) is unitarily equivalent to

L*(QF) ® L?(Qe; C*), where QF = -7, %)3 is the so-called reciprocal cell of the lattice, with volume
|Q¥| = (2m)3/£3 (in the physics literature Q is known as the first Brillouin zone). The Floquet unitary
transform U : L?(R3; C*) — L%(QF) ® L*(Q¢; C*) is given by

Up)e = Y, e * (- + LK) (2.4)

keZ3

for every £ € QF and ¢ in L?(R3;C*). For every ¢ € QF, the function (U¢)¢ belongs to the space
LE(QuCY) = {¢ e LY (R* C*) | e ™ *¢ is Q-periodic},

which will be denoted by Lg in the sequel. Functions v of this form are called Bloch waves or Q-
quasi-periodic functions with quasi-momentum § € Q5. They satisfy

(- 4+ Lk) = e F (), for every k e Z3.



For any function ¢¢ € L2, using the definition of Fourier series expansion for Q-periodic functions, we
write

Z ¢£ ei(Fh+e)w , a.e. r€R3, (2.5)
keZ3

with coefficients 1

de (k) = 7 ¢§(y)€7i(27"k+5)'y dy € C*.

The Hilbert space L? is endowed with the norm

R 1/2 12
|¢h§;:GBEZWd@F> - ([ sras) = o,

keZ3

Here, and in the whole paper, we use the same notation | - | for the canonical Euclidean norm in R™,
C™ or M,,(C). When applied to self-adjoint operators, |T'| means the absolute value of T'.

For every real number s, we also define
HE(Qe;CY) := LE(Qe; CY) n Hi (R CY)

endowed with the norm

1/2
mmf(ﬁ20+\wﬁ)wgn>.

keZ*

To simplify the notation, we simply write here and below H, ¢ when there is no ambiguity.
Operators £ on L?(R3;C*) that commute with the translations of £Z3 can be decomposed accord-
ingly into a direct integral of operators L¢ acting on Lg and defined by

Le(Up)e = (ULY)e for every ¢ € L*(R?*;C?), ae. £ € QfF (2.6)

(see |38] for more details). We use the notation £ = fc% L¢d€, with the shorthand f, for ﬁ Jos to

refer to this decomposition. In particular, for the free Dirac operator D° we have

@
DY = D¢ dé, (2.7)
Qf
where the D¢’s are self-adjoint operators on L? with domains Hg and form-domains H El/ ?_ Note that
Dg =1— A¢, where —A = fg* —Ag¢dé. For every function ¢¢ € H}, the operator D is also defined
4
by

3
Dy ¢E 2 [Z ( Fer +§r) O +ﬂ] (gﬁ(k) ei(#Jrg).z-

keZ3

o |~
(@e.|Delde)sz = ¢ 3 \[1+ |e+ T 130 2.8
keZ3

For every & € QF, the positive spectrum of D¢ is composed of a non-decreasing sequence of real
eigenvalues (d;r (€))j=1 counted with multiplicity. Each function §{ — d;r (&¢) is continuous and Q-

periodic, and one has d}L(Qz‘) € [cx(j), c*(j)] with

r=1

In particular,

¢«(j) := min d;r(«f) and ¢*(j) := max d;r(«f) (2.9)
¢eQy ¢eQy

Note that

cx(j) =1, lim cy(j) = +oo.

Jj—+0



In the same manner, the negative spectrum of D¢ is composed of the non-increasing sequence of real
eigenvalues d; (§) = —d;r (€). Finally, one has

U (Do) = | [-e* (), —ex ()] U [ex), * ()] = 0(D°) = (o0, ~1] U [+1, 420).  (2.10)

ceQr i>1

As in the Hartree-Fock model for crystals [8], the electrons will be modeled by an operator on
L?(R3; C*), called the one-particle density matrix, that reflects their periodic distribution in the nuclei
lattice.

We now introduce various functional spaces for linear operators on L?(Q; C*) and for operators on
L?(R3;C*) that commute with translations. Let B (E) be the set of bounded operators from a Banach
space E to itself. We use the shorthand B(Lg) for B(LZ(Q; C*)). The space of bounded operators on

¥ = 0 which commute with the translations o 1s denote . It is
fg) L?dg LQ(QZ“)®L2(Q,(C4) hich ith th lati f 473 is d d by Y. It i
£
isomorphic to L*(QF; B(Lg)) Moreover, for every h = fg* hedé €Y,
e

[hlly := ess sup | hel g2y = A2 (reice)
ceQf

(see [38, Theorem XIII.83]). For s € [1,0) and & € Q}, we define

&,(¢) i= {he € BLZ) | Trpz(lhel*) < o0}

endowed with the norm y
s = (Trra(hel))

We denote by G4 (£) the space of compact operators on Lg, endowed with the norm inherited from
[ - HB(L%)- Similarly, for ¢ € [1, +0], we define

13

@
(CIPRES {h = ]é* he d€ | he € 64(§) ae. £ € QF, HhﬁHGS(i) € Lt(Qz‘)} (2.11)
£
endowed with the norm
1/t
HhHGS,t = <]€2* |h5|’és(£)d£> for 1<t<+w (2.12)
1
and
|hlle.... = ess sup |hells, (e)- (2.13)
£eQ¥

In particular Go on = L2(QF; 6 (L7)) < Y is endowed with the norm of Y.
In the sequel of this paper, we work with periodic one-particle density matrices belonging to sub-
spaces &1, of &1 1, for 1 < p < 4+00. On such spaces, we can define the trace per unit cell as

Trrz2(h) = ]2 , Trpz(he) de.

Here, Tr L2 means the usual trace of operators on the Hilbert space Lg(Qg; C*). Tt coincides with the

trace of the operator with kernel Try(he(-,-)) on LE(QZ; C) with Try standing for the trace of a 4 x 4
matrix. The ~ reminds us that ~ is not trace-class on L?(R3).

The trace per unit cell allows to define duality pairings between spaces S, ; using the classical
duality properties in Schatten’s spaces [40]. More precisely, if (s,s’) and (¢,¢') are in [1, +00]? with
1/s+1/s' =1 and 1/t + 1/t' = 1, then one can define a duality pairing {-,-) between &,, and Sy 4
as follows. For h € &, and h’' € &y, the product hh' is in &1 and one sets

(hy By = Trp2[hH].

One has
[<hy WD) < [BH 6,0 < ], W s, -



We also define
X() = {he BLY) | |De*/2he| De|*2 € &1(6) |

endowed with the norm
hell xarey = HD a2p | D O‘/QH
I f”X €3] | £| £| £| &1(6)

and

he € 61(§) ae. £€QF,

|D£|a/2h£|D£|a/2H

®
X = h=][ he d€
QF

endowed with the norm

EU(QZ‘)}

S1(8)

IBlxp = | ID°12RID" 2]
St
For any two functional spaces A and B the norm of the intersected space is defined by

IVl anB := max{|y]a; [v[5}, VyeAnB.
For future convenience, we use the notation X (¢) for X1(¢). We also set X := X| and
Z:={yeXnY | y* =~}
We endow Z with the norm inherited from X n Y, that is, we take

|7l z := max{lly|x, vy}, VveZ

With this norm, Z is a Banach space. The functional spaces &; 1, X, Y and Z will play an essential
role in the whole paper, while the functional space &1, and its subspace X2 are mainly used in
Section 6. In addition, we will also use the functional space & ;1 in Section 6 since & o is its dual
space.

Definition 2.2 (Periodic one-particle density matrices). We denote by T' the following set of Q-
periodic one-particle density matrices:

F:{IYEX’W*ZW; 0<7<1L2(R3)}CZ

Remark 2.3. For v eI and for almost every & in Q}, the operator ¢ is compact on Lg and admits

a complete set of eigenfunctions (un(€,))n=1 in Lg (actually lying in Hg/Q), corresponding to a non-
decreasing sequence of eigenvalues 0 < p,(§) < 1 (counted with their multiplicity). This is expressed
as

Ve = Z tn (&) [un (&, 7)) <un(€ o), (un(€s ) um(§, )>L§ = On,m (2.14)

n=1

where |uy{u| denotes the projector onto the vector space spanned by the function u. FEquivalently, for
almost every & in QF and for any (z,y) € R® x R3, the Hilbert-Schmidt kernel writes

Ye(@,y) = Y pn(Qun(€, 2)ul(E,y). (2.15)

n=1

In the above equation, u,(&,-) is a column vector with four coefficients and the superscript * refers to
transposition composed with complex conjugation of the coefficients. Thus, ve(x,y) is a 4 x 4 complex
matriz, and for every function ¢ € L2,

(e () = /Q e o) dy = 3 pn(©un(€, ) /Q W€ y)ely) dy.

By definition of the trace of an operator,

TrLg(VE) = Z fn(§)-

n=1



Definition 2.4 (Integral kernel and electronic density). Let v belong to T'. Then we can define in a
unique way an integral kernel y(-,-) € L?(Qy x R3) n L2(R?® x Q) with v(- + k,- + k) = (-, -) for any
ke Z? and a Q-periodic density p- associated to v by

v(x,y) = ]{g;" ve(z,y) d§ (2.16)
and
() = 72 , Trare(o,0) e (2.17)

The function p- is non-negative and belongs to L*(Q¢; R). Indeed, using the decomposition (2.15), we

have

pl) = 72 S i (€) [ (€, ) 2 (2.18)

*
¢ n=1

and

/Q[ prlw) d = ]{2* i pn(€) d€ = ]faz" Trpz () d€.

¢ n=1
In the physical setting we are interested in, the value of the above integral is the number of electrons

per cell.
By the Cauchy-Schwarz inequality, it is easily checked that

(@ )12 < py(2) py(y),  ace. z,y e R (2.19)

Note that, when h is a Q¢-periodic trace-class operator but is not necessarily a positive operator, we still
may define p, with the help of (2.17), but (2.19) becomes |h(z,y)[* < pp(@)pjn|(y) where |h| = vV h*h.

We can now introduce the periodic Dirac—Fock functional.

2.2 The periodic Dirac—Fock model

For v € Z, we define the periodic Dirac—Fock functional

E7() = f TryDerelde - ax [ Gulalp, (o) do

Q* Qe
+2 // py(2)Go(x — ) py (y) ddy

QexQy

(@]

-5 A g | e one W - €0 - y) dady.
QF xQ¥ QexQy

This functional is well-defined on Z (see Remark 4.9 below). In the above definition of the energy
functional, the so-called fine structure constant « is a dimensionless positive constant (the physical
value is approximately 1/137). Note that D¢~y is not a trace-class operator, so Tr L2 [Deye] is not really
a trace, it is just a notation for the rigorous mathematical object Try [|De|Y27¢| De|/?sign(Dg)]. We
will make this abuse of notation throughout the paper.

The last term in (2.20) is called the “exchange term ”. The potential W;° that enters its definition
is given by

il k-m 4 1 .

(& i 27k

o R e S A 2.20
4 (77’1') |:C+€k/| 63 kezg‘#_nfe ( )

(see [8] for a formal derivation of the exchange term from its analogue for molecules). It is Q}-periodic
with respect to n and quasi-periodic with quasi-momentum 7 with respect to x. For every v € Z, we
now define the mean-field periodic Dirac operator

@
D, = ]{2* D,¢d§ with Dye:=D¢—az Gy + aV, ¢
¢



where

Vie=pyxGe—Wye. (2.21)
Here,
py * Gelx) = g Gely — ) py(y) dy = Tr2[Ge(- — ) 7] (2.22)
and
W ethe(z) = ][ de' | WP(E =& x—y)ye(,y) e(y) dy. (2.23)
Q¥ Qe

(In (2.22) we keep the notation - * - for the convolution of periodic functions on Q.)

EDF

Let us explain the relation between and D,. The periodic DF energy may be rewritten

EPF (1) = Trpa[(D° = aG)y + 5 V5]
It is smooth on Z, and its differential at v € Z is the linear form
dEPF(Y) : Z3h e ” Trp2[Ds ¢he] € = Trp2[D, h].
¢
We introduce the following set of periodic density matrices :
Ly:={yeTl|le., =}

and
Pgq = {7 € F‘ H7H61,1 < q}'

Here g is a positive real number. The elements of I'y (resp. I',) are Dirac-Fock density matrices with
particle number per unit cell equal to ¢ (resp. at most q).

Our goal is to define the ground state despite the fact that the energy functional £PF is strongly
indefinite on I',, due to the unboundedness of the Dirac operator D°.

2.3 Ground state energy and main result

We follow Dirac’s interpretation of the negative energy states of Dirac—Fock models: Such states are
supposed to be occupied by virtual electrons that form the Dirac sea. Therefore, by the Pauli exclusion
principle, the states of physical electrons are orthogonal to all the negative energy states. The ground-
energy and state should thus be defined on the positive spectral subspaces of the corresponding Dirac—
Fock operator. Let

Y O s

Note that by definition Poig = 1, (D¢ — azGy). We define the set

@
P* ;=][ Prodé  with  Pr:=1g, (D).

I :={yely|y=P P} (2.24)
and the ground state energy
I, := inf EPF (). (2.25)
Vel

We need the following assumption.

Assumption 2.5. Let ¢* := max{g; 1} and k := a (Cgz + Cppq™). We also introduce the positive

constants eg := (1—r)"'c¢*([q]) and a :== $Cpp (1— li)fl/Q)\al/Q (well-defined if k < 1). Here we have
used the standard notation [q| ;= min{m € N | m > ¢} and c¢*(-) is given by formula (2.9).

