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Existence of minimizers for the Dirac–Fock Model of Crystals

Isabelle Catto∗ Long Meng† Eric Paturel‡ Eric Séré§

Abstract

Whereas many different models exist in the mathematical and physics literature for ground-

states of non-relativistic crystals, the relativistic case has been much less studied and we are not

aware of any mathematical result on a relativistic treatment of crystals. In this paper, we introduce

a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is

inspired both from a recent definition of the Dirac–Fock ground state for atoms and molecules, due

to one of us, and from the non-relativistic Hartree–Fock model for crystals. We prove existence of

a ground-state when the number of electrons per cell is not too large.

1 Introduction

For solids with heavy atoms, relativistic shifts may affect the bonding properties and the optical prop-
erties. It is shown in [27] that the fact that gold is yellow is a result of relativistic effects. Furthermore,
by studying the relativistic band structure in solids, it is shown in [7, 8] that the relativistic shifts of
the 5d bands relative to the s´ p bands in gold change the main interband edge more than 1eV .

A natural way to build quantum models for the crystal phase is to consider the so-called thermo-
dynamic limit of quantum molecular models. Roughly speaking it consists in considering a finite but
large piece of an (infinite and neutral) crystal. The thermodynamic law predicts that the ground-state
energy of the obtained large neutral molecule is proportional to the volume of this finite piece (which
turns out to be also proportional to the total number of particles composing the molecule). The energy
for the whole crystal is then identified with the limit – if it exists – of the energy per unit volume (or
equivalently per particle) of the large molecule when the size of the considered piece goes to infinity.
This method has been applied successfully by different authors for different well-known models from
quantum chemistry [6, 5, 3, 23] – see also [4] for a review – but always for non-relativistic crystals.

Among relativistic models, the atomic and molecular Dirac–Fock model (DF) is the most attractive
one since it has been formally justified by Mittleman [25]. It gives numerical results in excellent
agreement with experimental data [9, 15, 21]. To our knowledge this model has not been extended to
crystals: there exist fully relativistic treatments of crystals in the physics literature, but they use the
Kohn–Sham approach (see [11, 19] and the references therein).

The mathematical study of the atomic and molecular Dirac–Fock model has been done in [12, 26].
Compared to the non-relativistic models, the situation is different: Existence of bound-states only
holds if the total positive charge Z is not too large (with physical units, Z ď 124). Moreover, the
Dirac–Fock energy functional is strongly indefinite and the notion of ground-state has to be handled
very carefully [12]. These difficulties exclude a thermodynamic limit approach to derive the Dirac–Fock
model for crystals.

Esteban and Séré [13] showed that certain solutions of the (relativistic) Dirac–Fock equations
converge towards the energy-minimizing solutions of the (non-relativistic) Hartree–Fock equations
when the speed of light tends to infinity. This validates a posteriori the notions of ground-state
solutions and ground-state energy for the Dirac–Fock equations. In Esteban and Séré’s approach, the
ground state is modelled by the electrons’ wavefunction. On the other hand, Huber and Siedentop
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introduced a density matrix formulation of the Dirac–Fock model [18]. Recently, one of us proved
the existence of the ground-state for the Dirac–Fock model in atoms and molecules in terms of density
matrix using a retraction technique [29]. This approach guarantees that we exhibit the ground-state
energy of a relativistic crystal, not only a bound-state. Inspired by this work and by the analysis of
the periodic Hartree–Fock model due to Le Bris, Lions and one of us [5], we propose a definition for
the ground state of Dirac–Fock model for crystals which is a relativistic analogue of Lieb’s variational
principle for Hartree–Fock model [1, 22], and we prove the existence of minimizers. In addition, our
result shows that these minimizers solve a self-consistent equation, as established by Ghimenti and
Lewin in [14] for the periodic Hartree–Fock model. Our method can be used to calculate the ground-
state of neutral crystals with at most 17 electrons per cell. However, some estimates used in this paper
are not optimal, and we strongly believe that this limiting bound can be improved.

The minimization problem under consideration in this paper combines several difficulties related to
compactness issues. Obviously, the Dirac operator is not bounded from below and the kinetic energy
term order is of the same order as the Coulomb-type potential energy terms, a standard feature of
Coulomb–Dirac–Fock type models. Nevertheless, our proof of existence of minimizers for crystals is
neither a straight adaptation of the one for atoms and molecules in [29] or of the one for crystals
in Hartree–Fock theory in [5]: A major issue arises from the regularity in the momentum variable
ξ resulting from the Bloch decomposition of the space, the density matrices and the self-consistent
operator. Compactness in the momentum variable is crucial to deal with the periodic exchange term
and with the nonlinear constraint that ensures that the electrons lie in the positive spectral subspace of
the self-consistent periodic Dirac–Fock operator. Our results rely on a careful analysis of the periodic
exchange potential. (In passing, we have corrected some false estimates on the exchange term in [5] and
improved the regularity results therein.) Furthermore, we provide an asymptotically optimal constant
for the Hardy inequality associated with periodic Coulomb potential that is new in the literature, as
far as we know.

In addition, compared with existing results for crystals, such as the Hartree–Fock one [5], we provide
a new general method to prove the existence of minimizers for crystals: Based on the spectral analysis
of the self-consistent operator, we can describe the behaviour of the minimizing sequences with respect
to the momentum ξ and rely on it to improve the regularity, hence the compactness of subsequences.

2 General setting of the model and main result

2.1 Preliminaries – Functional framework

Throughout the paper, we choose units for which m “ c “ ~ “ 1, where m is the mass of the electron,
c the speed of light and ~ the Planck constant. For the sake of simplicity, we only consider the case of a
cubic crystal with a single point-like nucleus per unit cell, that is located at the centre of the cell. The
reader should however keep in mind that the general case could be handled as well. Let ℓ ą 0 denote
the length of the elementary cell Qℓ “ p´ ℓ

2
, ℓ
2

s3. The nuclei with positive charge z are treated as
classical particles with infinite mass that are located at each point of the lattice ℓZ3. The electrons are
treated quantum mechanically through a periodic density matrix. The electronic density is modelled
by a Qℓ-periodic function whose L1 norm over the elementary cell equals the “number of electrons” q
– the electrons’ charge per cell being equal to ´q. Especially, when q “ z, electrical neutrality per cell
is ensured.

In this periodic setting, the Qℓ-periodic Coulomb potential Gℓ resulting from a distribution of
point particles of charge 1 that are periodically located at the centers of the cubic cells of the lattice
is defined, up to a constant, by

´ ∆Gℓ “ 4π

«
´ 1

ℓ3
`

ÿ

kPZ3

δℓk

ff
. (2.1)

By convention, we choose Gℓ such that

ˆ

Qℓ

Gℓ dx “ 0. (2.2)

The function Gℓ is actually the Green function of the periodic Laplace operator on Qℓ. The Fourier
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series of Gℓ writes

Gℓpxq “ 1

πℓ

ÿ

pPZ3zt0u

e
2iπ
ℓ

p¨x

|p|2 , for every x P R
3. (2.3)

Remark 2.1. The size of the unit cell ℓ does not play a specific role here. It is however involved in
the study of the Hardy-type inequalities for the periodic Coulomb potential (see Section 4.1). When ℓ

goes to infinity, one expects to recover the Dirac–Fock model for atoms.

The free Dirac operator is defined by D0 “ ´iř3

k“1 αkBk`β, with 4ˆ4 complex matrices α1, α2, α3

and β, whose standard forms are β “
ˆ
12 0

0 ´12

˙
, αk “

ˆ
0 σk
σk 0

˙
where 12 is the 2ˆ2 identity matrix

and the σk’s, for k P t1, 2, 3u, are the well-known 2 ˆ 2 Pauli matrices σ1 “
ˆ
0 1

1 0

˙
, σ2 “

ˆ
0 ´i
i 0

˙
,

σ3 “
ˆ
1 0

0 ´1

˙
.

The operator D0 acts on 4´spinors; that is, on functions from R3 to C4. It is self-adjoint in
L2pR3;C4q, with domain H1pR3;C4q and form domain H1{2pR3;C4q (denoted by L2, H1 and H1{2 in
the following, when there is no ambiguity). Its spectrum is σpD0q “ p´8,´1sŤr`1,`8q. Following
the notation in [12, 26], we denote by Λ` and Λ´ “ 1L2 ´Λ` respectively the two orthogonal projectors
on L2pR3;C4q corresponding to the positive and negative eigenspaces of D0; that is

#
D0Λ` “ Λ`D0 “ Λ`

?
1 ´ ∆ “

?
1 ´ ∆Λ`;

D0Λ´ “ Λ´D0 “ ´Λ´
?
1 ´ ∆ “ ´

?
1 ´ ∆Λ´.

According to the Floquet theory [28], the underlying Hilbert space L2pR3;C4q is unitarily equivalent
to L2pQ˚

ℓ qÂL2pQℓ;C
4q, where Q˚

ℓ “ r´π
ℓ
, π
ℓ

q3 is the so-called reciprocical cell of the lattice, with
volume |Q˚

ℓ | “ p2πq3{ℓ3. (In the Physics literature Q˚
ℓ is known as the first Brillouin zone.) The

Floquet unitary transform U : L2pR3;C4q Ñ L2pQ˚
ℓ q

Â
L2pQℓ;C

4q is given by

pUφqξ “
ÿ

kPZ3

e´iℓk¨ξφp¨ ` ℓ kq (2.4)

for every ξ P Q˚
ℓ and φ in L2pR3;C4q. For every ξ P Q˚

ℓ , the function pUφqξ belongs to the space

L2
ξpQℓ;C

4q “
 
ψ P L2

locpR3;C4q
ˇ̌
e´iξ¨xψ is Qℓ-periodic

(
,

which will be denoted by L2
ξ in the sequel. Functions ψ of this form are called Bloch waves or Qℓ-

quasi-periodic functions with quasi-momentum ξ P Q˚
ℓ . They satisfy

ψp¨ ` ℓ kq “ eiℓ k¨ξψp¨q, for every k P Z
3.

For any function φξ P L2
ξ, using the definition of Fourier series expansion for Qℓ-periodic functions, we

write

φξpxq “
ÿ

kPZ3

pφξpkq ep2iπk{ℓ`iξq¨x, a.e. x P R
3, (2.5)

with coefficients
pφξpkq “ 1

ℓ3

ˆ

Qℓ

φξpyqe´p2iπk{ℓ`iξq¨y dy P C
4.

The Hilbert space L2
ξ is endowed with the norm

}φ}L2

ξ
:“

˜
ℓ3

ÿ

kPZ3

|pφξpkq|2
¸1{2

“
ˆ
ˆ

Qℓ

|φξpxq|2 dx
˙1{2

“ }φξ}L2pQℓq.

Here, and in the whole paper, we use the same notation | ¨ | for the canonical Euclidian norm in Rn,
Cn or MnpCq. When applied to self-adjoint operators, |T | means the absolute value of T .

We also define
Hs

ξ pQℓ;C
4q :“ L2

ξpQℓ;C
4q
č
Hs

locpR3;C4q
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for every real number s, endowed with the norm

}φξ}Hs
ξ

“
˜
ℓ3

ÿ

kPZ3

`
1 ` |2πk{ℓ` ξ|2

˘s |pφξpkq|2
¸1{2

.

To simplify the notation, we simply write here and below Hs
ξ when there is no ambiguity.

Operators L on L2pR3;C4q that commute with the translations of ℓZ3 can be decomposed accord-
ingly into a direct integral of operators Lξ acting on L2

ξ and defined by

LξpUφqξ “ pULφqξ for every φ P L2pR3;C4q, a.e. ξ P Q˚
ℓ (2.6)

(see [28] for more details). We use the notation L “
ffl ‘

Q˚
ℓ

Lξdξ, with the shorthand
ffl

Ω
for 1

|Ω|

´

Ω
, to

refer to this decomposition. In particular, for the free Dirac operator D0 we have

D0 “
 ‘

Q˚
ℓ

Dξ dξ. (2.7)

where the Dξ’s are self-adjoint operators on L2
ξ with domains H1

ξ and form-domains H
1{2
ξ . Note that

D 2
ξ “ 1 ´ ∆ξ, where ´∆ “

ffl ‘

Q˚
ℓ

´∆ξdξ. For every function φξ P H1
ξ , the operator Dξ is also defined

by

Dξ φξpxq “
ÿ

kPZ3

«
3ÿ

j“1

´2π
ℓ
kj ` ξj

¯
¨ αj ` β

ff
pφξpkq ei

`
2πk
ℓ

`ξ

˘
¨x.

In particular,

pφξ , |Dξ|φξqL2

ξ
“ ℓ3

ÿ

kPZ3

d

1 `
ˇ̌
ˇ̌ξ ` 2π

ℓ
k

ˇ̌
ˇ̌
2

|pφξpkq|2. (2.8)

For almost every ξ P Q˚
ℓ , the positive spectrum of Dξ is composed of a non-decreasing sequence of real

eigenvalues pd`
n pξqqně1 counted with multiplicity such that

d`
n pξq ě 1, lim

nÑ8
d`
n pξq “ `8.

In the same manner, the negative spectrum of Dξ is pd´
n pξqqně1 is composed of the non-increasing

sequence of real eigenvalues d´
n pξq “ ´d`

n pξq. Finally, one has

ď

ξPQ˚
ℓ

σpDξq “
ď

ξPQ˚
ℓ

ď

ně1

 
d´
n pξq, d`

n pξq
(

“ σpD0q “ p´8,´1s
ď

r`1,`8q. (2.9)

As in the Hartree–Fock model for crystals [5], the electrons will be modelled by an operator on
L2pR3;C4q, called the one-particle density matrix, that reflects their periodic distribution in the nuclei
lattice.

We now introduce various functional spaces for linear operators onto L2pQℓ;C
4q and for operators

onto L2pR3;C4q that commute with translations. Let B pEq be the set of bounded operators on a
Banach space E to itself. We use the shorthand BpL2

ξq for BpL2
ξpQℓq;C4q. The space of bounded

operators on
ffl ‘

Q˚
ℓ

L2
ξ dξ “ L2pQ˚

ℓ q bL2pQℓ;C
4q which commute with the translations of ℓZ3 is denoted

by Y . It is isomorphic to L8pQ˚
ℓ ;BpL2

ξqq. Moreover, for every h “
ffl ‘

Q˚
ℓ

hξ dξ P Y ,

}h}Y :“ ess sup
ξPQ˚

ℓ

}hξ}BpL2

ξ
q “ }h}BpL2pR3;C4qq

(see [28, Theorem XIII.83]). For s P r1,8q and ξ P Q˚
ℓ , we define

Sspξq :“
!
hξ P BpL2

ξq
ˇ̌
ˇ TrL2

ξ
p|hξ|sq ă 8

)

endowed with the norm

}hξ}Sspξq “
´
TrL2

ξ
p|hξ|sq

¯1{s

.
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We denote by S8pξq the subspace of compact operators in BpL2
ξq, endowed with the operator norm

} ¨ }BpL2

ξ
q. Similarly, for t P r1,`8s, we define

Ss,t :“
#
h “

 ‘

Q˚
ℓ

hξ dξ

ˇ̌
ˇ̌
ˇ hξ P Sspξq a.e. ξ P Q˚

ℓ , }hξ}Sspξq P LtpQ˚
ℓ q
+

endowed with the usual norm of LtpQ˚
ℓ ;Sspξqq :

}h}Ss,t
“

˜
 

Q˚
ℓ

}hξ}t
Sspξqdξ

¸1{t

.

In particular S8,8 “ L8pQ˚
ℓ ;S8pL2

ξqq Ă Y . We also define

Xαpξq “
!
h P BpL2

ξq
ˇ̌
ˇ |Dξ|α{2hξ|Dξ|α{2 P S1pξq

)

endowed with the norm
}hξ}Xαpξq “

›››|Dξ|α{2hξ|Dξ|α{2
›››
S1pξq

and

Xα
s :“

#
h “

 ‘

Q˚
ℓ

hξ dξ

ˇ̌
ˇ̌
ˇ hξ P S1pξq a.e. ξ P Q˚

ℓ ,

ˆ

Q˚
ℓ

}|Dξ|α{2hξ|Dξ|α{2}s
S1pξqdξ ă 8

+

endowed with the norm

}h}Xα
s

“
˜
 

Q˚
ℓ

}|Dξ|α{2hξ|Dξ|α{2}s
S1pξqdξ

¸1{s

“ }|D0|α{2h|D0|α{2}S1,s
.

For any two functional spaces A and B the norm of the intersected space is defined by

}γ}AŞ
B “ maxt}γ}A, }γ}Bu.

For future convenience, we use the notation Xpξq for X1pξq, and we set X :“ X1
1 . The functional

spaces S1,1, X and Y will play an essential role in the whole paper, while the functional space S1,8

and its subspace X2
8 are mainly used in Section 6. In addition, we will also use the functional space

S8,1 in Section 6 since S1,8 is its dual space.

Definition 2.2 (Periodic one-particle density matrices). We denote by T the set of Qℓ-periodic one-
particle density matrices

T :“
 
γ P X

ˇ̌
γ˚ “ γ, 0 ď γ ď 1L2pR3q

(
Ă X

č
Y.

Remark 2.3 (Projectors). According to [1, 14, 22] any minimizer of the Hartree–Fock model (both for
the molecules and crystals) is a projector. However we do not know whether minimizers of Dirac–Fock
models are projectors in general.

Remark 2.4. For γ P T and for almost every ξ in Q˚
ℓ , the operator γξ is compact on L2

ξ and admits

a complete set of eigenfunctions punpξ, ¨qqně1 in L2
ξ (actually lying in H

1{2
ξ ), corresponding to a non-

decreasing sequence of eigenvalues 0 ď λnpξq ď 1 (counted with their multiplicity). This is expressed
as

γξ “
ÿ

ně1

λnpξq |unpξ, ¨qy xunpξ, ¨q| , punpξ, ¨q, umpξ, ¨qqL2

ξ
“ δn,m (2.10)

where |uy xu| denotes the projector onto the vector space spanned by the function u. Equivalently, for
almost every ξ in Q˚

ℓ and for any px, yq P R3 ˆ R3, the Hilbert–Schmidt kernel writes

γξpx, yq “
ÿ

ně1

λnpξqunpξ, xqu˚
npξ, yq. (2.11)
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In the above equation, the superscript ˚ refers to the duality in L2
ξ. In particular γξp¨, ¨q is a 4 ˆ 4

complex matrix in M4pCq, and for every function ϕ P L2
ξ,

pγξϕqpxq “
ˆ

Qℓ

γξpx, yqϕpyq dy “
ÿ

ně1

λnpξqunpξ, xq
ˆ

Qℓ

u˚
npξ, yqϕpyq dy.

By definition of the trace of an operator,

TrL2

ξ
pγξq “

ÿ

ně1

λnpξq.

This allows us to define the trace per unit cell as

ĂTrL2pγq :“
 

Q˚
ℓ

TrL2

ξ
pγξq dξ,

where the Ă reminds us that γ is not trace-class on L2pR3q.

