Isabelle Catto 
email: catto@ceremade.dauphine.fr
  
Long Meng 
email: long.meng@enpc.fr
  
Eric Paturel 
email: eric.paturel@univ-nantes.fr
  
Eric Séré 
  
Ceremade 
  
  
  
Existence of minimizers for the Dirac-Fock Model of Crystals

Whereas many different models exist in the mathematical and physics literature for groundstates of non-relativistic crystals, the relativistic case has been much less studied and we are not aware of any mathematical result on a relativistic treatment of crystals. In this paper, we introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is inspired both from a recent definition of the Dirac-Fock ground state for atoms and molecules, due to one of us, and from the non-relativistic Hartree-Fock model for crystals. We prove existence of a ground-state when the number of electrons per cell is not too large.

Introduction

For solids with heavy atoms, relativistic shifts may affect the bonding properties and the optical properties. It is shown in [START_REF] Pyykko | Relativity and the periodic system of elements[END_REF] that the fact that gold is yellow is a result of relativistic effects. Furthermore, by studying the relativistic band structure in solids, it is shown in [START_REF] Christensen | Relativistic band structure calculations[END_REF][START_REF] Christensen | Relativistic Band Calculation and the Optical Properties of Gold[END_REF] that the relativistic shifts of the 5d bands relative to the s ´p bands in gold change the main interband edge more than 1eV .

A natural way to build quantum models for the crystal phase is to consider the so-called thermodynamic limit of quantum molecular models. Roughly speaking it consists in considering a finite but large piece of an (infinite and neutral) crystal. The thermodynamic law predicts that the ground-state energy of the obtained large neutral molecule is proportional to the volume of this finite piece (which turns out to be also proportional to the total number of particles composing the molecule). The energy for the whole crystal is then identified with the limit -if it exists -of the energy per unit volume (or equivalently per particle) of the large molecule when the size of the considered piece goes to infinity. This method has been applied successfully by different authors for different well-known models from quantum chemistry [START_REF] Catto | On some periodic Hartree-type models for crystals[END_REF][START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF][START_REF] Catto | The mathematical theory of thermodynamic limits: Thomas-Fermi type models[END_REF][START_REF] Lieb | The Thomas-Fermi theory of atoms, molecules and solids[END_REF] -see also [START_REF] Catto | Recent mathematical results on the quantum modeling of crystals[END_REF] for a review -but always for non-relativistic crystals.

Among relativistic models, the atomic and molecular Dirac-Fock model (DF) is the most attractive one since it has been formally justified by Mittleman [START_REF] Mittleman | Theory of relativistic effects on atoms: Configuration-space Hamiltonian[END_REF]. It gives numerical results in excellent agreement with experimental data [START_REF] Desclaux | Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120[END_REF][START_REF] Grant | Relativistic calculation of atomic structures[END_REF][START_REF] Kim | Relativistic self-consistent-field theory for closed-shell atoms[END_REF]. To our knowledge this model has not been extended to crystals: there exist fully relativistic treatments of crystals in the physics literature, but they use the Kohn-Sham approach (see [START_REF] Eschrig | Chapter 12 -Relativistic Solid State Calculations[END_REF][START_REF] Kadek | All-electron fully relativistic Kohn-Sham theory for solids based on the Dirac-Coulomb Hamiltonian and Gaussian-type functions[END_REF] and the references therein).

The mathematical study of the atomic and molecular Dirac-Fock model has been done in [START_REF] Esteban | Solutions of the Dirac-Fock equations for atoms and molecules[END_REF][START_REF] Paturel | Solutions of the Dirac-Fock equations without projector[END_REF]. Compared to the non-relativistic models, the situation is different: Existence of bound-states only holds if the total positive charge Z is not too large (with physical units, Z ď 124). Moreover, the Dirac-Fock energy functional is strongly indefinite and the notion of ground-state has to be handled very carefully [START_REF] Esteban | Solutions of the Dirac-Fock equations for atoms and molecules[END_REF]. These difficulties exclude a thermodynamic limit approach to derive the Dirac-Fock model for crystals.

Esteban and Séré [START_REF] Esteban | Nonrelativistic limit of the Dirac-Fock equations[END_REF] showed that certain solutions of the (relativistic) Dirac-Fock equations converge towards the energy-minimizing solutions of the (non-relativistic) Hartree-Fock equations when the speed of light tends to infinity. This validates a posteriori the notions of ground-state solutions and ground-state energy for the Dirac-Fock equations. In Esteban and Séré's approach, the ground state is modelled by the electrons' wavefunction. On the other hand, Huber and Siedentop introduced a density matrix formulation of the Dirac-Fock model [START_REF] Huber | Solutions of the Dirac-Fock equations and the energy of the electron-positron field[END_REF]. Recently, one of us proved the existence of the ground-state for the Dirac-Fock model in atoms and molecules in terms of density matrix using a retraction technique [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF]. This approach guarantees that we exhibit the ground-state energy of a relativistic crystal, not only a bound-state. Inspired by this work and by the analysis of the periodic Hartree-Fock model due to Le Bris, Lions and one of us [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF], we propose a definition for the ground state of Dirac-Fock model for crystals which is a relativistic analogue of Lieb's variational principle for Hartree-Fock model [START_REF] Bach | Error bound for the Hartree-Fock energy of atoms and molecules[END_REF][START_REF] Lieb | Variational principle for many-fermion systems[END_REF], and we prove the existence of minimizers. In addition, our result shows that these minimizers solve a self-consistent equation, as established by Ghimenti and Lewin in [START_REF] Ghimenti | Properties of periodic Hartree-Fock minimizers[END_REF] for the periodic Hartree-Fock model. Our method can be used to calculate the groundstate of neutral crystals with at most 17 electrons per cell. However, some estimates used in this paper are not optimal, and we strongly believe that this limiting bound can be improved.

The minimization problem under consideration in this paper combines several difficulties related to compactness issues. Obviously, the Dirac operator is not bounded from below and the kinetic energy term order is of the same order as the Coulomb-type potential energy terms, a standard feature of Coulomb-Dirac-Fock type models. Nevertheless, our proof of existence of minimizers for crystals is neither a straight adaptation of the one for atoms and molecules in [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF] or of the one for crystals in Hartree-Fock theory in [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF]: A major issue arises from the regularity in the momentum variable ξ resulting from the Bloch decomposition of the space, the density matrices and the self-consistent operator. Compactness in the momentum variable is crucial to deal with the periodic exchange term and with the nonlinear constraint that ensures that the electrons lie in the positive spectral subspace of the self-consistent periodic Dirac-Fock operator. Our results rely on a careful analysis of the periodic exchange potential. (In passing, we have corrected some false estimates on the exchange term in [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF] and improved the regularity results therein.) Furthermore, we provide an asymptotically optimal constant for the Hardy inequality associated with periodic Coulomb potential that is new in the literature, as far as we know.

In addition, compared with existing results for crystals, such as the Hartree-Fock one [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF], we provide a new general method to prove the existence of minimizers for crystals: Based on the spectral analysis of the self-consistent operator, we can describe the behaviour of the minimizing sequences with respect to the momentum ξ and rely on it to improve the regularity, hence the compactness of subsequences.

2 General setting of the model and main result

Preliminaries -Functional framework

Throughout the paper, we choose units for which m " c " " 1, where m is the mass of the electron, c the speed of light and the Planck constant. For the sake of simplicity, we only consider the case of a cubic crystal with a single point-like nucleus per unit cell, that is located at the centre of the cell. The reader should however keep in mind that the general case could be handled as well. Let ℓ ą 0 denote the length of the elementary cell Q ℓ " p´ℓ 2 , ℓ 2 s 3 . The nuclei with positive charge z are treated as classical particles with infinite mass that are located at each point of the lattice ℓ Z 3 . The electrons are treated quantum mechanically through a periodic density matrix. The electronic density is modelled by a Q ℓ -periodic function whose L 1 norm over the elementary cell equals the "number of electrons" q -the electrons' charge per cell being equal to ´q. Especially, when q " z, electrical neutrality per cell is ensured.

In this periodic setting, the Q ℓ -periodic Coulomb potential G ℓ resulting from a distribution of point particles of charge 1 that are periodically located at the centers of the cubic cells of the lattice is defined, up to a constant, by

´∆G ℓ " 4π « ´1 ℓ 3 `ÿ kPZ 3 δ ℓk ff . (2.1)
By convention, we choose G ℓ such that ˆQℓ G ℓ dx " 0.

(2.

2)

The function G ℓ is actually the Green function of the periodic Laplace operator on Q ℓ . The Fourier series of G ℓ writes

G ℓ pxq " 1 πℓ ÿ pPZ 3 zt0u e 2iπ ℓ p¨x
|p| 2 , for every x P R 3 .

(2.3)

Remark 2.1. The size of the unit cell ℓ does not play a specific role here. It is however involved in the study of the Hardy-type inequalities for the periodic Coulomb potential (see Section 4.1). When ℓ goes to infinity, one expects to recover the Dirac-Fock model for atoms.

The free Dirac operator is defined by D 0 " ´i ř 3 k"1 α k B k `β, with 4ˆ4 complex matrices α 1 , α 2 , α 3 and β, whose standard forms are β " ˆ½2 0 0 ´½2 ˙, α k " ˆ0 σ k σ k 0 ˙where ½ 2 is the 2ˆ2 identity matrix and the σ k 's, for k P t1, 2, 3u, are the well-known 2 ˆ2 Pauli matrices σ 1 " ˆ0 1

1 0 ˙, σ 2 " ˆ0 ´i i 0 ˙, σ 3 "
ˆ1 0 0 ´1˙. The operator D 0 acts on 4´spinors; that is, on functions from R 3 to C 4 . It is self-adjoint in L 2 pR 3 ; C 4 q, with domain H 1 pR 3 ; C 4 q and form domain H 1{2 pR 3 ; C 4 q (denoted by L 2 , H 1 and H 1{2 in the following, when there is no ambiguity). Its spectrum is σpD 0 q " p´8, ´1s Ť r`1, `8q. Following the notation in [12, 26], we denote by Λ `and Λ ´" ½ L 2 ´Λ`r espectively the two orthogonal projectors on L 2 pR 3 ; C 4 q corresponding to the positive and negative eigenspaces of D 0 ; that is

# D 0 Λ `" Λ `D0 " Λ `?1 ´∆ " ? 1 ´∆ Λ `; D 0 Λ ´" Λ ´D0 " ´Λ´? 1 ´∆ " ´?1 ´∆ Λ ´.
According to the Floquet theory [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF], the underlying Hilbert space L 2 pR 3 ; C 4 q is unitarily equivalent to L 2 pQ l q  L 2 pQ ℓ ; C 4 q, where Q l " r´π ℓ , π ℓ q 3 is the so-called reciprocical cell of the lattice, with volume |Q l | " p2πq 3 {ℓ 3 . (In the Physics literature Q l is known as the first Brillouin zone.) The Floquet unitary transform U :

L 2 pR 3 ; C 4 q Ñ L 2 pQ l q  L 2 pQ ℓ ; C 4 q is given by pU φq ξ " ÿ kPZ 3
e ´iℓk¨ξ φp¨`ℓ kq (2.4)

for every ξ P Q l and φ in L 2 pR 3 ; C 4 q. For every ξ P Q l , the function pU φq ξ belongs to the space

L 2 ξ pQ ℓ ; C 4 q " ψ P L 2 loc pR 3 ; C 4 q ˇˇe ´iξ¨x ψ is Q ℓ -periodic ( ,
which will be denoted by L 2 ξ in the sequel. Functions ψ of this form are called Bloch waves or Q ℓquasi-periodic functions with quasi-momentum ξ P Q l . They satisfy ψp¨`ℓ kq " e iℓ k¨ξ ψp¨q, for every k P Z 3 .

For any function φ ξ P L 2 ξ , using the definition of Fourier series expansion for Q ℓ -periodic functions, we write

φ ξ pxq " ÿ kPZ 3 p φ ξ pkq e p2iπk{ℓ`iξq¨x , a.e. x P R 3 , (2.5) 
with coefficients p φ ξ pkq "

1 ℓ 3 ˆQℓ φ ξ pyqe ´p2iπk{ℓ`iξq¨y dy P C 4 .
The Hilbert space L 2 ξ is endowed with the norm

}φ} L 2 ξ :" ˜ℓ3 ÿ kPZ 3 | p φ ξ pkq| 2 ¸1{2 " ˆˆQ ℓ |φ ξ pxq| 2 dx ˙1{2 " }φ ξ } L 2 pQ ℓ q .
Here, and in the whole paper, we use the same notation | ¨| for the canonical Euclidian norm in R n , C n or M n pCq. When applied to self-adjoint operators, |T | means the absolute value of T .

We also define

H s ξ pQ ℓ ; C 4 q :" L 2 ξ pQ ℓ ; C 4 q č H s loc pR 3 ; C 4 q
for every real number s, endowed with the norm

}φ ξ } H s ξ " ˜ℓ3 ÿ kPZ 3 `1 `|2πk{ℓ `ξ| 2 ˘s | p φ ξ pkq| 2

¸1{2

.

To simplify the notation, we simply write here and below H s ξ when there is no ambiguity. Operators L on L 2 pR 3 ; C 4 q that commute with the translations of ℓ Z 3 can be decomposed accordingly into a direct integral of operators L ξ acting on L 2 ξ and defined by L ξ pU φq ξ " pU Lφq ξ for every φ P L 2 pR 3 ; C 4 q, a.e. ξ P Q l (2.6)

(see [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF] for more details). We use the notation L " ffl ' Q l L ξ dξ, with the shorthand ffl Ω for 1 |Ω| ´Ω, to refer to this decomposition. In particular, for the free Dirac operator D 0 we have

D 0 " ' Q l D ξ dξ.
(2.7)

where the D ξ 's are self-adjoint operators on L 2 ξ with domains H 1 ξ and form-domains

H 1{2 ξ . Note that D 2
ξ " 1 ´∆ξ , where ´∆ "

ffl ' Q l ´∆ξ dξ.
For every function φ ξ P H 1 ξ , the operator D ξ is also defined by

D ξ φ ξ pxq " ÿ kPZ 3 « 3 ÿ j"1 ´2π ℓ k j `ξj ¯¨α j `βff p φ ξ pkq e i `2πk ℓ `ξ˘¨x .
In particular,

pφ ξ , |D ξ |φ ξ q L 2 ξ " ℓ 3 ÿ kPZ 3 d 1 `ˇˇˇξ `2π ℓ k ˇˇˇ2 | p φ ξ pkq| 2 . (2.8) 
For almost every ξ P Q l , the positive spectrum of D ξ is composed of a non-decreasing sequence of real eigenvalues pd ǹ pξqq ně1 counted with multiplicity such that

d ǹ pξq ě 1, lim nÑ8 d ǹ pξq " `8.
In the same manner, the negative spectrum of D ξ is pd ń pξqq ně1 is composed of the non-increasing sequence of real eigenvalues d ń pξq " ´dǹ pξq. Finally, one has ď

ξPQ l σpD ξ q " ď ξPQ l ď ně1 d ń pξq, d ǹ pξq ( " σpD 0 q " p´8, ´1s ď r`1, `8q. (2.9)
As in the Hartree-Fock model for crystals [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF], the electrons will be modelled by an operator on L 2 pR 3 ; C 4 q, called the one-particle density matrix, that reflects their periodic distribution in the nuclei lattice.

We now introduce various functional spaces for linear operators onto L 2 pQ ℓ ; C 4 q and for operators onto L 2 pR 3 ; C 4 q that commute with translations. Let B pEq be the set of bounded operators on a Banach space E to itself. We use the shorthand BpL 2 ξ q for BpL 2 ξ pQ ℓ q; C 4 q. The space of bounded operators on ffl '

Q l L 2 ξ dξ " L 2 pQ l q b L 2 pQ ℓ ; C 4 q which commute with the translations of ℓZ 3 is denoted by Y . It is isomorphic to L 8 pQ l ; BpL 2 ξ qq. Moreover, for every h " ffl ' Q l h ξ dξ P Y , }h} Y :" ess sup ξPQ l }h ξ } BpL 2 ξ q " }h} BpL 2 pR 3 ;C 4 qq
(see [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]Theorem XIII.83]). For s P r1, 8q and ξ P Q l , we define S s pξq :"

! h ξ P BpL 2 ξ q ˇˇTr L 2 ξ p|h ξ | s q ă 8
) endowed with the norm

}h ξ } Sspξq " ´Tr L 2 ξ p|h ξ | s q ¯1{s .
We denote by S 8 pξq the subspace of compact operators in BpL 2 ξ q, endowed with the operator norm } ¨}BpL 2 ξ q . Similarly, for t P r1, `8s, we define

S s,t :" # h " ' Q l h ξ dξ
ˇˇˇˇh ξ P S s pξq a.e. ξ P Q l , }h ξ } Sspξq P L t pQ l q + endowed with the usual norm of L t pQ l ; S s pξqq :

}h} Ss,t " ˜ Q l }h ξ } t Sspξq dξ ¸1{t .
In particular S 8,8 " L 8 pQ l ; S 8 pL 2 ξ qq Ă Y . We also define

X α pξq " ! h P BpL 2 ξ q ˇˇ|Dξ| α{2 h ξ |D ξ | α{2 P S 1 pξq ) endowed with the norm }h ξ } X α pξq " › › ›|Dξ| α{2 h ξ |D ξ | α{2 › › › S1pξq and X α s :" # h " ' Q l h ξ dξ ˇˇˇˇh ξ P S 1 pξq a.e. ξ P Q l , ˆQl }|D ξ | α{2 h ξ |D ξ | α{2 } s S1pξq dξ ă 8 + endowed with the norm }h} X α s " ˜ Q l }|D ξ | α{2 h ξ |D ξ | α{2 } s S1pξq dξ ¸1{s " }|D 0 | α{2 h|D 0 | α{2 } S1,s .
For any two functional spaces A and B the norm of the intersected space is defined by

}γ} A Ş B " maxt}γ} A , }γ} B u.
For future convenience, we use the notation Xpξq for X 1 pξq, and we set X :" X 1 1 . The functional spaces S 1,1 , X and Y will play an essential role in the whole paper, while the functional space S 1,8 and its subspace X 2 8 are mainly used in Section 6. In addition, we will also use the functional space S 8,1 in Section 6 since S 1,8 is its dual space. Definition 2.2 (Periodic one-particle density matrices). We denote by T the set of Q ℓ -periodic oneparticle density matrices

T :" γ P X ˇˇγ ˚" γ, 0 ď γ ď ½ L 2 pR 3 q ( Ă X č Y.
Remark 2.3 (Projectors). According to [START_REF] Bach | Error bound for the Hartree-Fock energy of atoms and molecules[END_REF][START_REF] Ghimenti | Properties of periodic Hartree-Fock minimizers[END_REF][START_REF] Lieb | Variational principle for many-fermion systems[END_REF] any minimizer of the Hartree-Fock model (both for the molecules and crystals) is a projector. However we do not know whether minimizers of Dirac-Fock models are projectors in general.

Remark 2.4. For γ P T and for almost every ξ in Q l , the operator γ ξ is compact on L 2 ξ and admits a complete set of eigenfunctions pu n pξ, ¨qq ně1 in L 2 ξ (actually lying in H 1{2 ξ ), corresponding to a nondecreasing sequence of eigenvalues 0 ď λ n pξq ď 1 (counted with their multiplicity). This is expressed as

γ ξ " ÿ ně1 λ n pξq |u n pξ, ¨qy xu n pξ, ¨q| , pu n pξ, ¨q, u m pξ, ¨qq L 2 ξ " δ n,m (2.10) 
where |uy xu| denotes the projector onto the vector space spanned by the function u. Equivalently, for almost every ξ in Q l and for any px, yq P R By definition of the trace of an operator,

Tr L 2 ξ pγ ξ q " ÿ ně1 λ n pξq.
This allows us to define the trace per unit cell as

Ă Tr L 2 pγq :" Q l Tr L 2 ξ pγ ξ q dξ,
where the Ă reminds us that γ is not trace-class on L 2 pR 3 q.