We demand that

1. k<1l-— %CEEq+ ;

2. 2a/max{(1 — xk — $Crrqt)Teoq; 1}¢* < 1.



The positive constants Cq, Cgg, Crg and Ao are defined respectively in Lemmas 4.1, 4.7 and 4.11
below.

Our main result is the following.

Theorem 2.6 (Existence of a ground state). When «, q, z and £ satisfy Assumption 2.5, there exists
v« € Tf such that
EPF (v4) = I, = min EPF (v). (2.26)
very

Besides, vy solves the following nonlinear self-consistent equation
v = ]‘[OW) (Dry) ) (227)

where 0 < 0 < 14,,3(D,) and Ao < v < eg, with eg being defined in Assumption 2.5, and \g = 1—k >0
in Lemma 4.11.

Remark 2.7 (Projectors). According to [1, 19, 31] any ground state of the Hartree—Fock model (both
for the molecules and crystals) is a projector. However we do not know whether the ground states of
Dirac—Fock model are projectors in general.

Remark 2.8. In Solid State Physics, the length of the unit cell is about a few Angstréms. In our

system of units, h =m =c =1, thus a ~ % and £ ~ 1000. Under the condition q = z for electrical
neutrality, Assumption 2.5 is satisfied for ¢ < 17. The proof is detailed in Appendiz D. Our estimates

are far from optimal: The ideas of this paper are expected to apply to higher values of q.

3 Sketch of proof of Theorem 2.6

We are convinced that the constraint set Ff{ is not convex, and we are not able to prove that it is

closed for the weak-* topology of Z. This is the source of considerable difficulties. Mimicking [39], we
shall use a retraction technique as for the Dirac—Fock model for atoms and molecules. This imposes
to search the ground state in the set I‘;rq defined by

D%, = {1 € Tay |7 = PIAPY).

However, under the above constraint, the minimizers may not be situated in I‘;r. To overcome this

problem, we next subtract a penalization term ep Tr 12(7) from the DF energy functional, for some
parameter ep > 0 to be chosen later, and we first study a minimization problem for the penalized
functional with relaxed constraint. We introduce the infimum

Jegi= inf [5DF(7) — epTrpe (7)] . (3.1)

VEFZI

If this infimum is attained at some 7, € F;rq, vs will be called a minimizer for J<,. We are going to
see that for a suitably chosen value of ep, Jg, is attained and that every minimizer for J¢, lies in 1";,
thus is a minimizer for /.

For the study of the penalized problem J¢,4, we need an analogue of Assumption 2.5:

Assumption 3.1. Let ¢* = max{q;1}, £ := a(Caz + Cypq’) and a := §Cpp (1 — K)_1/2/\81/2
(well-defined if k < 1). We assume that

1. k<1-— %CEE(]+ N

2. 2ay/max{(1 —k — §Cppq*) lepq; 1}g* < 1.
The relation between assumptions 2.5 and 3.1 is given by the following lemma:

Lemma 3.2 (Choice of ep). Assume that Assumption 2.5 on q and z holds. Then, there is a constant
ep > eg such that Assumption 3.1 is satisfied.

Proof. One just needs to take ep = ey + € with € positive and small enough. O



We now state an existence result:

Theorem 3.3 (Existence of a minimizer for the penalized problem). We suppose that Assumption 3.1
on q,z,ep holds and recall the notation eg := (1 — k)~ 'c¢*([q]). If ep > e, then there exists 5 € TL,
such that

EPT (1) — epTrpa(v4) = J<q- (32)

Besides, ﬁLz (%) = szk TrLg (7#,¢) d€ = q and 74 solves the following nonlinear self-consistent equa-
tion
7= 1) (Dr) +6 (3.3)

where 0 < 6 < 14,,(D,) and v € [N, e0] is the Lagrange multiplier due to the charge constraint
Trr2(y) < g

Theorem 2.6 is a direct consequence of Lemma 3.2 and Theorem 3.3. Indeed, if Assumption 2.5
on ¢, z holds, Lemma 3.2 guarantees the existence of ep such that the assumptions of Theorem 3.3
are satisfied. Then this theorem provides a minimizer ~, for J¢, which lies in Ff{, hence J¢, + €pq =
EPF(v4) = I;. On the other hand, for each v € '} one has the inequality EP¥(v) > J<, + €pg, so
I, = J<q + €pq. As a consequence, we get EPF(v,) = J<; + epq = I, which is the same as (2.26).
Moreover 7, satisfies (3.3) which is the same as (2.27).

Therefore, in the sequel of this paper we focus on the proof of Theorem 3.3. Before going further,
we explain the difficulties we face and the strategy we adopt to solve them, by comparing with the
Hartree—Fock case [8]. The method used in [8] is based on some properties of the Schrédinger operator
—A:

1. This operator is non-negative. Hence the Hartree—Fock model for crystals is well-defined and the
kinetic energy is weakly lower semi-continuous w.r.t. the density matrix ;

2. The exchange potential W;” is rather easily controlled by the Schrédinger operator —A.

In [8], these properties allow to deduce bounds on the minimizing sequence of density matrices w.r.t.
the &, x and y variables, and to pass to the limit in the different terms of the energy functional, in
particular in the exchange term which is the most intricate one. In the proof, the strong convergence
of the density matrix kernels v, (z,y) = JCQ;" Yne(2,y) d€ plays an important role. In addition, the
charge constraint in the periodic Hartree—Fock model is linear with respect to the density, and there
is no possible loss of charge in passing to the limit.

In the Dirac—Fock model for crystals, two additional difficulties occur. First of all, the Dirac opera-
tor does not control the potential energy terms, which are of the same order. Secondly, the convergence
of the nonlinear constraint JCS;" P;L, {ygd& = fQ;" vYed§ requires stronger compactness properties of the

sequence of density matrices with respect to the & variable (of course, this second difficulty does not
exist for the Dirac—Fock model of atoms and molecules, since in that case the £ variable is absent).
Therefore the proof of existence of minimizers in the periodic Hartree-Fock setting cannot be applied
mutatis mutandis. The functional space Z is natural to give a sense to the energy functional and to the
constraints, but the weak convergence of minimizing sequences in Z is not sufficient to deal with the
exchange term and the non-linear constraints. The whole paper (except Section 5 about the retraction)
is devoted to solving the difficulties arising from the £ variable.

Strategy for the proof of Theorem 3.3. Our strategy rather relies on the spectral analysis
of the periodic Dirac—Fock operator, which is new, to our knowledge, for the proof of existence of
minimizers in the periodic case. Thanks to this spectral analysis, in Lemma 4.15 together with Lemma
5.1 (see also Remark 4.16), we can prove that every minimizer for Jg¢, actually lies in &1 o, and is
situated in B, where

B:i={1eZ | |le.. <} (3.4)
and j; is an integer defined in Subsection 4.2.

The key point in the proof of the existence of minimizers for J¢, is that for any minimizing sequence
(vn) for J<g, we are able to construct another minimizing sequence (7,,) satisfying the same regularity
estimate as the minimizers, that is, 5,, € B. This is the content of Lemma 6.2. This estimate helps
considerably to solve the problem of passing to the limit in the constraint fgzk P,;f gva,:f Edg = f% Yed§.
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Organization of the paper. The next sections are devoted to the proof of Theorem 3.3. Our
paper is organized as follows.

In Section 4, we collect some fundamental estimates on the potentials Gy and W;°, that ensure in
particular that the DF periodic energy functional is well-defined and smooth on Z. In Subsection 4.2,
we study the spectral properties of the Dirac-Fock operators D ¢ for every £ € Q. Relying on them,
we study in Subsection 4.3 the properties of minimizers for a linearized Dirac-Fock energy. Finally,
we collect the first estimates on minimizing sequences for J¢,.

In Section 5, we study the Euler-Lagrange equation associated to J<,. We conclude that each
minimizer for J¢, is in F;r and solves a self-consistent equation (it is a ground state of its own mean-
field Hamiltonian) and that minimizing sequences are approximate solutions. In Hartree-Fock type
models for molecules [33] or crystals [19], it is a standard fact that the approximate minimizers are also
approximate ground states of their mean-field Hamiltonian, and the proof relies on the convexity of
the constraint set. However, in the Dirac-Fock model (both for molecules and crystals), the constraint
set 1"2 o does not seem to be convex. By using a retraction technique, a similar difficulty was recently
overcome by one of us for the Dirac-Fock model of molecules [39]. Adapting the method of [39],
we define a set V which is relatively open in I'¢, for the norm of Z, and we build a regular map
:V —-Vn qu such that 6(y) = v, ¥y e V n qu. Here, V is the closure of V in Z. Under our

assumptions, there exist minimizing sequences for J¢, lying in V n qu, hence the equality

Jeq = inf {EPF(8(y)) — epTrr2[6(1)] |
yeV

which allows us to prove that the terms of minimizing sequences are approximate ground states of

their mean-field Hamiltonian.

Then, in Section 6, we build modified minimizing sequences lying in B. Finally, we prove the
convergence of such sequences to a minimizer for J<g4, and this ends the proof of Theorem 3.3.

Assumption 2.5 involves optimal constants in Hardy-type inequalities introduced in Subsection 4.1.
Therefore, in Appendix A-C, we prove Lemma 4.1, Lemma 4.5 and Lemma 4.7 respectively. Finally,
in Appendix D, we calculate the maximum number of electrons per cell allowed by the model, relying
on approximate values of the constants obtained in Appendices A-C.

4 Fundamental estimates

In this section, we give Hardy-type inequalities for the periodic Coulomb potential and provide esti-
mates on the interaction potential between electrons in crystals. Then we study the spectrum of the
periodic self-consistent Dirac—Fock operators. Finally, using this spectral analysis, we derive properties
of the minimizers for a linearized problem, and a priori bounds on minimizing sequences for J, .

4.1 Hardy-type estimates on the periodic Coulomb potential

First of all, and this is a major difference with the usual Coulomb potential |71‘ in R3, the periodic
Coulomb potential Gy may not be positive, since it is defined up to constant, but it is bounded from
below (see Lemma A.1 in Appendix A). Nevertheless, the operator of convolution with Gy is positive
on L?(Qy) in virtue of (2.3). Moreover, we have the following Hardy-type estimates concerning the
operator of multiplication by the periodic potential Gy.

Lemma 4.1 (Hardy-type inequalities for the periodic Coulomb potential). There exist positive con-
stants Cy = Cy (L) > 0 that only depends on £ and such that

Gy < |G| < Cy |D°| (4.1)

in the sense of operators on L*(QF) X L?(Qe; C).
Moreover, there exists a positive constant Cg = Cg(£) with Cq = Cy that only depends on £ and
such that
|Ge |D°|7H ]y = Ce- (4.2)

11



Remark 4.2. In (4.1), the inequality A < B is equivalent to : For almost every £ € Q}, A¢ < Bg in
the sense of operators on Lg.

Remark 4.3. The constant Cg(€) is estimated in (A.4) in Appendiz A below. While it is far from
optimal when £ is small, it converges to 2 when £ goes to infinity; that is, to the value of the optimal
constant for the Coulomb potential on the whole space. By interpolation,

Ch < Cg. (4.3)

Therefore, (4.1) holds with Cy being replaced by C. However, Cy is expected to converge to w/2 as {
goes to infinity; that is, to the best constant in the Kato—Herbst inequality on the whole space [26, 29].

A by-product of Lemma 4.1 is the following.
Corollary 4.4 (Estimates on the direct term). For any v € X, we have

loy = Gelly < Cr |[vlx (4.4)
and

[(py = Ge) ID°| My < Ce s - (4.5)
Proof. For every x € R? and v € X, we have
19 % Ge(@)| = |Trpa[Gelw = ) ]|
= [Tpa[1D° |26 (w — | DO 72 DO 24 DO 2]
< ID°[721Gola = DIy 1D 241 D12 sy < Ot 7] x-
Indeed, the bound (4.1) in Lemma 4.1 yields
[Gol- =) D02 < (C) 2

uniformly in z.
We now turn to the proof of (4.5). For every § € Q) and ¢ in L?, we have

(o Go) Dl e 1. </Q oy @) [Gel = 2) |Del "o | 0
14

< sup |Go(- — ) |D5|_190£HL2/ oy ()| dz < Ca [Ylle: 1 el rz- (4.6)
zeR3 £ JQe

In (4.6), we have used the bound (4.2) of Lemma 4.1 and the obvious fact that it remains true for
Gy(- — z) for any = € R3.
O

Now, we consider the operator W, := fQ@* W, ¢ d¢ which enters the definition of the exchange term.
2

The operators W, ¢ have been defined in Formula (2.23), which involves the integral kernel W given
in (2.20). We can separate the singularities of W;* with respect to n € 2Q} and x € 2Q), as follows

Wfo(n, 1‘) = W§m7é(na 1‘) + Wzom7é(7], ZL'), VYme N7m > 27 (47)
with . 1
™ amk Y.
;Om,l(nax) = A Z ﬁez( wk—n)-z
ez |55 = 1]
kez3
and . 1
T amk N
fm,@(”%z) = 6_3 Z ﬁez( Z 77) z
em |25 — )|
kez3

where |k|o := max{|ki1[; |k2[; [k3]}. It is easy to see that the singularity of W2, behaves like # We
will show in Appendix B that the singularity of WX , behaves like |71‘ or equivalently Gy(z), and we
will obtain the following estimates on the operator W.,.

12



Lemma 4.5 (Estimates on Wy). If v € Z, then W, € Y and there exist positive constants Cyy =
Cw (), Cly = Ciy(£), Clyy = Cy,(£) that only depend on £, such that

W,y < Cw 7]z ifyez (4.8)
3/4 1/4 .