Definition 2.5 (Integral kernel and electronic density). Let γ belong to T . Then we can define in a
unique way an integral kernel γp¨, ¨q P L2pQℓ ˆ R3qŞL2pR3 ˆQℓq with γp¨ ` k, ¨ ` kq “ γp¨, ¨q for any
k P Z3 and a Qℓ-periodic density ργ associated to γ by

γpx, yq “
 

Q˚
ℓ

γξpx, yq dξ (2.12)

and

ργpxq “
 

Q˚
ℓ

Tr4γξpx, xq dξ, (2.13)

where the notation Tr4 stands for the trace of a 4 ˆ 4 matrix. The function ργ is non-negative and
belongs to L1pQℓ;Rq. Indeed, using the decomposition (2.11), we have

ργpxq “
 

Q˚
ℓ

8ÿ

n“1

λnpξq |unpξ, xq|2 dξ (2.14)

and
ˆ

Qℓ

ργpxq dx “
 

Q˚
ℓ

8ÿ

n“1

λnpξq dξ “
 

Q˚
ℓ

TrL2

ξ
pγξq dξ.

In the physical setting we are interested in, the value of the above integral is the number of electrons
per cell q.

By the Cauchy–Schwarz inequality, it is easily checked that

|γpx, yq|2 ď ργpxq ργpyq, a.e. x, y P R
3. (2.15)

Note that, when h is a Qℓ-periodic trace-class operator but is not necessarily a positive operator, we still
may define ρh with the help of (2.13), but (2.15) becomes |hpx, yq|2 ď ρ|h|pxqρ|h|pyq where |h| “

?
h˚h.

We can now introduce the periodic Dirac–Fock functional.

2.2 The periodic Dirac–Fock model

We introduce the following set of periodic density matrices :

Γq :“
 
γ P T

ˇ̌
}γ}S1,1

“ q
(

and
Γďq :“

 
γ P T

ˇ̌
}γ}S1,1

ď q
(
.

When q is an integer, Γq and Γďq are the sets of all Dirac–Fock states of a system of exactly q,
respectively at most q, electrons per unit cell.

6



For γ P Γďq, we define the periodic Dirac–Fock functional

EDF pγq “
 

Q˚
ℓ

TrL2

ξ
rDξγξs dξ ´ αz

ˆ

Qℓ

Gℓpxqργpxq dx

` α

2

¨

QℓˆQℓ

ργpxqGℓpx´ yqργpyq dxdy (2.16)

´ α

2

¨

z

Q˚
ℓ

ˆQ˚
ℓ

dξdξ1

¨

QℓˆQℓ

Tr4rγξpx, yqγξ1 py, xqsW8
ℓ pξ ´ ξ1, x´ yq dxdy.

In the above definition of the energy functional, the so-called fine structure constant α is a dimensionless
positive constant (the physical value is approximately 1/137). Note that Dξγξ is not a trace-class
operator, so TrL2

ξ
rDξγξs is not really a trace, it is just a notation for the rigorous mathematical object

TrL2

ξ
r|Dξ|1{2γξ|Dξ|1{2signpDξqs. We will make this abuse of notation throughout the paper.

The last term in (2.16) is called the “exchange term ”. The potential W8
ℓ that enters its definition

is defined by

W8
ℓ pη, xq “

ÿ

kPZ3

eiℓ k¨η

|x` ℓ k| “ 4π

ℓ3

ÿ

kPZ3

1
ˇ̌
2πk
ℓ

´ η
ˇ̌2 e

ip 2πk
ℓ

´ηq¨x (2.17)

(see [5] for a formal derivation of the exchange term from its analogue for molecules). It is Q˚
ℓ -periodic

with respect to η and quasi-periodic with quasi-momentum η with respect to x. For every γ P Γďq, we
now define the mean-field periodic Dirac operator

Dγ “
 ‘

Q˚
ℓ

Dγ,ξ dξ with Dγ,ξ :“ Dξ ´ αz Gℓ ` αVγ,ξ

where
Vγ,ξ “ ργ ˚Gℓ ´Wγ,ξ (2.18)

with

ργ ˚Gℓpxq “
ˆ

Qℓ

Gℓpy ´ xq ργpyq dy “ ĂTrL2rGℓp¨ ´ xq γs (2.19)

and

Wγ,ξψξpxq “
 

Q˚
ℓ

dξ1

ˆ

Qℓ

W8
ℓ pξ1 ´ ξ, x´ yq γξ1 px, yqψξpyq dy.

(In (2.19) we keep the notation ¨ ˚ ¨ for the convolution of periodic functions on Qℓ.)

The relation between EDF and Dγ is the following : If γ and γ ` h are in Γďq with h in T , then
the right derivative of t ÞÑ EDF pγ ` thq at t “ 0 is

ffl

Q˚
ℓ

TrL2

ξ
pDγ,ξhξq dξ.

Our goal is to define the ground-state despite the fact that this functional is strongly indefinite on
Γďq, due to the unboundedness of the Dirac operator D0.

2.3 Ground-state energy and main result

We follow Dirac’s interpretation of the negative energy states of Dirac–Fock models: such states are
supposed to be occupied by virtual electrons that form the Dirac sea. Therefore, by the Pauli exclusion
principle, the states of physical electrons are orthogonal to all the negative energy states. The ground-
energy and state should thus be defined on the positive spectral subspaces of the corresponding Dirac–
Fock operator. Let

P˘
γ “

 ‘

Q˚

P˘
γ,ξ dξ with P˘

γ,ξ :“ 1R˘pDγ,ξq.

Note that by definition P˘
0,ξ “ 1R˘pDξ ´ αzGℓq. We define the set

Γ`
q :“

 
γ P Γq

ˇ̌
γ “ P`

γ γP
`
γ

(
(2.20)
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and the ground-state energy

Iq :“ inf
γPΓ`

q

EDF pγq. (2.21)

We need the following assumption.

Assumption 2.6. Let q` :“ maxtq, 1u, κ :“ α
`
CGz ` C 1

EEq
`
˘

and A :“ α
2
CEE p1 ´ κq´1{2λ

´1{2
0 .

We demand that

1. κ ă 1 ´ α
2
CEEq

` ;

2. 2A
a
maxtp1 ´ κ´ α

2
CEEq`q´1p1 ´ κq´1c˚pq ` 1qq, 1uq` ă 1.

The positive constants CG, CEE , C 1
EE and λ0 are defined respectively in Lemmas 4.1, 4.7 and 4.10

below.

Our main result is the following.

Theorem 2.7 (Existence of a minimizer). When α, q, z and ℓ satisfy Assumption 2.6, there exists
γ˚ P Γ`

q such that
EDF pγ˚q “ Iq “ min

γPΓ`
q

EDF pγq. (2.22)

Besides, γ˚ solves the following nonlinear self-consistent equation

γ “ 1r0,νqpDγq ` δ (2.23)

where 0 ď δ ď 1tνupDγq and 0 ď ν ď p1 ´ κq´1c˚pq ` 1q, with κ “ κpz, q, ℓ, αq ą 0 being defined in
Assumption 2.6 below and

c˚pkq :“ sup
ξPQ˚

ℓ

d`
k pξq (2.24)

with the d`
k pξq’s appearing in (2.9).

Remark 2.8. In Solid State Physics, the length of the unit cell is about a few Ångströms. In our
system of units, ~ “ m “ c “ 1, thus α « 1

137
and ℓ « 1000. Under the condition q “ z for electrical

neutrality, Assumption 2.6 is satisfied for q ď 17. The proof is detailed in Appendix D. Our estimates
are far from optimal : The ideas of this paper are expected to apply to higher values of q.

3 Sketch of proof

We are convinced that the constraint set Γ`
q is not convex, and we are not able to prove that it is

closed for the weak-˚ topology, and this is the source of considerable difficulties. Mimicking [29], we
shall use a retraction technique as for the Dirac–Fock model for atoms and molecules. This imposes
to search the ground-state in the set Γ`

ďq defined by

Γ`
ďq :“

 
γ P Γďq

ˇ̌
γ “ P`

γ γP
`
γ

(
.

However, under above constraint, the minimizers may not be situated in Γ`
q . To overcome this problem,

we next subtract a penalization term ǫP ĂTrL2pγq, for some parameter ǫP ą 0 to be chosen later, and
first study the minimization problem for the penalized functional with relaxed constraint :

Iďq :“ min
γPΓ`

ďq

”
EDF pγq ´ ǫPĂTrL2pγq

ı
.

We prove below that, when ǫP is sufficiently large, every minimizer of problem Iďq is indeed in Γ`
q ,

thus is a minimizer of Iq (Corollary 3.3).

For the penalized problem, the analogues to Assumption 2.6 and Theorem 2.7 read as follows.

Assumption 3.1. Let q` “ maxtq, 1u, κ :“ α pCGz`C 1
EEq

`q and A :“ α
2
CEE p1´κq´1{2λ

´1{2
0 . We

assume that
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1. κ ă 1 ´ α
2
CEEq

` ;

2. 2A
a
maxtp1 ´ κ´ α

2
CEEq`q´1ǫP q, 1uq` ă 1.

Theorem 3.2 (Existence of a minimizer for the penalized problem). We assume that Assumption 3.1
on q, z, ǫP holds. If ǫP ą p1 ´ κq´1c˚pq ` 1q, then there exists γ˚ P Γ`

ďq such that

EDF pγ˚q ´ ǫPĂTrL2pγ˚q “ Iďq . (3.1)

Besides, ĂTrL2pγ˚q “
ffl

Q˚
ℓ

TrL2

ξ
pγ˚,ξq dξ “ q and γ˚ solves the following nonlinear self-consistent equa-

tion
γ “ 1r0,νqpDγq ` δ (3.2)

where 0 ď δ ď 1tνupDγq and ν is the Lagrange multiplier due to the charge constraint TrL2pγq ď q

satisfying 0 ď ν ď p1 ´ κq´1c˚pq ` 1q.

Corollary 3.3 (Existence of a minimizer for the original problem). We assume that Assumption 2.6
on q, z holds. Then, there is a constant ǫP ą p1 ´ κq´1c˚pq ` 1q such that Assumption 3.1 is satisfied.
Therefore Iq is achieved and the minimizer γ˚ solves (2.23).

Proof of Corollary 3.3. The first claim is obvious: Under Assumption 2.6 on q, z, there is a small
constant ǫ ą 0 such that q, z and ǫP “ p1 ´ κq´1c˚pq ` 1q ` ǫ satisfy Assumption 3.1. By Theorem
3.2, since ǫP ą p1 ´ κq´1c˚pq ` 1q, any minimizer γ˚ of Iďq lies in Γ`

q . Thus,

EDF pγ˚q ´ ǫP q “ EDF pγ˚q ´ ǫPĂTrL2pγ˚q ě min
γPΓ`

q

”
EDF pγq ´ ǫPĂTrL2pγq

ı

“ min
γPΓ`

q

rEDF pγqs ´ ǫP q ě Iďq “ EDF pγ˚q ´ ǫP q.

Therefore, all inequalities in the above string of inequalities are equalities, and

EDF pγ˚q “ min
γPΓ`

q

EDF pγq “ Iq.

We therefore focus on the proof of Theorem 3.2. Before going further, we explain our difficulties
and method by comparing with the Hartree–Fock ones [5]. Indeed, the method used in [5] is based on
some properties of the Schrödinger operator ´∆:

1. This operator is non-negative. Hence the Hartree–Fock model for crystals is well-defined and the
kinetic energy is weakly lower semi-continuous w.r.t. the density matrix ;

2. The exchange potential W8
ℓ is rather easily controlled by the Schrödinger operator ´∆.

In [5], these properties allow to deduce bounds on the minimizing sequence of density matrices w.r.t.
the ξ, x and y variables, and to pass to the limit in the different terms of the energy functional, in
particular in the exchange term which is the most intricate one. In the proof, the strong convergence
of the density matrix kernels γnpx, yq “

ffl

Q˚
ℓ

γn,ξpx, yq dξ plays an important role. In addition, the

charge constraint in the periodic Hartree–Fock model is linear with respect to the density, and there
is no possible loss of charge in passing to the limit.

In the Dirac–Fock model for crystals, two additional difficulties occur. First of all, the Dirac opera-
tor does not control the potential energy terms, which are of the same order. Secondly, the convergence
of the nonlinear constraint

ffl ‘

Q˚
ℓ

P`
γ,ξγξdξ “

ffl ‘

Q˚
ℓ

γξdξ requires stronger compactness properties of the

sequence of density matrices with respect to the ξ variable. Therefore the proof of existence of mini-
mizers in the periodic Hartree–Fock setting cannot be applied mutatis mutandis. On the other hand,
compared to the Dirac–Fock model for atoms and molecules, we suffer from a serious compactness
issue in the ξ-variable. The functional space S1,1 is natural to give a sense to the energy functional
and to the constraints, but the weak-convergent of minimizing sequences in S1,1 is not strong enough
to deal with exchange term and the non-linear constraints. The whole paper (except Section 5 about
the retraction) is devoted to solving the difficulties arising from the integration w.r.t. the ξ variable.
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Our strategy rather relies on the spectral analysis of the periodic Dirac-Fock operator, which is
totally new for the proof of existence of minimizers in the periodic case. In Lemma 4.12 together with
Lemma 5.1 (see also Remark 4.13), we can prove that any minimizer of Iďq actually lies in S1,8, and
is situated in BR0

where we have defined

BR :“
 
γ P X X Y

ˇ̌
}γ}S1,8 ă R

(
(3.3)

and

R0 :“ q `M with M being defined in Lemma 4.11 below. (3.4)

In particular, any minimizer γ˚ satisfies q˚pξq :“ TrL2

ξ
pγ˚,ξq ď R0 for every ξ P Q˚

ℓ . We may therefore

assume that, for any minimizing sequence, if qnpξq “ TrL2

ξ
pγn,ξq, then γn,ξ, |qnpξq| ď R for any R ą R0

independent of n and ξ, at least for n large enough. In particular, by dominated convergence theorem,
qnpξq Ñ q˚pξq strongly in L1pQ˚

ℓ q (up to subsequences).
The main idea in the proof of the existence of minimizers of Iďq is therefore to use the fact that

any minimizer will be situated in BR0
, and then in any set BR with R ą R0. Then, thanks to

Lemma 6.2, for any minimizing sequence γn of Iďq, we can find another minimizing sequence rγn
with better regularity ; that is rγn P BR0

. Setting an equivalent minimization problem in a ball BR

with R ą R0 helps considerably to overcome the difficulty in passing to the limit in the constraint
ffl ‘

Q˚
ℓ

P`
γ,ξγξdξ “

ffl ‘

Q˚
ℓ

γξdξ. In addition, the exchange term is well-controlled for density matrices in this

set. Moreover, it turns out that the minimizers in this set do not saturate the constraint }γ}S1,8 ă R.
More precisely, existence of minimizers for the penalized problem will be a consequence of the

followings.

Proposition 3.4 (Existence of a minimizer in the set BR). Let R0 :“ q ` M where M is defined in
Lemma 4.11 below. Under Assumption 3.1, if ǫP ą p1 ´ κq´1c˚pq ` 1q and for any R ą R0, there
exists γ˚ in Γ`

ďq

Ş
BR such that

Iďq,R :“ min
γPΓ`

ďq

Ş
BR

”
EDF pγq ´ ǫPĂTrL2pγq

ı
“ EDF pγ˚q ´ ǫPĂTrL2pγ˚q. (3.5)

Besides, γ˚ P BR0
and ĂTrL2pγ˚q “ q. Furthermore, γ˚ solves the following nonlinear self-consistent

equation
γ “ 1r0,νqpDγq ` δ (3.6)

where 0 ď δ ď 1tνupDγq and ν is the Lagrange multiplier due to the charge constraint ĂTrL2pγq ď q

satisfying 0 ď ν ď p1 ´ κq´1c˚pq ` 1q.
Theorem 3.2 is a direct consequence of the following.

Corollary 3.5 (Existence of a minimizer for the penalized problem). We assume that ǫP ą p1 ´
κq´1c˚pq ` 1q and that Assumption 3.1 holds. Then Iďq is achieved. Any minimizer γ˚ of (3.5) is a
minimizer of Iďq. It satisfies ĂTrL2pγ˚q “ q and γ˚ lies in S1,8.

Proof of Corollary 3.5. First of all, since Iďq ď Iďq,R for any R ą R0, we have

Iďq ď inf
RąR0

Iďq,R. (3.7)

As R ÞÑ Iďq,R is non-increasing, we have infRąR0
Iďq,R “ limRÑ`8 Iďq,R. Let pγnqn in Γ`

ďq be a mini-

mizing sequence of Iďq. It is easy to see that γn P Ť
RąR0

`
Γ`

ďq

Ş
BR

˘
since Γ`

ďq “ Ť
RąR0

`
Γ`

ďq

Ş
BR

˘
.

Thus,

inf
RąR0

Iďq,R ď EDF pγnq ´ ǫPĂTrL2pγnq.

Taking n Ñ 8 and using (3.7), we have

Iďq “ inf
RąR0

Iďq,R “ lim
RÑ`8

Iďq,R.

According to Proposition 3.4, for any R ą R0, any minimizer γR,˚ of Iďq,R is actually located in BR0
.

Therefore, Iďq,R “ Iďq,R1 for any R,R1 ą R0. Thus Iďq “ limR1ąR0
Iďq,R1 “ Iďq,R for any R ą R0.

This implies that any minimizer of Iďq,R, for R ą R0, is a minimizer of Iďq . This ends the proof.
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Organisation of the paper. Next sections are devoted to the proof of Proposition 3.4. Our
paper is organized as follows.

In Section 4, we collect some fundamental estimates on the potentials Gℓ and W8
ℓ . In Subsection

4.2, we study the spectral properties of the Dirac–Fock operators Dγ,ξ for every ξ P Q˚
ℓ . Relying on

them, we study in Subsection 4.3 the properties of minimizers of a linear Dirac–Fock problem. Finally,
we collect the first estimates on minimizing sequences.

In Section 5, we study the linearization problem associated to (3.5). We conclude that the mini-
mizers of (3.5) are in BR0

Ş
Γ`
q and solve a self-consistent equation. In Hartree–Fock type models for

molecules [24] or crystals [14], it is a standard fact that the approximate minimizers are also approxi-
mate ground states of their mean-field Hamiltonian. The proof relies on the convexity of the constraint
set. However, in Dirac–Fock model (both for molecules and crystals), the constraint set Γ`

ďq is more
sophisticated. By using a retraction technique, a similar result has been recently proved by one of us
in the Dirac–Fock model for molecules [29]. Adapting the technique in [29], we build a regular map
θ : V Ñ V on a relatively open neighborhood V of the minimizing sequence of (3.5) in Γďq such that
θpγq “ P`

θpγqθpγqP`
θpγq. Next, we consider an equivalent minimization problem with locally convex

constraint ; namely
min

γPV
Ş

BR

EDF pθpγqq ´ ǫPĂTrL2rθpγqs.

In Section 6, we build an approximate minimizing sequence with better regularity and convergence
properties. Finally, we conclude on the convergence of a minimizing sequence on the set BR and the
existence of minimizer; that is, the proof of Proposition 3.4.

Assumption 2.6 involves optimal constants in Hardy-type inequalities introduced in Subsection 4.1.
Therefore, in Appendix A-C, we prove Lemma 4.1, Lemma 4.5 and Lemma 4.7 respectively. Finally,
in Appendix D, we calculate the maximum number of electrons per cell allowed by the model, relying
on approximate values of the constants obtained in Appendices A-C.

4 Fundamental estimates

In this section, we give Hardy-type inequalities for the periodic Coulomb potential and provide esti-
mates on the interaction potential between electrons in crystals. Then we study the spectrum of the
periodic self-consistent Dirac–Fock operators. Finally, we derive properties of minimizing sequences of
the linearized and the penalized problem from the spectral analysis.