Definition 2.5 (Integral kernel and electronic density). Let γ belong to T . Then we can define in a unique way an integral kernel γp¨, ¨q P L 2 pQ ℓ ˆR3 q Ş L 2 pR 3 ˆQℓ q with γp¨`k, ¨`kq " γp¨, ¨q for any k P Z 3 and a Q ℓ -periodic density ρ γ associated to γ by γpx, yq "

Q l γ ξ px, yq dξ (2.12)
and

ρ γ pxq " Q l Tr 4 γ ξ px, xq dξ, (2.13) 
where the notation Tr 4 stands for the trace of a 4 ˆ4 matrix. The function ρ γ is non-negative and belongs to L 1 pQ ℓ ; Rq. Indeed, using the decomposition (2.11), we have

ρ γ pxq " Q l 8 ÿ n"1 λ n pξq |u n pξ, xq| 2 dξ (2.14)
and ˆQℓ ρ γ pxq dx "

Q l 8 ÿ n"1 λ n pξq dξ " Q l Tr L 2 ξ pγ ξ q dξ.
In the physical setting we are interested in, the value of the above integral is the number of electrons per cell q. By the Cauchy-Schwarz inequality, it is easily checked that |γpx, yq| 2 ď ρ γ pxq ρ γ pyq, a.e. x, y P R 3 .

(2.15)

Note that, when h is a Q ℓ -periodic trace-class operator but is not necessarily a positive operator, we still may define ρ h with the help of (2. We can now introduce the periodic Dirac-Fock functional.

The periodic Dirac-Fock model

We introduce the following set of periodic density matrices :

Γ q :" γ P T ˇˇ}γ} S1,1 " q ( and Γ ďq :" γ P T ˇˇ}γ} S1,1 ď q ( . When q is an integer, Γ q and Γ ďq are the sets of all Dirac-Fock states of a system of exactly q, respectively at most q, electrons per unit cell.

For γ P Γ ďq , we define the periodic Dirac-Fock functional (2.17) (see [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF] for a formal derivation of the exchange term from its analogue for molecules). It is Q l -periodic with respect to η and quasi-periodic with quasi-momentum η with respect to x. For every γ P Γ ďq , we now define the mean-field periodic Dirac operator The relation between E DF and D γ is the following : If γ and γ `h are in Γ ďq with h in T , then the right derivative of t Þ Ñ E DF pγ `thq at t " 0 is ffl Q l Tr L 2 ξ pD γ,ξ h ξ q dξ. Our goal is to define the ground-state despite the fact that this functional is strongly indefinite on Γ ďq , due to the unboundedness of the Dirac operator D 0 .

E DF pγq " Q l Tr L 2 ξ rD ξ γ ξ s
D γ " ' Q l D γ,ξ dξ with D γ,ξ :" D ξ ´αz G ℓ `αV γ,ξ where V γ,ξ " ρ γ ˚Gℓ ´Wγ,ξ (2 

Ground-state energy and main result

We follow Dirac's interpretation of the negative energy states of Dirac-Fock models: such states are supposed to be occupied by virtual electrons that form the Dirac sea. Therefore, by the Pauli exclusion principle, the states of physical electrons are orthogonal to all the negative energy states. The groundenergy and state should thus be defined on the positive spectral subspaces of the corresponding Dirac-Fock operator. Let

P γ " ' Q ˚P γ,ξ dξ with P γ,ξ :" ½ R˘p D γ,ξ q.
Note that by definition P 0,ξ " ½ R˘p D ξ ´αzG ℓ q. We define the set Γ q :" γ P Γ q ˇˇγ " P γ γP γ ( (2.20)

and the ground-state energy

I q :" inf γPΓ q E DF pγq. (2.21)
We need the following assumption.

Assumption 2.6. Let q `:" maxtq, 1u, κ :" α `CG z `C1 EE q `˘and A :"

α 2 C EE p1 ´κq ´1{2 λ ´1{2 0 . We demand that 1. κ ă 1 ´α 2 C EE q `;
2. 2A a maxtp1 ´κ ´α 2 C EE q `q´1 p1 ´κq ´1c ˚pq `1qq, 1uq `ă 1.

The positive constants C G , C EE , C 1 EE and λ 0 are defined respectively in Lemmas 4.1, 4.7 and 4.10 below.

Our main result is the following.

Theorem 2.7 (Existence of a minimizer). When α, q, z and ℓ satisfy Assumption 2.6, there exists γ ˚P Γ q such that E DF pγ ˚q " I q " min γPΓ q E DF pγq.

(2.22)

Besides, γ ˚solves the following nonlinear self-consistent equation

γ " ½ r0,νq pD γ q `δ (2.23)
where 0 ď δ ď ½ tνu pD γ q and 0 ď ν ď p1 ´κq ´1c ˚pq `1q, with κ " κpz, q, ℓ, αq ą 0 being defined in Assumption 2.6 below and c ˚pkq :" sup

ξPQ l d k pξq (2.24)
with the d k pξq's appearing in (2.9).

Remark 2.8. In Solid State Physics, the length of the unit cell is about a few Ångströms. In our system of units, " m " c " 1, thus α « 1 137 and ℓ « 1000. Under the condition q " z for electrical neutrality, Assumption 2.6 is satisfied for q ď 17. The proof is detailed in Appendix D. Our estimates are far from optimal : The ideas of this paper are expected to apply to higher values of q.

Sketch of proof

We are convinced that the constraint set Γ q is not convex, and we are not able to prove that it is closed for the weak-˚topology, and this is the source of considerable difficulties. Mimicking [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF], we shall use a retraction technique as for the Dirac-Fock model for atoms and molecules. This imposes to search the ground-state in the set Γ ďq defined by Γ ďq :" γ P Γ ďq ˇˇγ " P γ γP γ ( . However, under above constraint, the minimizers may not be situated in Γ q . To overcome this problem, we next subtract a penalization term ǫ P Ă Tr L 2 pγq, for some parameter ǫ P ą 0 to be chosen later, and first study the minimization problem for the penalized functional with relaxed constraint :

I ďq :" min γPΓ ďq " E DF pγq ´ǫP Ă Tr L 2 pγq ı .
We prove below that, when ǫ P is sufficiently large, every minimizer of problem I ďq is indeed in Γ q , thus is a minimizer of I q (Corollary 3.3).

For the penalized problem, the analogues to Assumption 2.6 and Theorem 2.7 read as follows.

Assumption 3.1. Let q `" maxtq, 1u, κ :" α pC G z `C1 EE q `q and A :"

α 2 C EE p1 ´κq ´1{2 λ ´1{2 0 . We assume that 1. κ ă 1 ´α 2 C EE q `;
2. 2A a maxtp1 ´κ ´α 2 C EE q `q´1 ǫ P q, 1uq `ă 1.

Theorem 3.2 (Existence of a minimizer for the penalized problem). We assume that Assumption 3.1 on q, z, ǫ P holds. If ǫ P ą p1 ´κq ´1c ˚pq `1q, then there exists γ ˚P Γ ďq such that

E DF pγ ˚q ´ǫP Ă Tr L 2 pγ ˚q " I ďq . (3.1)
Besides, Ă Tr L 2 pγ ˚q " ffl Q l Tr L 2 ξ pγ ˚,ξ q dξ " q and γ ˚solves the following nonlinear self-consistent equation γ " ½ r0,νq pD γ q `δ (3.2)

where 0 ď δ ď ½ tνu pD γ q and ν is the Lagrange multiplier due to the charge constraint Tr L 2 pγq ď q satisfying 0 ď ν ď p1 ´κq ´1c ˚pq `1q.

Corollary 3.3 (Existence of a minimizer for the original problem). We assume that Assumption 2.6 on q, z holds. Then, there is a constant ǫ P ą p1 ´κq ´1c ˚pq `1q such that Assumption 3.1 is satisfied. Therefore I q is achieved and the minimizer γ ˚solves (2.23).

Proof of Corollary 3.3. The first claim is obvious: Under Assumption 2.6 on q, z, there is a small constant ǫ ą 0 such that q, z and ǫ P " p1 ´κq ´1c ˚pq `1q `ǫ satisfy Assumption 3.1. By Theorem 3.2, since ǫ P ą p1 ´κq ´1c ˚pq `1q, any minimizer γ ˚of I ďq lies in Γ q . Thus,

E DF pγ ˚q ´ǫP q " E DF pγ ˚q ´ǫP Ă Tr L 2 pγ ˚q ě min γPΓ q " E DF pγq ´ǫP Ă Tr L 2 pγq ı " min γPΓ q rE DF pγqs ´ǫP q ě I ďq " E DF pγ ˚q ´ǫP q.
Therefore, all inequalities in the above string of inequalities are equalities, and

E DF pγ ˚q " min γPΓ q E DF pγq " I q .
We therefore focus on the proof of Theorem 3.2. Before going further, we explain our difficulties and method by comparing with the Hartree-Fock ones [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF]. Indeed, the method used in [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF] is based on some properties of the Schrödinger operator ´∆:

1. This operator is non-negative. Hence the Hartree-Fock model for crystals is well-defined and the kinetic energy is weakly lower semi-continuous w.r.t. the density matrix ;

2. The exchange potential W 8 ℓ is rather easily controlled by the Schrödinger operator ´∆. In [START_REF] Catto | On the thermodynamic limit for Hartree-Fock type models[END_REF], these properties allow to deduce bounds on the minimizing sequence of density matrices w.r.t. the ξ, x and y variables, and to pass to the limit in the different terms of the energy functional, in particular in the exchange term which is the most intricate one. In the proof, the strong convergence of the density matrix kernels γ n px, yq " ffl Q l γ n,ξ px, yq dξ plays an important role. In addition, the charge constraint in the periodic Hartree-Fock model is linear with respect to the density, and there is no possible loss of charge in passing to the limit.

In the Dirac-Fock model for crystals, two additional difficulties occur. First of all, the Dirac operator does not control the potential energy terms, which are of the same order. Secondly, the convergence of the nonlinear constraint ffl '

Q l P γ,ξ γ ξ dξ " ffl ' Q l γ ξ dξ
requires stronger compactness properties of the sequence of density matrices with respect to the ξ variable. Therefore the proof of existence of minimizers in the periodic Hartree-Fock setting cannot be applied mutatis mutandis. On the other hand, compared to the Dirac-Fock model for atoms and molecules, we suffer from a serious compactness issue in the ξ-variable. The functional space S 1,1 is natural to give a sense to the energy functional and to the constraints, but the weak-convergent of minimizing sequences in S 1,1 is not strong enough to deal with exchange term and the non-linear constraints. The whole paper (except Section 5 about the retraction) is devoted to solving the difficulties arising from the integration w.r.t. the ξ variable.

Our strategy rather relies on the spectral analysis of the periodic Dirac-Fock operator, which is totally new for the proof of existence of minimizers in the periodic case. In Lemma 4.12 together with Lemma 5.1 (see also Remark 4.13), we can prove that any minimizer of I ďq actually lies in S 1,8 , and is situated in B R0 where we have defined

B R :" γ P X X Y ˇˇ}γ} S1,8 ă R ( (3.3) 
and R 0 :" q `M with M being defined in Lemma 4.11 below.

(3.4)

In particular, any minimizer γ ˚satisfies q ˚pξq :" Tr L 2 ξ pγ ˚,ξ q ď R 0 for every ξ P Q l . We may therefore assume that, for any minimizing sequence, if q n pξq " Tr L 2 ξ pγ n,ξ q, then γ n,ξ , |q n pξq| ď R for any R ą R 0 independent of n and ξ, at least for n large enough. In particular, by dominated convergence theorem, q n pξq Ñ q ˚pξq strongly in L 1 pQ l q (up to subsequences).

The main idea in the proof of the existence of minimizers of I ďq is therefore to use the fact that any minimizer will be situated in B R0 , and then in any set B R with R ą R 0 . Then, thanks to Lemma 6.2, for any minimizing sequence γ n of I ďq , we can find another minimizing sequence r γ n with better regularity ; that is r γ n P B R0 . Setting an equivalent minimization problem in a ball B R with R ą R 0 helps considerably to overcome the difficulty in passing to the limit in the constraint ffl '

Q l P γ,ξ γ ξ dξ " ffl ' Q l γ ξ dξ.
In addition, the exchange term is well-controlled for density matrices in this set. Moreover, it turns out that the minimizers in this set do not saturate the constraint }γ} S1,8 ă R.

More precisely, existence of minimizers for the penalized problem will be a consequence of the followings.

Proposition 3.4 (Existence of a minimizer in the set B R ). Let R 0 :" q `M where M is defined in Lemma 4.11 below. Under Assumption 3.1, if ǫ P ą p1 ´κq ´1c ˚pq `1q and for any R ą R 0 , there exists γ ˚in Γ ďq Ş B R such that

I ďq,R :" min γPΓ ďq Ş BR " E DF pγq ´ǫP Ă Tr L 2 pγq ı " E DF pγ ˚q ´ǫP Ă Tr L 2 pγ ˚q. (3.5) 
Besides, γ ˚P B R0 and Ă Tr L 2 pγ ˚q " q. Furthermore, γ ˚solves the following nonlinear self-consistent equation γ " ½ r0,νq pD γ q `δ (3.6)

where 0 ď δ ď ½ tνu pD γ q and ν is the Lagrange multiplier due to the charge constraint Ă Tr L 2 pγq ď q satisfying 0 ď ν ď p1 ´κq ´1c ˚pq `1q. Theorem 3.2 is a direct consequence of the following. Corollary 3.5 (Existence of a minimizer for the penalized problem). We assume that ǫ P ą p1 κq ´1c ˚pq `1q and that Assumption 3.1 holds. Then I ďq is achieved. Any minimizer γ ˚of (3.5) is a minimizer of I ďq . It satisfies Ă Tr L 2 pγ ˚q " q and γ ˚lies in S 1,8 .

Proof of Corollary 3.5. First of all, since I ďq ď I ďq,R for any R ą R 0 , we have

I ďq ď inf RąR0 I ďq,R . (3.7) As R Þ Ñ I ďq,R is non-increasing, we have inf RąR0 I ďq,R " lim RÑ`8 I ďq,R . Let pγ n q n in Γ ďq be a mini- mizing sequence of I ďq . It is easy to see that γ n P Ť RąR0 `Γď q Ş B R ˘since Γ ďq " Ť RąR0 `Γď q Ş B R ˘.
Thus,

inf RąR0 I ďq,R ď E DF pγ n q ´ǫP Ă Tr L 2 pγ n q.
Taking n Ñ 8 and using (3.7), we have

I ďq " inf RąR0 I ďq,R " lim RÑ`8 I ďq,R .
According to Proposition 3.4, for any R ą R 0 , any minimizer γ R,˚o f I ďq,R is actually located in B R0 . Therefore,

I ďq,R " I ďq,R 1 for any R, R 1 ą R 0 . Thus I ďq " lim R 1 ąR0 I ďq,R 1 " I ďq,R for any R ą R 0 .
This implies that any minimizer of I ďq,R , for R ą R 0 , is a minimizer of I ďq . This ends the proof.

Organisation of the paper. Next sections are devoted to the proof of Proposition 3.4. Our paper is organized as follows.

In Section 4, we collect some fundamental estimates on the potentials G ℓ and W 8 ℓ . In Subsection 4.2, we study the spectral properties of the Dirac-Fock operators D γ,ξ for every ξ P Q l . Relying on them, we study in Subsection 4.3 the properties of minimizers of a linear Dirac-Fock problem. Finally, we collect the first estimates on minimizing sequences.

In Section 5, we study the linearization problem associated to (3.5). We conclude that the minimizers of (3.5) are in B R0 Ş Γ q and solve a self-consistent equation. In Hartree-Fock type models for molecules [START_REF] Lions | Solutions of Hartree-Fock equations for Coulomb systems[END_REF] or crystals [START_REF] Ghimenti | Properties of periodic Hartree-Fock minimizers[END_REF], it is a standard fact that the approximate minimizers are also approximate ground states of their mean-field Hamiltonian. The proof relies on the convexity of the constraint set. However, in Dirac-Fock model (both for molecules and crystals), the constraint set Γ ďq is more sophisticated. By using a retraction technique, a similar result has been recently proved by one of us in the Dirac-Fock model for molecules [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF]. Adapting the technique in [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF], we build a regular map θ : V Ñ V on a relatively open neighborhood V of the minimizing sequence of (3.5) in Γ ďq such that θpγq " P θpγq θpγqP θpγq . Next, we consider an equivalent minimization problem with locally convex constraint ; namely min

γPV Ş BR E DF pθpγqq ´ǫP Ă Tr L 2 rθpγqs.
In Section 6, we build an approximate minimizing sequence with better regularity and convergence properties. Finally, we conclude on the convergence of a minimizing sequence on the set B R and the existence of minimizer; that is, the proof of Proposition 3.4. Assumption 2.6 involves optimal constants in Hardy-type inequalities introduced in Subsection 4.1. Therefore, in Appendix A-C, we prove Lemma 4.1, Lemma 4.5 and Lemma 4.7 respectively. Finally, in Appendix D, we calculate the maximum number of electrons per cell allowed by the model, relying on approximate values of the constants obtained in Appendices A-C.

Fundamental estimates

In this section, we give Hardy-type inequalities for the periodic Coulomb potential and provide estimates on the interaction potential between electrons in crystals. Then we study the spectrum of the periodic self-consistent Dirac-Fock operators. Finally, we derive properties of minimizing sequences of the linearized and the penalized problem from the spectral analysis.

Hardy-type estimates on the periodic Coulomb potential

First of all, and this is a major difference with the usual Coulomb potential 1 |x| in R 3 , the periodic Coulomb potential G ℓ may not be positive, since it is defined up to constant, but it is bounded from below (see Lemma A.1). Nevertheless, it is the kernel of a positive operator on L 2 pQ ℓ q in virtue of (2.3). Moreover, we have the following Hardy-type estimates concerning the periodic potential G ℓ .

Lemma 4.1 (Hardy-type inequalities for the periodic Coulomb potential).

There exist positive constants C H " C H pℓq ą 0 that only depends on ℓ and such that

G ℓ ď |G ℓ | ď C H |D 0 | (4.1)
in the sense of operators on

L 2 pQ l q  L 2 pQ ℓ ; C 4 q. Moreover, there exists a positive constant C G " C G pℓq with C G ě C H that only depends on ℓ and such that }G ℓ |D 0 | ´1} Y " C G . (4.2) Remark 4.2. In (4.1), the inequality A ď B is equivalent to : For almost every ξ P Q l , A ξ ď B ξ in the sense of operators on L 2 ξ . Remark 4.3. The constant C G pℓq is estimated in (A.4) in Appendix A below.
While it is far from optimal when ℓ is small, it converges to 2 when ℓ goes to infinity; that is, to the value of the optimal constant for the Coulomb potential on the whole space. By interpolation,

C H ď C G . (4.3)
Therefore, (4.1) holds with C H being replaced by C G . However, C H is expected to converge to π{2 as ℓ goes to infinity; that is, to the best constant in the Kato-Herbst Inequality on the whole space [START_REF] Herbst | Spectral theory of the operator pp 2 `m2 q 1{2 ´Ze 2 {r[END_REF][START_REF] Kato | Perturbation theory for linear operators[END_REF].

A by-product of Lemma 4.1 is the following.