IWally < G (Ivlx + IS IS ) ifyeX 6oy, (4.9)

Wy ID°|7Hly < Ciy IVl @11y ifvyeGi1nY. (4.10)

Remark 4.6. The constants Cyw, Cyy, and Cy, are estimated in (B.24) in Appendiz B.

Gathering together Lemmas 4.1, 4.5 and Corollary 4.4, we can get some rough estimates on the
self-consistent potential V, ¢ defined in (2.21). In Appendix C we obtain much better estimates by a

careful study of the structure of the operator V, = fg)* VyedE:
4

Lemma 4.7 (Estimates on V). There exist positive constants Cpp = Crpr({) > 0 and Chp =
Crp(f) > 0 that only depend on £ and such that, for every vy € Z,

Vily < Crellvlz (4.11)
and
V5 ID° 7y < Ch 7lle1any- (4.12)
For every { € QfF and any ¢ € Hg/Q,
(Ye, Vagthe) 2| < CEE”'YH61,10YHwﬁniﬁlﬂ' (4.13)
Furthermore, if v = 0, for any i € Lg,
~Chplleiny Vel < (e Vaete) - (4.14)

Remark 4.8. The constants Cpg, Crp and Cry are estimated in (C.7), (C.5) and (C.8) of Appendiz
C' respectively.

Remark 4.9. Using Lemmas 4.1 and 4.7, it is easily checked that Z 5y — E(7) is well-defined.

4.2 Spectral properties of the mean-field Dirac—Fock operator
Recall that k := « (CGz + C};Eq+). We start with the following.

Lemma 4.10. Let v € Z. We assume that Cgz + Cpplv|e, .~y < 1/a, then D¢ is a self-adjoint

operator on Lg with domain Hg and form-domain Hg/Q. In addition, the following holds

1D, 21D 72| < (1+ @ (Caz + Crplyle,ny)) (4.15)
and
[ID°1721D, 12| < (1= a (Coz + Cpllls,ny)) ™2 (4.16)
In particular, if v € I'<q and k < 1, we have
(1—&)|D° < |D,| < (1+k)|DY. (4.17)
Proof. Recall ¢t = max{1;q}. By Lemmas 4.1 and 4.7, we obtain
l(—a2Ge +aV3) [D° |y < a(Caz + Chg e sov)- (4.18)

In particular, D, is self-adjoint on JCS* H} d¢ by the Rellich-Kato theorem if Coz + Chplv]e,  ny <
3 :
1/a (see [38, Theorem XIII-85]). Let now & € QF and ug € H{(Qq). We have

|Dscuelrz: < (1+aCoz + aChplle,ny) |De uelre, (4.19)
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which implies (4.15). On the other hand,
| De ugllLz < [(Dy,¢ = De) uglpz + | Dy guel 2
<o (Caz+Chpq") |Deuelrz + [ Dy.c uelr2-

Hence,
| D¢ uelz < (1= a(Caz + Cpplile, 1av)) ™ [ Dy.c uel 2 (4.20)

which implies (4.16). Since v € I'<q, |V[&, .~y < ¢*. Thus (4.19) and (4.20) together give (4.17).
This concludes the proof. ([l

As a consequence of (4.20), we deduce that the spectrum of D, (and of any D, ¢) is included in
R\[-1+ &;1—k]. In order to allow for as many electrons as possible per cell, we need a more accurate
estimate on the bottom of (| D,|).

Lemma 4.11 (Further properties of the bottom of the spectrum of |D,|). Let v € '<y. Then
info(|Dy|) = Ao = 1 — &,

with Ao := 1 — amax{Cyz + ChLpqt; %z + Crrqt}, the constant Cy being defined in Lemma A.1 in
Appendiz A below.

Proof. Let wg = Agwg and ¢ = Agve. Notice that Dy e = D¢ — azGy + aVy ¢ and V, ¢ satisfies
(4.13) and (4.14). Now, combining with (A.1) in Appendix A, we have

(v Dvetd) o o= (1= alCrz + Chplileany)) 10E 1,
H5 ><H5 ¢

and

— - Co +12
- (wg aD’Yafwg )Hgl/QXHgl/Q = (1 —Q (7’2 + CEE|/7|G1,1F\Y)> ng HHg/Z'
We get

ol | Dbl = R (07 = U5, Doede)

—1/2
Hy

— (ot + A= - 2
B (wf +Dretoe )H;/zxﬂg” (wf Dot )Hg/Zng”z g AOW&HH?Q'

Further spectral properties of the self-consistent operator D, are collected in the following.

Lemma 4.12 (Properties of positive eigenvalues of D, ¢). Assume that k < 1 and let v € T'¢,. We
denote by \;(€), for j = 1, the j-th positive eigenvalue (counted with multiplicity) of the mean-field
operator D.,¢. Then \;(€) is situated in the interval [c4(§)(1 — k), c*(4)(1 — k)] where ¢*(j) and
cx(j) are the constants of Formula (2.9).

In addition, every eigenfunction uj ¢ associated to A\;(§) lies in Hg1 and satisfies

HUJ',EHHg < () (1= 8) 72 Juzelz. (4.21)

Proof. We rely on a variational characterization of eigenvalues in spectral gaps (see [14] and references
therein). Let

1 D
Af =1 (De) = = + ——
¢l D=5 a7y

and ) D
A7 = 1p-(De) = = — —*—
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One has Ag—rH§1 c H}, that is, the domain H} of the self-adjoint operator D, ¢ satisfies Condition (H1)
of [14]. To each integer j = 0 we associate the min-max level

. D
Aj (5) = inf sup M
V subspace of/\zr H% ugE(V(—DAng)\{O} Hu§HL2
dim V=35 ¢ ¢

(4.22)

Let ue € (V(—DAEH;)\{O} We write ug = ug + ug with
ug' = Ag'u§ eV, wug = Agu§ € AgHg1
By definition of Agi,
(Dgug,ug) = (|D§|u2',u2'), (Dgug,ug) = —(|D£|u€_,u£—) and (Dgug,ug) = 0.
Therefore,

(Dy.gug, ug) = (Deug, ug) + ((Dry,e — De)ug, ug)
= (IDeluf ug ) = (1Delug g ) + ((Doe = Do uf uf ) + ((Dre = De) ug ;)
+ 2R ((Dy.¢ = Do, ug ) - (4.23)

We observe that for j > 1,

+ .+
A , (Dmf Ug Ug )
(&) = inf SUp ————5
V subspace ong Hﬁl u§+€V\{O} Hu§ HL%
dim V=j

By (4.23), (4.2) in Lemma 4.1 and (4.12) in Lemma 4.7, for any ug € AZHE,

(D%5 ug,ug) = (|D§|ug,ug) + ((—ang + ang)ug,ug) > (1-k) (|D§|ug,ug) :

Thus,
: (1Delug )
LO=0-r b s
V subspace ofA5 Hg uZEV\{O} H’U/E HL%
dim V=j

= (1= r)dj (&) = (1 = K)ex(j)-

In particular, A; (€) = (1 —&)cs(1) > 0. On the other hand, (D, ¢ ug s ug ) < —(1=rK)(|Delug ,ug ) <0

for every u; € AgHg, whenever x < 1. This implies that \o(¢) < 0, so Conditions (H2) and (H3) of
[14] are satisfied, and we can conclude that

N(€) = 2i(€), ¥iz1, (424)
hence the lower bound A;(§) = (1 — k)ex(j)-
For the upper bound, we proceed as follows. Equations (4.18) and (4.23) together yield
(Dy g, ug) = (|D5| ug,ug) + ((—azGe +aV,e) ug,ug) + 2R ((—ang +aV,e)uf, ug)
+ ((D%§ — D¢) ug,ug) - (|D5| ug,ug)
< (1+8) (1Dl ) = (=) (1Delug ug ) + 201 Deu oz [1De] 20z | 12
= (L+ )IIDelPuf 172 + 25 1Dl P [ 12 1| Del"Pug |12 — (1= m)[[[Del>ug |72

< (1= m) Y IDel 20 2,
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by Young’s inequality. Moreover, HUZ HLg < HUEHL? so, recalling (4.22) and (4.24) we see that

+ o
(|D5|u§ ,ug)

NEOSA—RT s
V subspace ofA5 Hg ugEV\{O} HUE HL2
dim V=j ¢

=1 -r)7Hdf(€) < (1 —r)Te*()).
Finally, using (4.20) in Lemma 4.10, we obtain

Aj () el

12 = [Dryetjellez = (1= )| Deujelrz = (1 = %) [ujel my

hence (4.21). The lemma is thus proved.
|

Recall that B := {y€ Z | I7|e,.. <1} where ji is an integer that has not been defined yet. In
the rest of this paper, assuming that x < 1 and recalling our notation eg := (1 — k)~ *c*([q]) , we take

Jii=min{j = 0| (1 —Kk)cx(j + 1) > eo}. (4.25)
This integer is well-defined, since lim; o ¢4 (j) = +00. We also introduce the energy level
e1 := (1 —K)ex(j1 + 1). (4.26)

By construction, one has 0 < ey < e; an j; = [¢]. Moreover, Lemma 4.12 has an immediate conse-
quence, which will be very useful in the sequel.

Corollary 4.13. Assuming that k < 1, with the above notation, for every v in I'<y:
e The projector 1y .,1(D~.¢) has rank at least [q] for a.e. £ € Q.
e The projector 1jg c,y(D~.¢) has rank at most ji for a.e. { € Q.
o Ify € Z and 0 <+ < 1jg.,)(D), then v € B.
We end this subsection with the following proposition.

Proposition 4.14. Assume that k < 1. Let v,7' € ', such that
0<7" < 1pou(Dy)

with v > 0. Then,
7'z < max{(1 - x)"* qu;1}.

Proof. By Lemma 4.10, we have
Dol ds = f Ty ebilde > (1= R L
Q¥ Qf
Since +' € I'¢,, we obtain
/ /
][ Trpe [D+,e7e] d€ < V][ Trpz [ve] d§ < qv.
QF QF

Then |v'|x < (1 — &)"tqv. We deduce the desired bound since ||y < 1. O

4.3 Properties of the minimizers for a linearized problem

The following lemma will be used in the next sections.
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Lemma 4.15. Let g € I'y be given, and assume k < 1. Then for each ep > 0, the minimization
problem

B TPy ol de
y=PfyP} "
admits a minimizer. Fvery minimizer g is of the form § = fQ@* Lo, (Dge)dé + 5, with 0 < § <
£
fé@:}k Ly (Dg.e) dé for some v € (0,min(ep, eq)], and one has j € B.
If ep > eq, the set of minimizers is independent of ep, and every minimizer satisfies Trr2(g) = q

and v = \g.

Proof. The proof is inspired of [5]. For any { € Qj we can choose an orthonormal eigenbasis
{v,(€,)}j=1 of Dg@Pngg, such that

0 el e = Y MO 185(9) (Wi (&)1,

j=1
with \;(£) > 0. According to Lemma 4.12, for every £ € Q} and for every j > 1
(1= r)exf) < A(6) < (1 —w)"He* ().

Let us introduce as in [5, 19] the non-decreasing function

C:Ry>3s— 3Z|{§€Q4|0\ ()<5}|

( j=1

By Lemma 4.12, for 0 < s < (1 — k)c«([¢]) one has C(¢t) < [¢g] =1 < ¢. On the other hand,
C(ep) = [q] = q. Thus, there exists vy with

1—r < (1—-r)ex([q]) <1< eo (4.27)
such that
lim C(s) < ¢ < lim C(s). (4.28)
s—U s—vy
Equivalently,
][ Trrz[Lo,,)(Dge)] d§ < q
Qf
and

][* TYLE[I[QW](DQ,E)] d€ = q.
£

~

Therefore, there exists 0 < 0 < fg* Ly} (Dy,e) d€, such that the density matrix
£

@ -~
g:= ][ L10,01)(Dg,¢) d§ + 0
Q*

14

satisfies N
Trz2(9) = q.
We first consider the case vy < ep. For any v € ', with v = Py P, we write
F  Trl(Doe — er)oe - B0 de
L
—f TlDoe - e -3 + £ Trugllon — en) o~ Be)) de
Q¥ QF
= Tl — )06 = Gt + (01— ep) (Toia() - )

4

17



-1  al(Dre = ) BN e (4.29)
On the other hand, we have
72 , Tzl (Dae =)0 = 30 de
— Tz l(Dae = )0~ Loun) (D)) e

Q¥
= D IN(E) = vl (e (€), w5 (€)) — 1] dg

QF X (©<m

sf T O - (ens(©.0,(©) de >0, (4.30)

QF Aj(§)>r1
since 0 < v < lz2(gsy. Thus g is a minimizer. Conversely, if § is a minimizer, then it must be
of the form fc% 110,y (Dg¢) dé + 6 with 0 < & < fg);*‘ L3 (Dge)dé, v = v1 € [Ao,min{ep, eo}] and

Trpe () = ¢ since all inequalities in (4.29) and (4.30) above have to be equalities for g = §.

For the case ep < v4, we prove that ¢’ := fgj* TrLg [110,e)(Dg,e)] d€ is a minimizer with Trpe (¢') <

4

g, thanks to a modified version of (4.30) with 24 (resp. §) being replaced by ep (resp. ¢’). As in the
previous case, every minimizer § satisfies § = fg* Lio,ep)(Dg,e) dE+0, with 0 < 6 < fgj* Licpy(Dye) dE.
2 4

Note that in the case ¢, < v1, the inequality Tr 12(9) < q automatically holds for any such .