4.1 Hardy-type estimates on the periodic Coulomb potential

First of all, and this is a major difference with the usual Coulomb potential 1
|x| in R3, the periodic

Coulomb potential Gℓ may not be positive, since it is defined up to constant, but it is bounded from
below (see Lemma A.1). Nevertheless, it is the kernel of a positive operator on L2pQℓq in virtue of
(2.3). Moreover, we have the following Hardy-type estimates concerning the periodic potential Gℓ.

Lemma 4.1 (Hardy-type inequalities for the periodic Coulomb potential). There exist positive con-
stants CH “ CHpℓq ą 0 that only depends on ℓ and such that

Gℓ ď |Gℓ| ď CH |D0| (4.1)

in the sense of operators on L2pQ˚
ℓ qÂL2pQℓ;C

4q.
Moreover, there exists a positive constant CG “ CGpℓq with CG ě CH that only depends on ℓ and

such that
}Gℓ |D0|´1}Y “ CG. (4.2)

Remark 4.2. In (4.1), the inequality A ď B is equivalent to : For almost every ξ P Q˚
ℓ , Aξ ď Bξ in

the sense of operators on L2
ξ.

Remark 4.3. The constant CGpℓq is estimated in (A.4) in Appendix A below. While it is far from
optimal when ℓ is small, it converges to 2 when ℓ goes to infinity; that is, to the value of the optimal
constant for the Coulomb potential on the whole space. By interpolation,

CH ď CG. (4.3)

Therefore, (4.1) holds with CH being replaced by CG. However, CH is expected to converge to π{2 as ℓ
goes to infinity; that is, to the best constant in the Kato–Herbst Inequality on the whole space [17, 20].
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A by-product of Lemma 4.1 is the following.

Corollary 4.4 (Estimates on the direct term). For any γ P X, we have

}ργ ˚Gℓ}Y ď CH }γ}X (4.4)

and

}pργ ˚Gℓq |D0|´1}Y ď CG }γ}S1,1
. (4.5)

Proof. For every x P R3 and γ P X

|ργ ˚Gℓpxq| “
ˇ̌
ˇ̌
ˇ

 

Q˚
ℓ

TrL2

ξ

“
Gℓpx´ ¨q γξp¨q

‰
dξ

ˇ̌
ˇ̌
ˇ

ď
 

Q˚
ℓ

ˇ̌
ˇTrL2

ξ

“
|Dξ|´1{2|Gℓpx ´ ¨q||Dξ|´1{2 |Dξ|1{2γξ|Dξ|1{2

‰ˇ̌
ˇ dξ

ď
 

Q˚
ℓ

›››|Dξ|´1{2|Gℓpx´ ¨q||Dξ|´1{2
›››
BpL2

ξ
q

›››|Dξ|1{2γξ|Dξ|1{2
›››
S1pξq

dξ ď CH }γ}X .

Indeed, the bound (4.1) in Lemma 4.1 yields

›››|Gℓp¨ ´ xq|1{2|Dξ|´1{2
›››
Y

ď pCHq 1{2

uniformly in x. We now turn to the proof of (4.5). For every ξ P Q˚
ℓ and ϕξ in L2

ξ, we have

››pρ ˚Gℓq |Dξ|´1ϕξ

››
L2

ξ

ď
ˆ

Qℓ

|ρpxq|
››Gℓp¨ ´ xq |Dξ|´1ϕξ

››
L2

ξ

dx

ď sup
xPR3

››Gℓp¨ ´ xq |Dξ|´1ϕξ

››
L2

ξ

ˆ

Qℓ

|ρpxq| dx ď CG }γ}S1,1
}ϕξ}L2

ξ
. (4.6)

In (4.6), we have used the bound (4.2) in Lemma 4.1 and the obvious fact that it remains true for
Gℓp¨ ´ xq for any x P R3.

Now, we consider the exchange term. We can separate the singularities of W8
ℓ with respect to

η P 2Q˚
ℓ and x P 2Qℓ as follows

W8
ℓ pη, xq “ Wěm,ℓpη, xq `Wăm,ℓpη, xq, @m P N,m ě 2, (4.7)

with

Wěm,ℓpη, xq “ 4π

ℓ3

ÿ

|k|8ěm

kPZ3

1
ˇ̌
2πk
ℓ

´ η
ˇ̌2 e

ip 2πk
ℓ

´ηq¨x

and

Wăm,ℓpη, xq “ 4π

ℓ3

ÿ

|k|8ăm

kPZ3

1
ˇ̌
2πk
ℓ

´ η
ˇ̌2 e

ip 2πk
ℓ

´ηq¨x

where |k|8 :“ maxt|k1|, |k2|, |k3|u. It is easy to see that the singularity of Wăm,ℓ behaves like 1
|η|2 , and

we will show in Appendix B that the singularity of Wěm,ℓpη, xq behaves like 1
|x| or equivalently Gℓpxq.

Then we have the following estimates.

Lemma 4.5 (Estimates on Wγ,ξ). There exist positive constants CW “ CW pℓq, C 1
W “ C 1

W pℓq and
C2

W “ C2
W pℓq that only depend on ℓ such that

}Wγ}Y ď CW }γ}XŞ
Y if γ P X

č
Y, (4.8)

}Wγ}Y ď C2
W p}γ}X ` }γ}3{4

S1,8
}γ}1{4

S1,1
q if γ P X

č
S1,8, (4.9)

}Wγ |D0|´1}Y ď C 1
W }γ}S1,1

Ş
Y if γ P S1,1

č
Y. (4.10)
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Remark 4.6. The constants CW , C 1
W and C2

W are estimated in (B.15).

Gathering together Lemma 4.1, Corollary 4.4 and Lemma 4.5 we can get some rough estimates on
the self-consistent potential Vγ,ξ defined in (2.18). We can obtain much better estimates by a careful
study of the structure of Vγ,ξ.

Lemma 4.7 (Estimates on Vγ,ξ). There exist positive constants CEE “ CEEpℓq ą 0 and C 1
EE “

C 1
EEpℓq ą 0 that only depend on ℓ and such that

}Vγ,ξ}Y ď CEE }γ}XŞ
Y (4.11)

and

}Vγ,ξ |Dξ|´1}Y ď C 1
EE }γ}S1,1

Ş
Y . (4.12)

For any ψξ P H1{2
ξ ,

ˇ̌
ˇpψξ, Vγ,ξψξq

L2

ξ

ˇ̌
ˇ ď CEE}γ}S1,1

Ş
Y }ψξ}2

H
1{2
ξ

(4.13)

Furthermore, if γ ě 0, for any ψ P L2
ξ,

´C2
EE}γ}S1,1

Ş
Y }ψξ}2L2

ξ
ď pψξ, Vγ,ξψξq

L2

ξ

. (4.14)

Remark 4.8. The constants CEE , C 1
EE and C2

EE are estimated in (C.7), (C.5) and (C.8) in Appendix
C respectively.

4.2 Spectral properties of the mean-field Dirac–Fock operator

Recall that κ :“ α
`
CGz ` C 1

EEq
`
˘
. We start with the following.

Lemma 4.9. Let γ P S1,1

Ş
Y . We assume that CGz ` C 1

EE}γ}S1,1

Ş
Y ă 1{α, then Dγ,ξ is a self-

adjoint operator on L2
ξ with domain H1

ξ and form-domain H
1{2
ξ . In addition, the following holds

›››|Dγ |1{2|D0|´1{2
›››
Y

ď
`
1 ` α

`
CGz ` C 1

EE}γ}S1,1

Ş
Y

˘˘1{2
(4.15)

and ›››|D0|1{2|Dγ |´1{2
›››
Y

ď
`
1 ´ α

`
CGz ` C 1

EE}γ}S1,1

Ş
Y

˘˘´1{2
. (4.16)

In particular, if γ P Γďq, we have

p1 ´ κq |D0| ď |Dγ | ď p1 ` κq |D0|. (4.17)

Proof. Recall q` “ maxt1, qu. By Lemma 4.1 and Lemma 4.7, we obtain

}p´αz Gℓ ` αVγq |D0|´1}Y ď α
`
CGz ` C 1

EE }γ}S1,1

Ş
Y

˘
. (4.18)

In particular, Dγ is self-adjoint on
ffl ‘

Q˚
ℓ

H1
ξ dξ by the Rellich-Kato theorem if CGz `C 1

EE}γ}S1,1

Ş
Y ă

1{α (see [28, Theorem XIII-85]). Let now ξ P Q˚
ℓ and uξ P H1

ξ pQℓq. We have

}Dγ,ξ uξ}L2

ξ
ď

`
1 ` αCGz ` αC 1

EE}γ}S1,1

Ş
Y

˘
}Dξ uξ}L2

ξ
, (4.19)

which implies (4.15). On the other hand,

}Dξ uξ}L2

ξ
ď }pDγ,ξ ´Dξquξ}L2

ξ
` }Dγ,ξuξ}L2

ξ

ď α
`
CGz ` C 1

EEq
`
˘

}Dξ uξ}L2

ξ
` }Dγ,ξ uξ}L2

ξ
,

Hence,
}Dξ uξ}L2

ξ
ď p1 ´ αpCGz ` C 1

EE}γ}S1,1

Ş
Y qq´1}Dγ,ξ uξ}L2

ξ
(4.20)

which implies (4.16). Since γ P Γďq, }γ}S1,1

Ş
Y ď q`. Thus (4.19) and (4.20) together give (4.17).

This concludes the proof.
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As a consequence of (4.20), we deduce that the spectrum of Dγ (and of any Dγ,ξ) is included in
Rzr´1`κ; 1´κs. In order to allow for as many electrons as possible per cell, we need a more accurate
estimate on the bottom of |σpDγq|.
Lemma 4.10 (Further properties of the bottom of the spectrum of Dγ). Let γ P Γďq. Then

inf |σpDγq| ě λ0 ě 1 ´ κ,

with λ0 :“ 1 ´ αmaxtCHz ` C2
EEq

`, C0

ℓ
z ` CEEq

`u.

Proof. Let ψ`
ξ “ Λ`

ξ ψξ and ψ´
ξ “ Λ´

ξ ψξ. Notice that Dγ,ξ “ Dξ ´ αzGℓ ` αVγ,ξ and Vγ,ξ satisfies
(4.13) and (4.14). Now, combining with (A.1) we have

´
ψ`
ξ , Dγ,ξψ

`
ξ

¯
H

1{2
ξ

ˆH
´1{2
ξ

ě
`
1 ´ αpCHz ` C2

EE}γ}S1,1

Ş
Y q

˘
}ψ`

ξ }2
H

1{2
ξ

and

´
´
ψ´
ξ , Dγ,ξψ

´
ξ

¯
H

1{2
ξ

ˆH
´1{2
ξ

ě
ˆ
1 ´ α

ˆ
C0

ℓ
z ` CEE}γ}S1,1

Ş
Y

˙˙
}ψ`

ξ }2
H

1{2
ξ

.

We get

}ψξ}
H

1{2
ξ

}Dγ,ξψ}
H

´1{2
ξ

ě ℜ
´
ψ`
ξ ´ ψ´

ξ , Dγ,ξψξ

¯
H

1{2
ξ

ˆH
´1{2
ξ

“
´
ψ`
ξ , Dγ,ξψ

`
ξ

¯
H

1{2
ξ

ˆH
´1{2
ξ

´
´
ψ´
ξ , Dγ,ξψ

´
ξ

¯
H

1{2
ξ

ˆH
´1{2
ξ

ě λ0}ψξ}2
H

1{2
ξ

.

Further spectral properties of the self-consistent operator Dγ are collected in the following.

Lemma 4.11 (Properties of positive eigenvalues of Dγ,ξ). Assume that κ ă 1 and let γ P Γďq. We
denote by λkpξq, for k ě 1, the k-th positive eigenvalue (counted with multiplicity) of the mean-field
operator Dγ,ξ. Then, there exist positive constants c˚pkq and c˚pkq independent of ξ, with 1 ď c˚pkq ď
c˚pkq and c˚pkq Ñ `8 when k Ñ `8, such that λkpξq is situated in the interval rc˚pkqp1´κq, c˚pkqp1´
κq´1s. This interval is independent of γ. Moreover, there are constants e ą c˚pq ` 1qp1 ´ κq´1 and
M ą 0, such that each operator Dγ,ξ admits at most q `M eigenvalues in r0, es.

In addition, every eigenfunction uk,ξpxq associated to λkpξq lies in H1
ξ and satisfies

}|Dξ|uk,ξ}L2

ξ
ď p1 ´ κq´1 λkpξq }uk,ξ}L2

ξ
ď c˚pkq p1 ´ κq´2 }uk,ξ}L2

ξ
. (4.21)

Proof. We rely on a variational characterization of eigenvalues of Dirac operators (see [10] and ref-
erences therein). The proof of the condition (i)-(iii) in [10] is postponed to the end of the proof.
Let

Λ`
ξ :“ 1R` pDξq “ 1

2
` Dξ

2 |Dξ|
and

Λ´
ξ :“ 1R´pDξq “ 1

2
´ Dξ

2 |Dξ| .

From [10, Equation (1)], the k-th positive eigenvalue λkpξq of Dγ,ξ is obtained through the formula

λkpξq :“ inf
V subspace ofΛ

`
ξ
H

1{2
ξ

dimV “k

sup
uξPpV

À
Λ

´
ξ
H

1{2
ξ

qzt0u

pDγ,ξ uξ, uξq
}uξ}2

L2

ξ

. (4.22)

Let uξ P pV À
Λ´
ξ H

1{2
ξ qzt0u. We write uξ “ u`

ξ ` u´
ξ with

u`
ξ “ Λ`

ξ uξ P V, u´
ξ “ Λ´

ξ uξ P Λ´
ξ H

1{2
ξ .

By definition of Λ˘
ξ ,

pDξu
`
ξ , u

`
ξ q “ p|Dξ|u`

ξ , u
`
ξ q, pDξu

´
ξ , u

´
ξ q “ ´p|Dξ|u´

ξ , u
´
ξ q and pDξu

`
ξ , u

´
ξ q “ 0.
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Therefore,

pDγ,ξuξ, uξq “ pDξuξ, uξq ` ppDγ,ξ ´Dξquξ, uξq

“
´

|Dξ|u`
ξ , u

`
ξ

¯
´
´

|Dξ|u´
ξ , u

´
ξ

¯
`
´

pDγ,ξ ´Dξqu`
ξ , u

`
ξ

¯
`
´

pDγ,ξ ´Dξqu´
ξ , u

´
ξ

¯

` 2ℜ
´

pDγ,ξ ´Dξqu`
ξ , u

´
ξ

¯
. (4.23)

To get the lower bound, we observe that

λkpξq ě inf
V subspace ofΛ

`
ξ
H

1{2
ξ

dimV “k

sup
uξPV zt0u

pDγ,ξ uξ, uξq
}uξ}2

L2

ξ

.

By (4.23) and (4.18), for any uξ P Λ`
ξ H

1{2
ξ ,

pDγ,ξ uξ, uξq “ p|Dξ|uξ, uξq ` pp´α z Gℓ ` αVγquξ, uξq ě p1 ´ κq p|Dξ|uξ, uξq .

Thus,

p1 ´ κq´1λkpξq ě inf
V subspace ofΛ

`
ξ
H

1{2
ξ

dimV “k

sup
uξPV zt0u

p|Dξ|uξ, uξq
}uξ}2

L2

ξ

.

We define

c˚pkq :“ inf
ξPQ˚

ℓ

d`
k pξq “ inf

ξPQ˚
ℓ

inf
V subspace ofΛ

`
ξ
H

1{2
ξ

dimV “k

sup
uξPV zt0u

p|Dξ|uξ, uξq
}uξ}2

L2

ξ

.

Obviously, c˚pkq ě 1 and c˚pkq goes to infinity together with k. Also,

λkpξq ě p1 ´ κq c˚pkq, for every ξ P Q˚
ℓ .

For the upper bound, we proceed as follows. (4.18) and (4.23) yield

pDγ,ξuξ, uξq “
´

|Dξ|u`
ξ , u

`
ξ

¯
`
´

p´α z Gℓ ` αVγqu`
ξ , u

`
ξ

¯
` 2ℜ

´
p´α z Gℓ ` αVγqu`

ξ , u
´
ξ

¯

`
´

pDγ,ξ ´Dξqu´
ξ , u

´
ξ

¯
´
´

|Dξ|u´
ξ , u

´
ξ

¯

ď p1 ` κq
´

|Dξ|u`
ξ , u

`
ξ

¯
´ p1 ´ κq

´
|Dξ|u´

ξ , u
´
ξ

¯
` 2 κ }|Dξ|1{2u`

ξ }L2

ξ
}|Dξ|1{2u´

ξ }L2

ξ

“ p1 ` κq}|Dξ|1{2u`
ξ }2L2

ξ
` 2 κ }|Dξ|1{2u`

ξ }L2

ξ
}|Dξ|1{2u´

ξ }L2

ξ
´ p1 ´ κq}|Dξ|1{2u´

ξ }2L2

ξ

ď p1 ´ κq´1}|Dξ|1{2u`
ξ }2L2

ξ
,

by Young’s inequality. Let now

c˚pkq :“ sup
ξPQ˚

ℓ

d`
k pξq “ sup

ξPQ˚
ℓ

inf
V subspace of Λ`H

1{2
ξ

dim V “k

sup
u`
ξ

PV zt0u

´
|Dξ|u`

ξ , u
`
ξ

¯

}u`
ξ }2

L2

ξ

.

As }u`
ξ }L2

ξ
ď }uξ}L2

ξ
, we obtain

λkpξq ď p1 ´ κq´1c˚pkq. (4.24)

By construction, c˚pkq ď c˚pkq and c˚pkq and c˚pkq are non-decreasing with respect to k. Finally, by
definition of c˚pkq and c˚pkq, for any e ą c˚pq ` 1qp1 ´ κq´1, there is an integer M ě 2 such that
c˚pq `M ´ 1q ď e ă c˚pq `Mq. Therefore, Dγ,ξ admits at most q `M eigenvalues in r0, es for every
ξ P Q˚

ℓ .
Using (4.20) in Lemma 4.9, we obtain

λkpξq }uk,ξ}L2

ξ
“ }Dγ,ξuξ}L2

ξ
ě p1 ´ κq}Dξuξ}L2

ξ
.

Hence (4.21).

To end the proof, it suffices to check the condition supξPQ˚
ℓ
sup

uξPΛ´
ξ
H

1{2
ξ

zt0u

pDγ,ξuξ,uξq

}uξ}2
L2

ξ

ď 0 ă

infξPQ˚
ℓ
λ1pξq in [10]. It follows from the decomposition (4.23) of Dγ,ξ ; namely pDγ,ξ φξ, φξq ď 0 for

every φξ P Λ´
ξ H

1{2
ξ whenever κ ă 1.
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4.3 Properties of the minimizers of a linear problem

Recall that BR :“
 
γ P XŞ

Y
ˇ̌
}γ}S1,8 ă R

(
and R0 :“ q ` M where M is a constant defined in

Lemma 4.11. The following lemma will be used in the next sections.

Lemma 4.12. Let g P Γďq be given, and assume κ ă 1. Then for each ǫP ą 0, the minimization
problem

inf
γPΓďq,

γ“P`
g γP`

g

 

Q˚
ℓ

TrL2

ξ
rpDg,ξ ´ ǫP qγξs dξ

admits a minimizer. Every minimizer γ˚ is of the form γ˚ “
ffl ‘

Q˚
ℓ

1r0,νqpDg,ξq dξ ` δ, with 0 ď δ ď
ffl ‘

Q˚
ℓ

1tνupDg,ξq dξ for some ν P p0, ǫP s independent of ξ P Q˚
ℓ .