Corollary 4.4 (Estimates on the direct term). For any γ P X, we have

}ρ γ ˚Gℓ } Y ď C H }γ} X (4.4) and }pρ γ ˚Gℓ q |D 0 | ´1} Y ď C G }γ} S1,1 . (4.5) 
Proof. For every x P R 3 and γ P X

|ρ γ ˚Gℓ pxq| " ˇˇˇˇ Q l Tr L 2 ξ " G ℓ px ´¨q γ ξ p¨q ‰ dξ ˇˇˇď Q l ˇˇTr L 2 ξ " |D ξ | ´1{2 |G ℓ px ´¨q||D ξ | ´1{2 |D ξ | 1{2 γ ξ |D ξ | 1{2 ‰ ˇˇdξ ď Q l › › ›|Dξ| ´1{2 |G ℓ px ´¨q||D ξ | ´1{2 › › › BpL 2 ξ q › › ›|Dξ| 1{2 γ ξ |D ξ | 1{2 › › › S1pξq dξ ď C H }γ} X .
Indeed, the bound (4.1) in Lemma 4.1 yields

› › ›|Gℓp¨´xq| 1{2 |D ξ | ´1{2 › › › Y ď pC H q 1{2
uniformly in x. We now turn to the proof of (4.5). For every ξ P Q l and ϕ ξ in L 2 ξ , we have

› › pρ ˚Gℓ q |D ξ | ´1ϕ ξ › › L 2 ξ ď ˆQℓ |ρpxq| › › G ℓ p¨´xq |D ξ | ´1ϕ ξ › › L 2 ξ dx ď sup xPR 3 › › G ℓ p¨´xq |D ξ | ´1ϕ ξ › › L 2 ξ ˆQℓ |ρpxq| dx ď C G }γ} S1,1 }ϕ ξ } L 2 ξ . (4.6) 
In (4.6), we have used the bound (4.2) in Lemma 4.1 and the obvious fact that it remains true for G ℓ p¨´xq for any x P R 3 . Now, we consider the exchange term. We can separate the singularities of W 

W " C W pℓq, C 1 W " C 1 W pℓq and C 2 W " C 2
W pℓq that only depend on ℓ such that

}W γ } Y ď C W }γ} X Ş Y if γ P X č Y, (4.8 
)

}W γ } Y ď C 2 W p}γ} X `}γ} 3{4 S1,8 }γ} 1{4 S1,1 q if γ P X č S 1,8 , (4.9 
) 

}W γ |D 0 | ´1} Y ď C 1 W }γ} S1,1 Ş Y if γ P S 1,1 č Y. ( 4 
}V γ,ξ } Y ď C EE }γ} X Ş Y (4.11)
and

}V γ,ξ |D ξ | ´1} Y ď C 1 EE }γ} S1,1 Ş Y . (4.12)
For any

ψ ξ P H 1{2 ξ , ˇˇpψξ, V γ,ξ ψ ξ q L 2 ξ ˇˇď C EE }γ} S1,1 Ş Y }ψ ξ } 2 H 1{2 ξ (4.13)
Furthermore, if γ ě 0, for any ψ P L 2 ξ , 

´C2 EE }γ} S1,1 Ş Y }ψ ξ } 2 L 2 ξ ď pψ ξ , V γ,ξ ψ ξ q L 2 ξ . ( 4 

Spectral properties of the mean-field Dirac-Fock operator

Recall that κ :" α `CG z `C1 EE q `˘. We start with the following. Lemma 4.9.

Let γ P S 1,1 Ş Y . We assume that C G z `C1 EE }γ} S1,1 Ş Y ă 1{α, then D γ,ξ is a self- adjoint operator on L 2
ξ with domain H 1 ξ and form-domain H 1{2 ξ . In addition, the following holds

› › ›|Dγ| 1{2 |D 0 | ´1{2 › › › Y ď `1 `α `CG z `C1 EE }γ} S1,1 Ş Y ˘˘1{2 (4.15) and › › ›|D 0 | 1{2 |D γ | ´1{2 › › › Y ď `1 ´α `CG z `C1 EE }γ} S1,1 Ş Y ˘˘´1{2 . (4.16)
In particular, if γ P Γ ďq , we have

p1 ´κq |D 0 | ď |D γ | ď p1 `κq |D 0 |. (4.17) 
Proof. Recall q `" maxt1, qu. By Lemma 4.1 and Lemma 4.7, we obtain [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]). Let now ξ P Q l and u ξ P H 1 ξ pQ ℓ q. We have

}p´α z G ℓ `α V γ q |D 0 | ´1} Y ď α `CG z `C1 EE }γ} S1,1 Ş Y ˘. (4.18) In particular, D γ is self-adjoint on ffl ' Q l H 1 ξ dξ by the Rellich-Kato theorem if C G z `C1 EE }γ} S1,1 Ş Y ă 1{α (see
}D γ,ξ u ξ } L 2 ξ ď `1 `α C G z `αC 1 EE }γ} S1,1 Ş Y ˘}D ξ u ξ } L 2 ξ , (4.19) 
which implies (4.15). On the other hand,

}D ξ u ξ } L 2 ξ ď }pD γ,ξ ´Dξ q u ξ } L 2 ξ `}D γ,ξ u ξ } L 2 ξ ď α `CG z `C1 EE q `˘}D ξ u ξ } L 2 ξ `}D γ,ξ u ξ } L 2 ξ , Hence, }D ξ u ξ } L 2 ξ ď p1 ´αpC G z `C1 EE }γ} S1,1 Ş Y qq ´1}D γ,ξ u ξ } L 2 ξ (4.20)
which implies (4.16). Since γ P Γ ďq , }γ} S1,1 Ş Y ď q `. Thus (4. [START_REF] Kadek | All-electron fully relativistic Kohn-Sham theory for solids based on the Dirac-Coulomb Hamiltonian and Gaussian-type functions[END_REF]) and (4.20) together give (4.17). This concludes the proof.

As a consequence of (4.20), we deduce that the spectrum of D γ (and of any D γ,ξ ) is included in Rzr´1 `κ; 1 ´κs. In order to allow for as many electrons as possible per cell, we need a more accurate estimate on the bottom of |σpD γ q|. Lemma 4.10 (Further properties of the bottom of the spectrum of D γ ). Let γ P Γ ďq . Then inf |σpD γ q| ě λ 0 ě 1 ´κ, with λ 0 :" 1 ´α maxtC H z `C2 EE q `, C0 ℓ z `CEE q `u. Proof. Let ψ ξ " Λ ξ ψ ξ and ψ ξ " Λ ξ ψ ξ . Notice that D γ,ξ " D ξ ´αzG ℓ `αV γ,ξ and V γ,ξ satisfies (4.13) and (4.14). Now, combining with (A.1) we have

´ψξ , D γ,ξ ψ ξ ¯H1{2 ξ ˆH´1{2 ξ ě `1 ´αpC H z `C2 EE }γ} S1,1 Ş Y q ˘}ψ ξ } 2 H 1{2 ξ and ´´ψ ξ , D γ,ξ ψ ξ ¯H1{2 ξ ˆH´1{2 ξ ě ˆ1 ´α ˆC0 ℓ z `CEE }γ} S1,1 Ş Y ˙˙}ψ ξ } 2 H 1{2 ξ .
We get

}ψ ξ } H 1{2 ξ }D γ,ξ ψ} H ´1{2 ξ ě ℜ ´ψξ ´ψξ , D γ,ξ ψ ξ ¯H1{2 ξ ˆH´1{2 ξ " ´ψξ , D γ,ξ ψ ξ ¯H1{2 ξ ˆH´1{2 ξ ´´ψ ξ , D γ,ξ ψ ξ ¯H1{2 ξ ˆH´1{2 ξ ě λ 0 }ψ ξ } 2 H 1{2 ξ
.

Further spectral properties of the self-consistent operator D γ are collected in the following.

Lemma 4.11 (Properties of positive eigenvalues of D γ,ξ ). Assume that κ ă 1 and let γ P Γ ďq . We denote by λ k pξq, for k ě 1, the k-th positive eigenvalue (counted with multiplicity) of the mean-field operator D γ,ξ . Then, there exist positive constants c ˚pkq and c ˚pkq independent of ξ, with 1 ď c ˚pkq ď c ˚pkq and c ˚pkq Ñ `8 when k Ñ `8, such that λ k pξq is situated in the interval rc ˚pkqp1´κq, c ˚pkqp1κ q ´1s. This interval is independent of γ. Moreover, there are constants e ą c ˚pq `1qp1 ´κq ´1 and M ą 0, such that each operator D γ,ξ admits at most q `M eigenvalues in r0, es.

In addition, every eigenfunction u k,ξ pxq associated to λ k pξq lies in H 1 ξ and satisfies

}|D ξ |u k,ξ } L 2 ξ ď p1 ´κq ´1 λ k pξq }u k,ξ } L 2 ξ ď c ˚pkq p1 ´κq ´2 }u k,ξ } L 2 ξ . (4.21) 
Proof. We rely on a variational characterization of eigenvalues of Dirac operators (see [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] and references therein). The proof of the condition (i)-(iii) in [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] is postponed to the end of the proof.

Let Λ ξ :" ½ R `pD ξ q " 1 2 `Dξ 2 |D ξ | and Λ ξ :" ½ R ´pD ξ q " 1 2 ´Dξ 2 |D ξ | .
From [10, Equation ( 1)], the k-th positive eigenvalue λ k pξq of D γ,ξ is obtained through the formula

λ k pξq :" inf V subspace of Λ ξ H 1{2 ξ dim V "k sup u ξ PpV À Λ ξ H 1{2 ξ qzt0u pD γ,ξ u ξ , u ξ q }u ξ } 2 L 2 ξ . (4.22) Let u ξ P pV À Λ ξ H 1{2 ξ qzt0u. We write u ξ " u ξ `uξ with u ξ " Λ ξ u ξ P V, u ξ " Λ ξ u ξ P Λ ξ H 1{2 ξ .
By definition of Λ ξ , pD ξ u ξ , u ξ q " p|D ξ |u ξ , u ξ q, pD ξ u ξ , u ξ q " ´p|D ξ |u ξ , u ξ q and pD ξ u ξ , u ξ q " 0.

Therefore, pD γ,ξ u ξ , u ξ q " pD ξ u ξ , u ξ q `ppD γ,ξ ´Dξ qu ξ , u ξ q

" ´|D ξ | u ξ , u ξ ¯´´| D ξ | u ξ , u ξ ¯`´p D γ,ξ ´Dξ q u ξ , u ξ ¯`´p D γ,ξ ´Dξ q u ξ , u ξ 2ℜ ´pD γ,ξ ´Dξ qu ξ , u ξ ¯. (4.23)
To get the lower bound, we observe that

λ k pξq ě inf V subspace of Λ ξ H 1{2 ξ dim V "k sup u ξ PV zt0u pD γ,ξ u ξ , u ξ q }u ξ } 2 L 2 ξ .
By (4.23) and (4.18), for any

u ξ P Λ ξ H 1{2 ξ , pD γ,ξ u ξ , u ξ q " p|D ξ | u ξ , u ξ q `pp´α z G ℓ `α V γ q u ξ , u ξ q ě p1 ´κq p|D ξ | u ξ , u ξ q .
Thus,

p1 ´κq ´1λ k pξq ě inf V subspace of Λ ξ H 1{2 ξ dim V "k sup u ξ PV zt0u p|D ξ |u ξ , u ξ q }u ξ } 2 L 2 ξ .
We define

c ˚pkq :" inf ξPQ l d k pξq " inf ξPQ l inf V subspace of Λ ξ H 1{2 ξ dim V "k sup u ξ PV zt0u p|D ξ |u ξ , u ξ q }u ξ } 2 L 2 ξ .
Obviously, c ˚pkq ě 1 and c ˚pkq goes to infinity together with k. Also, λ k pξq ě p1 ´κq c ˚pkq, for every ξ P Q l .

For the upper bound, we proceed as follows. (4.18) and (4.23) yield

pD γ,ξ u ξ , u ξ q " ´|D ξ | u ξ , u ξ ¯`´p ´α z G ℓ `α V γ q u ξ , u ξ ¯`2ℜ ´p´α z G ℓ `α V γ q u ξ , u ξ pD γ,ξ ´Dξ q u ξ , u ξ ¯´´| D ξ | u ξ , u ξ ď p1 `κq ´|D ξ | u ξ , u ξ ¯´p1 ´κq ´|D ξ | u ξ , u ξ ¯`2 κ }|D ξ | 1{2 u ξ } L 2 ξ }|D ξ | 1{2 u ξ } L 2 ξ " p1 `κq}|D ξ | 1{2 u ξ } 2 L 2 ξ `2 κ }|D ξ | 1{2 u ξ } L 2 ξ }|D ξ | 1{2 u ξ } L 2 ξ ´p1 ´κq}|D ξ | 1{2 u ξ } 2 L 2 ξ ď p1 ´κq ´1}|D ξ | 1{2 u ξ } 2 L 2 ξ
, by Young's inequality. Let now

c ˚pkq :" sup ξPQ l d k pξq " sup ξPQ l inf V subspace of Λ `H1{2 ξ dim V "k sup u ξ PV zt0u ´|D ξ |u ξ , u ξ }u ξ } 2 L 2 ξ .
As

}u ξ } L 2 ξ ď }u ξ } L 2 ξ , we obtain λ k pξq ď p1 ´κq ´1c ˚pkq. (4.24)
By construction, c ˚pkq ď c ˚pkq and c ˚pkq and c ˚pkq are non-decreasing with respect to k. Finally, by definition of c ˚pkq and c ˚pkq, for any e ą c ˚pq `1qp1 ´κq ´1, there is an integer M ě 2 such that c ˚pq `M ´1q ď e ă c ˚pq `M q. Therefore, D γ,ξ admits at most q `M eigenvalues in r0, es for every ξ P Q l . Using (4.20) in Lemma 4.9, we obtain

λ k pξq }u k,ξ } L 2 ξ " }D γ,ξ u ξ } L 2 ξ ě p1 ´κq}D ξ u ξ } L 2 ξ .

Hence (4.21).

To end the proof, it suffices to check the condition [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF]. It follows from the decomposition (4.23) of D γ,ξ ; namely pD γ,ξ φ ξ , φ ξ q ď 0 for every φ ξ P Λ ξ H 1{2 ξ whenever κ ă 1.

sup ξPQ l sup u ξ PΛ ξ H 1{2 ξ zt0u pD γ,ξ u ξ ,u ξ q }u ξ } 2 L 2 ξ ď 0 ă inf ξPQ l λ 1 pξq in

Properties of the minimizers of a linear problem

Recall that B R :" γ P X Ş Y ˇˇ}γ} S1,8 ă R ( and R 0 :" q `M where M is a constant defined in Lemma 4.11. The following lemma will be used in the next sections. Lemma 4.12. Let g P Γ ďq be given, and assume κ ă 1. Then for each ǫ P ą 0, the minimization problem inf γPΓďq, γ"P g γP g Q l Tr L 2 ξ rpD g,ξ ´ǫP qγ ξ s dξ admits a minimizer. Every minimizer γ ˚is of the form γ ˚" ffl ' Q l ½ r0,νq pD g,ξ q dξ `δ, with 0 ď δ ď ffl ' Q l ½ tνu pD g,ξ q dξ for some ν P p0, ǫ P s independent of ξ P Q l .

Furthermore, for every ǫ P , we have ν ď p1´κq ´1c ˚pq `1q and γ ˚P B R0 . If ǫ P ą p1´κq ´1c ˚pq `1q, any minimizer γ ˚is independent of ǫ P , and Ă Tr L 2 pγ ˚q " q.

Proof. For any ξ P Q l we can choose an orthonormal eigenbasis tψ k pξ, ¨qu kě1 of D g,ξ P g,ξ , such that

D g,ξ P g,ξ " ÿ kě1 λ k pξq |ψ k pξq ψ k pξq| .
According to Lemma 4.11, each positive λ k pξq is bounded independently of ξ. Let us introduce as in [START_REF] Cancès | A new approach to the modeling of local defects in crystals: the reduced Hartree-Fock case[END_REF][START_REF] Ghimenti | Properties of periodic Hartree-Fock minimizers[END_REF] the function

C : s Þ Ñ ℓ 3 p2πq 3 ÿ kě1 |tξ P Q l | 0 ď λ k pξq ď su| .
It is non-decreasing on R. In addition, by Lemma 4.11, Cp0q " 0 and Cp`8q " `8. Thus, there exists ν 1 P r0, `8q such that lim

sÑν 1 Cpsq ď q ď lim sÑν 1 Cpsq. (4.25) 
We are going to prove that every minimizer γ ˚P Γ ďq is of the form

γ ˚" ' Q l ½ r0,νq pD g,ξ q dξ `δ
with 0 ď δ ď ffl ' Q l ½ tνu pD g,ξ q dξ and ν :" mintν 1 , ǫ P u. The proof is inspired by [2]. We first consider the case ν 1 ă ǫ P . According to (4.25), there is a density matrix r γ " ½ r0,ν1q pD g q`δ where 0 ď δ ď ½ tν1u pD g q is chosen such that Ă Tr L 2 pr γq " q.

For any γ P Γ ďq , we write

Q l Tr L 2 ξ rpD g,ξ ´ǫP qpγ ξ ´r γ ξ qs dξ " Q l Tr L 2 ξ rpD g,ξ ´ν1 qpγ ξ ´r γ ξ qs dξ ` Q l Tr L 2 ξ rpν 1 ´ǫP qpγ ξ ´r γ ξ qs dξ " Q l Tr L 2 ξ rpD g,ξ ´ν1 qpγ ξ ´r γ ξ qs dξ `|ν 1 ´ǫP | ˇˇˇˇ Q l Tr L 2 ξ rγ ξ ´r γ ξ s dξ ˇˇˇě Q l Tr L 2 ξ rpD g,ξ ´ν1 qpγ ξ ´r γ ξ qs dξ. (4.26)
Since 0 ď γ ξ ď ½ L 2 ξ , we have γ ξ ψ k pξq, ψ k pξq P r0, 1s, for almost every ξ P Q l . Hence,

Q l Tr L 2 ξ rpD g,ξ ´ν1 qpγ ξ ´r γ ξ qs dξ " Q l Tr L 2 ξ rpD g,ξ ´ν1 qpγ ξ ´½r0,ν1q pD g,ξ qqs dξ " Q l ÿ λ k pξqăν1 |λ k pξq ´ν1 | | γ ξ ψ k pξq, ψ k pξq ´1| dξ ` Q l ÿ λ k pξqąν1 r|λ k pξq ´ν1 | γ ξ ψ k pξq, ψ k pξq s dξ ě 0. (4.27)
Thus r γ is a minimizer. According to (4.26) and (4.27), if γ ˚is a minimizer, then γ must be of the form γ " ffl ' Q l ½ r0,νq pD g qdξ `δ with ν " ν 1 " mintν 1 , ǫ P u and Ă Tr L 2 pγq " q. In particular, in this case, γ ˚is independent of ǫ P .

For the case ǫ P ď ν 1 , we prove that every minimizer γ ˚satisfies γ ˚" ffl ' Q l ½ r0,ǫP q pD g,ξ qdξ `δ, with 0 ď δ ď ffl ' Q l ½ tǫP u pD g,ξ qdξ being chosen such that Ă Tr L 2 pγ ˚q ď q. If not, using (4.27) again (by replacing ν 1 by ǫ P ), we get

ˆQl Tr L 2 ξ " pD g,ξ ´ǫP qpγ 1 ξ ´½r0,ǫP q pD g,ξ q ‰ dξ ą 0,
which contradicts the fact that γ 1 is a minimizer. Thus any minimizer satisfies

γ ˚" ' Q l ½ r0,νq pD g,ξ qdξ `δ,
with ν " ǫ P " mintν 1 , ǫ P u and 0 ď δ ď ffl ' Q l ½ tνu pD g,ξ qdξ being chosen such that Ă Tr L 2 pγ ˚q ď q.