In both cases, thanks to (4.27) we have v = min{vi,ep} < ep < ey, hence 0 < § < 1, )(Dy) .
Thus, Corollary 4.13 implies that § € B. O

Remark 4.16. Actually, it follows from Corollary 4.13 that for every minimizer § and a.e. & € Qj,
one has Rank(ge) < j1.

4.4 First properties of minimizing sequences for J,

We introduce the sublevel set

S:= {'yefzq

EPF () — epTrra(y) < 0}. (4.31)
Note that the operator 0 belongs to I'Z, and satisfies £PF(0) — epTrr2(0) = 0. Thus,

Jeg = inf [77(7) = ep Tz (7)] (432)

and from now on we will only consider minimizing sequences for J¢, lying in the sublevel set S. These
sequences satisfy a priori estimates gathered in the following lemma.

Lemma 4.17 (Boundedness of S). Assume that k < 1. If K <1 —§Cgrq™, then, for every v € S,

(07 _
Iz < max{(1 = x = $Cupa*) e a1} (4.33)

and

max { |y|D° 2] e, 13 Il | < \/max{a — k= 5Cpq) ergi1} gt (4.34)
Proof. As D~y = |D,|vy for any v € qu, we get, by (4.13) and (4.17),
EP7(3) = epTra(7) = Topal(Ds, = ep = SV = Trpal(1D5] — ep = SV
> Trpa[(1 - #)|D%] = ep = SV:)1]
> (1= ®)llx = 5CrellernyI7lx = erlle.

«
>(1-r- §C’EEQ+)H7HX —€pq.
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Hence, for any v € S,
@
(1-—k-— ECEE(]Jr)H’YHX —epq<0.

Whenever 1 — k — $Cppqt > 0, (4.33) holds since ||y[y < 1.
The estimate (4.34) follows from Hoélder’s inequality and the fact that v > 0; namely

1/2 1/2
Iy 1Dl s < 7262z V21D 26, < IS, NI

5 Approximation by a linearized problem

The aim of this section is to show the link between a minimizing sequence (v,)n>1 in S and the
linearized Dirac—Fock problem introduced in Lemma 4.15.

Proposition 5.1 (Link with the linearized problem). Under Assumption 3.1, let (,)n=1 € SN be a
minimizing sequence for J<q. Then, as n goes to infinity,

][ Trrz [(Dy,.c —€p)ne]dé—  inf ][ Trrz [(D,.c — €p)ve] d€ — 0. (5.1)
QF QF

v€l<q
_p+ +
’Y*P'anp'm

This property is used in Lemma 6.2 below to build a new minimizing sequence with further reg-
ularity, and it is also used at the end of Section 6 to show some properties of the minimizers for
J<q-

As mentioned at the end of Section 3, the main difficulty in the proof of Proposition 5.1 is to
deal with the nonconvex constraint set 1"2 q- To do so, we adapt to our setting a retraction technique
introduced in [39]. We are going to build an open subset U of Z stable under the continuous map
T: v~ Pj VPer and such that the sequence (Tp)p>1 converges uniformly on U/ to a surjective map

0: U — U n Fix(T). Here, U is the closure of ¢ in Z and Fix(T) is the set of fixed points of T'. The
map 6 will be uniformly continuous and such that # o0 = . Following a classical terminology we call it
a retraction of U onto U N Fix(T'). The restriction of 6 to U will be of class C, the differential map df
being itself uniformly continuous and bounded from U to the space B(Z) of bounded linear operators
on Z.

Then we will consider the subset V := U n F;rq, which is relatively open in I‘;rq for the topology
of Z. We will see that 6(V) ¢ V nTL, and V n Fix(d) = V nT'Z,, so § may be considered as a

retraction of ¥V onto ¥V n 1"2 - Under our assumptions, we will prove the inclusion &  V which implies,
in combination with (4.32), the equality

Jeg = nf {EP7(0)) — epTez[0(1)]}

It will even turn out that U is a uniform neighborhood of § in Z, that is,
S+ Bz(0,p) cU

for some positive constant p. This property, combined with a formula for the differential of 8, will
allow us to prove Proposition 5.1.

Before giving the definition of U, we take r > 0 very small, and we introduce the following set, as
in [39]:

P<gri= {'y e”Z | diste, , Ay (7, '<q) < T}.
Then analogously to Lemmas 4.10 and 4.11, we have for any v € I'<q .,
(1 —k,)|D°| < |D,| < (1 + &,)| D (5.2)
and

info(|Dy|) = Aoy =1 — Ky, (5.3)
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where £, := a (Cgz + Cg(gt + 2r)) and

C
Mo =1 = amax {Chz + Cper + Chpl(” + 1) 722 + Cpulg™ + 1)},

Definition 5.2 (Admissible set for the retraction). Assume that k, < 1. Let a, := §Cpgp (1 —
nr)fl/Q)\(Ii/Q. Given 0 < 7 < %, let M := max{2+ar(q++r)' 1 } We then define

2 ' 1-2a,T1

u = {’y € ng,’!‘

max{|y|D°["2]e, 1; Iy} + MIT(3) =71z <7}.

We have the following result.

Proposition 5.3 (Existence and differentiability of the retraction). Take k., a,,7,U as in Definition
5.2. Letk :=2a,7 andV :=U ml"zq. Then the sequence of iterated maps (T'?)p=1 converges uniformly

on U to a limit 6 with OU) = Fix(T) nU, 0(V) =TL, AV and 60 = 6. We have the estimate

kP

Vel 1000) = (2 < ——IT() = 7. (54)

Moreover 6 € CH "™ (U, Z) and dO(TP) converges uniformly to df on U.
In this way we obtain a continuous retraction 6 of U onto qu NU whose restriction to U is of class

CYvif - This map and its differential are bounded and uniformly continuous on U.
For any v € Fix(T) nU and & € QF, the linear operator h — df¢(y)h satisfies

+ + _ p+ + - - _
PTedO()hP], = PTche PT, and P dO¢(v)hP . =0,

where 6(y) = fg* O (v)d€, according to the Floguet-Bloch decomposition. In other words, the splitting
£
L? = Pngg @P;ng gives a block decomposition of dfe(v)h of the form

P hePt, by e(h)*
dfe (y)h = ( 7,6 e Yt ) 55

f( ) b»y,g(h) 0 ( )
The proof of Proposition 5.3 is postponed to the end of this section.

To apply Proposition 5.3 to the proof of Proposition 5.1, we need to find 7 € (0, %) such that U

is a uniform neighborhood of §. From Lemma 4.17 and the definition of I/, we can observe that if

T > \/max{(l — K- %C’EEQJF)’lePQ; gt

then there is p > 0 such that for every v € S, one has the inclusion Byz(7v, p) € U. Thus, we have the
following.

Lemma 5.4. Assume that k <1 — %CEEqu, and let a, be as above. Assume in addition that

2a, \/max{(l — K- %CEE(]+)_1€PQ; I}gt <1

Then there exist T € (0, 5—) and p > 0 such that S + Bz(0,p) < U.

We are now in a position to prove the main result of this section.

Proof of Proposition 5.1 (as a consequence of Proposition 5.3). Under Assumption 3.1, we may choose
r > 0 so small that the assumptions of Lemma 5.4 hold true. Then we may take 7 € (0, ﬁ) and p >0
satisfying the conclusion of this lemma. To prove (5.1), we argue by contradiction. Otherwise, there
would be an ¢y > 0 such that, for n large enough,

v€l'<q
_pt
y=PJ v

][* TI“LE [(D’me — Ep)’ynﬁg] d§ > inf fQ* TI‘LE [(D’me — Ep)’}/g] d§ + €.
¢
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By Lemma 4.15, there exists an operator 7, € I'<; which solves the following minimization problem:

][Q* Trp2[(Dy, 6 = €p)ine] d€ = min ]2* Trpz[(Dy, ¢ — €p)ve] d€.
¢ V=P ¢

From Lemma 4.15 and Proposition 4.14, |7,z is uniformly bounded. So according to Corollary 5.4,
there is o > 0 such that for any n large enough and any s € [0, o], (1—8)vn+ 570 € T<¢n Bz (Vn, p) < V.
Then, from Proposition 5.3, the function f, : [0,0] 3 s > (EPF — epTr12)(0[(1 — 8)yn + $9n]) is of
class C'', and the sequence of derivatives (f},) is equicontinuous on [0, o]. From (5.5), we infer

J2(0) = Tepa[(Ds, =€) (3 — )] < =3

So there is 0 < s9 < o independent of n such that for any s € [0, so] we have f} (s) < —<. Hence,

(P = epTrpe) (011 = s0)9u + 503u]) = fuls0) < £a(0) = 02 = (€77 = epTrza)(7) - 2.

Recalling that (EPF — ePﬁLz)(’yn) converges to J<,, we conclude that (EPF — ePﬁLz)(Q[(l —80)Vn +
509n]) < J<q when n is large enough. This contradicts the definition of J<4, since 6[(1 — s)y, + s9,] €
I‘;rq. Hence the proposition. O

It remains to prove Proposition 5.3, but before that, we need some preliminary results. Recall that
Py = 1g+ (D° — azGy). We have the following lemma.

Lemma 5.5. Toke k., a, as in Definition 5.2 and consider the map
Q: Yy P’j— - P0+5

that is, Q(v) := fgjzg Qe () d€ with Qg(v) := P — Py
Then Q is in CVVP (D<yr; |D°|7Y2Y) and we have the estimates

VyeT<gr, VheZ, |ID°]"2dQ(y)h|y < ar|hlz (5.6)
and
V7,9 €Teqr,  [ID°]72[dQ(7)h — dQ(+")R]ID°|*2y < Ky = ' 2| 2, (5.7)

where K is a positive constant depending only on k, which remains bounded when k., stays away from
1.

Remark 5.6. In (5.6), if v € I'<q one can replace a, by the constant a introduced in Assumption 2.5,
since lim,_,g a, = a.

Proof of Lemma 5.5. By Lemma 4.10, for every £ € Q} and for all v € I'<y, D, ¢ is a self-adjoint
operator, and 0 is in its resolvent set. Then by Taylor’s formula [29, Chapter V1.5, Lemma 5.6] or [23],
we have

pro_ly 1 +OO(D —iz) ldz = 1,1 +OOD (ID,¢]* + 2%) 712 (5.8)
76T 9T or Y 7€ 21 7,6\ H,€ :
and, by the second resolvent identity,
a [T
Qe(v) = —5— (D —i2)"'Vy (Do — i2) ™ dz.
—o0

Hence, for every h € Z, we deduce from (5.8) and the second resolvent formula again, that
a +000
dQe(y)h = dP} h = f%/ (Dye —i2) Wi e(Dy e —i2) Hdz. (5.9)
—0

Besides, for any u¢ € Lg(Qz) and any v € I'<q.», we have

+00
/ (ue: 1D e 2(1D5 ¢l + 21711 Dy ] P2 ) |, dz = 3. (5.10)
— o0 £
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We infer from (5.3) that
11D,y < A5 (5.11)

Thus, gathering (5.9), (5.10), (5.11) with Lemma 4.7, for any ¢, ¢ € Lg we may write

(e, 1Dl (@Qe (1)) ) .

Q 0 CN— CN—
T o / (1/’5’ |De"*(Dy ¢ — i2) " Vi e(Dy e — i2) 1¢5)L2 dz
—0 3
a +00 . P 1/2 +0 L2 1/2
< geWiclay ([ |0ue=m7 Do as) ([ 10— i2) ol )

(0%

< ) ‘D 12|p *WH ‘D *WH 2| B¢ 2
g Vislsz |IDel" 1Dyl ™2 L (1Dl ™2 Ielizloclos
(0% _ —1/2

< 5Cre(1 = k) 720G P Bl 21 12 |0 12

(5.12)
hence we obtain (5.6); namely,

« _ —
IID°12dQhlly < 5Crr(1 = )™ 2A5, % 1] 2.

For the second inequality, we write

a2 +00 ' B ) B ' B
dQe(v)h — dQe(7)h = — — (Dye —i2) "Vy—ye(Dyre —iz) "WV e(Dy e —iz)~'dz
2 J_ o
o [*F 1 1 1
~ 5 (D g = i2)" Vhe(Dye —i2)7 Vyrmq e(Doyr g —i2)" dz.
—Q0

Proceeding as above, we get (5.7). The fact that Q € CV1"P (I'<,,; [D°|7Y/2Y") follows from (5.6) and
(5.7). O

Lemma 5.7. Take k., a, as in Definition 5.2. Then the map T : v — P;WP;r is well-defined and of
class C*' on 'y, with values in U<y, © Z. Moreover, for any v € D<q.r,

I72(7) = T(y)]lz < 2ar(max {60 IT() v}

ar(qgt +7)

+ T2y = T2 IT() =3z (5.13)

Moreover, there are two positive constants Cy, ., Ly » such that

Yyelagn (AT lacz) < Cor (14 max{h D216, 5 1l }) (519
and
¥9.7 € P [dT(Y) = dT()ls(z) < L (1 + maxt 11D 2 s, i v} )10 =71z (5.15)

Proof. Tf v € Ty, there is 79 € I'<yr such that |y —olle, ,~y < 7. Then PfyPf e, T(y) e Z
and

IT(7) = Pyl e, ny = 1P (v =20) P e, ny < Iy =0lle,,ny <7
so T'(v) € P<qpr.