Furthermore, for every ǫP , we have ν ď p1´κq´1c˚pq`1q and γ˚ P BR0
. If ǫP ą p1´κq´1c˚pq`1q,

any minimizer γ˚ is independent of ǫP , and ĂTrL2pγ˚q “ q.

Proof. For any ξ P Q˚
ℓ we can choose an orthonormal eigenbasis tψkpξ, ¨qukě1 of Dg,ξP

`
g,ξ, such that

Dg,ξP
`
g,ξ “

ÿ

kě1

λkpξq |ψkpξq〉 〈ψkpξq| .

According to Lemma 4.11, each positive λkpξq is bounded independently of ξ. Let us introduce as in
[2, 14] the function

C : s ÞÑ ℓ3

p2πq3
ÿ

kě1

|tξ P Q˚
ℓ | 0 ď λkpξq ď su| .

It is non-decreasing on R. In addition, by Lemma 4.11, Cp0q “ 0 and Cp`8q “ `8. Thus, there
exists ν1 P r0,`8q such that

lim
sÑν´

1

Cpsq ď q ď lim
sÑν`

1

Cpsq. (4.25)

We are going to prove that every minimizer γ˚ P Γďq is of the form

γ˚ “
 ‘

Q˚
ℓ

1r0,νqpDg,ξq dξ ` δ

with 0 ď δ ď
ffl ‘

Q˚
ℓ

1tνupDg,ξq dξ and ν :“ mintν1, ǫP u. The proof is inspired by [2].

We first consider the case ν1 ă ǫP . According to (4.25), there is a density matrix rγ “ 1r0,ν1qpDgq`δ
where 0 ď δ ď 1tν1upDgq is chosen such that

ĂTrL2prγq “ q.

For any γ P Γďq, we write

 

Q˚
ℓ

TrL2

ξ
rpDg,ξ ´ ǫP qpγξ ´ rγξqs dξ

“
 

Q˚
ℓ

TrL2

ξ
rpDg,ξ ´ ν1qpγξ ´ rγξqs dξ `

 

Q˚
ℓ

TrL2

ξ
rpν1 ´ ǫP qpγξ ´ rγξqs dξ

“
 

Q˚
ℓ

TrL2

ξ
rpDg,ξ ´ ν1qpγξ ´ rγξqs dξ ` |ν1 ´ ǫP |

ˇ̌
ˇ̌
ˇ

 

Q˚
ℓ

TrL2

ξ
rγξ ´ rγξs dξ

ˇ̌
ˇ̌
ˇ

ě
 

Q˚
ℓ

TrL2

ξ
rpDg,ξ ´ ν1qpγξ ´ rγξqs dξ. (4.26)

Since 0 ď γξ ď 1L2

ξ
, we have 〈γξψkpξq, ψkpξq〉 P r0, 1s, for almost every ξ P Q˚

ℓ . Hence,

 

Q˚
ℓ

TrL2

ξ
rpDg,ξ ´ ν1qpγξ ´ rγξqs dξ

“
 

Q˚
ℓ

TrL2

ξ
rpDg,ξ ´ ν1qpγξ ´ 1r0,ν1qpDg,ξqqs dξ
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“
 

Q˚
ℓ

ÿ

λkpξqăν1

|λkpξq ´ ν1| |〈γξψkpξq, ψkpξq〉 ´ 1| dξ

`
 

Q˚
ℓ

ÿ

λkpξqąν1

r|λkpξq ´ ν1| 〈γξψkpξq, ψkpξq〉s dξ ě 0. (4.27)

Thus rγ is a minimizer. According to (4.26) and (4.27), if γ˚ is a minimizer, then γ must be of the form

γ “
ffl ‘

Q˚
ℓ

1r0,νqpDgqdξ ` δ with ν “ ν1 “ mintν1, ǫP u and ĂTrL2pγq “ q. In particular, in this case, γ˚ is

independent of ǫP .
For the case ǫP ď ν1, we prove that every minimizer γ˚ satisfies γ˚ “

ffl ‘

Q˚
ℓ

1r0,ǫP qpDg,ξqdξ ` δ,

with 0 ď δ ď
ffl ‘

Q˚
ℓ

1tǫP upDg,ξqdξ being chosen such that ĂTrL2pγ˚q ď q. If not, using (4.27) again (by

replacing ν1 by ǫP ), we get
ˆ

Q˚
ℓ

TrL2

ξ

“
pDg,ξ ´ ǫP qpγ1

ξ ´ 1r0,ǫP qpDg,ξq
‰
dξ ą 0,

which contradicts the fact that γ1 is a minimizer. Thus any minimizer satisfies

γ˚ “
 ‘

Q˚
ℓ

1r0,νqpDg,ξqdξ ` δ,

with ν “ ǫP “ mintν1, ǫP u and 0 ď δ ď
ffl ‘

Q˚
ℓ

1tνupDg,ξqdξ being chosen such that ĂTrL2pγ˚q ď q.

We turn to prove ν ď p1 ´ κq´1c˚pq ` 1q, and this leads to γ˚ P BR0
. More precisely, we prove

that p1 ´ κqc˚pq ´ 1q ď ν1 ď p1 ´ κq´1c˚pq ` 1q. If not, we first assume that ν1 ą p1 ´ κq´1c˚pq ` 1q.
Then by Lemma 4.11 and (4.25),

q ě lim
sÑv

´
1

Cpsq ě Cpp1 ´ κq´1c˚pq ` 1qq ě q ` 1,

which contradicts (4.25). Analogously, if ν1 ă p1 ´ κqc˚pq ´ 1q, then

q ď lim
sÑv

`
1

Cpsq ď Cpp1 ´ κqc˚pq ´ 1qq ď q ´ 1.

Thus, p1´κqc˚pq´1q ď ν1 ď p1´κq´1c˚pq`1q, then ν “ mintν1, ǫP u ď p1´κq´1c˚pq`1q. Moreover,
by Lemma 4.11, we have

0 ď γ˚,ξ ď 1p0,espDg,ξq, and }γ˚}S1,8 ď q `M.

Thus, γ˚ P BR0
. If ǫP ą p1 ´ κq´1c˚pq ` 1q, then ν “ ν1 ă ǫP , thus any minimizer is independent of

ǫP and satisfies TrL2

ξ
pγ˚q “ q.

Remark 4.13. Actually, in the proof, we show that supξPQ˚
ℓ
Rankpγ˚,ξq ď q `M .

For the minimum problem given in Lemma 4.12, the following proposition gives the estimates on
the minimizers in X

Ş
Y , which will be used in the proof of Proposition 5.1.

Proposition 4.14. Assume that κ ă 1. Let γ, γ1 P Γďq such that

0 ď γ1
ξ ď 1r0,p1´κq´1c˚pq`1qspDγ,ξq.

Then,
}γ1}X Ş

Y ď maxtp1 ´ κq´2qc˚pq ` 1q, 1u.

Proof. By Lemma 4.9, we have
 

Q˚
ℓ

TrL2

ξ
rDγ,ξγ

1
ξs dξ “

 

Q˚
ℓ

TrL2

ξ
r|Dγ,ξ|γ1

ξs dξ ě p1 ´ κq}γ1}X .

Since γ1 P Γďq, we have
 

Q˚
ℓ

TrL2

ξ
rDγ,ξγ

1
ξs dξ ď p1 ´ κq´1c˚pq ` 1q

 

Q˚
ℓ

TrL2

ξ
pγ1

ξq dξ ď qp1 ´ κq´1c˚pq ` 1q.

Then }γ1}X ď p1 ´ κq´2qc˚pq ` 1q. Consequently, from the fact that }γ}Y ď 1, we deduce

}γ1}X Ş
Y ď maxtp1 ´ κq´2qc˚pq ` 1q, 1u.
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4.4 First properties of minimizing sequences in Γ
`

ďq

We prove the following.

Lemma 4.15 (Boundedness of minimizing sequences). Assume that κ ă 1. Then, there is a minimiz-
ing sequence pγnqně1 of Iďq,R in Γ`

ďq, such that for any n P N,

EDF pγnq ´ ǫPĂTrL2pγnq ď 0.

Moreover, if κ ă 1 ´ α
2
CEEq

`, then, for every n ě 1,

}γn}X Ş
Y ď max

!
p1 ´ κ´ α

2
CEEq

`q´1ǫP q, 1
)

(4.28)

and

max
!

}γn|D0|1{2}S1,1
, }γn}Y

)
ď

c
max

!
p1 ´ κ´ α

2
CEEq`q´1ǫP q, 1

)
q`.

Proof. Note that the operator 0 belongs to Γ`
ďq and satisfies EDF p0q ´ ǫPĂTrL2p0q “ 0. Thus, Iďq,R “

infγPΓ`
ďq

Ş
BR

”
EDF pγq ´ ǫPĂTrL2pγq

ı
ď 0. In particular, there exists a minimizing sequence, such that

EDF pγnq ´ ǫPĂTrL2pγnq ď 0.
For simplicity, we skip the n index in the following. As Dγ,ξγξ “ |Dγ,ξ|γξ for any γ P Γ`

ďq, by
(4.13) and (4.17) we get

EDF pγq ´ ǫPĂTrL2pγq “
 

Q˚
ℓ

TrL2

ξ
rpDγ,ξ ´ ǫP ´ α

2
Vγ,ξqγξs dξ

“
 

Q˚
ℓ

TrL2

ξ
rp|Dγ,ξ| ´ ǫP ´ α

2
Vγ,ξqγξs dξ

ě
 

Q˚
ℓ

TrL2

ξ
rpp1 ´ κq|Dξ| ´ ǫP ´ α

2
Vγ,ξqγξs dξ

ě p1 ´ κq}γ}X ´ α

2
CEE}γ}S1,1

Ş
Y }γ}X ´ ǫP }γ}S1,1

ě p1 ´ κ´ α

2
CEEq

`q}γ}X ´ ǫP q.

Hence,

p1 ´ κ ´ α

2
CEEq

`q}γ}X ´ ǫP q ď 0.

Whenever 1 ´ κ´ α
2
CEEq

` ą 0, (4.28) holds since }γ}Y ď 1.
The last inequality follows from Hölder’s inequality and the fact that γ ě 0; namely

}γ |D0|1{2}S1,1
ď }γ1{2}S2,2

}γ1{2 |D0|1{2}S2,2
ď }γ}1{2

S1,1
}γ}1{2

X .

From now on, we define the set

V0 :“
!
γ P Γ`

ďq

ˇ̌
ˇ EDF pγq ´ ǫPĂTrL2pγq ď 0

)
(4.29)

to which the minimizing sequences belong under Assumption 3.1.

5 Approximation by a linearized problem

The aim of this section is to show the link between a minimizing sequence pγnqně1 in V0 and the linear
Dirac–Fock problem introduced in Lemma 4.12.

Proposition 5.1 (Link with the linearized problem). Let R ą R0 “ q `M . Under Assumption 3.1,
let pγnq P Γ`

ďq

Ş
BR be a minimizing sequence of (3.5). Then, as n goes to infinity,

 

Q˚
ℓ

TrL2

ξ

“
pDγn,ξ ´ ǫP qγn,ξ

‰
dξ ´ inf

γPΓďq

γ“P`
γn

γP`
γn

 

Q˚
ℓ

TrL2

ξ

“
pDγn,ξ ´ ǫP qγξ

‰
dξ Ñ 0. (5.1)
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This property is used in Lemma 6.2 below to build a new minimizing sequence with further regu-
larity, and it is also used at the end of Section 6 to show some properties of the minimizers of Iďq.

As mentioned at the end of Section 3, the main difficulty is to deal with the nonlinear constraint
Γ`

ďq. To do so, we introduce a retraction technique first used in [29]. We are going to construct a

regular map θ from a locally convex set V in Γďq into a neighborhood of V0 in Γ`
ďq. More precisely,

we will have V0 Ă θpVq Ă Γ`
ďq. Consequently,

Iďq “ inf
γPV0

pEDF pγq ´ ǫPĂTrL2pγqq “ inf
γPV

pEDF pθpγqq ´ ǫPĂTrL2rθpγqsq. (5.2)

The locally convex set V is defined by

V :“ pV0 `BX
Ş

Y pρqq
č

Γďq (5.3)

for some ρ ą 0 small enough. The map θ is defined by

θpγq “ lim
nÑ`8

T npγq

for any γ P V where the map T onto V is given by

T : γ ÞÑ P`
γ γP

`
γ .

We also denote by FixpT q the set of fixed points of the map T (i.e., for any γ P FixpT q, T pγq “ γ).
Obviously, T pγq is self-adjoint and 0 ď T pγq ď 1. In particular, Γ`

ďq “ Γďq

Ş
FixpT q. Unfortunately,

given γ in Γďq, T pγq may not stay in Γ`
ďq : P`

T pγqT pγqP`
T pγq may be different from T pγq.

Now the constraint γ P V in (5.2) is locally convex. To prove Proposition 5.1, we will study the
differentiability of the new functional in (5.2).

We first introduce an admissible set U for the retraction such that T maps U to U .

Definition 5.2 (Admissible set for the retraction). Assume that κ “ α
`
CGz ` C 1

EEq
`
˘

ă 1 and let
α
2
CEE p1 ´ κq´1{2λ

´1{2
0 ă A ă 1

2
. Given 1 ă τ ă 1

2A
, let M :“ max

´
2`Aq`

2
, 1
1´2Aτ

¯
, then we define

U :“
!
γ P Γďq

ˇ̌
ˇmaxt}γ|D0|1{2}S1,1

, }γ}Y u `M}T pγq ´ γ}XŞ
Y ă τ

)
.

Remark 5.3. We must impose τ ą 1 in Proposition 5.4: Otherwise, any minimizer γ˚ of Iďq,R is not
in U if q ě 1 since }γ˚}Y “ 1.

For any differentiable function F : U Ñ X
Ş
Y and a P U , we define dF paq by

lim
xÑa,xPU

}F pxq ´ F paq ´ dF paqpx ´ aq}X Ş
Y

}x´ a}X Ş
Y

“ 0.

Then we have the following.

Proposition 5.4 (Existence and differentiability of the retraction). Let κ,A, τ,U as in Definition 5.2.
Then the sequence of iterated maps pT pqp converges uniformly on U to a limit θ with θpUq Ă Γ`

ďq

Ş
U

and FixpT q “ Γ`
ďq

Ş
U . We have the estimate

@ γ P U , }θpγq ´ T ppγq}X Ş
Y ď kp

1 ´ k
}T pγq ´ γ}XŞ

Y .

Moreover θ P C1,unifpU , X
Ş
Y q and dθpT pq converges uniformly to dθ on U .

In this way we obtain a continuous retraction θ of U onto Γ`
ďq

Ş
U whose restriction to U is of

class C1,unif. This map and its differential are bounded and uniformly continuous on U .
For any γ P FixpT q

Ş
U and any h P X

Ş
Y , the linear operator h ÞÑ dθξpγqh satisfies

P`
γ,ξdθξpγqhP`

γ,ξ “ P`
γ,ξhξP

`
γ,ξ and P´

γ,ξdθξpγqhP´
γ,ξ “ 0,

where θpγq “
ffl ‘

Q˚
ℓ

θξpγqdξ, according to the Floquet-Bloch decomposition. In other words, the splitting

L2
ξ “ P`

γ,ξL
2
ξ ‘ P´

γ,ξL
2
ξ gives a block decomposition of dθξpγqh of the form

dθξpγqh “
ˆ
P`
γ,ξhξP

`
γ,ξ bγ,ξphq˚

bγ,ξphq 0

˙
(5.4)
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The proof is Proposition 5.4 is postponed to the end of this section.
To apply Proposition 5.4 to the proof of Proposition 5.1, we need to verify that V Ă U for some τ

given in Definition 5.2. From Lemma 4.15, we can observe that any γ P V0 is indeed in U if

τ ą
c
maxtp1 ´ κ ´ α

2
CEEq`q´1ǫP q, 1u q`.

Thus, according to the continuity of T in X
Ş
Y (will be shown in (5.13)), we have

Corollary 5.5. Assume that κ ă 1 ´ α
2
CEEq

`, and let A be as above. Assume in addition that

2A

c
maxtp1 ´ κ´ α

2
CEEq`q´1ǫP q, 1u q` ă 1.

Then there exist τ as in Definition 5.2 and ρ ą 0 such that V Ă U .

We are now in the position to prove the main result of this section.

Proof of Proposition 5.1. We argue by contradiction. Otherwise, there would be an ǫ0 ą 0 such that,
for n large enough,

 

Q˚
ℓ

TrL2

ξ
rpDγn,ξ ´ ǫP qγn,ξs dξ ě inf

γPΓďq

γ“P`
γn

γ

 

Q˚
ℓ

TrL2

ξ

“
pDγn,ξ ´ ǫP qγξs dξ ` ǫ0.

By Lemma 4.12, there exists an operator γ1
n P Γďq such that γ1

n P Γďq

Ş
BR0

(where BR0
is given in

(3.3) and Proposition 3.4) and γ1
n minimizes the following problem

 

Q˚
ℓ

TrL2

ξ

“
pDγn,ξ ´ ǫP qγ1

n,ξ

‰
dξ :“ inf

γPΓďq

γ“P`
γn

γ

 

Q˚
ℓ

TrL2

ξ

“
pDγn,ξ ´ ǫP qγξ

‰
dξ.

From Lemma 4.12 and Proposition 4.14, γ1
n P BR and }γ1

n}XŞ
Y is uniformly bounded. So according

to Corollary 5.5, there is σ ą 0 such that for any n large enough and any s P r0, σs, p1 ´ sqγn ` sγ1
n P

Γďq

Ş
BX

Ş
Y pγn, ρqŞBR Ă V

Ş
BR. Then from Proposition 5.4, the function fn : s P r0, σs Ñ

pEDF ´ǫPĂTrL2qpθrp1´sqγn `sγ1
nsq is of class C1 and the sequence of derivatives pf 1

nq is equicontinuous
on r0, σs. From (5.4), we infer

f 1
np0q “ ĂTrL2

“
pDγn

´ ǫP qpγ1
n ´ γnq

‰
ď ´ ǫ0

2
.

So there is 0 ă s0 ă σ independent of n such that for any s P r0, s0s we have f 1
npsq ď ´ ǫ0

4
. Hence, for

any s P r0, s0s,

pEDF ´ ǫPĂTrL2qpθrp1 ´ sqγn ` sγ1
nsq “ fnpsq ď fnp0q ´ ǫ0s0

4
“ pEDF ´ ĂTrL2qpγnq ´ ǫ0s0

4
.

But θrp1 ´ sqγn ` sγ1
ns P Γ`

ďq

Ş
BR and EDF pγnq ´ ǫPĂTrL2pγnq Ñ Iďq,R. This is a contradiction.

Hence the proposition.

We are now in the position to prove Proposition 5.4, as in [29] for atoms. As in [29], we introduce
the following set:

Γďq,r :“ tγ P X X Y ; distσ1,1XY pγ,Γďqq ă ru.
Then analogously to Lemma 4.9 and Lemma 4.10, we have for any γ P Γďq,r,

p1 ´ κrq|D0| ď |Dγ | ď p1 ` κrq|D0| (5.5)

and

inf |σpDγq| ě λ0,r ě 1 ´ κr, (5.6)

where κr :“ α
`
CGz ` C 1

EEpq` ` 2rq
˘

and

λ0,r :“ 1 ´ αmax
 
CHz ` CEEr ` C2

EEpq` ` rq, C0

ℓ
z ` CEEpq` ` rq

(
.