We turn to prove ν ď p1 ´κq ´1c ˚pq `1q, and this leads to γ ˚P B R0 . More precisely, we prove that p1 ´κqc ˚pq ´1q ď ν 1 ď p1 ´κq ´1c ˚pq `1q. If not, we first assume that ν 1 ą p1 ´κq ´1c ˚pq `1q. Then by Lemma 4.11 and (4.25), q ě lim sÑv 1 Cpsq ě Cpp1 ´κq ´1c ˚pq `1qq ě q `1, which contradicts (4.25). Analogously, if ν 1 ă p1 ´κqc ˚pq ´1q, then q ď lim sÑv 1 Cpsq ď Cpp1 ´κqc ˚pq ´1qq ď q ´1. Thus, p1 ´κqc ˚pq ´1q ď ν 1 ď p1 ´κq ´1c ˚pq `1q, then ν " mintν 1 , ǫ P u ď p1 ´κq ´1c ˚pq `1q. Moreover, by Lemma 4.11, we have 0 ď γ ˚,ξ ď ½ p0,es pD g,ξ q, and }γ ˚}S1,8 ď q `M. Thus, γ ˚P B R0 . If ǫ P ą p1 ´κq ´1c ˚pq `1q, then ν " ν 1 ă ǫ P , thus any minimizer is independent of ǫ P and satisfies Tr L 2 ξ pγ ˚q " q. Remark 4.13. Actually, in the proof, we show that sup ξPQ l Rankpγ ˚,ξ q ď q `M .

For the minimum problem given in Lemma 4.12, the following proposition gives the estimates on the minimizers in X Ş Y , which will be used in the proof of Proposition 5.1.

Proposition 4.14. Assume that κ ă 1. Let γ, γ 1 P Γ ďq such that 0 ď γ 1 ξ ď ½ r0,p1´κq ´1c ˚pq`1qs pD γ,ξ q. Then, }γ 1 } X Ş Y ď maxtp1 ´κq ´2qc ˚pq `1q, 1u. Proof. By Lemma 4.9, we have

Q l Tr L 2 ξ rD γ,ξ γ 1 ξ s dξ " Q l Tr L 2 ξ r|D γ,ξ |γ 1 ξ s dξ ě p1 ´κq}γ 1 } X .
Since γ 1 P Γ ďq , we have

Q l Tr L 2 ξ rD γ,ξ γ 1 ξ s dξ ď p1 ´κq ´1c ˚pq `1q Q l Tr L 2 ξ pγ 1 ξ q dξ ď qp1 ´κq ´1c ˚pq `1q.
Then }γ 1 } X ď p1 ´κq ´2qc ˚pq `1q. Consequently, from the fact that }γ} Y ď 1, we deduce

}γ 1 } X Ş Y ď maxtp1 ´κq ´2qc ˚pq `1q, 1u.

First properties of minimizing sequences in Γ ďq

We prove the following.

Lemma 4.15 (Boundedness of minimizing sequences). Assume that κ ă 1. Then, there is a minimizing sequence pγ n q ně1 of I ďq,R in Γ ďq , such that for any n P N,

E DF pγ n q ´ǫP Ă Tr L 2 pγ n q ď 0.
Moreover, if κ ă 1 ´α 2 C EE q `, then, for every n ě 1,

}γ n } X Ş Y ď max ! p1 ´κ ´α 2 C EE q `q´1 ǫ P q, 1 ) (4.28) 
and max

! }γ n |D 0 | 1{2 } S1,1 , }γ n } Y ) ď c max ! p1 ´κ ´α 2 C EE q `q´1 ǫ P q, 1 ) q `.
Proof. Note that the operator 0 belongs to Γ ďq and satisfies E DF p0q ´ǫP Ă Tr L 2 p0q " 0. Thus, I ďq,R "

inf γPΓ ďq Ş BR " E DF pγq ´ǫP Ă Tr L 2 pγq ı ď 0.
In particular, there exists a minimizing sequence, such that E DF pγ n q ´ǫP Ă Tr L 2 pγ n q ď 0. For simplicity, we skip the n index in the following. As D γ,ξ γ ξ " |D γ,ξ |γ ξ for any γ P Γ ďq , by (4.13) and (4.17) we get

E DF pγq ´ǫP Ă Tr L 2 pγq " Q l Tr L 2 ξ rpD γ,ξ ´ǫP ´α 2 V γ,ξ qγ ξ s dξ " Q l Tr L 2 ξ rp|D γ,ξ | ´ǫP ´α 2 V γ,ξ qγ ξ s dξ ě Q l Tr L 2 ξ rpp1 ´κq|D ξ | ´ǫP ´α 2 V γ,ξ qγ ξ s dξ ě p1 ´κq}γ} X ´α 2 C EE }γ} S1,1 Ş Y }γ} X ´ǫP }γ} S1,1 ě p1 ´κ ´α 2 C EE q `q}γ} X ´ǫP q.
Hence, p1 ´κ ´α 2 C EE q `q}γ} X ´ǫP q ď 0.

Whenever 1 ´κ ´α 2 C EE q `ą 0, (4.28) holds since }γ} Y ď 1.

The last inequality follows from Hölder's inequality and the fact that γ ě 0; namely

}γ |D 0 | 1{2 } S1,1 ď }γ 1{2 } S2,2 }γ 1{2 |D 0 | 1{2 } S2,2 ď }γ} 1{2 S1,1 }γ} 1{2 X .
From now on, we define the set

V 0 :" ! γ P Γ ďq ˇˇE DF pγq ´ǫP Ă Tr L 2 pγq ď 0 ) (4.29)
to which the minimizing sequences belong under Assumption 3.1.

Approximation by a linearized problem

The aim of this section is to show the link between a minimizing sequence pγ n q ně1 in V 0 and the linear Dirac-Fock problem introduced in Lemma 4.12.

Proposition 5.1 (Link with the linearized problem). Let R ą R 0 " q `M . Under Assumption 3.1, let pγ n q P Γ ďq Ş B R be a minimizing sequence of (3.5). Then, as n goes to infinity,

Q l Tr L 2 ξ " pD γn,ξ ´ǫP qγ n,ξ ‰ dξ ´inf γPΓďq γ"P γn γP γn Q l Tr L 2 ξ " pD γn,ξ ´ǫP qγ ξ ‰ dξ Ñ 0. (5.1)
This property is used in Lemma 6.2 below to build a new minimizing sequence with further regularity, and it is also used at the end of Section 6 to show some properties of the minimizers of I ďq .

As mentioned at the end of Section 3, the main difficulty is to deal with the nonlinear constraint Γ ďq . To do so, we introduce a retraction technique first used in [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF]. We are going to construct a regular map θ from a locally convex set V in Γ ďq into a neighborhood of V 0 in Γ ďq . More precisely, we will have V 0 Ă θpVq Ă Γ ďq . Consequently,

I ďq " inf γPV0 pE DF pγq ´ǫP Ă Tr L 2 pγqq " inf γPV pE DF pθpγqq ´ǫP Ă Tr L 2 rθpγqsq. (5.
2)

The locally convex set V is defined by

V :" pV 0 `BX Ş Y pρqq č Γ ďq (5.3)
for some ρ ą 0 small enough. The map θ is defined by

θpγq " lim nÑ`8
T n pγq for any γ P V where the map T onto V is given by

T : γ Þ Ñ P γ γP γ .
We also denote by FixpT q the set of fixed points of the map T (i.e., for any γ P FixpT q, T pγq " γ).

Obviously, T pγq is self-adjoint and 0 ď T pγq ď 1. In particular, Γ ďq " Γ ďq Ş FixpT q. Unfortunately, given γ in Γ ďq , T pγq may not stay in Γ ďq : P T pγq T pγqP T pγq may be different from T pγq.

Now the constraint γ P V in (5.2) is locally convex. To prove Proposition 5.1, we will study the differentiability of the new functional in (5.2).

We first introduce an admissible set U for the retraction such that T maps U to U.

Definition 5.2 (Admissible set for the retraction). Assume that κ " α `CG z `C1 EE q `˘ă 1 and let

α 2 C EE p1 ´κq ´1{2 λ ´1{2 0 ă A ă 1 2 . Given 1 ă τ ă 1 2A , let M :" max ´2`Aq 2 , 1 1´2Aτ ¯, then we define U :" ! γ P Γ ďq ˇˇmaxt}γ|D 0 | 1{2 } S1,1 , }γ} Y u `M }T pγq ´γ} X Ş Y ă τ
) .

Remark 5.3. We must impose τ ą 1 in Proposition 5.4: Otherwise, any minimizer γ ˚of I ďq,R is not in U if q ě 1 since }γ ˚}Y " 1.

For any differentiable function F : U Ñ X Ş Y and a P U, we define dF paq by

lim xÑa,xPU }F pxq ´F paq ´dF paqpx ´aq} X Ş Y }x ´a} X Ş Y " 0.
Then we have the following.

Proposition 5.4 (Existence and differentiability of the retraction). Let κ, A, τ, U as in Definition 5.2.

Then the sequence of iterated maps pT p q p converges uniformly on U to a limit θ with θpU q Ă Γ ďq Ş U and FixpT q " Γ ďq Ş U . We have the estimate

@ γ P U, }θpγq ´T p pγq} X Ş Y ď k p 1 ´k }T pγq ´γ} X Ş Y .
Moreover θ P C 1,unif pU, X Ş Y q and dθpT p q converges uniformly to dθ on U. In this way we obtain a continuous retraction θ of U onto Γ ďq Ş U whose restriction to U is of class C 1,unif . This map and its differential are bounded and uniformly continuous on U.

For any γ P FixpT q Ş U and any h P X Ş Y , the linear operator h Þ Ñ dθ ξ pγqh satisfies P γ,ξ dθ ξ pγqhP γ,ξ " P γ,ξ h ξ P γ,ξ and P γ,ξ dθ ξ pγqhP γ,ξ " 0, where θpγq " ffl ' Q l θ ξ pγqdξ, according to the Floquet-Bloch decomposition. In other words, the splitting L 2 ξ " P γ,ξ L 2 ξ ' P γ,ξ L 2 ξ gives a block decomposition of dθ ξ pγqh of the form

dθ ξ pγqh " ˆP γ,ξ h ξ P γ,ξ b γ,ξ phq bγ,ξ phq 0 ˙(5.4)
The proof is Proposition 5.4 is postponed to the end of this section.

To apply Proposition 5.4 to the proof of Proposition 5.1, we need to verify that V Ă U for some τ given in Definition 5.2. From Lemma 4.15, we can observe that any γ

P V 0 is indeed in U if τ ą c maxtp1 ´κ ´α 2 C EE q `q´1 ǫ P q, 1u q `.
Thus, according to the continuity of T in X Ş Y (will be shown in (5.13)), we have Corollary 5.5. Assume that κ ă 1 ´α 2 C EE q `, and let A be as above. Assume in addition that 2A c maxtp1 ´κ ´α 2 C EE q `q´1 ǫ P q, 1u q `ă 1.

Then there exist τ as in Definition 5.2 and ρ ą 0 such that V Ă U.

We are now in the position to prove the main result of this section.

Proof of Proposition 5.1. We argue by contradiction. Otherwise, there would be an ǫ 0 ą 0 such that, for n large enough,

Q l Tr L 2 ξ rpD γn,ξ ´ǫP qγ n,ξ s dξ ě inf γPΓďq γ"P γn γ Q l Tr L 2 ξ "
pD γn,ξ ´ǫP qγ ξ s dξ `ǫ0 .

By Lemma 4.12, there exists an operator γ 1 n P Γ ďq such that γ 1 n P Γ ďq Ş B R0 (where B R0 is given in (3.3) and Proposition 3.4) and γ 1 n minimizes the following problem

Q l Tr L 2 ξ " pD γn,ξ ´ǫP qγ 1 n,ξ ‰ dξ :" inf γPΓďq γ"P γn γ Q l Tr L 2 ξ " pD γn,ξ ´ǫP qγ ξ ‰ dξ.
From Lemma 4.12 and Proposition 4.14, γ 1 n P B R and }γ 1 n } X Ş Y is uniformly bounded. So according to Corollary 5.5, there is σ ą 0 such that for any n large enough and any s P r0, σs, p1 ´sqγ n `sγ

1 n P Γ ďq Ş B X Ş Y pγ n , ρq Ş B R Ă V Ş B R .
Then from Proposition 5.4, the function f n : s P r0, σs Ñ pE DF ´ǫP Ă Tr L 2 qpθrp1 ´sqγ n `sγ 1 n sq is of class C 1 and the sequence of derivatives pf 1 n q is equicontinuous on r0, σs. From (5.4), we infer

f 1 n p0q " Ă Tr L 2 " pD γn ´ǫP qpγ 1 n ´γn q ‰ ď ´ǫ0 2 .
So there is 0 ă s 0 ă σ independent of n such that for any s P r0, s 0 s we have f 1 n psq ď ´ǫ0 4 . Hence, for any s P r0, s 0 s,

pE DF ´ǫP Ă Tr L 2 qpθrp1 ´sqγ n `sγ 1 n sq " f n psq ď f n p0q ´ǫ0 s 0 4 " pE DF ´Ă Tr L 2 qpγ n q ´ǫ0 s 0 4 .
But θrp1 ´sqγ n `sγ 1 n s P Γ ďq Ş B R and E DF pγ n q ´ǫP Ă Tr L 2 pγ n q Ñ I ďq,R . This is a contradiction. Hence the proposition.

We are now in the position to prove Proposition 5.4, as in [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF] for atoms. As in [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF], we introduce the following set: Γ ďq,r :" tγ P X X Y ; dist σ1,1XY pγ, Γ ďq q ă ru.

Then analogously to Lemma 4.9 and Lemma 4. Recall now that P 0 " ½ R `pD 0 ´αzG ℓ q and α 2 C EE p1 ´κq ´1{2 λ ´1{2 0 ă A ă 1 2 with λ 0 given in Lemma 4.10. Lemma 5.6. Assume that κ ă 1. We introduce the map

Q : γ Þ ÝÑ P γ ´P 0 in such a way that Qpγq :" ffl ' Q l Q ξ pγq dξ with Q ξ pγq :" P γ,ξ ´P 0,ξ .
Then for r ą 0 small enough, the map Q is in C 1,lip pΓ ďq,r , BpL 2 pR 3 , C 4 q, H 1{2 pR 3 q, C 4 qq and we have the estimates

@γ P Γ ďq,r , @h P X č Y : }|D 0 | 1{2 dQpγqh} Y ă pA ´rq}h} X Ş Y (5.7)
and @γ,

γ 1 P Γ ďq,r , }|D 0 | 1{2 rdQpγqh ´dQpγ 1 qhs|D 0 | 1{2 } Y ď K}γ ´γ1 } X Ş Y }h} X Ş Y , (5.8) 
where K is a positive constant depending only on κ which remains bounded when κ stays away from 1.

Proof. As κ ă 1, by our definition of κ r and since λ 0 ě 1 ´κ ą 0, it is easy to see that κ r ă 1 and λ 0,r ą 0 for r small enough. By Lemma 4.9, D γ,ξ is a self-adjoint operator for all γ P Γ ďq,r and 0 is in its resolvent set. Then by Taylor's formula [20, Chapter VI.5, Lemma 5.6] or [START_REF] Griesemer | A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potentials[END_REF], we have

P γ,ξ " 1 2 ˘1 2π ˆ`8
´8 pD γ,ξ ´izq ´1dz

(5.9)

and, by the second resolvent identity,

Q ξ pγq " ´α 2π ˆ`8
´8 pD γ,ξ ´izq ´1V γ,ξ pD 0,ξ ´izq ´1dz.

Hence, for every h P X Ş Y , we deduce from (5.9) and the second resolvent formula again, that dQ ξ pγqh " dP γ,ξ h " ´α 2π

ˆ`8

´8 pD γ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1dz.

(5.10)

Besides, for any u ξ P L 2 ξ pQ ℓ q, we have

ˆ`8 ´8 ´uξ , p|D γ,ξ | 2 `|z| 2 q ´1{2 |D γ,ξ |p|D γ,ξ | 2 `|z| 2 q ´1{2 u ξ ¯L2 ξ dz " π}u ξ } 2 L 2 ξ .
We infer from (5.6) that

}|D γ | ´1} Y ď λ ´1 0,r .
Thus gathering with Lemma 4.7, for any φ ξ , ψ ξ P L 2 ξ we have ˇˇpψξ,

|D ξ | 1{2 dQ ξ pγqhφ ξ q L 2 ξ ˇ" α 2π ˇˇˇˆ`8 ´8 ´ψξ , |D ξ | 1{2 pD γ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1φ ξ ¯L2 ξ dz ˇˇď α 2π }|V h,ξ |} BpL 2 ξ q ˆˆ`8 ´8 › › ›pDγ,ξ ´izq ´1|D ξ | 1{2 ψ ξ › › › 2 L 2 ξ dz ˙1{2 ˆˆ`8 ´8 › › pD γ,ξ ´izq ´1φ ξ › › 2 L 2 ξ dz ˙1{2 ď α 2π }|V h,ξ |} BpL 2 ξ q }|D ξ | 1{2 |D γ,ξ | ´1{2 φ} BpL 2 ξ q }|D γ,ξ | ´1{2 } BpL 2 ξ q }ψ ξ } L 2 ξ }φ ξ } L 2 ξ ď α 2 C EE p1 ´κr q ´1{2 λ ´1{2 0,r }h} X Ş Y }ψ ξ } L 2 ξ }φ ξ } L 2 ξ .
(5.11) Hence we obtain (5.7), i.e.,

}|D 0 | 1{2 dQpγqh|D 0 | 1{2 } Y ď α 2 C EE p1 ´κr q ´1{2 λ ´1{2 0,r }h} X Ş Y . As A ą α 2 C EE p1 ´κq ´1{2 λ ´1{2 0
, we know that there exists r small enough such that

α 2 C EE p1 ´κr q ´1{2 λ ´1{2 0,r ă A ´r.
This proves the first inequality.

For the second inequality, we have

dQ ξ pγqh ´dQ ξ pγ 1 qh " ´α2 2π 
ˆ`8 ´8 pD γ,ξ ´izq ´1V γ 1 ´γ,ξ pD γ 1 ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1dz ´α2 2π ˆ`8 ´8 pD γ 1 ,ξ ´izq ´1V h,ξ pD γ,ξ ´izq ´1V γ 1 ´γ,ξ pD γ 1 ,ξ ´izq ´1dz.
Proceeding as above, we get (5.8). The fact that Q P C . Then, for r ą 0 small enough, the map T : γ Ñ P γ γP γ is well-defined and of class C 1,1 on Γ ďq,r with values in X Ş Y . Moreover, for any γ P Γ ďq,r ,

}T 2 pγq ´T pγq} X Ş Y ď 2A ´maxt}T pγq|D 0 | 1{2 } S1,1 , }T pγq} Y u `Aq 2 }γ ´T pγq} X Ş Y ¯}T pγq ´γ} X Ş Y .
(5.12)

Moreover, there are two positive constants C κ , L κ such that

@ γ P Γ ďq,r , }dT pγq} BpX Ş Y q ď C κ p1 `maxt}γ|D 0 | 1{2 } S1,1 , }γ} Y uq, (5.13) 
and @ γ, γ 1 P Γ ďq,r , }dT pγ 1 q ´dT pγq} BpX

Ş Y q ď L κ p1 `maxt}γ|D 0 | 1{2 } S1,1 , }γ} Y uq}γ 1 ´γ} X Ş Y . (5.14)
Proof. Let γ, γ 1 P Γ ďq,r . Then P γ ´P γ1 can be written as

P γ ´P γ1 " ˆ1 0 dQpγ 1 `tpγ ´γ1 qqpγ ´γ1 qdt.
From (5.7),

}|D 0 | 1{2 pP γ ´P γ1 q} Y ď pA ´rq }γ ´γ1 } X Ş Y .
For the estimate (5.12), we have

T 2 pγq ´T pγq " pP T pγq ´P γ qT pγq ´P T pγq ´P γ `P γ ¯`P γ T pγqpP T pγq ´P γ q " pP T pγq ´P γ qT pγq `T pγqpP T pγq ´P γ q `pP T pγq ´P γ qT pγqpP T pγq ´P γ q. Then }T 2 pγq ´T pγq} X Ş Y ď }pP T pγq ´P γ qT pγq} X Ş Y `}T pγqpP T pγq ´P γ q} X Ş Y `}pP T pγq ´P γ qT pγqpP T pγq ´P γ q} X Ş Y .
We have

}T pγqpP T pγq ´P γ q} X Ş Y ď }|D 0 | 1{2 pP T pγq ´P γ q} Y maxt}T pγq|D 0 | 1{2 } S1,1 , }T pγq} Y u, and 
}pP T pγq ´P γ qT pγqpP T pγq ´P γ q} X Ş Y ď }|D 0 | 1{2 pP T pγq ´P γ q} 2 Y }T pγq} S1,1 Ş Y .
Notice that }T pγq} S1,1

Ş Y ď }γ} S1,1 Ş Y ď q ``2r.
Gathering together these estimates with pA ŕqpq ``2rq ď Aq `for r small enough, we obtain (5.12). We turn now to the proof of (5.13) and (5.14). From Lemma 5.6, T is in C 1 pΓ ďq,r q with dT pγqh " pdQ γ hqγP γ `Pγ γpdQ γ hq `Pγ hP γ .