Let 7,7 € T'<q,r. Then P — P;t can be written as

1
Py - Pl = /O dQ(Y' +t(y =)y —+')dt.
From (5.6),

[ID°2(ES =PIy < arlly =7l
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For the estimate (5.13), we write

T*(7) ~T(7) = (Pf,,, — P))T() (P;f(v) ~ P+ P;) + PIT() (P, — P
(qu(»y) P;)T(’Y) + T(’Y)(PJJ:('Y) - P»j—) + (PJJ:('Y) - P»:_)T( )(qu(»y) P»:_)
Then
I720) =Tz < 1(PFi) = POTO) Lo
TPy = Py + (P = POTO By — Pz

We have

IT(N (P, = P xay < IID°[V2 (P, = Py max{| T ()| D)2 |e..; T () v}
and

|(Pr,

) — POT() (P,

iy = PDlz <D, — PHIRITler ey

T(v)

Notice that [|T'(7)]|e,,~y < [V]le,1~y < ¢t +7. Gathering together these estimates, we obtain (5.13).
We now turn to the proof of (5.14) and (5.15). From Lemma 5.5, T' is in C!(T'<,,-) with

dT(y)h = (dQyh)yPy + Pyy(dQyh) + PyhP;.
Notice that for any v € I'<q

(1+ k)2

[[DO2PFIDO 172y < (1= k) ~V2( D52 RS IDO 72y <

Thus, using (5.6), one finds a constant C,, , such that for any h € Z,

[T (v)R] 2

< max {2 [ D°]2(dQ ) |y [A1D°1 2, IIDO1V2PF D72y + [ IDO2P5 D02 ]
2071w dQyhly + [l |

< G (14 max (D2 s, i1} ) I 2
o (5.14) is proved. Finally, for the term d7T'(y') — dT'(7y), we have

dTe(Y)h — dTe(v)h = (dQ~ eh)ve Py g + Py eVe(dQy gh) + Py che Py g
- (dQv’,ih)?/éPv’,& - P’yﬁ&'Yé(dQv'fh) — Py chePye

Proceeding in the same way as for (5.14), we can get (5.15). O

We now show that U and T satisfy all the assumptions in [39, Proposition 2.2] in the Banach space
Z.

Proposition 5.8. Let .., a,, 7, U be as in Definition 5.2. Then T is in CO(U)nCH" (U, Z). Moreover
T(U) cU and the following estimates are satisfied:

sup [dT'(7)[s(z) < ©, sup|T(7) 7|z <o
~yeu yeU

and

Vyel, |T%(y) =Tz <k|T(y) =7z

with k := 2a,7 < 1.
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Proof. For any v € U, we have
TP [e, < VD126 + 1(v = TONID 610 < MDY 61 + Iy = T()l1x
and
1Ty < ]y

As a result, as M > %’M, (5.13) implies that

IT?(v) =T ()| z < kIT () =7z

Moreover, using the inequality M > we get

1
1—2a,71°?

max {|T(7)|D°|Yle,.: [Ty} + M|T?(3) = T(7)]lz
< max {|y|D°1V2 e, .5 [ylv} + (1 + ME)|T() = 7]z <,

soT(y)eU.

The fact that sup.e, [dT(7)[sz) < o and that dT' is Lipschitz continuous on U follows from
(5.14) and (5.15). Besides, for v € U, we have |T'(y) — 7|z < 77. This ends the proof of Proposition
5.8. O

We can now prove Proposition 5.3, which implies Proposition 5.1, as we have already seen.

Proof of Proposition 5.3. By Proposition 5.8, we may apply [39, Proposition 2.2] to our map T and
our open set U in the Banach space Z. This allows us to construct 8 € CO(U, Z) n CH™E(Y, Z) with
the properties 0(U) = Fix(T) nU, 6 0 = 0 and the convergence estimate (5.4). By our definition of
T, we have T(I'<y) © I'<q and 'L, = Fix(T) n <y, hence the additional property 0(V) = T'L, n V.
The proof of (5.5) is exactly the same as in [39, Theorem 2.10]. This ends the proof of Proposition
5.3. O

6 Proof of Theorem 3.3

Throughout this section, we assume that Assumption 3.1 is satisfied and that ep > eg. Let (yn)n>1
be a minimizing sequence for J¢4 lying in S. According to Lemma 4.17, this sequence is uniformly
bounded in Z. We split (75)n>1 into two parts: (Y, )n>1 and (v, — Yn)n>1 where, for each n,

Vn 1= PnYnPn With pp = 1[0,61)(D’yn) (61)

where e; has been defined in Formula (4.26). Thanks to Corollary 4.13, for almost every £ € QF the
rank of p, ¢, and therefore of 7, ¢, is at most j1, so that ¥, € B.

Actually, we prove in Lemma 6.1 that, for each n > 1, ¥, € X2 whereas v, € X; roughly speaking,
we reach a L*(QF; H (Qr)) regularity instead of a L2(Q2‘;H§1/2(Q¢)) regularity for the associated
eigenfunctions. Moreover 7, is close to 7, in X (Lemma 6.2), so (¥,)r>1 is a modified minimizing
sequence with higher regularity than (v,,)n>1.

The structure of the proof of Theorem 3.3 is as follows. In Subsection 6.1, we will show that
[vn —Fn|x — 0 when n goes to infinity. In Subsection 6.2, we first study the convergence of the kernels
of (W5, ¢)n>1. Then we deduce the strong convergence of (V5, ¢)n>1. As a result, | P, — P%J; |y — 0.

On the other hand, for any v € T'<,, we also have [(P; — P%l Ne.: < ClAn ,,Ynuiflhuz — 0. Hence
in Subsection 6.3, we can pass to the limit in the energy and in the constraints.

6.1 Decomposition of minimizing sequences

We start with some regularity bounds on 7,, that will be needed in the sequel.
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Lemma 6.1. The sequence (Yn)nz1 and the sequence of kernels (Y (-, -))n=1 are uniformly bounded
in X2 and in L®(QF; H (Qe x Qu)), respectively. More precisely, we have the following, for every
n =1 and for almost every & in QF,

[Fnllxz <g1(1— k)"t (1) (6.2)

and
[T e Cs M (@exae < 201(1 = &) e (1) (6.3)

Proof. We first prove that ||p,|xz is bounded. Let (un ;(§));j>1 be the normalized eigenfunctions of
the operator D,,, ¢ with the corresponding eigenvalues A, ;(§) counted with multiplicity. Hence,

png—Zén] ) [, (€)) (i (€)]

with 6, ;(§) =1if 0 < A\, ;(§) < e1 and 6, ;(€) = 0 otherwise.

By Corollary 4.13, we know that |{j € N* |4, ;(¢) = 1}| < j1. By (4.21), for any eigenfunction
Un,;(§), we have 5n,j(§)“un,j(§)“§{§1(Ql) < (1 —r)~*c*(j1)?, for every & € Q5. Now,

[Pngllxz) = Z S, te () |[wn, k()72 < 15D G (€) [, (€) 171
3 =1 £

Hence,
[pnllxz, < 51(1 = &)1 ().

Since Pn = p37 '771 = pn%npn and 0 < '771 < 1L2(]R3)a we have

[Fnllxz, = [1D°10nFnpal DOl 61 < Fnllylpnlxz
< pnllxz <11 —r)"1e* (1)

In terms of kernels, this implies that

[1De.a T (5 )l L2(@ex@e) = | o <1l —r) e ()?,

the same holding for [Dg¢ y|[Vn.¢(-,-). Thus, Fne(-,-) € LP(QF; H (Qe x Q¢)) and (6.3) holds.
O

We begin the proof of Theorem 3.3 by showing the following result as in the case of molecules [39,
Lemma 3.4].

Lemma 6.2. Under Assumption 3.1, whenever ep > eq, for any minimizing sequence (Yn)ns1 of (3.1)
in qu we have

Trpe ['Yn] —4q and H'Yn - %n“X — 0.

Proof. According to Proposition 5.1, any minimizing sequence (7, )n>1 in qu satisfies (5.1) ; namely

72 (Do erbnelde— it f TlD,, 6 - enhiel s — o,
£

1€l<q b
+
= P ’YP’Yn

By Lemma 4.15, for every n, minimizers of the above minimization problem are of the form ) :=
fg)zk 110,0,) (D, ,¢) d€ + &, for some v, € [N, eo] and some 0 < 6, < fg)? 1,, (D, .¢)d¢ such that

'ﬁLQ (75,) = g. In particular, limsup,,_,, , v» < €p, for every n. We define

@ @ @
Ty 1= ][ Liey o) (Dy, 6) dE, 7, = ][ Ly er) (D 6) dE, o= ][ 10,0, (Dn,.¢) d§.
Q¥ QF :

4
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We can write p,, = 7, + 7/, and we observe that ~/, = 7/~ 7. Proceeding as for (4.29) and (4.30),
and since v, € qu we have

Trr2[(Dy, — €p)vn] — Trrz[(Dy, — ep)v,]
= ﬁLZ [(Ds,, = vn)TpYnmn] + ﬁLZ [(Dr,, = V)T 0]

+ rﬁL2 [(D'Yn - Vn)(WZVnWZ - I[O,Vn,] (D'Yn))] + (ep —vn) (q - rﬁL2 ('Yn)) .

We observe that the four terms in the right-hand side of the above equation are non-negative whereas,
from Proposition 5.1, their sum goes to 0 as n goes to infinity. Therefore,

Trr2[ym] — ¢ and Trp2[(D, — v0) 0 ynmn] — 0,

since liminf, ,1o(ep — vp) = €p —eg > 0. But m,(Ds, — vy)mn = (€1 — Vp)Tn = (61 — e0) ™, and
Tn(D~, — Vn)Tn = T (| D4, | — e0)myn. Thus, taking a convex combination of these two estimates leads

to
€1

T (D, — Vn)Tn = Tn|Dsy,, |Th.
€1 — €

Hence
[T Ynmnlx = Trre [7Tn|DO|ﬂ'n’}/n] < (1- H)_lTI“Lz [T |Dn,, [T n],

and the right-hand side goes to 0 by (4.17). It remains to study the limit of h, := 7, y,pn as n goes
to infinity. Since (7,,)? < Yn, we have

(7Tn’7n7rn)2 + hnhz = 7Tn(’7n)27rn < T YnTh-

Hence

Trp2(|Do, |V bk | D, |V/?) — 0.

'7n|

In other words, | |D.,|"?hy||s,, — 0. Taking any operator A in Y, by the Cauchy-Schwarz inequality,

Tepa[A1D, V203D, 12| =

Tepa[AID,, Y2, 121D, [V2]]
<JAIDs, [ 2palless 1D5, Pl (6.4)

We have already seen that p, ¢ has rank at most j;. Therefore,

| 41D, " ?palless < D+, ?Pulleaz | Aly < jredlAly,

so we deduce immediately from (6.4) that

(1D, Y2k | D, 2] =0,
S11

since A is arbitrary. Hence, thanks to (4.15), |h,|x = H|D0|1/2h"|D0|1/2H61 . — 0. Finally, we obtain
that |yn —Yulx < [T mmnlx + 2] halx — 0. u

By Lemma 6.1, up to the extraction of a subsequence, there is 74 in X2 n'Y, such that

Ap =74 for the weak-* convergence in X2 Y, (6.5)
since X2 is a subspace of &1, which is the dual space of G4 1 and Y is the dual space of &1,1. We
immediately get the following.

1/2 /2 .
5, COmverges strongly to py, in

H*(Qg) with 0 < s < 1, thus in LP(Qy) for every 1 < p < 6. In particular, whenever ep > eq, we have
er P dT = .

Lemma 6.3 (Strong convergence of the density). The sequence p

Proof. The proof of the strong convergence of piyi % to p#{f in LP(Q,) for every 1 < p < 6 is the same as
in [8, p. 730] and relies on the fact that ¥,, € X2 (see the proofs of [8, Egs. (4.51) and (4.55)]). When
ep > eg, by Lemma 6.2, 7, — ;,, converges to 0 in X, thus in &, ;, whereas ﬁLz [Yn] converges to q.
Thus, ;,[V‘rLg['y*] =q. O
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6.2 Convergence of (P*)

n=1

We now study the differences between PJr and Pq and between Pq and PJr separately. We do not
know whether ~v,, — ¥, goes to 0 in Y and we do not even know whether 5, — fy* goes to 0 in &4 1, so
we cannot rely on the continuity of the map @ introduced in Lemma 5.5. The proof is therefore more
involved than in [39].

Convergence of ( - P, )
n=1
The main result of this section is Corollary 6.8 which states that the sequence (P%r — Pﬂ;:( ) con-
" n=1
verges strongly in Y.
Recall that
W7:W2m77+w<m,'yv vaN;m>2

where for £ € Q} and z, y € Q, the kernels of Wx, ¢ and W.p, ¢ are respectively

Wemqe(@,y) = ][* W& =& —y)ye(x,y) dE’ (6.6)

Qs

and

W<m7’)’a € y 7[ <m £ 6 - 6) T — )’75/(:5) y) dé-/ (67)

We first prove the following.

Lemma 6.4. The two sequences of operators (W<m,%)n and (W>m,%)n are bounded in &2 . Thus,
up to the extraction of a subsequence, we may assume that

* * .
Wemin - Wemny and  Wepms -~ Wepmae  in G (6.8)

Note that saying that the operator A = fg* Ag d€ belongs to G4, with 1 < p < 40 is equivalent
£
to saying that the family of kernels & — A¢(-,-) is in LP(QF; L*(Qe x Qo).