Recall now that P`
0 “ 1R`pD0 ´αzGℓq and α

2
CEE p1´ κq´1{2λ

´1{2
0 ă A ă 1

2
with λ0 given in Lemma

4.10.
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Lemma 5.6. Assume that κ ă 1. We introduce the map

Q : γ ÞÝÑ P`
γ ´ P`

0

in such a way that Qpγq :“
ffl ‘

Q˚
ℓ

Qξpγq dξ with Qξpγq :“ P`
γ,ξ ´ P`

0,ξ.

Then for r ą 0 small enough, the map Q is in C1,lippΓďq,r,BpL2pR3,C4q, H1{2pR3q,C4qq and we
have the estimates

@γ P Γďq,r, @h P X
č
Y : }|D0|1{2dQpγqh}Y ă pA ´ rq}h}X Ş

Y (5.7)

and

@γ, γ1 P Γďq,r , }|D0|1{2rdQpγqh´ dQpγ1qhs|D0|1{2}Y ď K}γ ´ γ1}X Ş
Y }h}X Ş

Y , (5.8)

where K is a positive constant depending only on κ which remains bounded when κ stays away from 1.

Proof. As κ ă 1, by our definition of κr and since λ0 ě 1 ´ κ ą 0, it is easy to see that κr ă 1 and
λ0,r ą 0 for r small enough.

By Lemma 4.9, Dγ,ξ is a self-adjoint operator for all γ P Γďq,r and 0 is in its resolvent set. Then
by Taylor’s formula [20, Chapter VI.5, Lemma 5.6] or [16], we have

P˘
γ,ξ “ 1

2
˘ 1

2π

ˆ `8

´8

pDγ,ξ ´ izq´1dz (5.9)

and, by the second resolvent identity,

Qξpγq “ ´ α

2π

ˆ `8

´8

pDγ,ξ ´ izq´1Vγ,ξpD0,ξ ´ izq´1dz.

Hence, for every h P X
Ş
Y , we deduce from (5.9) and the second resolvent formula again, that

dQξpγqh “ dP`
γ,ξ h “ ´ α

2π

ˆ `8

´8

pDγ,ξ ´ izq´1Vh,ξpDγ,ξ ´ izq´1dz. (5.10)

Besides, for any uξ P L2
ξpQℓq, we have

ˆ `8

´8

´
uξ, p|Dγ,ξ|2 ` |z|2q´1{2|Dγ,ξ|p|Dγ,ξ|2 ` |z|2q´1{2uξ

¯
L2

ξ

dz “ π}uξ}2L2

ξ
.

We infer from (5.6) that

}|Dγ |´1}Y ď λ´1
0,r.

Thus gathering with Lemma 4.7, for any φξ, ψξ P L2
ξ we have

ˇ̌
ˇpψξ, |Dξ|1{2dQξpγqhφξqL2

ξ

ˇ̌
ˇ

“ α

2π

ˇ̌
ˇ̌
ˆ `8

´8

´
ψξ, |Dξ|1{2pDγ,ξ ´ izq´1Vh,ξpDγ,ξ ´ izq´1φξ

¯
L2

ξ

dz

ˇ̌
ˇ̌

ď α

2π
}|Vh,ξ|}BpL2

ξ
q

ˆ
ˆ `8

´8

›››pDγ,ξ ´ izq´1|Dξ|1{2ψξ

›››
2

L2

ξ

dz

˙1{2 ˆˆ `8

´8

››pDγ,ξ ´ izq´1φξ
››2
L2

ξ

dz

˙1{2

ď α

2π
}|Vh,ξ|}BpL2

ξ
q}|Dξ|1{2|Dγ,ξ|´1{2φ}BpL2

ξ
q}|Dγ,ξ|´1{2}BpL2

ξ
q}ψξ}L2

ξ
}φξ}L2

ξ

ď α

2
CEEp1 ´ κrq´1{2λ

´1{2
0,r }h}XŞ

Y }ψξ}L2

ξ
}φξ}L2

ξ
.

(5.11)
Hence we obtain (5.7), i.e.,

}|D0|1{2dQpγqh|D0|1{2}Y ď α

2
CEEp1 ´ κrq´1{2λ

´1{2
0,r }h}X Ş

Y .
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As A ą α
2
CEE p1 ´ κq´1{2λ

´1{2
0 , we know that there exists r small enough such that

α

2
CEEp1 ´ κrq´1{2λ

´1{2
0,r ă A ´ r.

This proves the first inequality.
For the second inequality, we have

dQξpγqh ´ dQξpγ1qh “ ´ α2

2π

ˆ `8

´8

pDγ,ξ ´ izq´1Vγ1´γ,ξpDγ1,ξ ´ izq´1Vh,ξpDγ,ξ ´ izq´1dz

´ α2

2π

ˆ `8

´8

pDγ1,ξ ´ izq´1Vh,ξpDγ,ξ ´ izq´1Vγ1´γ,ξpDγ1,ξ ´ izq´1dz.

Proceeding as above, we get (5.8). The fact that Q P C1,lippΓďq,r;BpL2, H1{2qq follows from (5.7) and
(5.8).

Lemma 5.7. Assume that κ ă 1 and let A ą α
2
CEE p1 ´ κq´1{2λ

´1{2
0 . Then, for r ą 0 small enough,

the map T : γ Ñ P`
γ γP

`
γ is well-defined and of class C1,1 on Γďq,r with values in X

Ş
Y . Moreover,

for any γ P Γďq,r,

}T 2pγq ´ T pγq}XŞ
Y ď 2A

´
maxt}T pγq|D0|1{2}S1,1

, }T pγq}Y u

` Aq`

2
}γ ´ T pγq}XŞ

Y

¯
}T pγq ´ γ}X Ş

Y . (5.12)

Moreover, there are two positive constants Cκ, Lκ such that

@ γ P Γďq,r, }dT pγq}BpX
Ş

Y q ď Cκ p1 ` maxt}γ|D0|1{2}S1,1
, }γ}Y uq, (5.13)

and

@ γ, γ1 P Γďq,r, }dT pγ1q ´ dT pγq}BpX
Ş

Y q ď Lκp1 ` maxt}γ|D0|1{2}S1,1
, }γ}Y uq}γ1 ´ γ}XŞ

Y . (5.14)

Proof. Let γ, γ1 P Γďq,r. Then P`
γ ´ P`

γ1 can be written as

P`
γ ´ P`

γ1 “
ˆ 1

0

dQpγ1 ` tpγ ´ γ1qqpγ ´ γ1qdt.

From (5.7),

}|D0|1{2pP`
γ ´ P`

γ1 q}Y ď pA ´ rq }γ ´ γ1}X Ş
Y .

For the estimate (5.12), we have

T 2pγq ´ T pγq “ pP`
T pγq ´ P`

γ qT pγq
´
P`
T pγq ´ P`

γ ` P`
γ

¯
` P`

γ T pγqpP`
T pγq ´ P`

γ q

“ pP`
T pγq ´ P`

γ qT pγq ` T pγqpP`
T pγq ´ P`

γ q ` pP`
T pγq ´ P`

γ qT pγqpP`
T pγq ´ P`

γ q.

Then

}T 2pγq ´ T pγq}XŞ
Y ď }pP`

T pγq ´ P`
γ qT pγq}X Ş

Y

` }T pγqpP`
T pγq ´ P`

γ q}X Ş
Y ` }pP`

T pγq ´ P`
γ qT pγqpP`

T pγq ´ P`
γ q}X Ş

Y .

We have

}T pγqpP`
T pγq ´ P`

γ q}X Ş
Y ď }|D0|1{2pP`

T pγq ´ P`
γ q}Y maxt}T pγq|D0|1{2}S1,1

, }T pγq}Y u,

and

}pP`
T pγq ´ P`

γ qT pγqpP`
T pγq ´ P`

γ q}X Ş
Y ď }|D0|1{2pP`

T pγq ´ P`
γ q}2Y }T pγq}S1,1

Ş
Y .
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Notice that }T pγq}S1,1

Ş
Y ď }γ}S1,1

Ş
Y ď q` ` 2r. Gathering together these estimates with pA ´

rqpq` ` 2rq ď Aq` for r small enough, we obtain (5.12).
We turn now to the proof of (5.13) and (5.14). From Lemma 5.6, T is in C1pΓďq,rq with

dT pγqh “ pdQγhqγPγ ` PγγpdQγhq ` PγhPγ .

Notice that for any γ P Γďq,r and r small enough,

}|D0|1{2P`
γ |D0|´1{2}Y ď p1 ´ κrq´1{2}|Dγ |1{2P`

γ |D0|´1{2}Y ď p1 ` κrq1{2

p1 ´ κrq1{2
ď 2

p1 ` κq1{2

p1 ´ κq1{2
. (5.15)

Then, for r small enough,

}dT pγq}BpX
Ş

Y q ď Cp1 ` }|D0|1{2P`
γ |D0|´1{2}2Y qp1 ` maxt}γ|D0|1{2}S1,1

, }γ}Y uqp}dQγh}Y ` }h}XŞ
Y q

ď Cκp1 ` maxt}γ|D0|1{2}S1,1
, }γ}Y uq.

Finally, for the term dT pγ1q ´ dT pγq, we have

dTξpγ1qh ´ dTξpγqh “ pdQγ,ξhqγξPγ,ξ ` Pγ,ξγξpdQγ,ξhq ` Pγ,ξhξPγ,ξ

´ pdQγ1,ξhqγ1
ξPγ1,ξ ´ Pγ1,ξγ

1
ξpdQγ1,ξhq ´ Pγ1,ξhξPγ1,ξ.

Proceeding in the same way as for (5.13), we can get (5.14).

We now show that T satisfies all the assumptions in [29, Proposition 2.2]. Before going further, we
also define

Ur :“
!
γ P Γďq,r

ˇ̌
ˇmaxt}γ|D0|1{2}S1,1

, }γ}Y u `M}T pγq ´ γ}XŞ
Y ă τ

)
.

Proposition 5.8. Let κ, A, τ be as in Definition 5.2. Then for r small enough, T is in C0pUrqŞC1,lippUr, X
Ş
Y q

be such that T pUrq Ă Ur satisfies the following estimates

sup
γPUr

}dT pγq}XŞ
Y ă 8, sup

γPUr

}T pγq ´ γ}XŞ
Y ă 8

and

@ γ P Ur, }T 2pxq ´ T pxq}X Ş
Y ď k}T pxq ´ x}X Ş

Y

with k :“ 2Aτ ă 1.

Proof. For any γ P Ur, we have

}T pγq|D0|1{2}S1,1
ď }γ|D0|1{2}S1,1

` }pγ ´ T pγqq|D0|1{2}S1,1
ď }γ|D0|1{2}S1,1

` }γ ´ T pγq}X
and

}T pγq}Y ď }γ}Y ď }γ}Y ` }γ ´ T pγq}Y .

As a result, as M ě 2`q`A
2

, (5.12) implies that

}T 2pγq ´ T pγq}XŞ
Y ď k}T pγq ´ γ}X

with k “ 2aτ ă 1. Moreover, using the inequality M ě 1
1´2Aτ

,

maxt}T pγq|D0|1{2}S1,1
, }T pγq}Y u `M}T 2pγq ´ T pγq}XŞ

Y

ď maxt}γ|D0|1{2}S1,1
, }γ}Y u ` p1 `Mkq}T pγq ´ γ}X Ş

Y ă τ.

So T pγq P Ur.
The fact that supγPUr

}dT pγq}XŞ
Y ă 8 and dT is Lipschitz continuous on Ur follows from (5.13)

and (5.14). Besides, using (5.15) and γ P U , we have

}T pγq ´ γ}X Ş
Y ď }T pγq}XŞ

Y ` }γ}XŞ
Y ď 2

1 ´ κ
}γ}XŞ

Y .

This ends the proof.

Notice that Ur is an open subset of Γďq. Notice that Γďq Ă Γďq,r and U Ă Ur for r ą 0. Then
Proposition 5.4 follows from Proposition 5.8 and [29, Proposition 2.1 and Proposition 2.2] by choosing
U “ Ur, Γ “ Γďq,r and X :“ spantγ ´ γ1 | γ, γ1 P Γďq,ru “ X

Ş
Y . Here the notation X , U and Γ is

given in [29, Proposition 2.2]. The proof of (5.4) is exactly the same as in [29, Theorem 2.10]. This
ends the proof of Proposition 5.4.
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6 Existence of minimizers in the set BR

In this section, we are going to prove the existence of minimizers of Iďq,R (i.e., Proposition 3.4).
According to Lemma 4.15, there is a minimizing sequence pγnqně1 in BR

Ş
Γ`
q that is uniformly

bounded in X
Ş
Y . We split pγnqně1 into two parts: prγnqně1 and pγn ´ rγnqně1 where, for each n,

rγn :“ pnγnpn with pn :“ 1r0,espDγn
q (6.1)

with e ą c˚pq`1qp1´κq´1 defined in Lemma 4.11. An important fact in this lemma is that for almost
every ξ P Q˚

ℓ , the rank of pn,ξ, and therefore of rγn,ξ, is at most q`M . We prove in Lemma 6.1 that, for
each n ě 1, rγn P X2

8 whereas γn P X ; roughly speaking, we reach a L8pQ˚
ℓ ;H

1
ξ pQℓqq regularity instead

of a L2pQ˚
ℓ ;H

1{2
ξ pQℓqq regularity for the associated eigenfunctions (Lemma 6.1). Hence prγnqně1 is an

approximate minimizing sequence with higher regularity than pγnqně1.
The structure of the proof of Proposition 3.4 is as follows. In Subsection 6.1, we will show }γn ´

rγn}X Ñ 0 when n goes to infinity. In Subsection 6.2, we study the convergence of the kernel of
pWrγn,ξqně1. Then thanks to the constraint γn P BR, we deduce the strong convergence of pVγn,ξqně1.
As a result, }P`

γ˚
´P`

γn
}Y Ñ 0. Hence in Subsection 6.3, we can pass to the limit in the energy and in

the constraints.

6.1 Decomposition of minimizing sequences

We start with some regularity and bound results on rγn.

Lemma 6.1. Let κ ă 1. Then the sequence prγnqně1 and the sequence of kernels prγn,ξp¨, ¨qqně1 are
uniformly bounded in X2

8 and L8pQ˚
ℓ ;H

1pQℓ ˆQℓqq, respectively.

Proof. We first prove that }pn}X2
8

is bounded. Let pun,kpξqqkě1 be the normalized eigenfunctions of
the operator Dγn,ξ with the corresponding eigenvalues λn,kpξq counted with multiplicity. Hence,

pn,ξ “
`8ÿ

k“1

δn,kpξq |un,kpξq〉 〈un,kpξq|

with δn,k “ 1 if 0 ď λn,kpξq ď e and δn,k “ 0 otherwise.
By Lemma 4.11, we know |tk P N

˚ | δn,kpξq “ 1u| ď q`M . By (4.21), for any eigenfunction un,kpξq,
we have }δn,kpξqun,kpξq}L8pQ˚

ℓ
;H1

ξ
pQℓqq ď p1 ´ κq´1e. Now,

}pn,ξ}X2pξq “
q`Mÿ

k“1

δn,kpξq}un,kpξq}2H1

ξ
ď pq `Mq sup

kě1

}δn,kpξqun,kpξq}2H1

ξ
.

Hence,
}pn}X2

8
ď pq `Mqp1 ´ κq´2e2.

Since pn “ p 2
n , rγn “ pnrγnpn and 0 ď rγn ď 1L2pR3q, we have

}rγn}X2
8

“ }|D0|rγn|D0|}S1,8 “ }|D0|pnrγnpn|D0|}S1,8

ď }rγn}Y }|D0|pn}2S2,8
ď }pn}X2

8
ď pq `Mqp1 ´ κq´2e2.

In terms of kernels, it writes

}|Dξ,x|rγn,ξp¨, ¨q}L2pQℓˆQℓq “ }|Dξ|rγn,ξ}S2pξq ď }rγn,ξ}X2pξq ď pq `Mqp1 ´ κq´2e2,

the same holding for |Dξ,y|rγn,ξp¨, ¨q. Thus, rγn,ξpx, yq P L8pQ˚
ℓ ;H

1pQℓ ˆQℓqq, and

}rγn,ξp¨, ¨q}L8pQ˚
ℓ
;H1pQℓˆQℓqq ď 2pq `Mqp1 ´ κq´2e2. (6.2)

We begin the proof by showing the following result as in the case of molecules [29, Lemma 3.4].
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Lemma 6.2. Let R ą R0 “ q ` M . Under Assumption 3.1, whenever ǫP ą p1 ´ κq´1c˚pq ` 1q, for
any minimizing sequence pγnqně1 of (3.5) in Γ`

ďq

Ş
BR we have

ĂTrL2pγnq Ñ q, }γn ´ rγn}X Ñ 0.

Proof. According to Proposition 5.1, any minimizing sequence pγnqně1 in Γ`
ďq

Ş
BR satisfies (5.1). By

Lemma 4.12, the minimizers of the problem

inf
γPΓďq, γ“P`

γnγP`
γn

 

Q˚
ℓ

TrL2

ξ

“
pDγn,ξ ´ ǫP qγξ

‰
dξ

are of the form γ1
n :“

ffl ‘

Q˚
ℓ

1r0,νnqpDγn,ξq dξ ` δ with some 0 ď δ ď
ffl ‘

Q˚
ℓ

1νnpDγn,ξq dξ such that

ĂTrL2pγ1
nq “ q and for some νn P r0, p1 ´ κq´1c˚pq ` 1qs. We denote

πn :“
 ‘

Q˚
ℓ

1pe,8qpDγn,ξq dξ, π1
n :“

 ‘

Q˚
ℓ

1pνn,espDγn,ξq dξ, π2
n :“

 ‘

Q˚
ℓ

1r0,νnspDγn,ξq dξ.

We can write pn “ π1
n ` π2

n and γ1
n “ π2

nγ
1
nπ

2
n. Proceeding as for (4.26) and (4.27), we have

 

Q˚
ℓ

TrL2

ξ
rpDγn,ξ ´ ǫP qγn,ξs dξ ´

 

Q˚
ℓ

TrL2

ξ
rpDγn,ξ ´ ǫP qγ1

n,ξs dξ

“
 

Q˚
ℓ

TrL2

ξ
rpDγn,ξ ´ νnqπn,ξγn,ξπn,ξs dξ `

 

Q˚
ℓ

TrL2

ξ
rpDγn,ξ ´ νnqπ1

n,ξγn,ξπ
1
n,ξs dξ

`
 

Q˚
ℓ

TrL2

ξ
rpDγn,ξ ´ νnqpπ2

n,ξγn,ξπ
2
n,ξ ´ 1r0,νnspDγn,ξqqs dξ ` pǫP ´ νnq

´
q ´ ĂTrL2pγnq

¯
.

We observe that the four terms in the right-hand side of the above equation are non-negative whereas,
from Proposition 5.1, their sum goes to 0 as n goes to infinity. Therefore,

 

Q˚
ℓ

TrL2

ξ
pγn,ξq dξ Ñ q and

 

Q˚
ℓ

TrL2

ξ
rpDγn,ξ ´ νnqπn,ξγn,ξπn,ξs dξ Ñ 0.