Notice that for any γ P Γ ďq,r and r small enough,

}|D 0 | 1{2 P γ |D 0 | ´1{2 } Y ď p1 ´κr q ´1{2 }|D γ | 1{2 P γ |D 0 | ´1{2 } Y ď p1 `κr q 1{2 p1 ´κr q 1{2 ď 2 p1 `κq 1{2 p1 ´κq 1{2 . (5.15)
Then, for r small enough,

}dT pγq} BpX Ş Y q ď Cp1 `}|D 0 | 1{2 P γ |D 0 | ´1{2 } 2 Y qp1 `maxt}γ|D 0 | 1{2 } S1,1 , }γ} Y uqp}dQ γ h} Y `}h} X Ş Y q ď C κ p1 `maxt}γ|D 0 | 1{2 } S1,1 , }γ} Y uq.
Finally, for the term dT pγ 1 q ´dT pγq, we have

dT ξ pγ 1 qh ´dT ξ pγqh " pdQ γ,ξ hqγ ξ P γ,ξ `Pγ,ξ γ ξ pdQ γ,ξ hq `Pγ,ξ h ξ P γ,ξ ´pdQ γ 1 ,ξ hqγ 1 ξ P γ 1 ,ξ ´Pγ 1 ,ξ γ 1 ξ pdQ γ 1 ,ξ hq ´Pγ 1 ,ξ h ξ P γ 1 ,ξ .
Proceeding in the same way as for (5.13), we can get (5.14).

We now show that T satisfies all the assumptions in [29, Proposition 2.2]. Before going further, we also define U r :"

! γ P Γ ďq,r ˇˇmaxt}γ|D 0 | 1{2 } S1,1 , }γ} Y u `M }T pγq ´γ} X Ş Y ă τ
) .

Proposition 5.8. Let κ, A, τ be as in Definition 5.2. Then for r small enough, T is in C 0 pU r q Ş C 1,lip pU r , X Ş Y q be such that T pU r q Ă U r satisfies the following estimates Proof. For any γ P U r , we have

}T pγq|D 0 | 1{2 } S1,1 ď }γ|D 0 | 1{2 } S1,1 `}pγ ´T pγqq|D 0 | 1{2 } S1,1 ď }γ|D 0 | 1{2 } S1,1 `}γ ´T pγq} X and }T pγq} Y ď }γ} Y ď }γ} Y `}γ ´T pγq} Y .
As a result, as M ě 2`q `A 2 , (5.12) implies that

}T 2 pγq ´T pγq} X Ş Y ď k}T pγq ´γ} X with k " 2aτ ă 1. Moreover, using the inequality M ě 1 1´2Aτ , maxt}T pγq|D 0 | 1{2 } S1,1 , }T pγq} Y u `M }T 2 pγq ´T pγq} X Ş Y ď maxt}γ|D 0 | 1{2 } S1,1 , }γ} Y u `p1 `M kq}T pγq ´γ} X Ş Y ă τ. So T pγq P U r .
The fact that sup γPUr }dT pγq} X Ş Y ă 8 and dT is Lipschitz continuous on U r follows from (5.13) and (5.14). Besides, using (5.15) and γ P U, we have

}T pγq ´γ} X Ş Y ď }T pγq} X Ş Y `}γ} X Ş Y ď 2 1 ´κ }γ} X Ş Y .
This ends the proof.

Notice that U r is an open subset of Γ ďq . Notice that Γ ďq Ă Γ ďq,r and U Ă U r for r ą 0. Then Proposition 5.4 follows from Proposition 5.8 and [29, Proposition 2.1 and Proposition 2.2] by choosing U " U r , Γ " Γ ďq,r and X :" spantγ ´γ1 | γ, γ 1 P Γ ďq,r u " X Ş Y . Here the notation X , U and Γ is given in [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF]Proposition 2.2]. The proof of (5.4) is exactly the same as in [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF]Theorem 2.10]. This ends the proof of Proposition 5.4.

Existence of minimizers in the set B R

In this section, we are going to prove the existence of minimizers of I ďq,R (i.e., Proposition 3.4).

According to Lemma 4.15, there is a minimizing sequence pγ n q ně1 in B R Ş Γ q that is uniformly bounded in X Ş Y . We split pγ n q ně1 into two parts: pr γ n q ně1 and pγ n ´r γ n q ně1 where, for each n, r γ n :" p n γ n p n with p n :" ½ r0,es pD γn q (6.1)

with e ą c ˚pq `1qp1 ´κq ´1 defined in Lemma 4.11. An important fact in this lemma is that for almost every ξ P Q l , the rank of p n,ξ , and therefore of r γ n,ξ , is at most q `M . We prove in Lemma 6.1 that, for each n ě 1, r γ n P X 2 8 whereas γ n P X; roughly speaking, we reach a L 8 pQ l ; H 1 ξ pQ ℓ qq regularity instead of a L 2 pQ l ; H 1{2 ξ pQ ℓ qq regularity for the associated eigenfunctions (Lemma 6.1). Hence pr γ n q ně1 is an approximate minimizing sequence with higher regularity than pγ n q ně1 .

The structure of the proof of Proposition 3.4 is as follows. In Subsection 6.1, we will show }γ n ŕ γ n } X Ñ 0 when n goes to infinity. In Subsection 6.2, we study the convergence of the kernel of pW r γn,ξ q ně1 . Then thanks to the constraint γ n P B R , we deduce the strong convergence of pV γn,ξ q ně1 . As a result, }P γ˚´P γn } Y Ñ 0. Hence in Subsection 6.3, we can pass to the limit in the energy and in the constraints.

Decomposition of minimizing sequences

We start with some regularity and bound results on r γ n .

Lemma 6.1. Let κ ă 1. Then the sequence pr γ n q ně1 and the sequence of kernels pr γ n,ξ p¨, ¨qq ně1 are uniformly bounded in X 2 8 and L 8 pQ l ; H 1 pQ ℓ ˆQℓ qq, respectively. Proof. We first prove that }p n } X 2 8 is bounded. Let pu n,k pξqq kě1 be the normalized eigenfunctions of the operator D γn,ξ with the corresponding eigenvalues λ n,k pξq counted with multiplicity. Hence,

p n,ξ " `8 ÿ k"1
δ n,k pξq |u n,k pξq u n,k pξq| with δ n,k " 1 if 0 ď λ n,k pξq ď e and δ n,k " 0 otherwise. By Lemma 4.11, we know |tk P N ˚| δ n,k pξq " 1u| ď q `M . By (4.21), for any eigenfunction u n,k pξq, we have }δ n,k pξqu n,k pξq} L 8 pQ l ;H 1 ξ pQ ℓ qq ď p1 ´κq ´1e. Now,

}p n,ξ } X 2 pξq " q`M ÿ k"1 δ n,k pξq}u n,k pξq} 2 H 1 ξ ď pq `M q sup kě1 }δ n,k pξqu n,k pξq} 2 H 1 ξ . Hence, }p n } X 2 8 ď pq `M qp1 ´κq ´2e 2 . Since p n " p 2 n , r γ n " p n r γ n p n and 0 ď r γ n ď ½ L 2 pR 3 q , we have }r γ n } X 2 8 " }|D 0 |r γ n |D 0 |} S1,8 " }|D 0 |p n r γ n p n |D 0 |} S1,8 ď }r γ n } Y }|D 0 |p n } 2 S2,8 ď }p n } X 2 8 ď pq `M qp1 ´κq ´2e 2 .
In terms of kernels, it writes }|D ξ,x |r γ n,ξ p¨, ¨q} L 2 pQ ℓ ˆQℓ q " }|D ξ |r γ n,ξ } S2pξq ď }r γ n,ξ } X 2 pξq ď pq `M qp1 ´κq ´2e 2 , the same holding for |D ξ,y |r γ n,ξ p¨, ¨q. Thus, r γ n,ξ px, yq P L 8 pQ l ; H 1 pQ ℓ ˆQℓ qq, and }r γ n,ξ p¨, ¨q} L 8 pQ l ;H 1 pQ ℓ ˆQℓ qq ď 2pq `M qp1 ´κq ´2e 2 . (6.2)

We begin the proof by showing the following result as in the case of molecules [START_REF] Séré | A new definition of the Dirac-Fock ground state[END_REF]Lemma 3.4].

Lemma 6.2. Let R ą R 0 " q `M . Under Assumption 3.1, whenever ǫ P ą p1 ´κq ´1c ˚pq `1q, for any minimizing sequence pγ n q ně1 of (3.5) in Γ ďq Ş B R we have Ă Tr L 2 pγ n q Ñ q, }γ n ´r γ n } X Ñ 0.

Proof. According to Proposition 5.1, any minimizing sequence pγ n q ně1 in Γ ďq Ş B R satisfies (5.1). By Lemma 4.12, the minimizers of the problem inf γPΓďq, γ"P γn γP γn Q l Tr L 2 ξ " pD γn,ξ ´ǫP qγ ξ ‰ dξ are of the form γ 1 n :" ffl ' Q l ½ r0,νnq pD γn,ξ q dξ `δ with some 0 ď δ ď ffl ' Q l ½ νn pD γn,ξ q dξ such that Ă Tr L 2 pγ 1 n q " q and for some ν n P r0, p1 ´κq ´1c ˚pq `1qs. We denote

π n :" ' Q l ½ pe,8q pD γn,ξ q dξ, π 1 n :" ' Q l ½ pνn,es pD γn,ξ q dξ, π 2 n :" ' Q l ½ r0,νns pD γn,ξ q dξ.
We can write

p n " π 1 n `π2 n and γ 1 n " π 2 n γ 1 n π 2 n .
Proceeding as for (4.26) and (4.27), we have

Q l Tr L 2 ξ rpD γn,ξ ´ǫP qγ n,ξ s dξ ´ Q l Tr L 2 ξ rpD γn,ξ ´ǫP qγ 1 n,ξ s dξ " Q l Tr L 2 ξ rpD γn,ξ ´νn qπ n,ξ γ n,ξ π n,ξ s dξ ` Q l Tr L 2 ξ rpD γn,ξ ´νn qπ 1 n,ξ γ n,ξ π 1 n,ξ s dξ ` Q l Tr L 2 ξ rpD γn,ξ ´νn qpπ 2 n,ξ γ n,ξ π 2 n,ξ ´½r0,νns pD γn,ξ qqs dξ `pǫ P ´νn q ´q ´Ă Tr L 2 pγ n q ¯.
We observe that the four terms in the right-hand side of the above equation are non-negative whereas, from Proposition 5.1, their sum goes to 0 as n goes to infinity. Therefore,

Q l Tr L 2 ξ pγ n,ξ q dξ Ñ q and Q l Tr L 2 ξ rpD γn,ξ ´νn qπ n,ξ γ n,ξ π n,ξ s dξ Ñ 0.
But π n,ξ pD γn,ξ ´νn qπ n,ξ ě pe ´νn qπ n,ξ and π n,ξ pD γn,ξ ´νn qπ n,ξ " π n,ξ p|D γn,ξ | ´νn qπ n,ξ . So taking a convex combination of these two estimates leads to e e ´c˚p q `1qp1 ´κq ´1 π n,ξ pD γn,ξ ´νn qπ n,ξ ě e e ´νn pD γn,ξ ´νn qπ n,ξ ě π n,ξ |D γn,ξ |π n,ξ .

Hence

}π n γ n π n } X " Q l Tr L 2 ξ rπ n,ξ |D ξ |π n,ξ γ n,ξ s dξ ď p1 ´κq ´1 Q l Tr L 2 ξ rπ n,ξ |D γn,ξ |π n,ξ γ n,ξ s dξ Ñ 0.
It remains to study the limit of h n :" π n γ n p n as n goes to infinity. Since pγ n q 2 ď γ n , we have

pπ n γ n π n q 2 `hn h n " π n pγ n q 2 π n ď π n γ n π n . Hence Q l Tr L 2 ξ p|D γn,ξ | 1{2 h n,ξ h n,ξ |D γn,ξ | 1{2 q dξ Ñ 0.
Taking any operator A in Y , by the Cauchy-Schwarz inequality, ˇˇˇˇ

Q l Tr L 2 ξ " A ξ |D γn,ξ | 1{2 u n,ξ |D γn,ξ | 1{2 ‰ dξ ˇˇˇď ℓ 3 p2πq 3 › › ›Tr L 2 ξ " |D γn,ξ | 1{2 p n,ξ A ξ A ξ p n,ξ |D γn,ξ | 1{2 ‰ › › › 1{2 L 8 ˆ˜ˆQ l Tr L 2 ξ " |D γn,ξ | 1{2 h n,ξ h n,ξ |D γn,ξ | 1{2 ‰ dξ ¸1{2 .
By Lemma 4.11, there is M ą 0 such that p n,ξ has at most q `M eigenfunctions, which means that p n,ξ has rank at most q `M and

› › p n |D γn | 1{2 › › Y ď e 1{2 . As a consequence, }Tr L 2 ξ p|D γn,ξ | 1{2 p n,ξ A ξ A ξ p n,ξ |D γn,ξ | 1{2 q} L 8 ď pq `M qe}A} 2 Y . So we have › › ›|Dγ n | 1{2 h n |D γn | 1{2 › › › S1,1 Ñ 0. Hence, }u n } X Ñ 0. Finally, }γ n ´r γ n } X ď }π n γ n π n } X `2}h n } X Ñ 0.
By Lemma 6.1, up to the extraction of a subsequence, there is

γ ˚in X 2 8 Ş Y , such that r γ n á γ ˚for the weak ˚-convergence in X 2 8 č Y, (6.3) 
since X 2 8 is a subspace of S 1,8 which is the dual space of S 8,1 and Y is the dual space of S 1,1 . We immediately get the following. Lemma 6.3 (Strong convergence of the density). The sequence ρ 1{2 r γn converges strongly to ρ 1{2 γ˚i n H s pQ ℓ q with 0 ď s ă 1, thus in L p pQ ℓ q for every 1 ď p ă 6. In particular, whenever ǫ P ą p1 κq ´1c ˚pq `1q, we have ´Qℓ ρ γ˚d x " q.

Proof. The proof is the same as in [5, p. 730] and relies on r γ n P X 2 8 . The fact that the limit of ρ 6.2 Convergence of pV γn,ξ q ně1

Before going further, we introduce the following functional spaces: For p P r1, `8s, s P p0; `8s, let L p H s ξ :" L p pQ l ; H s ξ pQ ℓ ˆQℓ ; M 4 pCqqq defined by

L p H s ξ :" ! f p¨, x, yq P L 2 ´ξ,x pQ ℓ ; C 4 q b L 2 ξ,y pQ ℓ ; C 4 q ˇˇ}f } L p pQ l ;H s pQ ℓ ˆQℓ qq ă 8
) endowed with the norm }f } L p H s ξ :" }f } L p pQ l ;H s pQ ℓ ˆQℓ qq ; then we also define the function space W 1,p H s ξ :" W 1,p pQ l ; H s ξ pQ ℓ ˆQℓ qq Ă L p H s ξ endowed with the norm

}f } W 1,p H s ξ :" }f } L p H s ξ `}∇ ξ f pξ, ¨, ¨q} L p H s ξ
and the Hölder continuity function space C 0,µ H s ξ :" C 0,µ pQ l ; H s ξ pQ ℓ ˆQℓ qq for µ P p0, 1q, endowed with the norm

}f } C 0,µ H s ξ :" }f } L 8 H s ξ `sup ξ‰ξ 1 PQ l }f pξ, ¨, ¨q ´f pξ 1 , ¨, ¨q} H s pQ ℓ ˆQℓ q |ξ ´ξ1 | µ .
For any functions f P L p L 2 ξ and g P L p 1 L 2 ξ with p P r1, 8q and 1{p `1{p 1 " 1, we define the product

f, g " Q l ¨Qℓ ˆQℓ Tr 4 rf ˚gsdxdydξ. (6.4) 
It is easy to see that pL p L 2 ξ , L p 1 L 2 ξ , ¨, ¨ q forms a dual pair. First of all, we study the convergence of the kernel of W r γn,ξ . Recall that

W γ,ξ " W ěm,γ,ξ `Wăm,γ,ξ , @ m P N, m ě 2
where for η P 2Q l and x P 2Q ℓ , the kernels of W ěm,γ,ξ and W ăm,γ,ξ are respectively W ěm,γ,ξ px, yq :"

Q l W 8 ěm,ℓ pξ 1 ´ξ, x ´yq γ ξ 1 px, yq dξ 1
and W ăm,γ,ξ px, yq :"

Q l W 8 ăm,ℓ pξ 1 ´ξ, x ´yq γ ξ 1 px, yqdξ 1 .
Lemma 6.4 (Convergence of the kernel of pW r γn,ξ q ně1 ). We have the following properties: (a) W ăm,r γn,ξ Ñ W ăm,γ˚,ξ in L 8 pQ l ; L 2 ξ pQ ℓ ˆQℓ qq.