Proof. The first claim follows from (B.23) and (B.17) in Appendix B, thanks to (6.2). Let g =
f% ge d€ € G31. From (B.23), we know that Wy, g € Ga,1. Then, by (6.5), and since 6%, = Sa,,
we get

Trp2 [g W<m7’7 ] T‘rL2 [W<m g 771] — Trpe [Wzm,g ’Y*] =Trpe [g W<m7’)’*]'

The argument is similar for W, 5,. Notice that by (B.17), Wx,, 5, € 62,1. Then we write
Trp2 [Wom 3, 0 = Troa[Womg Tl = Troa[[D°[ 7 W | D%~ | D3| D],

with |D°|¥,|D°| converging to |D°|vy,|D°| for the weak-* topology of &1 o thanks to (6.5). Therefore,
it remains to show that the operator |D°|~'Ws,, ,|D°|~! belongs to G4 1 whenever g € Ga 1. Actually,
we prove that Ws,, ¢|D°|7! € Y, which gives |D?"'Ws,, ¢|D°|7! € Sy o0 since || D7 |s,.,, < 1.
We conclude since &0 © Gu0,1. We use Proposition B.1 on WX, , and focus on the singularity
introduced by the potential Gy, the difference being easy to deal with. For every £ € QF and every 1
and ¢¢ in LZ(Qe) with [¥ellr2 = 1, we have

‘// VE(x) Ge(z — y) ger (z,y) | De| " e (y) dadyde’
QexQe JQF

1/2 1/
/ 2 2 _ 2 -1 2
<t ([l eworaa) ([ W@k 100w )

< Co lglen I9e] oz e oz,

thanks to (4.2). Hence the result. O
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We are now proving stronger convergence results in (6.8), by improving the bounds on the kernels
of (nymg) .

n

Lemma 6.5 (Convergence of the sequence (Wx, 5, )n=1). The sequence of kernels (Wzm,%,ﬁ)n is
bounded in Wl’OO(QZ“; L?(Q¢ x Qq)). Therefore, up to the extraction of a subsequence, we have

D2 W 5, i D° 2l

l&:..0

— 0.

Proof. Let us start with the boundedness of the sequence. We already proved in Lemma 6.4 that
(W>m,%)n is bounded in &3 o, which follows from (B.17). Let us now check that the sequence of
norms |[VeWs,, 5, (-, ~)HLQC(QZK;L2(QMQ£)) is also bounded. Thanks to (B.5), for every & € Q7,

IVeW=m () 2(@ix@n) < C]é [An.elea(en 48" < CAnlles,.0

and we conclude with the help of (6.2). Therefore, the kernels |D¢|~Y2Ws,, 5. ¢|De|7Y2(-,-) are
bounded in Wh*(Q#¥; HY2(Q, x Q¢)). Thus, according to the Rellich-Kondrachov and the Arzela—
Ascoli theorems, up to the extraction of a subsequence,

|Del ™ 2 Wam sz, 6| Del 72(1) = [Del ™ Wamzy el Del 2(.) i LP(QF: L2(Qe x Qr)
which yields ||D°|7Y2Ws,, 5, —v, | D°| 72| s,.. — 0, whence the lemma. O

Lemma 6.6 (Convergence of the sequence (W, 5, )n=1). The sequence of kernels (Wep, 5, .¢)n 18
bounded in CO’“(Q?;H,;}(QZ x Q) for any p € (0,1). In particular, up to the extraction of a subse-
quence,

HW<m,’7n*’Y* H62,oo — 0.

Proof. Let p € (0,1). We first show the uniform boundedness of W, 5, ¢ in CO*(Q¥; H*(Q¢ x Qy)).
It is based on Lemma 6.1, particularly Eq.(6.3). In the formulas below, C' is a positive constant which
depends only on m, £ and u. Recall that

47 1 (25 k).
fm,l(naz) = f_?’ Z ﬁez( ik 77) #
k< | K =1
kez®

Thus,

HW<mﬁmn - W<mﬁn,n’ HH1 (QexQy)

An o (FFh—(n=8))-(z—y) (k= =€)) (@—y)
£ |, ncdd ~ f o d€
£

2 2 2
|k\3;;<z7r;—1 ’Tki 7775/)‘ ‘Tki (77/75/)’ HY(QexQy)
€
For each term on the right-hand side, we have
i (2EE—(n=¢)) (2—y) ¢ (GF k=01 =€) (2—) )
nerde' -~ f e d
21 2 21 2
k= (=) QF |Fk—(f —¢)| 1 (QexQ0)
= |Fk—(m-¢) Sl @exn)

Pk — (O
i(ZEk—(n—¢)) (z—y) _ Ji(Fk—(n'-€))(z—v)
][ (e e )
Q |2Ek

+
— (&)

ﬁn,&’ df/

*
e

HY(QexQr)

As n, ¢ € QF, according to (6.3) we get

ei(ZT"k—(n—é/))(w—y)ﬁn,g,

—4 % \2
H(Qox o = Clm. HHl (@ex@n S2CH1 =) ()"
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/

By the Holder continuity of the function n — fQ* = £/|2’

1.

For the last term, note that

1 _ 1
k=G =& - =)
<201(1fn> ) =1

ei(ZT"k—(n—f/))(w—y)ﬁn,g,

2

d
HL(Qex Q)

|75 — e E < Ve o (i g In — ' < Cln =17

and |V, (e~"1% — e="2)| < Cln —1f|. We get

o (FFh+E) (z—y) (e —in'-(z—y) _ *in’-(r*y)) N ,

7[* s / %,gd§

Q[ ‘Tk (77 75 )’ Hl(QgXQg)
<2051 = r) 7' (1) In— |-

We finally get
IW<m .l con (g, SHH(Qex Q) S <2Cj1(1—k)*e* ()

Lastly, thanks to the Arzela—Ascoli theorem and the Rellich-Kondrachov theorem, the sequence of
kernels converges strongly in L®(Q%F; L*(Q¢ x Q¢)), up to the extraction of a subsequence, and the
limit is the operator W, -, thanks to (6.8). This concludes the proof of the lemma. O

Then we have the following.
Lemma 6.7 (Strong convergence of the electron—electron interaction). As n goes to infinity, we have

[[D 742 V5, [DO 72y — 0.

n =Yk
Proof. As V) = Gy = py — W, we have
[[D 2V, | DO 72y
< DO 26y # (ps, — o DI 2]y + DO 235, — W, )Py

Notice that, from Lemma 6.3, we infer ps, — p,, in L?(Q). This, together with the fact that
Ge e L2(Qr), vield

|Ge * (3, = Pri) L= (@r) = O
Then, using |D°|~! < 1, we infer
[1D° 712G % (py, = o )ID° |72y — 0. (6.9)

We consider now the second term that we split into two parts. We already proved in Lemma 6.5 that

I|1D°| Y2 W, 5, —s | D°| 72 |ls,., — 0, which implies the strong convergence in Y. The proof for the

other term is even simpler, since
D12 W< 5= D™ 80 < W =il 82,
for ||| D°~/2|y < 1. We conclude by Lemma 6.6. Finally, we infer

[[D°]7 Y2 W5, ID° 2]y — 0. (6.10)

n—V%
The lemma follows gathering together (6.9) and (6.10). O
As a result, we have the following.

Corollary 6.8 (Strong convergence of the spectral projectors). As n goes to infinity, we have

|PY, = P5 Iy = 0.
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Proof. For any ¢¢ and ¢ € LZ, by (5.8) and the second resolvent identity, we obtain

‘(wg, (P»;;,g - P»”:;yg)(bf)’

1 +00

S50 ‘(% (Dryyg = 02) " Vyumny e (D3, — 12) 7 ¢) 12| dz
T J_op €
1 _ _
< 5o D171 2V5, o D072y
+o0 1/2 +o0 1/2
- \—1 1/2 2 - \—1 1/2 2
([ D= i D ety as) ([ UDse i D el )
—® —0
1 _ _ _
< 5 (1= R)THIDO T2V, o (DO (e 2 e 2. (6.11)
in virtue of (4.16). Therefore,
1 _ _ _
[P, = P Iy < 5(1=m) 1D T2V5, oy [DO 72y

The right-hand side goes to 0 by Lemma 6.7. |

Relationship between P,;; and P,;:L

It remains to analyze the behaviour of P,;; — P%l , as n goes to infinity. Our main result is the following.

Lemma 6.9 (Relationship between P,{; and P,;’;) For every v € Z and for some C' > 0 independent
of n and Z, it holds that

~ 1/2
[P = P¥ e, < Clivn =l iz

Proof. We first observe that |G * (p,, — p3,.)|y — 0, thanks to Lemma 6.2 and (4.4) in Lemma 4.4.
Next, thanks to the bound (B.10), the sequence of operators (Wxy, ., —5, )n converges strongly to 0 in
Y. Therefore, proceeding as for (5.12), we have

1 ~
% <CVH’Yn*’YnHXv

—+ 00
/ (Ds, —i2) " (G % (py, — p3,) — Womsnn) (D5, —iz)" " dz
Y

—Q0

with the right-hand side going to 0. We now focus on the term involving W, -, 3, . For every v e Z,
proceeding as for (6.11), we have

1

2

+o0
/ (D, —i2) "Wz, —r, (D5, —iz) "t ydz

—Q0

S11
1 +00

<5r ) D =) Wais, o, (D5, —i2) g, d2

+00
SC Wemgn-le,, Ne,., / I(Ds,, —i2) 7 v |(Dy, —i2) " lydz
-0

< C H'Yn - %"ngz H7H62,2

~ 11/2
< Clm = Al 17z

thanks to (B.23) and in virtue of |v, — |y < 2. O

6.3 Existence and properties of minimizers for J,

The existence of minimizers for J<, now follows by passing to the limit in the constraint and in the
energy. The proof is separated into the following two lemmas.

Lemma 6.10. The limit 4 lies in T} .
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Proof. As

~

Yo By I X3 NY,

we get
|ylly < Tim inf 5 [ly < 1
n—0o0

and
|vse [ x2, < hnniig.}f Anllxz, < J1(1—K)~*c* (1)

Thus, v, € I'. Since ep > e, ﬁLQ [7+] = ¢ thanks to Lemma 6.3.

To complete the proof, it remains to show that P,;; V¢ = Y%. From Lemma 6.9 and since ||§, —
Ynllx — 0 (Lemma 6.2), we first prove that

Indeed, since P v, = vn, we have

HPrN;; ﬁn - ’771“61,1 < H(Pr;; - PJ)’?nHGU + HP';; ('?n - 7”)”61,1 + H’yn - ’?HHGLU

n

using also || P} ||y < 1. Then, the right-hand side goes to 0. Next, by Corollary 6.8,
I(PY = PE) Al — 0. (6.13)

Let g € Y. Let us show that N
Trye [(P,;tk'y* — 'y*)g] =0.
Notice that

Tera[(PF — PX)An g]’ +

Tn o *

T2 (P, 3 = 3) g

[T [P, (v = Fa) 0] +

Tr2[(P, 7 — ) ]| <

T2 [ — ) 9]

The first two terms in the right-hand side goes to 0 thanks to (6.12) and (6.13). For the last two
terms, we use the weak-* convergence of 7, to 74 in X2 and the fact that |DY|~!g|D° ! and

|D°|=' P g|D°|~! both lie en Gy 1. Hence 74 € T'f. This concludes the proof. O
Lemma 6.11. We have
lim (5DF(%) —epTrpe [%]) — EPF (y,) — ep Trp2[74]. (6.14)

Therefore, v+« s a minimizer of J<q.
Proof. For the kinetic energy term, we write
Trr2[D%(yn — 7)) = Trp2[D° (v — Fn)] + Trp2[D°(Fn — 7).

Since ||¥n —n|x — 0 thanks to Lemma 6.2, Trre [D°(7 —Fn)] — 0. On the other hand, by definition
of the weak-* convergence in X2, |D°|(¥,, — v4«)|D°| converges to 0 for the weak-* topology in &1 4.
As |[DO|71DO|DY|~! € &1, we obtain that

Trp2[D°(Fn — )] = Trrz[| D°|(Fn — 74) | D°| | D°| 71D D°|71] — 0,

hence N
Trye [DO('yn — %) — 0.

In addition, thanks again to Lemma 6.3,
ep Trpz2[¥n — v+] — 0.
The proof for the attractive potential is similar. We start with

Trre[Ge(n — )] = T2 [Ge(vn — Fn)] + Trp[Ge(Fn — 74)]-
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The second term goes to 0 as n goes to infinity since p3, converges to p,, in L?(Q) and G € L*(Qy)
(Lemma 6.3). For the first term, we use the fact that

Tr2[Ge(m = Anl| < Crlm = Anlx = 0,

and we conclude by Lemma 6.2.

For the repulsive potential, using the fact that Trye [V5+'] = Trye [V, 7] whenever v and +/ are in Z,
we have

’TYLQ[v%nVn —'VQ*V*]

Trpe [V'Vn Yo — V5, Yl

< + (Trre[ V5, n — Vi vl

Trpe [V%Jr'vn ('Yn - '?n)]’ + ’TrLQ [V’Nyn*'y* ('771 + '7*)]’
< Crs (|Anlz + 17l 2)I3n = nlx + 11D 72 V5, o IDY 2y (Wl x + Iyl x)

using the bound (4.11) in Lemma 4.7. Finally, the right-hand side in the above string of inequalities
goes to 0, according to Lemmas 6.2 and 6.7. The lemma follows. O

Since 7, is a minimizer of J<,, we may apply Proposition 5.1 to the constant minimizing sequence
equal to 4 , and we obtain that

/ Trp2[(Dyyg — €p)yeg] d§ = inf / Trp2[(Dyy.c — €r)ve] dE.
QF Qf

v€l<q
—pt
y=Pl

We may then apply Lemma 4.15 to conclude that v, = JCS* 110,0) (Dg ) d6+0 with 0 < 6 < 14,3(Dny,)
14

for some v € [Ag, eg] that is independent of ep. This ends the proof of Theorem 3.3. Thus, Theorem
2.6 holds true.
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A  Proof of Lemma 4.1

It suffices to prove (4.2). By interpolation, we can choose Cy = Cg.
To deal with (4.2), the idea is to decompose the potential Gy on Q, into two parts, namely ﬁ and

Gy — ﬁ The first term can be treated as the Hardy inequality on @y, whereas the second is bounded.
We begin with the second term and prove the following.