But πn,ξpDγn,ξ ´ νnqπn,ξ ě pe´ νnqπn,ξ and πn,ξpDγn,ξ ´ νnqπn,ξ “ πn,ξp|Dγn,ξ| ´ νnqπn,ξ. So taking
a convex combination of these two estimates leads to

e

e´ c˚pq ` 1qp1 ´ κq´1
πn,ξpDγn,ξ ´ νnqπn,ξ ě e

e´ νn
pDγn,ξ ´ νnqπn,ξ ě πn,ξ|Dγn,ξ|πn,ξ.

Hence

}πnγnπn}X “
 

Q˚
ℓ

TrL2

ξ
rπn,ξ|Dξ|πn,ξγn,ξs dξ ď p1 ´ κq´1

 

Q˚
ℓ

TrL2

ξ
rπn,ξ|Dγn,ξ|πn,ξγn,ξs dξ Ñ 0.

It remains to study the limit of hn :“ πnγnpn as n goes to infinity. Since pγnq2 ď γn, we have

pπnγnπnq2 ` hnh
˚
n “ πnpγnq2πn ď πnγnπn.

Hence
 

Q˚
ℓ

TrL2

ξ
p|Dγn,ξ|1{2hn,ξh

˚
n,ξ|Dγn,ξ|1{2q dξ Ñ 0.

Taking any operator A in Y , by the Cauchy-Schwarz inequality,
ˇ̌
ˇ̌
ˇ

 

Q˚
ℓ

TrL2

ξ

“
Aξ|Dγn,ξ|1{2u˚

n,ξ|Dγn,ξ|1{2
‰
dξ

ˇ̌
ˇ̌
ˇ

ď ℓ3

p2πq3
›››TrL2

ξ

“
|Dγn,ξ|1{2pn,ξA

˚
ξAξpn,ξ|Dγn,ξ|1{2

‰›››
1{2

L8

ˆ
˜
ˆ

Q˚
ℓ

TrL2

ξ

“
|Dγn,ξ|1{2hn,ξh

˚
n,ξ|Dγn,ξ|1{2

‰
dξ

¸1{2

.
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By Lemma 4.11, there is M ą 0 such that pn,ξ has at most q ` M eigenfunctions, which means that
pn,ξ has rank at most q `M and

››pn|Dγn
|1{2

››
Y

ď e1{2. As a consequence,

}TrL2

ξ
p|Dγn,ξ|1{2pn,ξA

˚
ξAξpn,ξ|Dγn,ξ|1{2q}L8 ď pq `Mqe}A}2Y .

So we have ›››|Dγn
|1{2hn|Dγn

|1{2
›››
S1,1

Ñ 0.

Hence, }un}X Ñ 0. Finally, }γn ´ rγn}X ď }πnγnπn}X ` 2}hn}X Ñ 0.

By Lemma 6.1, up to the extraction of a subsequence, there is γ˚ in X2
8

Ş
Y , such that

rγn ˚á γ˚ for the weak ˚ -convergence in X2
8

č
Y, (6.3)

since X2
8 is a subspace of S1,8 which is the dual space of S8,1 and Y is the dual space of S1,1. We

immediately get the following.

Lemma 6.3 (Strong convergence of the density). The sequence ρ
1{2
rγn

converges strongly to ρ
1{2
γ˚ in

HspQℓq with 0 ď s ă 1, thus in LppQℓq for every 1 ď p ă 6. In particular, whenever ǫP ą p1 ´
κq´1c˚pq ` 1q, we have

´

Qℓ
ργ˚ dx “ q.

Proof. The proof is the same as in [5, p. 730] and relies on rγn P X2
8. The fact that the limit of ρ

1{2
rγn

is

exactly ρ
1{2
γ˚ follows from [5, Eqn. (4.51) and Eqn. (4.55)] since it implies ρrγn

Ñ ργ˚ in L1pQℓq.

6.2 Convergence of pVγn,ξqně1

Before going further, we introduce the following functional spaces: For p P r1,`8s, s P p0;`8s, let
LpHs

ξ :“ LppQ˚
ℓ ;H

s
ξ pQℓ ˆQℓ;M4pCqqq defined by

LpHs
ξ :“

!
fp¨, x, yq P L2

´ξ,xpQℓ;C
4q b L2

ξ,ypQℓ;C
4q

ˇ̌
ˇ }f}LppQ˚

ℓ
;HspQℓˆQℓqq ă 8

)

endowed with the norm }f}LpHs
ξ

:“ }f}LppQ˚
ℓ
;HspQℓˆQℓqq; then we also define the function space

W 1,pHs
ξ :“ W 1,ppQ˚

ℓ ;H
s
ξ pQℓ ˆQℓqq Ă LpHs

ξ endowed with the norm

}f}W 1,pHs
ξ
:“ }f}LpHs

ξ
}̀∇ξfpξ, ¨, ¨q}LpHs

ξ

and the Hölder continuity function space C0,µHs
ξ :“ C0,µpQ˚

ℓ ;H
s
ξ pQℓ ˆ Qℓqq for µ P p0, 1q, endowed

with the norm

}f}C0,µHs
ξ
:“ }f}L8Hs

ξ
` sup

ξ‰ξ1PQ˚
ℓ

}fpξ, ¨, ¨q ´ fpξ1, ¨, ¨q}HspQℓˆQℓq

|ξ ´ ξ1|µ .

For any functions f P LpL2
ξ and g P Lp1

L2
ξ with p P r1,8q and 1{p` 1{p1 “ 1, we define the product

〈f, g〉 “
 

Q˚
ℓ

¨

QℓˆQℓ

Tr4rf˚gsdxdydξ. (6.4)

It is easy to see that pLpL2
ξ, L

p1

L2
ξ, 〈¨, ¨〉q forms a dual pair.

First of all, we study the convergence of the kernel of Wrγn,ξ. Recall that

Wγ,ξ “ Wěm,γ,ξ `Wăm,γ,ξ, @m P N,m ě 2

where for η P 2Q˚
ℓ and x P 2Qℓ, the kernels of Wěm,γ,ξ and Wăm,γ,ξ are respectively

Wěm,γ,ξpx, yq :“
 

Q˚
ℓ

W8
ěm,ℓpξ1 ´ ξ, x´ yq γξ1 px, yq dξ1

and

Wăm,γ,ξpx, yq :“
 

Q˚
ℓ

W8
ăm,ℓpξ1 ´ ξ, x´ yq γξ1 px, yqdξ1.
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Lemma 6.4 (Convergence of the kernel of pWrγn,ξqně1). We have the following properties:

(a) Wăm,rγn,ξ Ñ Wăm,γ˚,ξ in L8pQ˚
ℓ ;L

2
ξpQℓ ˆQℓqq.

(b) |Dξ,x|´1{2|Dξ,y|´1{2Wěm,rγn,ξ Ñ |Dξ,x|´1{2|Dξ,y|´1{2Wěm,γ˚,ξ in L8pQ˚
ℓ ;L

2
ξpQℓ ˆQℓqq.

Proof. We will prove the boundedness of the sequences, and then deduce the strong convergence by
the Rellich–Kondrachov Theorem.
Uniform boundedness of Wăm,rγn,ξ in C0,µpQ˚

ℓ ;H
1
ξ pQℓ ˆQℓqq. It is based on Lemma 6.1, particu-

larly (6.2). Recall

W8
ăm,ℓpξ ´ ξ1, x´ yq “ 4π

ℓ3

ÿ

|k|8ăm

kPZ3

1
ˇ̌
2πk
ℓ

´ pξ ´ ξ1q
ˇ̌2 e

ip 2πk
ℓ

´pξ´ξ1qq¨px´yq.

Thus,

}W8
ăm,rγn,η

´W8
ăm,rγn,η1 }H1pQℓˆQℓq

ď4π

ℓ3

ÿ

|k|8ďm´1

kPZ3

›››››

 

Q˚
ℓ

eip 2πk
ℓ

´pη´ξ1qq¨px´yq

ˇ̌
2πk
ℓ

´ pη ´ ξ1q
ˇ̌2 rγn,ξ1dξ1 ´

 

Q˚
ℓ

eip 2πk
ℓ

´pη1´ξ1qq¨px´yq

ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 rγn,ξ1dξ1

›››››
H1pQℓˆQℓq

.

For each term on the right-hand side, we have

›››››

 

Q˚
ℓ

eip 2πk
ℓ

´pη´ξ1qq¨px´yq

ˇ̌
2πk
ℓ

´ pη ´ ξ1q
ˇ̌2 rγn,ξ1dξ1 ´

 

Q˚
ℓ

eip 2πk
ℓ

´pη1´ξ1qq¨px´yq

ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 rγn,ξ1dξ1

›››››
H1pQℓˆQℓq

ď
 

Q˚
ℓ

ˇ̌
ˇ̌
ˇ

1
ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 ´ 1

ˇ̌
2πk
ℓ

´ pη ´ ξ1q
ˇ̌2

ˇ̌
ˇ̌
ˇ
›››eip

2πk
ℓ

´pη´ξ1qq¨px´yqrγn,ξ1

›››
H1

ηpQℓˆQℓq
dξ1

`
›››››

 

Q˚
ℓ

eip 2πk
ℓ

´pη´ξ1qq¨px´yq

ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 rγn,ξ1dξ1 ´

 

Q˚
ℓ

eip 2πk
ℓ

´pη1´ξ1qq¨px´yq

ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 rγn,ξ1dξ1

›››››
H1pQℓˆQℓq

.

As η, ξ1 P Q˚
ℓ , according to (6.2), we get

›››eip 2πk
ℓ

´pη´ξ1qq¨px´yqrγn,ξ1

›››
H1

ηpQℓˆQℓq
ď C }rγn,ξ1 }

H1

ξ1 pQℓˆQℓq ď Cpq `Mqp1 ´ κq´2e2.

By the Hölder continuity of the function η ÞÑ
´

Q˚
ℓ

1
|η´η1|2 dη

1, there is a 0 ă µ ă 1 such that

 

Q˚
ℓ

ˇ̌
ˇ̌
ˇ

1
ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 ´ 1

ˇ̌
2πk
ℓ

´ pη ´ ξ1q
ˇ̌2

ˇ̌
ˇ̌
ˇ
›››eip 2πk

ℓ
´pη´ξ1qq¨px´yqrγn,ξ1

›››
H1

ηpQℓˆQℓq
dξ1

ď Cpq `Mqp1 ´ κq´2e2|η ´ η1|µ.

For the last term, note that |e´iη¨z´e´iη1¨z| ď }∇ηe
iη¨z}L8 |η´η1| ď C|η´η1| and |∇zpe´iη¨z´e´iη1¨zq| ď

C|η ´ η1|. We get

›››››

 

Q˚
ℓ

eip 2πk
ℓ

´pη´ξ1qq¨px´yq

ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 rγn,ξ1dξ1 ´

 

Q˚
ℓ

eip 2πk
ℓ

´pη1´ξ1qq¨px´yq

ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 rγn,ξ1dξ1

›››››
H1pQℓˆQℓq

ď
 

Q˚
ℓ

C|η ´ η1|
ˇ̌
2πk
ℓ

´ pη1 ´ ξ1q
ˇ̌2 }rγn,ξ1 }H1

ξ1 pQℓˆQℓqdξ
1

ď Cpq `Mqp1 ´ κq´2e2|η ´ η1|.

We finally get that there is µ P p0, 1q such that

}Wăm,rγn,ξ}C0,µpQ˚
ℓ
;H1

ξ
pQℓˆQℓqq ď Cpq `Mqp1 ´ κq´2e2.
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Boundedness of Wěm,rγn,ξ in W 1,8pQ˚
ℓ ;L

2pQℓ ˆQℓqq. For β “ 0 or 1,

}∇β
ξWěm,rγn,ξ}L8pQ˚

ℓ
;L2pQ˚

ℓ
ˆQ˚

ℓ
qq ď

 

Q˚
ℓ

}∇β
ξWěm,ℓpξ ´ ξ1qrγn,ξ1 }L8pQ˚

ℓ
;L2

ξ
pQ˚

ℓ
ˆQ˚

ℓ
qqdξ

1.

By Corollary B.2 and Lemma B.3, we know

}∇ξWěm,ℓpξ ´ ξ1, x´ yqrγn,ξ1 }L2pQℓˆQℓq ď C}rγn,ξ1 }H1pQℓˆQℓq,

and
}Wěm,ℓpξ ´ ξ1, x´ yqrγn,ξ1 }L2pQℓˆQℓq ď C}rγn,ξ1 }H1pQℓˆQℓq.

Thus,

}Wěm,rγn,ξ}W 1,8pQ˚
ℓ
;L2pQℓˆQℓqq ď Cpq `Mqp1 ´ κq´2e2.

Convergence. Thanks to Rellich–Kondrachov Theorem and the boundedness of the sequences, these
two sequences converge strongly up to subsequences. Now, we are going to prove that the limits are
the kernels Wăm,γ˚,ξ and Wěm,γ˚,ξ respectively.

It suffices to prove that

Wăm,rγn,ξ
˚á Wăm,γ˚,ξ and Wěm,rγn,ξ

˚á Wěm,γ˚,ξ (6.5)

in L8pQ˚
ℓ ;L

2pQℓ ˆQℓqq.
By Young’s convolution inequality,

}Wăm,g,ξ}S8,1
ď }Wăm,g,ξ}S2,1

“ }Wăm,g,ξ}L1pQ˚
ℓ
;L2pQℓˆQℓqq

ď }Wăm,ℓpξ, x´ yq}L1pQ˚
ℓ
;L8pQℓˆQℓqq}gξ1 px, yq}L1pQ˚

ℓ
;L2pQℓˆQℓqq.

Then by (6.3) and using (6.4), for any gξpx, yq P L1pQ˚
ℓ ;L

2
ξpQℓ ˆQℓqq,

〈gξ, Wăm,rγn,ξ〉 “
 

Q˚
ℓ

TrL2

ξ
rg˚

ξWăm,rγn,ξs dξ “
 

Q˚
ℓ

TrL2

ξ1
rW˚

ăm,g,ξ1rγn,ξ1 s dξ1

Ñ
 

Q˚
ℓ

TrL2

ξ1
rW˚

ăm,g,ξ1γ˚,ξ1 sdξ1 “
〈

gξ,Wăm,γ˚,ξ

〉

.

By Corollary B.2,
}|D0|´1Wěm,g|D0|´1}S8,1

ď }|D0|´1Wěm,g}S2,1

ď
 

Q˚
ℓ

dξ}|Dξ|´1Wěm,ℓpξ ´ ¨qg¨}L1pQ˚
ℓ
;L2

ξ
pQℓˆQℓqq

ď C}gξ1 px, yq}L1pQ˚
ℓ
;L2

ξ1 pQℓˆQℓqq.

Hence,
〈gξ, Wěm,rγn,ξ〉 “ 〈Wěm,g,ξ1 , rγn,ξ1〉

“
 

Q˚
ℓ

TrL2

ξ
r|Dξ1 |´1W˚

ěm,g,ξ1 |Dξ1 |´1|Dξ1 |rγn,ξ1 |Dξ1 |s dξ1

Ñ
 

Q˚
ℓ

TrL2

ξ
rW˚

ěm,g,ξ1γ˚,ξ1 sdξ1 “
〈

gξ,Wěm,γ˚,ξ

〉

.

So we have proved (6.5), hence the lemma.

Lemma 6.5 (Strong convergence of the electron-electron interaction). As n goes to infinity, we have

}|D0|´1{2Vγn´γ˚ |D0|´1{2}Y Ñ 0.

Proof. As Vγ,ξ “ Gℓ ˚ ργ ´Wγ,ξ, we have

}|D0|´1{2Vγn´γ˚ |D0|´1{2}Y
ď }|D0|´1{2Gℓ ˚ pργn

´ ργ˚q|D0|´1{2}Y ` }|D0|´1{2pWγn,ξ ´Wγ˚,ξq|D0|´1{2}Y .
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For the first term in the right hand side, notice that

}Gℓ ˚ pργn
´ ργ˚ q}Y ď }Gℓ ˚ pργn

´ ρrγn
q}Y ` }Gℓ ˚ pρrγn

´ ργ˚ q}Y .
By (4.4), we get

}Gℓ ˚ pργn
´ ρrγn

q}Y ď CH}γn ´ rγn}X Ñ 0.

Notice that, from Lemma 6.3, we infer ρrγn
Ñ ργ˚ in L2pQℓq. This and the fact that Gℓ P L2pQℓq yield

}Gℓ ˚ pρrγn
´ ργ˚q}L8pQℓq Ñ 0.

Thus using |D0|´1 ď 1, we infer

}|D0|´1{2Gℓ ˚ pργn
´ ργ˚ q|D0|´1{2}Y Ñ 0. (6.6)

Similarly, we split the second term into two parts :

}|D0|´1{2pWγn
´Wγ˚ q|D0|´1{2}Y ď }Wγn

´Wrγn
}Y ` }|D0|´1{2pWrγn

´Wγ˚ q|D0|´1{2}Y . (6.7)

Since γn and rγn lie in BR and since }γn ´ rγn}X Ñ 0, we obtain from Eqn. (4.9)

}Wγn
´Wrγn

}Y Ñ 0. (6.8)

We split the second term in (6.7) into two parts. Thus by the duality of the operator |Dξ,y|´1{2, for
the term associated with W8

ěm,ℓ,
››››|Dξ,x|´1{2

ˆ

Qℓ

Wěm,rγn´γ˚,ξpx, yqr|Dξ,y|´1{2ψξpyqsdy
››››
L2

ξ
pQℓq

“
››››
ˆ

Qℓ

”
|Dξ,x|´1{2|Dξ,y|´1{2Wěm,rγn´γ˚,ξpx, yqq

ı
ψξpyqdy

››››
L2

ξ
pQℓq

ď
ˆ

Qℓ

}|Dξ,x|´1{2|Dξ,y|´1{2Wěm,rγn´γ˚,ξp¨, yqq}L2

ξ
pQℓq|ψξpyq|dy

ď }|Dξ,x|´1{2|Dξ,y|´1{2Wěm,rγn´γ˚,ξp¨, ¨qq}L8pQ˚
ℓ
;L2

ξ
pQℓˆQℓqq}ψξ}L2pQℓq.

For the other term, analogously we have
››››|Dξ,x|´1{2

ˆ

Qℓ

Wăm,rγn´γ˚,ξpx, yq|Dξ,y|´1{2ψξpyqdy
››››
L2

ξ
pQℓq

ď
ˆ

Qℓ

}Wăm,rγn´γ˚,ξp¨, yq}L2

ξ
pQℓq||Dξ,y|´1{2ψξpyq|dy

ď }Wăm,rγn´γ˚,ξp¨, ¨q}L8pQ˚
ℓ
;L2

ξ
pQℓˆQℓqq}ψξ}L2pQℓq

Gathering these estimates with Lemma 6.4 we infer

}|D0|´1{2Wrγn´γ˚
|D0|´1{2}Y Ñ 0. (6.9)

Then this lemma follows from (6.6), (6.8) and (6.9).

As a result, we have the following.

Corollary 6.6 (Strong convergence of the spectral projectors). As n goes to infinity, we have

}P`
γ˚

´ P`
γn

}Y Ñ 0.

Proof. By (5.9) and the second resolvent identity, we obtain

}P`
γ˚,ξ ´ P`

γn,ξ
}BpL2

ξ
q ď 1

2π

ˆ `8

´8

}pDγ˚,ξ ´ izq´1Vγn´γ˚,ξpDγn,ξ ´ izq´1}BpL2

ξ
qdz

ď 1

2π
}|D0|´1{2pVγn´γ˚ q|D0|´1{2}Y

ˆ
ˆ `8

´8

}pDγ˚,ξ ´ izq´1|Dξ|1{2}BpL2

ξ
q}|Dξ|1{2pDγn,ξ ´ izq´1}BpL2

ξ
qdz

ď 1

4
p1 ´ κq´1}|D0|´1{2Vγn´γ˚ |D0|´1{2}Y .