(b) |D ξ,x | ´1{2 |D ξ,y | ´1{2 W ěm,r γn,ξ Ñ |D ξ,x | ´1{2 |D ξ,y | ´1{2 W ěm,γ˚,ξ in L 8 pQ l ; L 2
ξ pQ ℓ ˆQℓ qq. Proof. We will prove the boundedness of the sequences, and then deduce the strong convergence by the Rellich-Kondrachov Theorem. Uniform boundedness of W ăm,r γn,ξ in C 0,µ pQ l ; H 1 ξ pQ ℓ ˆQℓ qq. It is based on Lemma 6.1, particularly (6.2). Recall W 8 ăm,ℓ pξ ´ξ1 , x ´yq "

4π ℓ 3 ÿ |k|8ăm kPZ 3 1 ˇˇ2πk ℓ ´pξ ´ξ1 q ˇˇ2 e ip 2πk ℓ ´pξ´ξ 1 qq¨px´yq .
Thus,

}W 8 ăm,r γn,η ´W 8 ăm,r γn,η 1 } H 1 pQ ℓ ˆQℓ q ď 4π ℓ 3 ÿ |k|8ďm´1 kPZ 3 › › › › › Q l e ip 2πk ℓ ´pη´ξ 1 qq¨px´yq ˇˇ2πk ℓ ´pη ´ξ1 q ˇˇ2 r γ n,ξ 1 dξ 1 ´ Q l e ip 2πk ℓ ´pη 1 ´ξ1 qq¨px´yq ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 r γ n,ξ 1 dξ 1 › › › › › H 1 pQ ℓ ˆQℓ q .
For each term on the right-hand side, we have

› › › › › Q l e ip 2πk ℓ ´pη´ξ 1 qq¨px´yq ˇˇ2πk ℓ ´pη ´ξ1 q ˇˇ2 r γ n,ξ 1 dξ 1 ´ Q l e ip 2πk ℓ ´pη 1 ´ξ1 qq¨px´yq ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 r γ n,ξ 1 dξ 1 › › › › › H 1 pQ ℓ ˆQℓ q ď Q l ˇˇˇˇ1 ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 ´1 ˇˇ2πk ℓ ´pη ´ξ1 q ˇˇ2 ˇˇˇˇ› › ›e ip 2πk ℓ ´pη´ξ 1 qq¨px´yq r γ n,ξ 1 › › › H 1 η pQ ℓ ˆQℓ q dξ 1 `› › › › › Q l e ip 2πk ℓ ´pη´ξ 1 qq¨px´yq ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 r γ n,ξ 1 dξ 1 ´ Q l e ip 2πk ℓ ´pη 1 ´ξ1 qq¨px´yq ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 r γ n,ξ 1 dξ 1 › › › › › H 1 pQ ℓ ˆQℓ q .
As η, ξ 1 P Q l , according to (6.2), we get

› › ›e ip 2πk ℓ ´pη´ξ 1 qq¨px´yq r γ n,ξ 1 › › › H 1 η pQ ℓ ˆQℓ q ď C }r γ n,ξ 1 } H 1 ξ 1 pQ ℓ ˆQℓ q ď Cpq `M qp1 ´κq ´2e 2 .
By the Hölder continuity of the function η Þ Ñ ´Ql

1 |η´η 1 | 2 dη 1 , there is a 0 ă µ ă 1 such that Q l ˇˇˇˇ1 ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 ´1 ˇˇ2πk ℓ ´pη ´ξ1 q ˇˇ2 ˇˇˇˇ› › ›e ip 2πk ℓ ´pη´ξ 1 qq¨px´yq r γ n,ξ 1 › › › H 1 η pQ ℓ ˆQℓ q dξ 1 ď Cpq `M qp1 ´κq ´2e 2 |η ´η1 | µ .
For the last term, note that |e ´iη¨z ´e´iη

1 ¨z | ď }∇ η e iη¨z } L 8 |η´η 1 | ď C|η´η 1 | and |∇ z pe ´iη¨z ´e´iη 1 ¨z q| ď C|η ´η1 |. We get › › › › › Q l e ip 2πk ℓ ´pη´ξ 1 qq¨px´yq ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 r γ n,ξ 1 dξ 1 ´ Q l e ip 2πk ℓ ´pη 1 ´ξ1 qq¨px´yq ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 r γ n,ξ 1 dξ 1 › › › › › H 1 pQ ℓ ˆQℓ q ď Q l C|η ´η1 | ˇˇ2πk ℓ ´pη 1 ´ξ1 q ˇˇ2 }r γ n,ξ 1 } H 1 ξ 1 pQ ℓ ˆQℓ q dξ 1 ď Cpq `M qp1 ´κq ´2e 2 |η ´η1 |.
We finally get that there is µ P p0, 1q such that }W ăm,r γn,ξ } C 0,µ pQ l ;H 1 ξ pQ ℓ ˆQℓ qq ď Cpq `M qp1 ´κq ´2e 2 .

Boundedness of W ěm,r γn,ξ in W 1,8 pQ l ; L 2 pQ ℓ ˆQℓ qq. For β " 0 or 1,

}∇ β ξ W ěm,r γn,ξ } L 8 pQ l ;L 2 pQ l ˆQl qq ď Q l }∇ β ξ W ěm,ℓ pξ ´ξ1 qr γ n,ξ 1 } L 8 pQ l ;L 2 ξ pQ l ˆQl qq dξ 1 .

By Corollary B.2 and Lemma B.3, we know

}∇ ξ W ěm,ℓ pξ ´ξ1 , x ´yqr γ n,ξ 1 } L 2 pQ ℓ ˆQℓ q ď C}r γ n,ξ 1 } H 1 pQ ℓ ˆQℓ q ,
and }W ěm,ℓ pξ ´ξ1 , x ´yqr γ n,ξ 1 } L 2 pQ ℓ ˆQℓ q ď C}r γ n,ξ 1 } H 1 pQ ℓ ˆQℓ q .

Thus,

}W ěm,r γn,ξ } W 1,8 pQ l ;L 2 pQ ℓ ˆQℓ qq ď Cpq `M qp1 ´κq ´2e 2 .
Convergence. Thanks to Rellich-Kondrachov Theorem and the boundedness of the sequences, these two sequences converge strongly up to subsequences. Now, we are going to prove that the limits are the kernels W ăm,γ˚,ξ and W ěm,γ˚,ξ respectively. It suffices to prove that W ăm,r γn,ξ á W ăm,γ˚,ξ and W ěm,r γn,ξ á W ěm,γ˚,ξ (6.5) in L 8 pQ l ; L 2 pQ ℓ ˆQℓ qq. By Young's convolution inequality, }W ăm,g,ξ } S8,1 ď }W ăm,g,ξ } S2,1 " }W ăm,g,ξ } L 1 pQ l ;L 2 pQ ℓ ˆQℓ qq ď }W ăm,ℓ pξ, x ´yq} L 1 pQ l ;L 8 pQ ℓ ˆQℓ qq }g ξ 1 px, yq} L 1 pQ l ;L 2 pQ ℓ ˆQℓ qq .

Then by (6.3) and using (6.4), for any g ξ px, yq P L 1 pQ l ; L 2 ξ pQ ℓ ˆQℓ qq, g ξ , W ăm,r γn,ξ "

Q l Tr L 2 ξ rg ξ W ăm,r γn,ξ s dξ " Q l Tr L 2 ξ 1 rW ăm,g,ξ 1 r γ n,ξ 1 s dξ 1 Ñ Q l Tr L 2 ξ 1 rW ăm,g,ξ 1 γ ˚,ξ 1 sdξ 1 " g ξ , W ăm,γ˚,ξ . By Corollary B.2, }|D 0 | ´1W ěm,g |D 0 | ´1} S8,1 ď }|D 0 | ´1W ěm,g } S2,1 ď Q l dξ}|D ξ | ´1W ěm,ℓ pξ ´¨qg ¨}L 1 pQ l ;L 2 ξ pQ ℓ ˆQℓ qq ď C}g ξ 1 px, yq} L 1 pQ l ;L 2 ξ 1 pQ ℓ ˆQℓ qq . Hence, g ξ , W ěm,r γn,ξ " W ěm,g,ξ 1 , r γ n,ξ 1 " Q l Tr L 2 ξ r|D ξ 1 | ´1W ěm,g,ξ 1 |D ξ 1 | ´1|D ξ 1 |r γ n,ξ 1 |D ξ 1 |s dξ 1 Ñ Q l Tr L 2 ξ rW ěm,g,ξ 1 γ ˚,ξ 1 sdξ 1 " g ξ , W ěm,γ˚,ξ .
So we have proved (6.5), hence the lemma. Lemma 6.5 (Strong convergence of the electron-electron interaction). As n goes to infinity, we have

}|D 0 | ´1{2 V γn´γ˚| D 0 | ´1{2 } Y Ñ 0.
Proof. As V γ,ξ " G ℓ ˚ργ ´Wγ,ξ , we have

}|D 0 | ´1{2 V γn´γ˚| D 0 | ´1{2 } Y ď }|D 0 | ´1{2 G ℓ ˚pρ γn ´ργ˚q |D 0 | ´1{2 } Y `}|D 0 | ´1{2 pW γn,ξ ´Wγ˚,ξ q|D 0 | ´1{2 } Y .
For the first term in the right hand side, notice that }G ℓ ˚pρ γn ´ργ˚q } Y ď }G ℓ ˚pρ γn ´ρr γn q} Y `}G ℓ ˚pρ r γn ´ργ˚q } Y . By (4.4), we get }G ℓ ˚pρ γn ´ρr γn q} Y ď C H }γ n ´r γ n } X Ñ 0.

Notice that, from Lemma 6.3, we infer ρ r γn Ñ ρ γ˚i n L 2 pQ ℓ q. This and the fact that G ℓ P L 2 pQ ℓ q yield }G ℓ ˚pρ r γn ´ργ˚q } L 8 pQ ℓ q Ñ 0. Thus using |D 0 | ´1 ď 1, we infer

}|D 0 | ´1{2 G ℓ ˚pρ γn ´ργ˚q |D 0 | ´1{2 } Y Ñ 0. (6.6)
Similarly, we split the second term into two parts :

}|D 0 | ´1{2 pW γn ´Wγ˚q |D 0 | ´1{2 } Y ď }W γn ´Wr γn } Y `}|D 0 | ´1{2 pW r γn ´Wγ˚q |D 0 | ´1{2 } Y . (6.7) 
Since γ n and r γ n lie in B R and since }γ n ´r γ n } X Ñ 0, we obtain from Eqn. (4.9)

}W γn ´Wr γn } Y Ñ 0. (6.8)
We split the second term in (6.7) into two parts. Thus by the duality of the operator |D ξ,y | ´1{2 , for the term associated with ď ˆQℓ }W ăm,r γn´γ˚,ξ p¨, yq} L 2 ξ pQ ℓ q ||D ξ,y | ´1{2 ψ ξ pyq|dy ď }W ăm,r γn´γ˚,ξ p¨, ¨q} L 8 pQ l ;L 2 ξ pQ ℓ ˆQℓ qq }ψ ξ } L 2 pQ ℓ q Gathering these estimates with Lemma 6.4 we infer

W 8 ěm,ℓ , › › › › |D ξ,x | ´1{2 ˆQℓ W ěm,r γn´γ˚,ξ px, yqr|D ξ,y | ´1{2 ψ ξ pyqsdy › › › › L 2 ξ pQ ℓ q " › › › › ˆQℓ " |D ξ,x | ´1{2 |D ξ,y | ´1{2 W ěm,r γn´γ˚,ξ px, yqq ı ψ ξ pyqdy › › › › L 2 ξ pQ ℓ q ď ˆQℓ }|D ξ,x | ´1{2 |D ξ,y | ´1{2 W ěm,r γn´γ˚,ξ p¨, yqq} L 2 ξ pQ ℓ q |ψ ξ pyq|dy ď }|D ξ,x | ´1{2 |D ξ,y | ´1{2 W ěm,
}|D 0 | ´1{2 W r γn´γ˚| D 0 | ´1{2 } Y Ñ 0. (6.9) 
Then this lemma follows from (6.6), (6.8) and (6.9).

As a result, we have the following.

Corollary 6.6 (Strong convergence of the spectral projectors). As n goes to infinity, we have

}P γ˚´P γn } Y Ñ 0.
Proof. By (5.9) and the second resolvent identity, we obtain

}P γ˚,ξ ´P γn,ξ } BpL 2 ξ q ď 1 2π ˆ`8 ´8 }pD γ˚,ξ ´izq ´1V γn´γ˚,ξ pD γn,ξ ´izq ´1} BpL 2 ξ q dz ď 1 2π }|D 0 | ´1{2 pV γn´γ˚q |D 0 | ´1{2 } Y ˆˆ`8 ´8 }pD γ˚,ξ ´izq ´1|D ξ | 1{2 } BpL 2 ξ q }|D ξ | 1{2 pD γn,ξ ´izq ´1} BpL 2 ξ q dz ď 1 4 p1 ´κq ´1}|D 0 | ´1{2 V γn´γ˚| D 0 | ´1{2 } Y .
The right-hand side goes to 0 by Lemma 6.5.

Existence and properties of minimizer of I ďq,R

The existence of minimizers of I ďq,R now follows by passing to the limit in the constraint and in the energy. The proof is separated into the following two lemmas.

Lemma 6. 

Q l Tr L 2 ξ γ n,ξ dξ Ñ Q l Tr L 2 ξ γ ˚,ξ dξ ď q.
Then γ ˚P Γ ďq Ş B R . To end the proof, it remains to show that P γ˚,ξ γ ˚,ξ " γ ˚,ξ , in the sense that for every g P S 

As }|D 0 | ´1G ℓ |D 0 | ´1} S8,1 ď C G }|D 0 | ´1} S8,
}|D 0 | ´1{2 V γn´γ˚| D 0 | ´1{2 } Y p}γ n } X `}γ ˚}X q Ñ 0.
The lemma follows.

We now know that γ ˚is a minimizer of I Then, with ǫ P ą p1 ´κq ´1c ˚pq `1q, by Lemma 4.12, we get γ ˚" ffl ' Q l ½ r0,νq pD γ˚,ξ qdξ `δ with some 0 ď δ ď ffl ' Q l ½ ν pD γ˚,ξ qdξ for ν P p0, p1 ´κq ´1c ˚pq `1qs independently of ǫ P . Furthermore, Ă Tr L 2 pγ ˚q " q. Besides, if R ą R 0 , any minimizer γ ˚in Γ ďq Ş B R lies in B R0 . This proves Proposition 3.4.

Lemma A.1. There is a constant C 0 ą 0 independent of ℓ such that

sup xPQ ℓ ˇˇˇG ℓ pxq ´1 |x| ˇˇˇď C 0 ℓ .
This implies that, for any x P R 3 ,

G ℓ pxq ě ´C0 ℓ . (A.1)
In particular, we have

C 0 ď inf 0ăRă 1 2 ¨3 2R `2πR 2 5 `3 4π 2 R 3 min # ˆ4π R 3 3 ˙1{2 , ˆ1 ´4π R 3 3 ˙1{2 + ¨ÿ kPZ 3 zt0u 1 |k| 4 '1{2 ‹ '.
Proof. As G 1 pxq " ℓ G ℓ pℓxq, it suffices to consider the case ℓ " 1. Let f pxq " G 1 pxq ´1 where the first equation holds since p ď zPQ1 Bpz, rqq č tk P Z 3 |k ‰ 0u " H, for 0 ď r ď R.

Therefore, integrating (A.2) with respect to r,

´8π 2 3 r 2 ď ˆS2 f pz `rωq dω ´4π f pzq ď 8 π 2 3 r 2 .
Since ´Bpz,Rq f pxq dx " ´R 0 r 2 `´S 2 f pz `rωq dω ˘dr, integration over r0, Rs leads to

|f pzq| ď 3 4πR 3 ˇˇˇˇˆB pz,Rq f pxq dx ˇˇˇˇ`2 πR 2 5 ď 3 4πR 3 ˇˇˇˇˆB pz,Rq G 1 pxq dx ˇˇˇˇ`3 4πR 3 ˇˇˇˇˆB pz,Rq 1 |x| dx ˇˇˇˇ`2 πR 2 5 .
On the other hand,

ˇˇˇˇˆB pz,Rq G 1 pxq dx ˇˇˇˇď |Bpz, Rq| 1{2 }G 1 } L 2 pBpz,Rqq ď ˆ4π R 3 3 ˙1{2 }G 1 } L 2 pQ1q " 1 π ¨4π R 3 3 ÿ kPZ 3 zt0u 1 |k| 4 '1{2 .
Using (2.2) and by the periodicity of G 1 , we also have

ˇˇˇˇˆB pz,Rq G 1 pxq dx ˇˇˇˇ" ˇˇˇˇˆp z`Q1qzBpz,Rq G 1 pxq dx ˇˇˇˇď 1 π ˆ1 ´4π R 3 3 ˙1{2 ¨ÿ kPZ 3 zt0u 1 |k| 4 '1{2 . Thus, ˇˇˇˇˆB pz,Rq G 1 pxq dx ˇˇˇˇď 1 π min # ˆ4π R 3 3 ˙1{2 , ˆ1 ´4π R 3 3 ˙1{2 + ¨ÿ kPZ 3 zt0u 1 |k| 4 '1{2 . Furthermore, ˇˇˇˇˆB pz,Rq 1 |x| dx ˇˇˇˇď ˆBp0,Rq 1 |x| dx " 2πR 2 .
Therefore, the bound holds for ℓ " 1 and any 0 ă R ă 1 2 with

C 0 ď 3 2R `2πR 2 5 `3 4π 2 R 3 min # ˆ4π R 3 3 ˙1{2 , ˆ1 ´4π R 3 3 ˙1{2 + ¨ÿ kPZ 3 zt0u 1 |k| 4 '1{2 .
We now consider the Hardy inequality on Q ℓ for the potential 1 |x| .

Lemma A.2.

Let u P H 1 pQ ℓ q, then › › › › u |x| › › › › 2 L 2 pQ ℓ q ď 4ℓ `24 ℓ }∇u} 2 L 2 pQ ℓ q `48 `24ℓ ℓ 2 }u} 2 L 2 pQ ℓ q .
Proof. We start with the relationship: 

0 ď ˆQℓ ˇˇˇ∇ u `x u 2|x| 2 ˇˇˇ2 dx.
Q ℓ nx|u| 2 |x| 2 ˇˇˇˇˇd x ď 2 ℓ B Q ℓ |u| 2 dx " 2 ℓ ˆA2,3 p´ℓ 2 q `A2,3 p ℓ 2 q `A1,3 p´ℓ 2 q `A1,3 p ℓ 2 q `A1,2 p´ℓ 2 q `A1,2 p ℓ 2 q ˙. (A.3) Let x p0q 1 P p´ℓ 2 , ℓ 2 s such that A 2,3 px p0q 1 q ď p´ℓ 2 , ℓ 2 s A 2,3 px 1 q dx 1 " 1 ℓ ˆp´ℓ 2 , ℓ 2 s A 2,3 px 1 q dx 1 " 1 ℓ ˆQℓ |u| 2 dx.
Then we have

A 2,3 p´ℓ 2 q `A2,3 p ℓ 2 q " « ˆℓ 2 x p0q 1 ´ˆx p0q 1 ´ℓ 2 ff d dx 1 A 2,3 dx 1 `2A 2,3 px p0q 1 q ď 2A 2,3 px p0q 1 q `ˆp´ℓ 2 , ℓ 2 s ˇˇˇd dx 1 A 2,3 ˇˇˇd x 1 . As ˆp´ℓ 2 , ℓ 2 s ˇˇˇd dx 1 A 2,3 px 1 q ˇˇˇd x 1 ď 2 ˆQℓ |u| ˇˇˇB Bx 1 u ˇˇˇď 2}u} L 2 pQ ℓ q }∇u} L 2 pQ ℓ q , we get A 2,3 p´ℓ 2 q `A2,3 p ℓ 2 q ď 2 ℓ }u} 2 L 2 pQ ℓ q `2}u} L 2 pQ ℓ q }∇u} L 2 pQ ℓ q .
Inserting this into (A.3), we can conclude

0 ď }∇u} 2 L 2 pQ ℓ q ´1 4 › › › › u |x| › › › › 2 L 2 pQ ℓ q `6 ℓ 2 }u} 2 L 2 pQ ℓ q `6 ℓ }u} L 2 pQ ℓ q }∇u} L 2 pQ ℓ q .
As a result, by the Cauchy-Schwarz inequality

› › › › u |x| › › › › 2 L 2 pQ ℓ q ď 4ℓ `12 ℓ }∇u} 2 L 2 pQ ℓ q `24 `12ℓ ℓ 2 }u} 2 L 2 pQ ℓ q .
Combining Lemma A.1 and A.2, we obtain

C G :" 2 ˆ1 `C0 ℓ ˙max # c 1 `3 ℓ , c 3 ℓ `6 ℓ 2 + . (A.4)
We now turn to the estimates on W γ,ξ .

B Proof of Lemma 4.5

We first study the property of W 8 ℓ , then we prove Lemma 4.5.

Properties of W 8 ℓ

Recall that W 8 ℓ pη, xq " W ěm,ℓ pη, xq `Wăm,ℓ pη, xq is given by (4.7). We are going to prove the Hardy type inequalities for W ěm,ℓ . A natural idea is to compare it with the potential G ℓ .