Lemma A.1. There is a constant Cy > 0 independent of { such that

1 Co
pfe g <
This implies that, for any x € R3,
Go(z) = f%. (A1)
In particular, we have
3  27R? 3 Ar RS 4x RS\ D\
Cos, Bilar™ 3 +47r2R3min{ 5 13 } 2 T

keZ3\{0}
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Proof. As G1(x) = £ Gy(¢x), it suffices to consider the case £ = 1. Let f(z) = G1(z) — |71‘ Equation
(2.1) yields
—Af=47r<—1+ 3 5k).
keZ3\{0}
Let B(z, R) be a ball of center z and radius R chosen such that (UZEQ B(z,R)) n (Z3\{0}) = &.

Obviously, we can assume 0 < R < 1/2. On the one hand, by the divergence theorem for0<r<R
and z € (; we obtain

L d f(z-i—rw)d 1 / 0f(s) 47rr2 / A f(z (A.2)

47 dr e on
0B(z,r) B(z,r)

with S? denoting the unit sphere. For any z € Q1,

1 1 4
—/ Amfdxz—/ ldx——ﬂr
dmr? B(z,r) r? B(z,r) 3

where the first equation holds since

( U B(W)) N (Z3\{0}) = @, for0<r<R.

2€Q1

Therefore, integrating (A.2) with respect to r,

8m?
f(z+rw)dw —4m f(z) = —r°.
- 3
Since [, ) f(2)dz = % (fs2 f(z + rw) dw) dr, integration over [0, R] leads to
101 | [ dwael+ T < 2ol [ G+ | [ e+ T
2)| < r)dx r)dr| + ——= —dx
4nR3 | p(..m) 5 AnR3 | pomy 47R3 | [ p(apry I 5

On the other hand,

/ Gi(z)dx
B(z,R)

< Bz, R)"2|G1 252, my)

Ar 33)1/2 1 [ 47 R? 1
< ( IGilz2on == | —=— D). =3
3 T 3 ooy ¥l

1/2

Using (2.2) and the periodicity of G1, we also have

/ Gi(x)dx| = / Gi(z)dx
B(z,R) (2+Q1)\B(z,R)
12 1/2
1 47 R3 1
<= <1 - ”SR ) >
g keZ3\{O}| |
Thus,
1/2 1/2 1/2
1 47 R3 47 R3 1
/ Gi(x)dx <—min{(ﬂR> ,(1— ﬂ-R) } Z T
B(z,R) T 3 3 kez3\{0} |k|
Furthermore,

1
/ —dx| < / dz = 2rR?.
B(z,R) 2| B(0,R) |$|
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Therefore, the bound holds for £ =1 and any 0 < R < % with

1/2
Co <5+ 2”5}32 o min{4ﬂ3R3 1 47T3R3 }1/2 2, ﬁ
keZ3\{0}
O
We now consider the Hardy inequality on @, for the potential ﬁ

Lemma A.2. Let ue H'(Q), then

u |? A + 12 24 + 12¢

200 < ——IVulia g, + = luli -
Proof. We start with the relationship:

2
0< /Qe Vu + —5 2|z|2 dz.

Thus,
1 2 1 V|ul? -
0< /|v P do + - / gy L[ Vel g,
Q o] 2Jq, 7l

By the divergence theorem for fQ[ V- (Iul‘;) dz, we obtain

|z

Viul2 - = 2 2
/ Lfd:cz/ nz|1;| dxf/ %dz
P |z oQq || Qe ||

where 77 is the outward pointing unit normal at each point on the boundary 0Q,. To end this proof,

it suffices to estimate f(?Q[ ﬁmﬂz.
Let
A%3(21) =/ |ul|? (21, T2, 23)drodrs.
(~4.472
As |ii- 2| = £ and |z| > £ for any x € 0Q,, we have
/ i |2 <7 [ luPds
0Q¢ t7Qe

_ % (A“’ <§) + A23 <§> + A3 (g) + A3 (é) + <§>) + A2 <§>> - (A3)

Let x(o) € (—%, %] such that

1 1
A273(z§0)) < ][ A3 (z1) dry = —/ A%3(xy) dxy = —/ |u|? dz.
Lt )¢ 14
( 272] ( 272] 12

Then we have

£ (0)
¢ ¢ 3 o | d
A2,3 > A2,3 e _ / _ —A2’3 2A2’3 (0)
< 2> * 2 © J_og | dry dz1 + (27
< 2A2’3($§0)) +/ d — A%3|dx,.
_¢ e7|dxy
( 272]
As J
— A3 d <2/ —u| < 2||ul| 200, | Vul 2
S, | <2 | ol < 2l Velia,



we gEt
A ’ —_— = +A ’ - <_HUH 2Q +2HUH12()7 HCU’H12(,Z

Inserting this into (A.3), we can conclude that

1 2

u
0< HVUH%Z(QE) 1

||

As a result, by the Cauchy—Schwarz inequality

6 6
+ zlulZzn + 71Ul 2o VUl L2@o)-

L2(Qu)

2 40412 24 + 120

< o IVuliagy +
L2(Qe)

u

||

[ull 20,

Actually, Lemma A.2 implies that for any ¢ € Q7,

24—}—125 4€+ 12
ol < (max {21 b 1= 80 el

—Qmax{q/ﬁ —Al4+ - }|u§|H1

Thus combining Lemmas A.1 and A.2, we know that

Co 6 3 3
|Getellpz < =2 Juelz + 2max{\/€—2 F o1+ z} Jueln;

< Coluel ;.

B Co [T73 [3 6
Cg.—2(1+ g)max{ 1+£, €+£2}. (A4)

We now turn to the estimates on the operator W, .

with

B Proof of Lemma 4.5

We first study the properties of W;°, then we prove Lemma 4.5. In passing, we correct Wrong estimates
in [8]. Indeed, contrary to what was claimed, the function W, (n, z) — e~ G(z) — 47 S T |2 introduced
in [8, p. 745, Eq. (5.3)] is not harmonic in (1 + €) Q¢ with respect to the z-variable. Therefore, some

arguments need to be modified.
Properties of W;*

Recall that W;° = W ST wZ . 18 given by (4.7). We are going to prove the Hardy type inequalities
for W;OW ¢ A natural idea is to compare it with the potential G,.

Proposition B.1 (Singularities for the potential W, ,). For every m > 2, there exvists a positive
constant Cs,, such that, for any ¢ > 0, we have

Com
sup_ W2, ,(n2) - Gela)| < = (B.1)
ne2Qf
IEQ@
with
1/2
249 1 2r[(2m — 1)% + 1] R?
Cor < int V3 om?+ y L L 2rl@m - 1)° +1]R
0<R<1/2 | 2(7R)3/2 (m — 1)2 ||+ 5

|klo=m
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1/2

3 . (4rR® 4r R3O V2 1
553 min { ;1 — } 2 T
AR 3 3 vy K]

Proof. The proof is similar to Lemma A.1. Notice that
W _ o (1 3 3
Y) n,m)—)\W)\e A,)\ZC N UER,.’I]ER.
We therefore take ¢ = 1. Observe, from (2.20), that

—AWP(n,x) = 4w Z —nk (@

kez3
Let f(n,z) = W§m71(77ax) — G1(z). Then
~Auf(n,x) =dm Y (e Sulw) +dr —dr Y R
k40 k[
hez? keZ?

Let B(z, R) be a ball of center z and radius R chosen such that (Uzte B(z,R)) n (Z*\{0}) = &
Obviously, we can assume 0 < R < 1/2. Analogously to (A.2), for 0 < r < R and z € 1 we obtain

d 1 1
E (471'7’2 »/(73(2,7“) f(n7 S) dS) B 472 L(z,’r) Azf(ﬁ’ :C) - (B2)

On the one hand, for any z € @1,

1 o, 4r[(2m —1)3 + 1]
_ = 1— i(2nk—n)-x dx| <
> /B L (1- % e ) d - r,

kez®
[klo<m—1

1

4rr

5 / A, fdx
B(z,r)

where the first equality holds since

( U B(Zﬂ“)) N (Z3\{0}) = @, for0<r<R.

2€Q1

Therefore, integrating (B.2) with respect to r,

877 [(2m —1)° +1]

8m2[(2m —1)3 + 1] 2
3 :

3

2 < / f(n,z+rw)dw—4r f(n,z) <
SZ
Then integration over [0, R] leads to

3

2r[(2m — 1)3 + 1] R?
4T R3 '

5

[f(n,2)] < +

/ f(n,2) do
B(z,R)

On the other hand,
1/2

1 dr B3\ dr B3\ V? 1
/ Gi(x)dx <—min{( i ) ,(1— T ) Z T
B(z,R) T 3 3 kez3\{0} |k|

Furthermore, according to the quasi-periodicity of W, 1 with respect to z € R3, for any 7 € 2Q7,

[ Wi
B(z,R)

Am R3\ V? 1
<4 -
7r< 3 > 2, |27k — n]*

k|0 =m

dr B3\ Y
< BRI mey < (5 ) Wil

1/2
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1/2

dr B3\ |27k 2 1
<4 _12mhT
”(3 ) S Tk | 2 T

7762@?‘ lkloo >m
1/2
- (mRS)W m? + 2 gL
3 m(m —1)2 baam ||+
Therefore, the bound (B.1) holds for ¢ = 1 with
1/2
2 _1)3 2
o < \/53/2 m? + 22 3 % N 2n[(2m —1)* + 1]R
2(rR)3/2 (m —1) Ikl am || 5
3 4w R3\1/? 4m R3\'? \
- mi 1— -
+MW““(3)’( 3) 2 )
keZ?\ {0}

forany 0 < R < % The corresponding result for any ¢ > 0 follows immediately by a scaling argument.

([l
We can immediately conclude from Lemma 4.1 and Proposition B.1 the following.
Corollary B.2 (Hardy-type inequalities for the potential WX ,). For m > 2, we have
o (1217 1—1/2 Com
W= 21Dl = lly < | On + = (B.3)
and o
WDy < (Ca+ 52). (B.4)
We also have the following estimate on W;W ‘-
Lemma B.3. Let m > 2. There is a positive constant C = C(¢,m) such that
sup anwg}m,é(na ')HL“:(Q@) <C. (B5)

ne2Qy
Proof. Take ¢ = 1 for simplicity. Note that

AV, W, 1 (n,x) = —4m 2 ike ="y, (x) + 47 Z iwet3rh=m-z
keZP\{0} k| <m
kezZ?

from which we obtain

|AIV77W;Om,1 (777 x)| <C

for any 1 € 2Q} and x € Q. Following the proof of Lemma B.1, we know
VoW (n, )| < C.

The corresponding result for any ¢ > 0 follows immediately by a scaling argument as for Lemma
B.1. O

Estimates for the exchange term

We consider now the exchange term. Let ¢ € H, 51/ 2 As

[Wetelz = sup (g, Wy e¥e)l, (B.6)
deeLZ, H¢£HL§=1

we only need to study the inner product (W, ¢ib¢, ¢¢). For m =2, ne R? and 2z € R,

Wi (n,2) = W, o(n,2) + W, (0, 2). (B.7)
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For the term that carries all singularities in the x variable (i.e., W§m7 ), we use the decomposition
(2.14) and Corollary B.2. Let v € X with 4* = ~. For any & € Q} we have

| Del 29[ Del? = 37 An(€) [vn (€, )) <on(é,-)] (B.8)

n=1

with (vn(€, ), vm(€,)) 12 = G and 7] x = fo st [An(§)] d€. Hence

Ve = Z )\ |un f,' ><Un(§a)|

n=1

with u, (¢, ) = |De|™Y?v, (&, -). Now, we have

][ d¢’ // W, (6 =& x —y)of (x)ve (z,y) e (y) dady
Q¥

QexQy
][dé S e |/ W, (€ — €2 — )] [un(€', 2)fun (€, )] 1 (9)] |6 ()] dexdy
QF n=1 QexQy
1/2
2 ¢t _ ! 2
sjé i 5 e (/@|wg<y>| dy/| © (=& x—) [un(€a)] dx)

</ |¢£(x)|2dz/ | W(&g',xy>||un<s',y>|zdy)1/2

“(f

2

Com
<(0H+ - )wmug ¢z, (B.9)

Cem
(cn+ =) S @l De 1 une ',->|i2(§/)d5'> el Ioelco

n=1

with the help of (B.3). Thus, for every v € X with v = v*, we have
C>m

[Womaly < (Cu + ) Iyl (B.10)

Using the Cauchy—Schwarz inequality and (B.4), we can also argue as follows whenever v € &1 ; with
7=

Fag [ W (e- €0 v)ot@nee.n) (D ve) ) dody

F o QexQe
1/2
2
Q//P%q ) g ()| ddy (Q//PMM(%)‘W;W@(&&',Iy)‘ |De|™ e (y)|* daedy | de’
X Qe eXQy
< ) il IWelus loelsz (B.11)