The right-hand side goes to 0 by Lemma 6.5.
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6.3 Existence and properties of minimizer of Iďq,R

The existence of minimizers of Iďq,R now follows by passing to the limit in the constraint and in the
energy. The proof is separated into the following two lemmas.

Lemma 6.7. The limit γ˚ lies in Γ`
ďq

Ş
BR.

Proof. As

rγn ˚á γ˚ in X2
8

č
Y,

we get
}γ˚}S1,8 ď lim inf

nÑ8
}rγn}S1,8 ď R, }γ˚}Y ď lim inf

nÑ8
}rγn}Y ď 1

and
}γ˚}X2

8
ď lim inf

nÑ8
}rγn}X2

8
ď pq `Mqp1 ´ κq´2e2.

Thus, γ˚ P T and γ˚ P XŞ
Y
Ş
BR. Besides, as }γn ´ rγn}X Ñ 0 and }ρ1{2

rγn
´ ρ

1{2
γ˚ }L2 Ñ 0, we know

that
 

Q˚
ℓ

TrL2

ξ
γn,ξdξ Ñ

 

Q˚
ℓ

TrL2

ξ
γ˚,ξ dξ ď q.

Then γ˚ P Γďq

Ş
BR.

To end the proof, it remains to show that P`
γ˚,ξγ˚,ξ “ γ˚,ξ, in the sense that for every g P S8,1,

ˆ

Q˚
ℓ

TrL2

ξ
rpP`

γ˚,ξγ˚,ξ ´ γ˚,ξqgξs dξ “ 0.

Notice that
ˇ̌
ˇ̌
ˇ

ˆ

Q˚
ℓ

TrL2

ξ
rpP`

γ˚,ξγ˚,ξ ´ γ˚,ξqgξs dξ
ˇ̌
ˇ̌
ˇ ď

ˇ̌
ˇ̌
ˇ

ˆ

Q˚
ℓ

TrL2

ξ
rpP`

γ˚,ξ ´ P`
γn,ξ

qrγn,ξgξs dξ
ˇ̌
ˇ̌
ˇ

`
ˇ̌
ˇ̌
ˇ

ˆ

Q˚
ℓ

TrL2

ξ
rP`

γ˚,ξpγ˚,ξ ´ rγn,ξqgξs dξ
ˇ̌
ˇ̌
ˇ `

ˇ̌
ˇ̌
ˇ

ˆ

Q˚
ℓ

TrL2

ξ
rprγn,ξ ´ γ˚,ξqgξs dξ

ˇ̌
ˇ̌
ˇ .

(6.10)

As gP`
γ˚

P S8,1, we know that

ˆ

Q˚
ℓ

TrL2

ξ
rP`

γ˚,ξpγ˚,ξ ´ rγn,ξqgξs dξ Ñ 0 and

ˆ

Q˚
ℓ

TrL2

ξ
rprγn,ξ ´ γ˚,ξqgξs dξ Ñ 0.

For the first term in the right-hand side of (6.10), using Corollary 6.6, we have
ˇ̌
ˇ̌
ˇ

ˆ

Q˚
ℓ

TrL2

ξ
rpP`

γ˚,ξ ´ P`
γn,ξ

qrγn,ξgξs dξ
ˇ̌
ˇ̌
ˇ ď }P`

γ˚
´ P`

γn
}Y }rγn}S1,1

}g}Y Ñ 0.

Consequently, letting n go to infinity,
ˇ̌
ˇ̌
ˇ

ˆ

Q˚
ℓ

TrL2

ξ
rpP`

γ˚,ξγ˚,ξ ´ γ˚,ξqgξsdξ
ˇ̌
ˇ̌
ˇ “ 0.

Hence γ˚ P Γ`
ďq. This ends the proof.

Lemma 6.8. The limit γ˚ minimizes Iďq,R.

Proof. For the kinetic energy term, we have
ˆ

Q˚
ℓ

TrL2

ξ
rDξpγn,ξ ´ γ˚,ξqs dξ “

ˆ

Q˚
ℓ

TrL2

ξ
rDξpγn,ξ ´ rγn,ξqs dξ `

ˆ

Q˚
ℓ

TrL2

ξ
rDξprγn,ξ ´ γ˚,ξqs dξ.

By (6.3), we know that
ˆ

Q˚
ℓ

TrL2

ξ
rDξprγn,ξ ´ γ˚,ξqs dξ “

ˆ

Q˚
ℓ

TrL2

ξ
r|Dξ|prγn,ξ ´ γ˚,ξq|Dξ||Dξ|´1Dξ|Dξ|´1s dξ Ñ 0,
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as |D0|´1D0|D0|´1 P S8,1. Since }γn ´ rγn}X Ñ 0, then
´

Q˚
ℓ

TrL2

ξ
rDξpγn,ξ ´ rγn,ξqsdξ Ñ 0. Hence

ˆ

Q˚
ℓ

TrL2

ξ
rDξpγn,ξ ´ γ˚,ξqsdξ Ñ 0.

The proof for the attractive potential is similar:

ˆ

Q˚
ℓ

TrL2

ξ
pGℓpγn,ξ ´ γ˚,ξqq dξ “

ˆ

Q˚
ℓ

TrL2

ξ
pGℓpγn,ξ ´ rγn,ξqq dξ `

ˆ

Q˚
ℓ

TrL2

ξ
pGℓprγn,ξ ´ γ˚,ξqq dξ

and ˇ̌
ˇ̌
ˇ

ˆ

Q˚
ℓ

TrL2

ξ
pGℓpγn,ξ ´ rγn,ξqq dξ

ˇ̌
ˇ̌
ˇ ď CH}γn ´ rγ}X Ñ 0.

As }|D0|´1Gℓ|D0|´1}S8,1
ď CG}|D0|´1}S8,1

ă `8, we know that |D0|´1Gℓ|D0|´1 P S8,1 and

ˆ

Q˚
ℓ

TrL2

ξ
rGℓprγn,ξ ´ γ˚,ξqsdξ “

ˆ

Q˚
ℓ

TrL2

ξ
r|Dξ|prγn,ξ ´ γ˚,ξq|Dξ||Dξ|´1Gℓ|Dξ|´1s dξ Ñ 0.

For the repulsive potential, according to Lemma 6.5, we have

ˇ̌
ˇĂTrL2pVγn

γn ´ Vγ˚γ˚q
ˇ̌
ˇ “

ˇ̌
ˇĂTrL2pVγn´γ˚γn ` Vγn´γ˚γ˚q

ˇ̌
ˇ

ď }|D0|´1{2Vγn´γ˚ |D0|´1{2}Y p}γn}X ` }γ˚}Xq Ñ 0.

The lemma follows.

We now know that γ˚ is a minimizer of Iďq,R under the condition γ˚ P Γ`
ďq

Ş
BR. Applying

Proposition 5.1, we get

ˆ

Q˚
ℓ

TrL2

ξ

“
pDγ˚,ξ ´ ǫP qγ˚,ξ

‰
dξ “ inf

γPΓďq

γ“P`
γ˚

γ

ˆ

Q˚
ℓ

TrL2

ξ

“
pDγ˚,ξ ´ ǫP qγξ

‰
dξ.

Then, with ǫP ą p1 ´ κq´1c˚pq ` 1q, by Lemma 4.12, we get γ˚ “
ffl ‘

Q˚
ℓ

1r0,νqpDγ˚,ξqdξ ` δ with

some 0 ď δ ď
ffl ‘

Q˚
ℓ

1νpDγ˚,ξqdξ for ν P p0, p1 ´ κq´1c˚pq ` 1qs independently of ǫP . Furthermore,

ĂTrL2pγ˚q “ q. Besides, if R ą R0, any minimizer γ˚ in Γ`
ďq

Ş
BR lies in BR0

. This proves Proposition
3.4.
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A Proof of Lemma 4.1

It suffices to prove (4.2). By interpolation, we can choose CH “ CG.
To deal with (4.2), the idea is to decompose the potential Gℓ on Qℓ into two parts, namely 1

|x| and

Gℓ ´ 1
|x| . The first term can be treated as the Hardy inequality on Qℓ, whereas the second is bounded.

We begin with the second term and prove the following.
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Lemma A.1. There is a constant C0 ą 0 independent of ℓ such that

sup
xPQℓ

ˇ̌
ˇ̌Gℓpxq ´ 1

|x|

ˇ̌
ˇ̌ ď C0

ℓ
.

This implies that, for any x P R3,

Gℓpxq ě ´C0

ℓ
. (A.1)

In particular, we have

C0 ď inf
0ăRă 1

2

¨
˚̋ 3

2R
` 2πR2

5
` 3

4π2R3
min

#ˆ
4π R3

3

˙1{2

,

ˆ
1 ´ 4π R3

3

˙1{2
+¨
˝ ÿ

kPZ3zt0u

1

|k|4

˛
‚
1{2

˛
‹‚.

Proof. As G1pxq “ ℓGℓpℓxq, it suffices to consider the case ℓ “ 1. Let fpxq “ G1pxq ´ 1
|x| . Eqn. (2.1)

yields
´∆f “ 4πp´1 `

ÿ

kPZ3zt0u

δkq.

Let Bpz,Rq be a ball of center z and radius R chosen such that p
Ť

zPQ1
Bpz,Rqq

Ş
pZ3zt0uq “ H.

Obviously, we can assume 0 ă R ă 1{2. By the divergence theorem, for 0 ď r ď R and z P Q1 we
obtain

d

dr

¨
˚̋ 1

4πr2

ˆ

BBpz,rq

fpsq ds

˛
‹‚“ 1

4π

d

dr

ˆ

S2

fpz ` rωqdω “ 1

4πr2

ˆ

BBpz,rq

Bfpsq
Bn ds “ 1

4πr2

ˆ

Bpz,rq

∆xfpxq dx

(A.2)

with S2 denoting the unit sphere. On the one hand, for any z P Q1,

1

4πr2

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,rq

∆xf dx

ˇ̌
ˇ̌
ˇ “ 1

r2

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,rq

1 dx

ˇ̌
ˇ̌
ˇ ď 4π

3
r.

where the first equation holds since

p
ď

zPQ1

Bpz, rqq
č

tk P Z
3|k ‰ 0u “ H, for 0 ď r ď R.

Therefore, integrating (A.2) with respect to r,

´8π2

3
r2 ď

ˆ

S2

fpz ` rωq dω ´ 4π fpzq ď 8 π2

3
r2.

Since
´

Bpz,Rq fpxq dx “
´ R

0
r2

`´
S2
fpz ` rωq dω

˘
dr, integration over r0, Rs leads to

|fpzq| ď 3

4πR3

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

fpxq dx
ˇ̌
ˇ̌
ˇ ` 2πR2

5
ď 3

4πR3

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

G1pxq dx
ˇ̌
ˇ̌
ˇ ` 3

4πR3

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

1

|x| dx
ˇ̌
ˇ̌
ˇ ` 2πR2

5
.

On the other hand,

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

G1pxq dx
ˇ̌
ˇ̌
ˇ ď |Bpz,Rq|1{2}G1}L2pBpz,Rqq ď

ˆ
4π R3

3

˙1{2

}G1}L2pQ1q “ 1

π

¨
˝4π R3

3

ÿ

kPZ3zt0u

1

|k|4

˛
‚
1{2

.

Using (2.2) and by the periodicity of G1, we also have

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

G1pxq dx
ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ

ˆ

pz`Q1qzBpz,Rq

G1pxq dx
ˇ̌
ˇ̌
ˇ ď 1

π

ˆ
1 ´ 4π R3

3

˙1{2
¨
˝ ÿ

kPZ3zt0u

1

|k|4

˛
‚
1{2

.
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Thus,
ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

G1pxq dx
ˇ̌
ˇ̌
ˇ ď 1

π
min

#ˆ
4πR3

3

˙1{2

,

ˆ
1 ´ 4πR3

3

˙1{2
+¨
˝ ÿ

kPZ3zt0u

1

|k|4

˛
‚
1{2

.

Furthermore,
ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

1

|x| dx
ˇ̌
ˇ̌
ˇ ď

ˆ

Bp0,Rq

1

|x| dx “ 2πR2.

Therefore, the bound holds for ℓ “ 1 and any 0 ă R ă 1
2

with

C0 ď 3

2R
` 2πR2

5
` 3

4π2R3
min

#ˆ
4π R3

3

˙1{2

,

ˆ
1 ´ 4π R3

3

˙1{2
+¨
˝ ÿ

kPZ3zt0u

1

|k|4

˛
‚
1{2

.

We now consider the Hardy inequality on Qℓ for the potential 1
|x| .

Lemma A.2. Let u P H1pQℓq, then
››››
u

|x|

››››
2

L2pQℓq

ď 4ℓ` 24

ℓ
}∇u}2L2pQℓq ` 48 ` 24ℓ

ℓ2
}u}2L2pQℓq.

Proof. We start with the relationship:

0 ď
ˆ

Qℓ

ˇ̌
ˇ̌∇u ` xu

2|x|2
ˇ̌
ˇ̌
2

dx.

Thus,

0 ď
ˆ

Qℓ

|∇u|2 dx` 1

4

ˆ

Qℓ

|u|2
|x|2 dx` 1

2

ˆ

Qℓ

∇|u|2 ¨ x
|x|2 dx.

By the divergence theorem for
´

Qℓ
∇ ¨ p |u|2x

|x|2 q dx, we obtain

ˆ

Qℓ

∇|u|2 ¨ x
|x|2 dx “

ˆ

BQℓ

~nx |u|2
|x|2 dx´

ˆ

Qℓ

|u|2
|x|2 dx.

where ~n is the outward pointing unit normal at each point on the boundary BQℓ. To end this proof,

it suffices to estimate
´

BQℓ

~nx|u|2

|x|2 .

Let

A2,3px1q “
ˆ

p´ ℓ
2
, ℓ
2

s2
|u|2px1, x2, x3qdx2dx3.

As |~n ¨ x| “ ℓ
2

and |x| ě ℓ
2

for any x P BQℓ, we have

ˇ̌
ˇ̌
ˇ̌
ˆ

BQℓ

~nx|u|2
|x|2

ˇ̌
ˇ̌
ˇ̌ dx ď 2

ℓ

ˆ

BQℓ

|u|2 dx “ 2

ℓ

ˆ
A2,3p´ ℓ

2
q `A2,3p ℓ

2
q `A1,3p´ ℓ

2
q `A1,3p ℓ

2
q `A1,2p´ ℓ

2
q `A1,2p ℓ

2
q
˙
.

(A.3)

Let x
p0q
1 P p´ ℓ

2
, ℓ
2

s such that

A2,3pxp0q
1 q ď

 

p´ ℓ
2
, ℓ
2

s

A2,3px1q dx1 “ 1

ℓ

ˆ

p´ ℓ
2
, ℓ
2

s

A2,3px1q dx1 “ 1

ℓ

ˆ

Qℓ

|u|2 dx.

Then we have

A2,3p´ ℓ

2
q `A2,3p ℓ

2
q “

«
ˆ

ℓ
2

x
p0q
1

´
ˆ x

p0q
1

´ ℓ
2

ff
d

dx1
A2,3dx1 ` 2A2,3pxp0q

1 q ď 2A2,3pxp0q
1 q `

ˆ

p´ ℓ
2
, ℓ
2

s

ˇ̌
ˇ̌ d
dx1

A2,3

ˇ̌
ˇ̌ dx1.
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As
ˆ

p´ ℓ
2
, ℓ
2

s

ˇ̌
ˇ̌ d
dx1

A2,3px1q
ˇ̌
ˇ̌ dx1 ď 2

ˆ

Qℓ

|u|
ˇ̌
ˇ̌ B
Bx1

u

ˇ̌
ˇ̌ ď 2}u}L2pQℓq}∇u}L2pQℓq,

we get

A2,3p´ ℓ

2
q `A2,3p ℓ

2
q ď 2

ℓ
}u}2L2pQℓq ` 2}u}L2pQℓq}∇u}L2pQℓq.

Inserting this into (A.3), we can conclude

0 ď }∇u}2L2pQℓq ´ 1

4

››››
u

|x|

››››
2

L2pQℓq

` 6

ℓ2
}u}2L2pQℓq ` 6

ℓ
}u}L2pQℓq}∇u}L2pQℓq.

As a result, by the Cauchy-Schwarz inequality

››››
u

|x|

››››
2

L2pQℓq

ď 4ℓ` 12

ℓ
}∇u}2L2pQℓq ` 24 ` 12ℓ

ℓ2
}u}2L2pQℓq.

Combining Lemma A.1 and A.2, we obtain

CG :“ 2

ˆ
1 ` C0

ℓ

˙
max

#c
1 ` 3

ℓ
,

c
3

ℓ
` 6

ℓ2

+
. (A.4)

We now turn to the estimates on Wγ,ξ.

B Proof of Lemma 4.5

We first study the property of W8
ℓ , then we prove Lemma 4.5.

Properties of W8
ℓ

Recall that W8
ℓ pη, xq “ Wěm,ℓpη, xq `Wăm,ℓpη, xq is given by (4.7). We are going to prove the Hardy

type inequalities for Wěm,ℓ. A natural idea is to compare it with the potential Gℓ.

Proposition B.1 (Singularities for the potential Wěm,ℓ). For every m ě 2, there exists a positive
constant Cěm such that, for any ℓ ą 0, we have

sup
ηP2Q˚

ℓ

xPQℓ

ˇ̌
ˇWěm,ℓpη, xq ´Gℓpxq

ˇ̌
ˇ ď Cěm

ℓ
(B.1)

with

Cěm ď inf
0ăRă1{2

$
’&
’%

?
3

2pπRq3{2

m2 ` 2

pm ´ 1q2

¨
˝ ÿ

|k|8ěm

1

|k|4

˛
‚
1{2

` 2πrp2m´ 1q3 ` 1sR2

5

` 3

4π2R3
min

#ˆ
4π R3

3

˙1{2

,

ˆ
1 ´ 4π R3

3

˙1{2
+¨
˝ ÿ

kPZ3zt0u

1

|k|4

˛
‚
1{2

,
/.
/-
.

Proof. The proof is similar to Lemma A.1. Notice that

W8
ℓ pη, xq “ λW8

λℓ

´ η
λ
, λx

¯
, η P R

3, x P R
3.

We therefore take ℓ “ 1. Observe, from (2.17), that

´∆zW
8
1 pη, xq “ 4π

ÿ

kPZ3

e´iη¨kδkpxq.
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Let fpη, xq “ Wěm,1pη, xq ´G1pxq. Then

´∆xfpη, xq “ 4π
ÿ

k‰0

kPZ3

pe´iη¨k ´ 1qδkpxq ` 4π ´ 4π
ÿ

|k|8ăm

kPZ3

eip2πk´ηq¨x.

Let Bpz,Rq be a ball of center z and radius R chosen such that pŤzPQ1
Bpz,RqqŞtk P Z3|k ‰ 0u “ H.