Proposition B.1 (Singularities for the potential W ěm,ℓ ). For every m ě 2, there exists a positive constant C ěm such that, for any ℓ ą 0, we have

sup ηP2Q l xPQ ℓ ˇˇWěm,ℓpη, xq ´Gℓ pxq ˇˇď C ěm ℓ (B.1) with C ěm ď inf 0ăRă1{2 $ ' & ' % ? 3 2pπRq 3{2 m 2 `2 pm ´1q 2 ¨ÿ |k|8ěm 1 |k| 4 '1{2 `2πrp2m ´1q 3 `1sR 2 5 `3 4π 2 R 3 min # ˆ4π R 3 3 ˙1{2 , ˆ1 ´4π R 3 3 ˙1{2 + ¨ÿ kPZ 3 zt0u 1 |k| 4 '1{2 , / . 
/ -.

Proof. The proof is similar to Lemma A.1. Notice that

W 8 ℓ pη, xq " λW 8 λℓ ´η λ , λx ¯, η P R 3 , x P R 3 .
We therefore take ℓ " 1. Observe, from (2.17), that ´∆z W 

.

On the other hand,

ˇˇˇˇˆB pz,Rq G 1 pxq dx ˇˇˇˇď 1 π min # ˆ4π R 3 3 ˙1{2 , ˆ1 ´4π R 3 3 ˙1{2 + ¨ÿ kPZ 3 zt0u 1 |k| 4 '1{2 .
Furthermore, according to the quasi-periodicity of W ěm,1 with respect to z P R 3 , for any η

P 2Q 1 , ˇˇˇˇˆB pz,Rq W ěm,1 pη, xq dx ˇˇˇˇď |Bpz, Rq| 1{2 }W ěm,1 } L 2 pBpz,Rqq ď ˆ4π R 3 3 ˙1{2 }W ěm,1 } L 2 pQ1q ď 4π ˆ4π R 3 3 ˙1{2 ¨ÿ |k|8ěm 1 |2πk ´η| 4 '1{2 ď 4π ˆ4π R 3 3 ˙1{2 sup |k|8ěm ηP2Q 1 |2πk| 2 |2πk ´η| 2 ¨ÿ |k|8ěm 1 |2πk| 4 '1{2 " ˆ4π R 3 3 ˙1{2 m 2 `2 πpm ´1q 2 ¨ÿ |k|8ěm 1 |k| 4 '1{2 .
Therefore, the bound (B.1) holds for ℓ " 1 with The corresponding result for any ℓ ą 0 follows immediately by a scaling argument as for Lemma B.1.

C ěm ď ? 3 2pπRq 3{2 m 2 `2 pm ´1q 2 ¨ÿ |k|8ěm 1 |k| 4 '1{2 `2πrp2m ´1q 3 `1sR 2 5 `3 4π 2 R 3 min # ˆ4π R 3 3 ˙1{2 , ˆ1 ´4π 

Estimates for the exchange term

We consider now the exchange term. Let

ψ ξ P H 1{2 ξ . As }W γ,ξ ψ ξ } L 2 ξ " sup φ ξ PL 2 ξ , }φ ξ } L 2 ξ "1 |pφ ξ , W γ,ξ ψ ξ q|, (B.6)
we only need to study the inner product pW γ,ξ ψ ξ , φ ξ q. For m ě 2, ξ, ξ We now study the contribution of the term involving W ăm,ℓ , that carries the singularities in the η variable. We first observe that γ ξ 1 `2kπ ℓ px, yq " e 2ikπ ℓ ¨px´yq γ ξ 1 px, yq for every ξ 1 P Q l , k P Z 3 and x, y P R 3 .

In particular, ρ γ ξ 1 `2kπ ℓ " ρ γ ξ 1 for every ξ 1 P Q l and k P Z 3 , and the function of ξ Þ Ñ Tr L 2 ξ pγ ξ q is Q l -periodic. Next, we write ˇˇˇˇˇˇˇ where the last estimate follows from the Cauchy-Schwarz inequality. Here and below we use the fact that ÿ

kPZ 3 |k|8ďm´1 Q l f `ξ1 ´2πk ℓ ˘dξ 1 " ÿ kPZ 3 |k|8ďm´1 2πk ℓ `Ql
f pξ 1 q dξ 1 " ℓ 3 p2πq 3 ˆp2m´1qQ l f pξ 1 q dξ 1 , since pQ l `2πk{ℓq Ş pQ l `2πk 1 {ℓq " H whenever k, k 1 P Z 3 with k ‰ k 1 . We focus on the quantity inside the brackets in the last inequality. By Hölder's inequality, for γ P S 1,8 and some constant C 1 ďm,ℓ , we obtain ˆp2m´1qQ l }γ ξ 1 } S1pξ 1 q ˇˇξ 1 ´ξˇˇ2 dξ We can rewrite as W 8 ℓ " W 8 ăm,ℓ `Gℓ `pW 8 ěm,ℓ ´Gℓ q. According to Proposition B.1 and (B.13), the terms associated to W 8 ăm,ℓ and pW 8 ěm,ℓ ´Gℓ q are easily bounded. So the aim of this section is to get a better estimate on the following term : ¨Qℓ ˆQℓ G ℓ px ´yqρ γ pyqφ ξ pxqψ ξ pxq dxdy ´ Q l dξ 1 ¨Qℓ ˆQℓ G ℓ px ´yqφ ξ pxqγ ξ 1 px, yqψ ξ pyq dxdy.

From now on, for any function f P L 2 pQ ℓ , C 4 q, we denote f :" pf α q 1ďαď4 . We use the decomposition (2.10) for γ P S 

Lemma 4 . 5 (

 45 Estimates on W γ,ξ). There exist positive constants C

  10, we have for any γ P Γ ďq,r , p1 ´κr q|D 0 | ď |D γ | ď p1 `κr q|D 0 | (5.5) and inf |σpD γ q| ě λ 0,r ě 1 ´κr , (5.6) where κ r :" α `CG z `C1 EE pq ``2rq ˘and λ 0,r :" 1 ´α max C H z `CEE r `C2 EE pq ``rq, C 0 ℓ z `CEE pq ``rq ( .

@

  γ P U r , }T 2 pxq ´T pxq} X Ş Y ď k}T pxq ´x} X Ş Ywith k :" 2Aτ ă 1.

  γ˚f ollows from [5, Eqn. (4.51) and Eqn. (4.55)] since it implies ρ r γn Ñ ρ γ˚i n L 1 pQ ℓ q.

Q l dξ 1 ˆQℓ 4π ℓ 3 ÿ kPZ 3 |γ ξ 1 | pxq ρ 1{2 |γ ξ 1 ||γ ξ 1 | pxq ρ 1{2 |γ ξ 1 | pyq |ψ ξ pyq| |φ ξ pxq| dxdy ď 1 2π 2 p2m´1qQ l }γ ξ 1 }

 131121 Qℓ |k|8ďm´1 e ´i`ξ 1 ´ξ´2 πk ℓ ˘¨px´yq ˇˇξ 1 ´ξ ´2πk ℓ ˇˇ2 φ ξ pxq γ ξ 1 px, yq ψ ξ pyq dxdy ˇˇˇˇˇˇď pyq |ψ ξ pyq| |φ ξ pxq| dxdy" S1pξ 1 q ˇˇξ 1 ´ξˇˇ2 dξ 1 }ψ ξ } L 2 ξ }φ ξ } L 2 ξ , (B.[START_REF] Eschrig | Chapter 12 -Relativistic Solid State Calculations[END_REF] 

  3 

  In the above equation, the superscript ˚refers to the duality in L 2 ξ . In particular γ ξ p¨, ¨q is a 4 ˆ4 complex matrix in M 4 pCq, and for every function ϕ P L 2

ˆR3 , the Hilbert-Schmidt kernel writes γ ξ px, yq " ÿ ně1 λ n pξqu n pξ, xqu npξ, yq. (2.11) ξ , pγ ξ ϕqpxq " ˆQℓ γ ξ px, yqϕpyq dy " ÿ ně1 λ n pξqu n pξ, xq ˆQℓ u npξ, yqϕpyq dy.

  13), but (2.15) becomes |hpx, yq| 2 ď ρ |h| pxqρ |h| pyq where |h| " ? h ˚h.

  In the above definition of the energy functional, the so-called fine structure constant α is a dimensionless positive constant (the physical value is approximately 1/137). Note that D ξ γ ξ is not a trace-class operator, so Tr L 2 ξ rD ξ γ ξ s is not really a trace, it is just a notation for the rigorous mathematical objectTr L 2 ξ r|D ξ | 1{2 γ ξ |D ξ | 1{2 signpD ξ qs.We will make this abuse of notation throughout the paper.

								Qℓ	
					dξ ´αz		G ℓ pxqρ γ pxq dx
		`α 2	Qℓ ˆQℓ	ρ γ pxqG ℓ px ´yqρ γ pyq dxdy	(2.16)
		´α 2	¨ z Q l ˆQl		dξdξ 1	Qℓ ˆQℓ	Tr 4 rγ ξ px, yqγ ξ 1 py, xqsW 8 ℓ pξ ´ξ1 , x ´yq dxdy.
	The last term in (2.16) is called the "exchange term ". The potential W 8 ℓ that enters its definition
	is defined by	W 8 ℓ pη, xq "	ÿ kPZ 3	e iℓ k¨η |x `ℓ k|	"	4π ℓ 3	ÿ kPZ 3	ˇˇ2πk ℓ	1 ´ηˇˇ2 e ip 2πk ℓ ´ηq¨x

  :" maxt|k 1 |, |k 2 |, |k 3 |u. It is easy to see that the singularity of W ăm,ℓ behaves like 1 |η| 2 , and we will show in Appendix B that the singularity of W ěm,ℓ pη, xq behaves like 1 |x| or equivalently G ℓ pxq. Then we have the following estimates.

						(4.7)
	with	W ěm,ℓ pη, xq "	4π ℓ 3	ÿ |k|8ěm kPZ 3	ˇˇ2πk ℓ	1 ´ηˇˇ2 e ip 2πk ℓ ´ηq¨x
	and	W ăm,ℓ pη, xq "	4π ℓ 3	ÿ |k|8ăm kPZ 3	ˇˇ2πk ℓ	1 ´ηˇˇ2 e ip 2πk ℓ ´ηq¨x
	where |k| 8					
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ℓ with respect to η P 2Q l and x P 2Q ℓ as follows

W 8

ℓ pη, xq " W ěm,ℓ pη, xq `Wăm,ℓ pη, xq, @ m P N, m ě 2,

  Remark 4.6. The constants C W , C 1 W and C 2 W are estimated in (B.15). Gathering together Lemma 4.1, Corollary 4.4 and Lemma 4.5 we can get some rough estimates on the self-consistent potential V γ,ξ defined in(2.18). We can obtain much better estimates by a careful study of the structure of V γ,ξ . Lemma 4.7 (Estimates on V γ,ξ ). There exist positive constants C EE " C EE pℓq ą 0 and C 1 EE " C 1 EE pℓq ą 0 that only depend on ℓ and such that

.10) 

  1,lip pΓ ďq,r ; BpL 2 , H 1{2 qq follows from (5.7) and (5.8). Assume that κ ă 1 and let A ą α 2 C EE p1 ´κq ´1{2 λ

	Lemma 5.7. ´1{2 0

  r γn´γ˚,ξ p¨, ¨qq} L 8 pQ l ;L 2 ξ pQ ℓ ˆQℓ qq }ψ ξ } L 2 pQ ℓ q .

	For the other term, analogously we have › › › › |D ξ,x | ´1{2 ˆQℓ W ăm,r γn´γ˚,ξ px, yq|D ξ,y | ´1{2 ψ ξ pyqdy	› › › ›	L 2 ξ pQ ℓ q

  7. The limit γ ˚lies in Γ ďq Ş B R . Thus, γ ˚P T and γ ˚P X Ş Y Ş B R . Besides, as }γ n ´r γ n } X Ñ 0 and }ρ

	Proof. As	r γ n á γ ˚in X 2 8	č	Y,
	we get			
	}γ ˚}S1,8 ď lim inf nÑ8	}r γ n } S1,8 ď R, }γ ˚}Y ď lim inf nÑ8	}r γ n } Y ď 1
	and			
	}γ ˚}X 2 8 ď lim inf nÑ8	}r γ n } X 2 8 ď pq `M qp1 ´κq ´2e 2 .
	that				1{2 r γn	´ρ1{2 γ˚}L 2 Ñ 0, we know

  8,1 , ˆQl Tr L 2 ξ rpP γ˚,ξ γ ˚,ξ ´γ˚,ξ qg ξ s dξ " 0. Tr L 2 ξ rpP γ˚,ξ γ ˚,ξ ´γ˚,ξ qg ξ s dξ ˇˇˇˇď ˇˇˇˇˆQ l Tr L 2 ξ rpP γ˚,ξ ´P γn,ξ qr γ n,ξ g ξ s dξ ˇˇˇQ l Tr L 2 ξ rP γ˚,ξ pγ ˚,ξ ´r γ n,ξ qg ξ s dξ rP γ˚,ξ pγ ˚,ξ ´r γ n,ξ qg ξ s dξ Ñ 0 and ˆQl Tr L 2 ξ rpr γ n,ξ ´γ˚,ξ qg ξ s dξ Ñ 0. Tr L 2 ξ rpP γ˚,ξ ´P γn,ξ qr γ n,ξ g ξ s dξ ˇˇˇˇď }P γ˚´P γn } Y }r γ n } S1,1 }g} Y Ñ 0. Tr L 2 ξ rpP γ˚,ξ γ ˚,ξ ´γ˚,ξ qg ξ sdξ ˇˇˇˇ" 0. Hence γ ˚P Γ ďq . This ends the proof. rD ξ pr γ n,ξ ´γ˚,ξ qs dξ " ˆQl Tr L 2 ξ r|D ξ |pr γ n,ξ ´γ˚,ξ q|D ξ ||D ξ | ´1D ξ |D ξ | ´1s dξ Ñ 0, as |D 0 | ´1D 0 |D 0 | ´1 P S 8,1 . Since }γ n ´r γ n } X Ñ 0, then ´Ql Tr L 2 ξ rD ξ pγ n,ξ ´r γ n,ξ qsdξ Ñ 0. Hence ˆQl Tr L 2 ξ rD ξ pγ n,ξ ´γ˚,ξ qsdξ Ñ 0. Tr L 2 ξ pG ℓ pγ n,ξ ´r γ n,ξ qq dξ ˇˇˇˇď C H }γ n ´r γ} X Ñ 0.

	Notice that As gP γ˚P S 8,1 , we know that ˇˇˇˇˆQ ˆQl Tr L 2 ξ For the first term in the right-hand side of (6.10), using Corollary 6.6, we have ˇˇˇˇ`ˇˇˇˇˆQ l Tr L 2 ξ rpr γ n,ξ ´γ˚,ξ qg ξ s dξ ˇˇˇˇˆQ Consequently, letting n go to infinity, ˇˇˇˇˆQ Lemma 6.8. The limit γ ˚minimizes I ďq,R . Proof. For the kinetic energy term, we have ˆQl Tr L 2 ξ rD ξ pγ n,ξ ´γ˚,ξ qs dξ " ˆQl Tr L 2 ξ rD ξ pγ n,ξ ´r γ n,ξ qs dξ `ˆQ l Tr L 2 ξ rD ξ pr γ n,ξ ´γ˚,ξ qs dξ. ˇˇˇˇ. (6.10) By (6.3), we know that ˆQl Tr L 2 ˆQl Tr L 2 ξ pG ℓ pγ n,ξ ´γ˚,ξ qq dξ " ˆQl Tr L 2 ξ pG ℓ pγ n,ξ ´r γ n,ξ qq dξ `ˆQ l Tr L 2 ξ pG ℓ pr γ n,ξ ´γ˚,ξ qq dξ ξ The proof for the attractive potential is similar: and ˇˇˇˇˆQ

l l l l

  1 ă `8, we know that |D 0 | ´1G ℓ |D 0 | ´1 P S 8,1 and ˆQl Tr L 2 ξ rG ℓ pr γ n,ξ ´γ˚,ξ qsdξ " ˆQl Tr L 2 ξ r|D ξ |pr γ n,ξ ´γ˚,ξ q|D ξ ||D ξ | ´1G ℓ |D ξ | ´1s dξ Ñ 0. For the repulsive potential, according to Lemma 6.5, we have ˇˇĂ Tr L 2 pV γn γ n ´Vγ˚γ˚q ˇˇ" ˇˇĂ Tr L 2 pV γn´γ˚γn `Vγn´γ˚γ˚q ˇď

  ďq,R under the condition γ ˚P Γ ďq

										Ş	B R . Applying
	Proposition 5.1, we get								
	ˆQl	Tr L 2 ξ	" pD γ˚,ξ ´ǫP qγ ˚,ξ	‰	dξ " inf γPΓďq γ"P γ˚γ	ˆQl	Tr L 2 ξ	" pD γ˚,ξ ´ǫP qγ ξ	‰	dξ.

  Obviously, we can assume 0 ă R ă 1{2. By the divergence theorem, for 0 ď r ď R and z P Q 1 we obtain denoting the unit sphere. On the one hand, for any z P Q 1 ,

														|x| . Eqn. (2.1)
	yields												
						´∆f " 4πp´1	`ÿ kPZ 3 zt0u	δ k q.
	Let Bpz, Rq be a ball of center z and radius R chosen such that p Ť	zPQ1 Bpz, Rqq	Ş	pZ 3 zt0uq " H.
	d dr ¨1 4πr 2	BBpz,rq	f psq ds ‹ '"	1 4π	d dr ˆS2	f pz `rωqdω "	1 4πr 2		BBpz,rq	Bf psq Bn	ds "	1 4πr 2	Bpz,rq	∆ x f pxq dx
														(A.2)
	with S 2 1 4πr 2	ˇˇˇˇˆB	pz,rq	∆ x f dx ˇˇˇˇ" 1 r 2	ˇˇˇˇˆB	pz,rq	1 dx ˇˇˇˇď 4π 3	r.

  where n is the outward pointing unit normal at each point on the boundary BQ ℓ . To end this proof, it suffices to estimate ´BQ ℓ |u| 2 px 1 , x 2 , x 3 qdx 2 dx 3 .

	Thus, By the divergence theorem for ´Qℓ ∇ ¨p |u| 2 x 0 ď ˆQℓ |∇u| 2 dx `1 4 ˆQℓ |x| 2 q dx, we obtain |u| 2 |x| 2 dx `1 2 ˆQℓ	∇|u| 2 ¨x |x| 2 dx.
		ˆQℓ	∇|u| 2 ¨x |x| 2 dx "	ˆBQ ℓ	nx |u| 2 |x| 2 dx	´ˆQ ℓ	|u| 2 |x| 2 dx.
		nx|u| 2 |x| 2 .			
	Let	A 2,3 px 1 q "	ˆp´ℓ 2 , ℓ 2 s 2	
	As | n ¨x| " ℓ 2 and |x| ě ℓ 2 for any x P BQ ℓ , we have ˇˇˇˇˇB

  Let f pη, xq " W ěm,1 pη, xq ´G1 pxq. Then ´∆x f pη, xq " 4π ÿ

				k‰0 kPZ 3	pe ´iη¨k ´1qδ k pxq `4π ´4π	kPZ 3 |k|8ăm ÿ	e ip2πk´ηq¨x .
	Let Bpz, Rq be a ball of center z and radius R chosen such that p Ť Obviously, we can assume 0 ă R ă 1{2. Analogous to (A.2), for 0 ď r ď R and z P Q 1 we obtain zPQ1 Bpz, Rqq Ş tk P Z 3 |k ‰ 0u " H. d dr ˜1 4πr 2 ˆBBpz,rq f pη, sq ds ˆBpz,rq ¸" 1 4πr 2 ∆ x f pη, xq dx. (B.2)
	On the one hand, for any z P Q 1 , 1 4πr 2 ˇˇˇˇˆB pz,rq ∆ x f dx ˇˇˇˇ" 1 r 2	ˇˇˇˇˇˇˇˆB	pz,rq	´1	|k|8ďm´1 ´ÿ kPZ 3	ˇˇˇˇˇˇˇď e ip2πk´ηq¨x ¯dx	4πrp2m ´1q 3 `1s 3	r,
	where the first equality holds since				
	p	ď						
	Therefore, integrating (B.2) with respect to r,
	´8 π 2 rp2m ´1q 3 `1s 3	r 2 ď	ˆS2	f pη, z `rωq dω ´4π f pη, zq ď	8 π 2 rp2m ´1q 3 `1s 3	r 2 .
	Then integration over r0, Rs leads to |f pη, zq| ď 3 4πR 3	ˇˇˇˇˆB	pz,Rq	f pη, xq dx ˇˇˇˇ`2 πrp2m ´1q 3 `1sR 2

8 1 pη, xq " 4π ÿ kPZ 3 e ´iη¨k δ k pxq. zPQ1 Bpz, rqq č tk P Z 3 |k ‰ 0u " H, for 0 ď r ď R.