Thus, for every v € &1 1 with v* = =, since |D°|7! € G, o, we have

_ Com
Woma D11y < (Co + 2 Il (B.12)

Additionally, when v € X7 with v = v* (which includes the case v € X2), one can prove that Ws,,
belongs to &2,o. Recall that [Wxp, y|e., = [[Wam~( ')HLP(QZ";LQ(QEXQE)). The main ingredient is

that ,/pp,| € H'(Q¢) when v € X2. Indeed, analogously to (B.8), for any v € X%, we have

|Delve| Del = 3 1n(€) on (€. )) (onlé, )| € S,y (B.13)

n=1
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1/
with (un(&, ), 0m (€)1 = S and |1z = (fg (Sas [ (€)))" d€) . Hence

Ve = Z ,Un |un 57 ><un(§;)|

n=1

with up(€,+) = |De|"tun(&,7) € Hg1 (Q¢), from which we deduce, adapting the proof in [8, Eq. (4.42)],
that

1/2
IRl < IV1¥3s (B.14)

since py| = szk Vst ln(E)] un(€,-)|?dE. For every £ € QF, the kernel of W, ¢ writes

W}m,'y,{('ray) = 72* Wgom,é(gl - f,.’L‘ - y) ’75’(‘T’y) df/ (B15)

e

We now use the bound (B.1) on W, , and split the kernel W, - ¢ in two terms :

Worasle) = f Gula—9)remn)de + 1€ ~&n el de

14

== e )+ . SE 6w =) ) (B.16)

with f € L*(2QF x 2Q). The second term in (B.16) lies in L*(QF; L*(Q¢ x Q¢)) as soon as v € S 1.
Therefore, the delicate contribution comes from the term involving the potential Gy that we bound
from above by using (2.19):

//Q 0 Ge(@ = y)*ppy () oy (W) dady < [|Gel? 1), ol L2@o o ez,
e X e

< HGZH%Z(Q[) H\/pl’ylH%G(Q[)H\/MW\H%%QZ)
<C HGél‘%Q(QZ) H\/p|’Y|HZ;{1(Q[)'

Finally, using (B.14), we have
Wemales .. <Clylxz (B.17)

where C' is a positive constant that depends only on m and /.

We now study the contribution of the term involving Wgom ¢» that carries the singularities in the n

variable. For this part of the proof, we only need that v e Y. Then, we may write

Fag [[ w2 (6-¢on )0t ahe . )vet)dody

2‘ Qe xQp
—i(e—e-2) (a—)
][// ’ 2k d)g(z)VE/(%Z/)%(y)dxdydg’
QzXQz kZ“" |£ _£_T|
[klo<m—1
gl i€ ~6)-(z—y)
=® Z ][ // ——————— 9¢ (¥) v (x,y) Ve (y) dedydg’
K| kel QF s QexQe |

<€/*f>'<->¢£(.),yg/e<f —£)- 1/15())

4
<£—ZZ ][

2k7r

|k\7$m 1QF +

< Ogme ess sup e |sez,) [¥elzz |9l ez
¢eQf

= Cme Il el 2 ¢z (B.18)
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with

_Ar ' (2m-—1) d¢’
Camye = 75 Sup Z ][ O—¢2 - ot / e (B.19)

kez® - .
§eQY k|2 (m—1) QF +2 (=102

Thus, for every ye Y, We,, , € Y and

(B.20)

We now make a further assumption on -; namely, v € &1 . (Actually, we need v € &1 4.) We first
observe that

2ikm (

Very 2kx (z,y) =e © (@Y Yer(w,y)  for every & € QF, ke Z® and z, y € R,

In particular, Pl oie = Pre for every ¢’ € QF and k € Z3, and the function of { — TrLg (7e) s

Q7 -periodic. Next, We write

) () e
][dgl // E_;T S mpey: O¢ (x) Ve (2,y) e (y) ddy
[

3 =€
¥ QuexQq \k|o’§izm L |
4 1/2 %
SO (vrd R CACIE I BT
Fo < 1Qz+2kw locta,

1
= | % // L2 @) o2 (0) )] o) ddy

(2m—1)Q;F szQz
1 e lsce
< — _— 2 2, B.21
=1 oo | el ol (B.21)
(2m—1)QF

where the last estimate follows from the Cauchy—Schwarz inequality. Here and below we use the fact

that
27rk: e
=" d _ ! d ! - - ! d !
]é (€ - = % 7[%@2‘ f(€)de = 55 /(%_W 1) e,

ke23 kez®
[k|lo<m—1 [k|lo<m—1

since (QF + 27k/l) N (QF + 2nk’/l) = & whenever k, k' € Z3 with k # k’. We focus on the quantity
inside the brackets in the last inequality. By Holder’s inequality, for v € &1, and for some constant
CL,, 4> We obtain

1 el e
[Weamaqlly < 53 o8 Sup/ 571(52) de’
™ eeqr Jem-naer ¢ —¢

e

2 3/4 1/4
< C ess sup / _— / el &, (e df’)
€eQ ( @m-1QF ¢/ — 5]8/3> < @m-1)Q} 1)

3/4
d¢’
= (2m -1 ( / —/> e
(2m—1)Q¥* ‘g' — g’

3/4 1/4
< Clpm oI 1ML, (B.22)

Following the lines of the proof of (B.21) and (B.22), we obtain, for every £ € Qj,

IWemmeCoz@ixan < C Y Iv’z//(-,.)lmgka’?n i = C / Iréflieag)dg,,
A1 ‘ (@m-1)Q}
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and, by Young’s convolution inequality, the right-hand side belongs to LP(Q}) as soon as vy € &5, with
1 < p < 400 (which is guaranteed whenever v € &4 ), where C' is a positive constant which depends
only on m and ¢. In particular, for every 1 < p < 40,

&2, < Ces,- (B.23)

Since [v[s,, < ||7]x and |D° < 1, the statement of the lemma follows : From (B.9) and
(B.18), we obtain (4.8); from (B.9) and (B.22), we obtain (4.9); from (B.11) and (B.18), we obtain
(4.10). More precisely,

[Wem~

|71/2

Cw=Cu+Ci Cy=Cs+Cy, Cy =Cy+0Cy, (B.24)
with
L CZm A C>m
Cy = %Ig\]( 7T Cgm7g> , Cp:= 7gg\] ( 7T CL,, 5) (B.25)
m=2 m=2

C Proof of Lemma 4.7

Analogously to (B.6), we have

IVyetellLz = sup (D¢, Vy6¢)|. (C.1)
beel, IfellLz=1

We can rewrite as W = W2, + G, + (WX, , — Gy). According to Proposition B.1 and (B.18), the
terms associated to Wzoml and (Wg)ml Gy) are easily bounded. The aim of this section is to get a
better estimate on the following term :

Il oot —f ¢ | Gitoiattanctepic dsiy

From now on, for any function f € L?(Qg, C*), we denote f := (f*)1<a<a. We use the decomposition
(2.14) for v € 61,1 NY such that v = v*. Then as G(z) = G(—x), for almost every £ € Q}, we may
write

//Q Qs Gele =) [p%/ () (@) (x) = ¢ (@)re (»’va)wg(y)] dxdy
- //Q i (x — )(|Un(§ y)? O (2)e () — ¢?($)un(§’,x)uz(€/,y)wg(y))dxdy

n>1

LD YD WP () //Q el =) (1€ ) - o e’ )

n=11<a,8<4

x (us(€ 90l (@) - 02 (i€, 2)) dedy. (C2)

Estimate for (4.12). By Lemma A.1, we have

// Gele —y) (u (€ )0 (@) — Sl (€2)) (u (€ )0l (a) — g )ul(€ ) ) dudy
1<a ﬁ<4Q XQs
) 1/2
G - f{ /a ; - g ,’ 3 drd
<1<§<4//ng@| (@ = y)? jup (&, 91 () — up (€, 2)ig (y)’ x y)
) 1/2
(4 B\ _ g ') dzd ) C.3
x <1<§5<4//sz ‘u (&, y)d¢ () —upn (¢, 2) ¢ (y)‘ v y) (C3)
Thus according to the Cauchy—Schwarz inequality, we have
// Gile —y) (us(€9)8% () — B2 i€ 1) (us (€ 9)0f (1) — g )l (€', 0)) drdy
1<o¢ﬁ<4 X Qs
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1/2
2 (1<a ﬂ<4 // ﬂ;g é y 5 (i dy) (@ // é y (ﬁ (i dy)

QexQy exQy
< 2C¢| ¢l 2 1 Del el z2-

Substituting this inequality into (C.2) and using the decomposition (2.15), we get

‘//Q o Go(zr —y) (p')’g’ () BF (x)he (x) — BF (x)er (x,y)wg(y)) d:z:dy‘

< Ca Y (@)l el L2l Delvrel 2 = Cale s, el del | Delvse 2,

n=1

from which we get

‘ //Q . Go(x = y)py (y)OE (x) e (z) ddy — ][* d¢’ //Q o Golz — y)oF (x)ye (w, y) e (y) dady
< Colvler. el 2 1 Delvel nz- (C.4)

Combining (C.4) with Proposition B.1 and (B.18), we get for any ¢¢ € L and ¢¢ € H},
[(¢e; Vygvbe)l < (Ca + Co)[lleny [0l 2 | Del e 2,

hence (4.12) with
C/EE =Cq+ Cy (05)
with Cy given in (B.25).

Estimate for (4.11). As v € Z, we use the decomposition (B.8) for v¢. Analogously to (C.3), we
also have

|| Gota =) (ui€ 00l @) - g Wi 0) " (u(€ vl @) ~ v il 2)) dady
1<a ﬁ<4Q % Qu
1/2
2 Qﬂ Gl = 9)lun (€ )P le (o Fdzdy) (@// |Ge(zy>||u:‘;(§’,y)|2|¢2‘<:c>|2dzdy)
exQy eXQy

from which by the decomposition (B.8) we get

‘//QQ oz =)oy ()G (1) (v)dwy — ][ d¢’ //QQ T — y)6F (2)7e (3, y)e (y) dady

1/2
) (72 s |Ge<:cy>||un<s',y>|2|¢g<x>|2dzdy>

14

1/2
X (]igg, df’ ;1 |)\n(§’)| //ngQe |Gé(-’L' — y)”un(é"’y)|2|¢z($)|2dl_dy>

< Crrlylx el e e oz (C.6)

where the last inequality holds by using Lemma 4.1.
Combining (C.6) with Proposition B.1 and estimate (B.18), we get for any ¢¢ € L and ¢¢ € Hy{,

(b, Vaeve)l < (Cr + Co)lV] 2l 2| Delbe 2

hence (4.12) and
Cgg :=Cqg + C,. (C?)
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Estimate for (4.13). Combining with Proposition B.1 and estimate (B.18), analogously to (C.6)
it can be derived directly from:

‘ //Q o Ge(@ — y)py (e (x)e (2 d;cdy—][ de’ //Q o (x — YV (@)ve (2, y)ve (y) dudy

s (]é 4 n;lA I// Gee - )||Un(€/ay)|2|¢g(x)|2dxdy>
< Crllle, ol 1Del e |7

using the decomposition (2.14) for 7¢. Hence (4.13) and Cgg.

Estimate for (4.14). Notice that |ye (z,y)| < py,, ()2 ps,, (y)"/? since v = 0. Thus, according to
Lemma A.1 and the Cauchy—Schwarz inequality,

][2" “ //Q/sz/z Gelz = y)ﬂ’g(iﬂ)%/ (@, y)ve(y) dady — //QMQ[ Go(z — y)P’y(x)W’é(y)P dzdy
20
< //Q[XQ[(IGe(:c —y)l = Ge(x = 9)py ()|t (2)|* dxdy < TOHVHGMH%I\%?

Combining with Proposition B.1 and (B.18), we get

Co
(Ve Vo) = = (G4 ) Illowanv el

hence (4.13) and

2C
Chp =~ +Ce. (C.8)

D Numerical results about constants

In this section, we will show the numerical results about the constants used in Remark 2.8 under the
condition ¢ = 1000. Next, we show that Assumption 2.5 is satisfied for g < 17 for the neutral systems.
We compute numerically the value of the bound of the potential Gy — | First of all, we calculate

1
Z ——_ A~ 16.512.
4
kez3\{0} k|

Thus, Cy ~ 5.019 and we can choose Cy = Cg ~ 2.011. Concerning the estimates involving the
potential Wy, we set m = 2. When R ~ 1,
|C>2| < 20912, C<211000 ] 0010

Thus, we get Cyw ~ 2.042, and Cf;, ~ 2.042. Then, Cgg ~ 2.052, Cp ~ 2.052 and Cfy ~ 0.041.
Finally, we estimate c*([¢]) which is given by (2.9). Let up¢(z) = e CFPHOT with p e Z3. Then

£up7g)pezs is an orthogonal basis on Lg(Qg). Obviously, (Atu, ¢), is also an orthogonal basis on L? (Qo).
et

= Span{AJrupg |p = (4,0,0),7 €{1,- [q]}}

H|DE|1/2u+H22 472(| 2
L Q]+1)
———— < \/1 + T

Then

c*([q]) < sup sup
£eQf ufevig Hug H

Now we can check Assumption 2.5 for z = ¢ = 17. The calculation leads to a ~ 0.010 and ¢*(17) <
1.006. Thus, we have

o K+ %CEEq+ ~ 0.631 < 1,

o 2a/max{(1—x —$Creq*)~1(1—r)~Lc*([q])¢; 1}¢T < 0.973 < 1.
Consequently, Assumption 2.5 is satisfied for z = ¢ < 17 whenever ¢ = 1000.
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