  R ă 1 2 . The corresponding result for any ℓ ą 0 follows immediately by a scaling argument.We can immediately conclude from Lemma 4.1 and Proposition B.1 the following.Corollary B.2 (Hardy-type inequalities for the potential W ěm,ℓ ). For m ě 2, we have}|W ěm,ℓ | 1{2 |D ξ | ´1{2 } L 8 p2Q l ;BpL 2

			R 3 3	˙1{2 +	¨ÿ kPZ 3 zt0u	1 |k| 4	'1{2	,
	for any 0 ă ξ qq ď ˆCH	`Cěm ℓ	˙(B.3)
	and	}W ěm,ℓ |D ξ | ´1} L 8 p2Q l ;BpL 2 ξ qq ď ˆCG	`Cěm ℓ	˙.	(B.4)
	We also have the following estimate on W 8 ℓ .				
		kPZ 3 zt0u	ike ´iη¨k δ k pxq `4π	|k|8ăm ÿ	ixe ip2πk´ηq¨x ,
							kPZ 3
	from which we obtain					
		|∆				

Lemma B.3. Let m ě 2. There is a constant C " Cpℓ, mq such that sup ηP2Q l }∇ η W ěm,ℓ pη, ¨q} L 8 pQ ℓ q ď C. (B.5) Proof. Take ℓ " 1 for simplicity. Notice that ´∆x ∇ η W ěm,1 pη, xq " ´4π ÿ x ∇ η W ěm,1 pη, xq| ď C for any η P 2Q l and x P Q ℓ . Following the proof of Lemma B.1, we know |∇ η W ěm,1 pη, xq| ď C.

  1 P Q l and x, y P Q ℓ , n pξ, ¨q " |D ξ | ´1{2 v n pξ, ¨q. Now, we have ˇˇˇˇ Q l dξ 1 ˆQℓ ˆQℓ W ěm,ℓ pξ ´ξ1 , x ´yqφ ξ pxqγ ξ 1 px, yqψ ξ pyq dxdy pξ ´ξ1 , x ´yq| |u n pξ 1 , xq||u n pξ 1 , yq| |ψ ξ pyq| |φ ξ pxq| dxdy |φ ξ pxq| 2 dx ˆQℓ |W ěm,ℓ pξ ´ξ1 , x ´yq| |u n pξ 1 , yq| 2 dy ˙ÿ ně1 |λ n pξq| }|D ξ| 1{2 u n pξ 1 , ¨q} 2 L 2 pξ 1 q dξ 1 ¸}ψ ξ } L 2 ξ }φ ξ } L 2Using the Cauchy-Schwarz inequality, we can also argue as follows:ˇˇˇˇˇˇ Q l dξ 1 Qℓ ˆQℓ W ěm,ℓ ´ξ ´ξ1 , x ´y¯φ ξ pxqγ ξ 1 px, yqψ ξ pyqdxdy ˇˇˇˇˇď Q }|D ξ |ψ ξ } L 2 ξ }φ ξ } L 2 ξ .

							ˇˇˇď
	Q l dξ 1 |W ěm,ℓ ď Qℓ ÿ ně1 |λ n pξq| ˆQℓ Q l dξ 1 ÿ |λ n pξq| ˆˆQ ℓ |ψ ξ pyq| 2 dy ně1	ˆQℓ	˙1{2 |W ěm,ℓ pξ ´ξ1 , x ´yq| |u n pξ 1 , xq| 2 dx ˙1{2
		ˆˆˆQ ℓ ˜ ˆCH		
	ď ď ˆCH Q l	ℓ ξ `Cěm `Cěm ℓ ˙}γ} X }ψ ξ } L 2 ξ }φ ξ } L 2 ξ .	(B.9)
							'1{2
							dξ 1
	ď ˆCG	`Cěm ℓ	˙}γ} S1,1	
		W 8 ℓ ´ξ ´ξ1 , x	´y¯"	W ěm,ℓ ´ξ ´ξ1 , x	´y¯`W ăm,ℓ ´ξ ´ξ1 , x	´y¯.	(B.7)
	For the term that carries all singularities in the x variable (i.e., W ěm,ℓ ), we use the decomposition (2.10) and Corollary B.2. As γ P X Ş Y , for any ξ P Q l we have |D ξ | 1{2 γ ξ |D ξ | 1{2 " ÿ ně1 λ n pξq |v n pξ, ¨qy xv n pξ, ¨q| (B.8)

with pv n pξ, ¨q, v m pξ, ¨qq L 2 ξ " δ m,n and }γ} X " ffl Q l ř ně1 |λ n pξq|dξ. Hence γ ξ " ÿ ně1 λ n pξq |u n pξ, ¨q u n pξ, ¨q| with u l ¨Q ℓ ˆQℓ ρ γ ξ 1 pyq |φ ξ pxq| 2 dxdy '1{2 ¨Q ℓ ˆQℓ ρ γ ξ 1 pxq ˇˇWěm,ℓ `ξ ´ξ1 , x ´y˘ˇˇˇ2 |ψ ξ pyq| 2 dxdy (B.10)

  Alternatively, by using the fact that the γ ξ 's are bounded operators on L 2 ξ uniformly onξ P Q l , ˇˇˇˇˇˇˇ ˇˇ2 φ ξ pxq γ ξ 1 px, yq ψ ξ pyq dxdydξ 1 e ´ipξ 1 ´ξq¨px´yq ˇˇξ 1 ´ξˇˇ2 φ ξ pxq γ ξ 1 px, yq ψ ξ pyq dxdydξ 1 ˇˇξ 1 ´ξˇˇ2 ˇˇ´e ipξ 1 ´ξq¨p¨q φ ξ p¨q, γ ξ 1 e ipξ 1 ´ξq¨p¨q ψ ξ p¨q BpL 2 ξ 1 q }ψ ξ } L 2 ξ }φ ξ } L 2 ξ " C ďm,ℓ }γ} Y }ψ ξ } L 2 ξ }φ ξ } L 2Since }γ} S1,1 ď }γ} X and |D 0 | ´1{2 ď 1, the statement of the lemma follows: from (B.9) and (B.13), we obtain (4.8); from (B.9) and (B.12), we obtain (4.9); from (B.10) and (B.13), we obtain (4.10). More precisely,C W " C H `Cℓ , C 1 W " C G `Cℓ , C 2 W " C H

				1 ď ď C 1 ˜ˆp2m´1qQ l ďm,ℓ }γ} 3{4 S1,8 }γ} dξ 1 ˇˇξ 1 ´ξˇˇ8 {3 1{4 S1,1 .	¸3{4	˜ˆp2m´1qQ l }γ ξ 1 } 4 S1pξ 1 q dξ 1	¸1{4	(B.12)
	Q l ¨Qℓ ˆQℓ ˇˇˇˇˇˇˇÿ 4π ℓ 3 |k|8ďm´1 ÿ kPZ 3	e	´i`ξ 1 ´ξ´2 πk ℓ ˘¨px´yq ˇˇξ 1 ´ξ ´2πk	ˇˇˇˇˇˇď ˇˇˇˇˇˇď
	4π							
	ℓ 3	kPZ 3 |k|8ďm´1 Q l `2kπ	
	4π		ÿ						¯L2 ˇď
	ℓ 3	kPZ 3 |k|8ďm´1 Q l `2kπ	
	C ďm,ℓ ess sup				
			ξ 1 PQ					
								ξ	(B.13)
	with							
	C ďm,ℓ "	4π ℓ 3 sup ξPQ l	ÿ kPZ 3 |k|8ďpm´1q Q l `2kπ ℓ	dξ 1 |ξ 1 ´ξ| 2 "	p2m ´1q 2πℓ	r´1,1q 3	dξ 1 |ξ 1 | 2 .	(B.14)
									`C1 ℓ ,	(B.15)
	with							
	C ℓ :" inf mPN mě2	ˆCěm ℓ	`Cďm,ℓ ˙, C 1 ℓ :" inf mPN mě2	ˆCěm ℓ	`C1 ďm,ℓ ˙.	(B.16)
	C Proof of Lemma 4.7	
	Analogous to (B.6), we have					
			}V γ,ξ ψ ξ } L 2 ξ "	sup ξ , }φ ξ } L 2 φ ξ PL 2 ξ	"1	|pφ ξ , V γ,ξ ψ ξ q|.	(C.1)

ℓ ℓ ¨Qℓ ˆQℓ ℓ dξ 1 l }γ ξ 1 }

  1,1 Ş Y . Then as Gpxq " Gp´xq, for almost every ξ P Q l , ¨Qℓ ˆQℓ G ℓ px ´yq " ρ γ ξ 1 pyqφ ξ pxqψ ξ pxq ´φξ pxqγ ξ 1 px, yqψ ξ pyq pξ 1 q ¨Qℓ ˆQℓ G ℓ px ´yq ´|u n pξ 1 , yq| 2 φ ξ pxqψ ξ pxq ´φξ pxqu n pξ 1 , xqu npξ 1 , yqψ ξ pyq ¯dxdy Estimate for (4.12). By Lemma A.1, we have ˇˇˇˇˇÿ 1ďα,βď4 Qℓ ˆQℓ G ℓ px ´yq ´uα n pξ 1 , yqφ β ξ pxq ´φα ξ pyqu β n pξ 1 , xq ¯˚´u α n pξ 1 , yqψ β ξ pxq ´ψα ξ pyqu β n pξ 1 , xq ¯dxdy ˇˇˇˇď ˜ÿ 1ďα,βď4 ¨Qℓ ˆQℓ |G ℓ px ´yq| 2 ˇˇu α n pξ 1 , yqψ β ξ pxq ´uβ n pξ 1 , xqψ α ξ pyq ˇˇ2 dxdy Qℓ ˆQℓ |G ℓ px ´yq| 2 |u n pξ 1 , yq| 2 |ψ ξ pxq| 2 dxdy '1{2 ¨Q ℓ ˆQℓ |u npξ 1 , yq| 2 |φ ξ pxq| 2 dxdy'1{2 ď 2C G }φ ξ } L 2 ξ }|D ξ |ψ ξ } L 2 ξ .Substituting this inequality into (C.2) and using the decomposition (2.11), we get ˇˇˇ¨Q ℓ ˆQℓ G ℓ px ´yq ´ργ ξ 1 pyqφ ξ pxqψ ξ pxq ´φξ pxqγ ξ 1 px, yqψ ξ pyq ¯dxdy ˇˇďC G ÿ ně1 |λ n pξ 1 q|}φ ξ } L 2 ξ }|D ξ |ψ ξ } L 2 ξ " C G }γ ξ 1 } S1pξ 1 q }φ ξ } L 2 ξ }|D ξ |ψ ξ } L 2 ξ , from which we get ˇˇˇˇ¨Q ℓ ˆQℓ G ℓ px ´yqρ γ pyqφ ξ pxqψ ξ pxq dxdy ´ Q l dξ 1 ¨Qℓ ˆQℓ G ℓ px ´yqφ ξ pxqγ ξ 1 px, yqψ ξ pyq dxdy ˇˇˇď C G }γ} S1,1 }φ ξ } L 2 ξ }|D ξ |ψ ξ } L 2 ξ .(C.4) Combining (C.4) with Proposition B.1 and (B.13), we get for any φ ξ P L 2 ξ andψ ξ P H 1 ξ , |pφ ξ , V γ,ξ ψ ξ q| ď pC G `Cℓ q}γ} S1,1 Ş Y }φ ξ } L 2 ξ }|D ξ |ψ ξ } L 2Estimate for (4.11). As γ P X Ş Y , we use the decomposition (B.8) for γ ξ . Analogous to (C.3), we also have ˇˇˇˇˇÿ 1ďα,βď4 Qℓ ˆQℓ G ℓ px ´yq ´uα n pξ 1 , yqφ β ξ pxq ´φα ξ pyqu β n pξ 1 , xq ¯˚´u α n pξ 1 , yqψ β ξ pxq ´ψα ξ pyqu β n pξ 1 , xq ¯dxdy ˇˇˇˇď 2 ¨Q ℓ ˆQℓ |G ℓ px ´yq||u n pξ 1 , yq| 2 |ψ ξ pxq| 2 dxdy '1{2 ¨Q ℓ ˆQℓ |G ℓ px ´yq||u npξ 1 , yq| 2 |φ ξ pxq| 2 dxdy '1{2 from which by the decomposition (B.8) we get ˇˇˇˇ¨Q ℓ ˆQℓ G ℓ px ´yqρ γ pyqφ ξ pxqψ ξ pxqdxdy ´ Q l dξ 1 ¨Qℓ ˆQℓ G ℓ px ´yqφ ξ pxqγ ξ 1 px, yqψ ξ pyq dxdy |λ n pξ 1 q| ¨Qℓ ˆQℓ |G ℓ px ´yq||u n pξ 1 , yq| 2 |ψ ξ pxq| 2 dxdy pξ 1 q| ¨Qℓ ˆQℓ |G ℓ px ´yq||u n pξ 1 , yq| 2 |φ ξ pxq| 2 dxdy ¸1{2ď C H }γ} X }φ ξ } L 2 ξ }ψ ξ } L 2 ξ (C.6)where the last inequality holds by using Lemma 4.1. Combining (C.6) with Proposition B.1 and estimate (B.13), we get for any φ ξ P L 2 ξ andψ ξ P H 1 ξ , |pφ ξ , V γ,ξ ψ ξ q| ď pC H `Cℓ q}γ} X Ş Y }φ ξ } L 2 ξ }|D ξ |ψ ξ } L 2Estimate for (4.13). Combining with Proposition B.1 and estimate (B.13), analogous to (C.6) it can be derived directly from: ˇˇˇˇ¨Q ℓ ˆQℓ G ℓ px ´yqρ γ pyqψ ξ pxqψ ξ pxqdxdy ´ Q l dξ 1 ¨Qℓ ˆQℓ G ℓ px ´yqψ ξ pxqγ ξ 1 px, yqψ ξ pyq dxdy pξ 1 q| ¨Qℓ ˆQℓ |G ℓ px ´yq||u n pξ 1 , yq| 2 |ψ ξ pxq| 2 dxdy ḑ C H }γ} S1,1 }|D ξ | 1{2 ψ ξ } 2 L 2 ξ using the decomposition (2.10) for γ ξ . Hence (4.13) and C EE . Estimate for (4.14). Notice that |γ ξ 1 px, yq| ď ρ γ ξ 1 pxq 1{2 ρ γ ξ 1 pyq 1{2 since γ ě 0. Thus, according to Lemma A.1 and the Cauchy-Schwarz inequality, Q l dξ 1 ¨Qℓ ˆQℓ G ℓ px ´yqψ ξ pxqγ ξ 1 px, yqψ ξ pyq dxdy ´¨Q ℓ ˆQℓ G ℓ px ´yqρ γ pxq|ψ ξ pyq| 2 dxdy ď ¨Qℓ ˆQℓ p|G ℓ px ´yq| ´Gℓ px ´yqqρ γ pyq|ψ ξ pxq| 2 dxdy ď

							ı
							dxdy
	"	ÿ			
	"	1 2	ÿ ně1	ÿ 1ďα,βď4 α n pξ 1 , yqψ β λ n pξ 1 q ¨Qℓ ˆQℓ ξ pxq ´ψα G ℓ px ´yq ´uα n pξ 1 , yqφ β ξ pxq ´φα ξ pyqu β n pξ 1 , xq ¯ů ξ pyqu β n pξ 1 , xq ¯dxdy. (C.2) ˇˇˇď
		˜	dξ 1	ÿ	¸1{2
			Q ξ 1		
		ˆ˜	Q ξ 1	dξ 1	ÿ	¸1{2
	ˆ˜ÿ 1ďα,βď4 ¨Qℓ ˆQℓ	ˇˇu α n pξ 1 , yqφ β ξ pxq ´uβ n pξ 1 , xqφ α ξ pyq ˇˇ2 dxdy	¸1{2	.	(C.3)
	Thus according to the Cauchy-Schwarz inequality, we have
	ˇˇˇˇˇQ					
	ÿ					
	1ďα,βď4					
							ˇˇˇď
		˜	dξ 1	ÿ
			Q ξ 1		
							2C 0 ℓ	}γ} S1,1 }ψ} 2 L 2 ξ	.
	Combining with Proposition B.1 and (B.13), we get
							pψ ξ , V γ,ξ ψ ξ q ě	´p C 0 ℓ	`Cℓ q}γ} S1,1	Ş	Y }ψ ξ } 2 L 2 ξ	,
	hence (4.13) and		
							C 2 EE "	2C 0 ℓ	`Cℓ .	(C.8)

ně1 λ n ℓ ˆQℓ G ℓ px ´yq ´uα n pξ 1 , yqφ β ξ pxq ´φα ξ pyqu β n pξ 1 , xq ¯˚´u α n pξ 1 , yqψ β ξ pxq ´ψα ξ pyqu β n pξ 1 , xq ¯dxdy ˇˇˇˇď 2 ¨ÿ 1ďα,βď4 ξ , hence (4.12) with C 1 EE :" C G `Cℓ (C.5) with C ℓ given in (B.16). ně1 ně1 |λ n ξ , hence (4.12) and C EE :" C H `Cℓ . (C.7) ně1 |λ n
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A Proof of Lemma 4.1

It suffices to prove (4.2). By interpolation, we can choose C H " C G .

To deal with (4.2), the idea is to decompose the potential G ℓ on Q ℓ into two parts, namely 1 |x| and G ℓ ´1 |x| . The first term can be treated as the Hardy inequality on Q ℓ , whereas the second is bounded. We begin with the second term and prove the following.

D Numerical results about constants

In this section, we will show the numerical results about the constants used in Remark 2.8 under the condition ℓ " 1000. Next, we show that Assumption 2.6 is satisfied for q ď 17 for the neutral systems.

We (2.24). Let u p,ξ pxq " e p2iπp{ℓ`iξq¨x with p P Z 3 . Then pu p,ξ q pPZ 3 is an orthogonal basis on L 2 ξ pQ ℓ q. Obviously, pΛ `up,ξ q p is equally an orthogonal basis on L 2 ξ pQ ℓ q. Let V q " Span Λ `up,ξ pxq ˇˇp " pj, 0, 0q, j P t1, ¨¨¨, qu ( .

Then

Now we can check Assumption 2.6 for z " q " 17. The calculation leads to A 0 « 0.012 and c ˚p17q ď 1.006. Hence

• κ `α 2 C EE q `« 0.630 ă 1,

• 2A 0 a maxtp1 ´κ ´α 2 C EE q `q´1 p1 ´κq ´1c ˚pq `1qq, 1uq `« 0.973 ă 1.

Consequently, Assumption 2.6 is satisfied for q ď 17 whenever ℓ " 1000.
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