Obviously, we can assume 0 ă R ă 1{2. Analogous to (A.2), for 0 ď r ď R and z P Q1 we obtain

d

dr

˜
1

4πr2

ˆ

BBpz,rq

fpη, sq ds
¸

“ 1

4πr2

ˆ

Bpz,rq

∆xfpη, xq dx. (B.2)

On the one hand, for any z P Q1,

1

4πr2

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,rq

∆xf dx

ˇ̌
ˇ̌
ˇ “ 1

r2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ˆ

Bpz,rq

´
1 ´

ÿ

kPZ3

|k|8ďm´1

eip2πk´ηq¨x
¯
dx

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ď 4πrp2m´ 1q3 ` 1s
3

r,

where the first equality holds since

p
ď

zPQ1

Bpz, rqq
č

tk P Z
3|k ‰ 0u “ H, for 0 ď r ď R.

Therefore, integrating (B.2) with respect to r,

´8 π2 rp2m´ 1q3 ` 1s
3

r2 ď
ˆ

S2

fpη, z ` rωq dω ´ 4π fpη, zq ď 8 π2 rp2m´ 1q3 ` 1s
3

r2.

Then integration over r0, Rs leads to

|fpη, zq| ď 3

4πR3

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

fpη, xq dx
ˇ̌
ˇ̌
ˇ ` 2πrp2m´ 1q3 ` 1sR2

5
.

On the other hand,

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

G1pxq dx
ˇ̌
ˇ̌
ˇ ď 1

π
min

#ˆ
4πR3

3

˙1{2

,

ˆ
1 ´ 4πR3

3

˙1{2
+¨
˝ ÿ

kPZ3zt0u

1

|k|4

˛
‚
1{2

.

Furthermore, according to the quasi-periodicity of Wěm,1 with respect to z P R3, for any η P 2Q˚
1 ,

ˇ̌
ˇ̌
ˇ

ˆ

Bpz,Rq

Wěm,1pη, xq dx
ˇ̌
ˇ̌
ˇ ď |Bpz,Rq|1{2}Wěm,1}L2pBpz,Rqq ď

ˆ
4π R3

3

˙1{2

}Wěm,1}L2pQ1q

ď 4π

ˆ
4πR3

3

˙1{2
¨
˝ ÿ

|k|8ěm

1

|2πk ´ η|4

˛
‚
1{2

ď 4π

ˆ
4πR3

3

˙1{2

sup
|k|8ěm

ηP2Q˚
1

|2πk|2
|2πk ´ η|2

¨
˝ ÿ

|k|8ěm

1

|2πk|4

˛
‚
1{2

“
ˆ
4π R3

3

˙1{2
m2 ` 2

πpm ´ 1q2

¨
˝ ÿ

|k|8ěm

1

|k|4

˛
‚
1{2

.

Therefore, the bound (B.1) holds for ℓ “ 1 with

Cěm ď
?
3

2pπRq3{2

m2 ` 2

pm ´ 1q2

¨
˝ ÿ

|k|8ěm

1

|k|4

˛
‚
1{2

` 2πrp2m´ 1q3 ` 1sR2

5
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` 3

4π2R3
min

#ˆ
4π R3

3

˙1{2

,

ˆ
1 ´ 4π R3

3

˙1{2
+¨
˝ ÿ

kPZ3zt0u

1

|k|4

˛
‚
1{2

,

for any 0 ă R ă 1
2
. The corresponding result for any ℓ ą 0 follows immediately by a scaling argument.

We can immediately conclude from Lemma 4.1 and Proposition B.1 the following.

Corollary B.2 (Hardy-type inequalities for the potential Wěm,ℓ). For m ě 2, we have

}|Wěm,ℓ|1{2|Dξ|´1{2}L8p2Q˚
ℓ
;BpL2

ξ
qq ď

ˆ
CH ` Cěm

ℓ

˙
(B.3)

and

}Wěm,ℓ|Dξ|´1}L8p2Q˚
ℓ
;BpL2

ξ
qq ď

ˆ
CG ` Cěm

ℓ

˙
. (B.4)

We also have the following estimate on W8
ℓ .

Lemma B.3. Let m ě 2. There is a constant C “ Cpℓ,mq such that

sup
ηP2Q˚

ℓ

}∇ηWěm,ℓpη, ¨q}L8pQℓq ď C. (B.5)

Proof. Take ℓ “ 1 for simplicity. Notice that

´∆x∇ηWěm,1pη, xq “ ´4π
ÿ

kPZ3zt0u

ike´iη¨kδkpxq ` 4π
ÿ

|k|8ăm

kPZ3

ixeip2πk´ηq¨x,

from which we obtain
|∆x∇ηWěm,1pη, xq| ď C

for any η P 2Q˚
ℓ and x P Qℓ. Following the proof of Lemma B.1, we know

|∇ηWěm,1pη, xq| ď C.

The corresponding result for any ℓ ą 0 follows immediately by a scaling argument as for Lemma
B.1.

Estimates for the exchange term

We consider now the exchange term. Let ψξ P H1{2
ξ . As

}Wγ,ξψξ}L2

ξ
“ sup

φξPL2

ξ
, }φξ}

L2
ξ

“1

|pφξ,Wγ,ξψξq|, (B.6)

we only need to study the inner product pWγ,ξψξ, φξq. For m ě 2, ξ, ξ1 P Q˚
ℓ and x, y P Qℓ,

W8
ℓ

´
ξ ´ ξ1, x´ y

¯
“ Wěm,ℓ

´
ξ ´ ξ1, x´ y

¯
`Wăm,ℓ

´
ξ ´ ξ1, x´ y

¯
. (B.7)

For the term that carries all singularities in the x variable (i.e., Wěm,ℓ), we use the decomposition
(2.10) and Corollary B.2. As γ P XŞ

Y , for any ξ P Q˚
ℓ we have

|Dξ|1{2γξ|Dξ|1{2 “
ÿ

ně1

λnpξq |vnpξ, ¨qy xvnpξ, ¨q| (B.8)

with pvnpξ, ¨q, vmpξ, ¨qqL2

ξ
“ δm,n and }γ}X “

ffl

Q˚
ℓ

ř
ně1 |λnpξq|dξ. Hence

γξ “
ÿ

ně1

λnpξq |unpξ, ¨q 〉〈unpξ, ¨q|
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with unpξ, ¨q “ |Dξ|´1{2vnpξ, ¨q. Now, we have
ˇ̌
ˇ̌
ˇ

 

Q˚
ℓ

dξ1

ˆ

QℓˆQℓ

Wěm,ℓpξ ´ ξ1, x´ yqφ˚
ξ pxqγξ1 px, yqψξpyq dxdy

ˇ̌
ˇ̌
ˇ

ď
 

Q˚
ℓ

dξ1
ÿ

ně1

|λnpξq|
ˆ

QℓˆQℓ

|Wěm,ℓpξ ´ ξ1, x´ yq| |unpξ1, xq||unpξ1, yq| |ψξpyq| |φ˚
ξ pxq| dxdy

ď
 

Q˚
ℓ

dξ1
ÿ

ně1

|λnpξq|
ˆ
ˆ

Qℓ

|ψξpyq|2 dy
ˆ

Qℓ

|Wěm,ℓpξ ´ ξ1, x´ yq| |unpξ1, xq|2 dx
˙1{2

ˆ
ˆ
ˆ

Qℓ

|φ˚
ξ pxq|2 dx

ˆ

Qℓ

|Wěm,ℓpξ ´ ξ1, x´ yq| |unpξ1, yq|2 dy
˙1{2

ď
˜
 

Q˚
ℓ

ˆ
CH ` Cěm

ℓ

˙ ÿ

ně1

|λnpξq| }|Dξ|1{2unpξ1, ¨q}2L2pξ1q dξ
1

¸
}ψξ}L2

ξ
}φξ}L2

ξ

ď
ˆ
CH ` Cěm

ℓ

˙
}γ}X }ψξ}L2

ξ
}φξ}L2

ξ
. (B.9)

Using the Cauchy-Schwarz inequality, we can also argue as follows:
ˇ̌
ˇ̌
ˇ̌
ˇ

 

Q˚
ℓ

dξ1

¨

QℓˆQℓ

Wěm,ℓ

´
ξ ´ ξ1, x´ y

¯
φ˚
ξ pxqγξ1 px, yqψξpyqdxdy

ˇ̌
ˇ̌
ˇ̌
ˇ

ď
 

Q˚
ℓ

¨
˝

¨

QℓˆQℓ

ργξ1 pyq |φ˚
ξ pxq|2 dxdy

˛
‚
1{2¨

˝
¨

QℓˆQℓ

ργξ1 pxq
ˇ̌
ˇWěm,ℓ

`
ξ ´ ξ1, x´ y

˘ˇ̌
ˇ
2

|ψξpyq|2 dxdy

˛
‚
1{2

dξ1

ď
ˆ
CG ` Cěm

ℓ

˙
}γ}S1,1

}|Dξ|ψξ}L2

ξ
}φξ}L2

ξ
. (B.10)

We now study the contribution of the term involving Wăm,ℓ, that carries the singularities in the η
variable. We first observe that

γξ1` 2kπ
ℓ

px, yq “ e
2ikπ

ℓ
¨px´yq γξ1 px, yq for every ξ1 P Q˚

ℓ , k P Z
3 and x, y P R

3.

In particular, ργ
ξ1` 2kπ

ℓ

“ ργξ1 for every ξ1 P Q˚
ℓ and k P Z3, and the function of ξ ÞÑ TrL2

ξ
pγξq is

Q˚
ℓ -periodic. Next, we write

ˇ̌
ˇ̌
ˇ̌
ˇ̌

 

Q˚
ℓ

dξ1

¨

QℓˆQℓ

4π

ℓ3

ÿ

kPZ3

|k|8ďm´1

e´i

`
ξ1´ξ´ 2πk

ℓ

˘
¨px´yq

ˇ̌
ξ1 ´ ξ ´ 2πk

ℓ

ˇ̌2 φ˚
ξ pxq γξ1 px, yqψξpyq dxdy

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ď 4π

ℓ3

ÿ

kPZ3

|k|8ďm´1

 

Q˚
ℓ

` 2kπ
ℓ

dξ1

ˇ̌
ξ1 ´ ξ

ˇ̌2
¨

QℓˆQℓ

ρ
1{2
|γξ1 |pxq ρ1{2

|γξ1 |pyq |ψξpyq| |φ˚
ξ pxq| dxdy

“ 1

2π2

ˆ

p2m´1qQ˚
ℓ

dξ1

ˇ̌
ξ1 ´ ξ

ˇ̌2
¨

QℓˆQℓ

ρ
1{2
|γξ1 |pxq ρ1{2

|γξ1 |pyq |ψξpyq| |φ˚
ξ pxq| dxdy

ď 1

2π2

ˆ

p2m´1qQ˚
ℓ

}γξ1 }S1pξ1qˇ̌
ξ1 ´ ξ

ˇ̌2 dξ1 }ψξ}L2

ξ
}φξ}L2

ξ
, (B.11)

where the last estimate follows from the Cauchy-Schwarz inequality. Here and below we use the fact
that

ÿ

kPZ3

|k|8ďm´1

 

Q˚
ℓ

f
`
ξ1 ´ 2πk

ℓ

˘
dξ1 “

ÿ

kPZ3

|k|8ďm´1

 

2πk
ℓ

`Q˚
ℓ

fpξ1q dξ1 “ ℓ3

p2πq3
ˆ

p2m´1qQ˚
ℓ

fpξ1q dξ1,
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since pQ˚
ℓ ` 2πk{ℓqŞpQ˚

ℓ ` 2πk1{ℓq “ H whenever k, k1 P Z3 with k ‰ k1. We focus on the quantity
inside the brackets in the last inequality. By Hölder’s inequality, for γ P S1,8 and some constant
C 1

ďm,ℓ, we obtain

ˆ

p2m´1qQ˚
ℓ

}γξ1 }S1pξ1qˇ̌
ξ1 ´ ξ

ˇ̌2 dξ1 ď
˜
ˆ

p2m´1qQ˚
ℓ

dξ1

ˇ̌
ξ1 ´ ξ

ˇ̌8{3

¸3{4 ˜
ˆ

p2m´1qQ˚
ℓ

}γξ1 }4
S1pξ1q dξ

1

¸1{4

ď C 1
ďm,ℓ}γ}3{4

S1,8
}γ}1{4

S1,1
. (B.12)

Alternatively, by using the fact that the γξ’s are bounded operators on L2
ξ uniformly on ξ P Q˚

ℓ ,

ˇ̌
ˇ̌
ˇ̌
ˇ̌

 

Q˚
ℓ

¨

QℓˆQℓ

4π

ℓ3

ÿ

kPZ3

|k|8ďm´1

e´i

`
ξ1´ξ´ 2πk

ℓ

˘
¨px´yq

ˇ̌
ξ1 ´ ξ ´ 2πk

ℓ

ˇ̌2 φ˚
ξ pxq γξ1 px, yqψξpyq dxdydξ1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ď 4π

ℓ3

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ÿ

kPZ3

|k|8ďm´1

 

Q˚
ℓ

` 2kπ
ℓ

¨

QℓˆQℓ

e´ipξ1´ξq¨px´yq

ˇ̌
ξ1 ´ ξ

ˇ̌2 φ˚
ξ pxq γξ1 px, yqψξpyq dxdydξ1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ď 4π

ℓ3

ÿ

kPZ3

|k|8ďm´1

 

Q˚
ℓ

` 2kπ
ℓ

dξ1

ˇ̌
ξ1 ´ ξ

ˇ̌2
ˇ̌
ˇ
´
eipξ

1´ξq¨p¨qφξp¨q, γξ1eipξ
1´ξq¨p¨qψξp¨q

¯
L2

ˇ̌
ˇ

ď Cďm,ℓ ess sup
ξ1PQ˚

ℓ

}γξ1 }BpL2

ξ1 q }ψξ}L2

ξ
}φξ}L2

ξ

“ Cďm,ℓ }γ}Y }ψξ}L2

ξ
}φξ}L2

ξ
(B.13)

with

Cďm,ℓ “ 4π

ℓ3
sup

ξPQ˚
ℓ

ÿ

kPZ3

|k|8ďpm´1q

 

Q˚
ℓ

` 2kπ
ℓ

dξ1

|ξ1 ´ ξ|2 “ p2m´ 1q
2πℓ

ˆ

r´1,1q3

dξ1

|ξ1|2 . (B.14)

Since }γ}S1,1
ď }γ}X and |D0|´1{2 ď 1, the statement of the lemma follows: from (B.9) and (B.13), we

obtain (4.8); from (B.9) and (B.12), we obtain (4.9); from (B.10) and (B.13), we obtain (4.10). More
precisely,

CW “ CH ` Cℓ, C 1
W “ CG ` Cℓ, C2

W “ CH ` C 1
ℓ, (B.15)

with

Cℓ :“ inf
mPN
mě2

ˆ
Cěm

ℓ
` Cďm,ℓ

˙
, C 1

ℓ :“ inf
mPN
mě2

ˆ
Cěm

ℓ
` C 1

ďm,ℓ

˙
. (B.16)

C Proof of Lemma 4.7

Analogous to (B.6), we have

}Vγ,ξψξ}L2

ξ
“ sup

φξPL2

ξ
, }φξ}

L2
ξ

“1

|pφξ, Vγ,ξψξq|. (C.1)

We can rewrite as W8
ℓ “ W8

ăm,ℓ `Gℓ ` pW8
ěm,ℓ ´Gℓq. According to Proposition B.1 and (B.13), the

terms associated to W8
ăm,ℓ and pW8

ěm,ℓ ´Gℓq are easily bounded. So the aim of this section is to get
a better estimate on the following term :

¨

QℓˆQℓ

Gℓpx´ yqργpyqφ˚
ξ pxqψξpxq dxdy ´

 

Q˚
ℓ

dξ1

¨

QℓˆQℓ

Gℓpx´ yqφ˚
ξ pxqγξ1 px, yqψξpyq dxdy.
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From now on, for any function f P L2pQℓ,C
4q, we denote f :“ pfαq1ďαď4. We use the decomposi-

tion (2.10) for γ P S1,1

Ş
Y . Then as Gpxq “ Gp´xq, for almost every ξ P Q˚

ℓ ,

¨

QℓˆQℓ

Gℓpx´ yq
”
ργξ1 pyqφ˚

ξ pxqψξpxq ´ φ˚
ξ pxqγξ1 px, yqψξpyq

ı
dxdy

“
ÿ

ně1

λnpξ1q
¨

QℓˆQℓ

Gℓpx ´ yq
´

|unpξ1, yq|2φ˚
ξ pxqψξpxq ´ φ˚

ξ pxqunpξ1, xqu˚
npξ1, yqψξpyq

¯
dxdy

“ 1

2

ÿ

ně1

ÿ

1ďα,βď4

λnpξ1q
¨

QℓˆQℓ

Gℓpx´ yq
´
uαnpξ1, yqφβξ pxq ´ φαξ pyquβnpξ1, xq

¯˚

ˆ
´
uαnpξ1, yqψβ

ξ pxq ´ ψα
ξ pyquβnpξ1, xq

¯
dxdy. (C.2)

Estimate for (4.12). By Lemma A.1, we have

ˇ̌
ˇ̌
ˇ̌

ÿ

1ďα,βď4

¨

QℓˆQℓ

Gℓpx´ yq
´
uαnpξ1, yqφβξ pxq ´ φαξ pyquβnpξ1, xq

¯˚ ´
uαnpξ1, yqψβ

ξ pxq ´ ψα
ξ pyquβnpξ1, xq

¯
dxdy

ˇ̌
ˇ̌
ˇ̌

ď
˜

ÿ

1ďα,βď4

¨

QℓˆQℓ

|Gℓpx ´ yq|2
ˇ̌
ˇuαnpξ1, yqψβ

ξ pxq ´ uβnpξ1, xqψα
ξ pyq

ˇ̌
ˇ
2

dxdy

¸1{2

ˆ
˜

ÿ

1ďα,βď4

¨

QℓˆQℓ

ˇ̌
ˇuαnpξ1, yqφβξ pxq ´ uβnpξ1, xqφαξ pyq

ˇ̌
ˇ
2

dxdy

¸1{2

. (C.3)

Thus according to the Cauchy-Schwarz inequality, we have

ÿ

1ďα,βď4

ˇ̌
ˇ̌
ˇ̌
¨

QℓˆQℓ

Gℓpx´ yq
´
uαnpξ1, yqφβξ pxq ´ φαξ pyquβnpξ1, xq

¯˚ ´
uαnpξ1, yqψβ

ξ pxq ´ ψα
ξ pyquβnpξ1, xq

¯
dxdy

ˇ̌
ˇ̌
ˇ̌

ď 2

¨
˝ ÿ

1ďα,βď4

¨

QℓˆQℓ

|Gℓpx ´ yq|2|unpξ1, yq|2|ψξpxq|2dxdy

˛
‚
1{2̈

˝
¨

QℓˆQℓ

|u˚
npξ1, yq|2|φ˚

ξ pxq|2dxdy

˛
‚
1{2

ď 2CG}φξ}L2

ξ
}|Dξ|ψξ}L2

ξ
.

Substituting this inequality into (C.2) and using the decomposition (2.11), we get

ˇ̌
ˇ̌
¨

QℓˆQℓ

Gℓpx´ yq
´
ργξ1 pyqφ˚

ξ pxqψξpxq ´ φ˚
ξ pxqγξ1 px, yqψξpyq

¯
dxdy

ˇ̌
ˇ̌

ď CG

ÿ

ně1

|λnpξ1q|}φξ}L2

ξ
}|Dξ|ψξ}L2

ξ
“ CG}γξ1 }S1pξ1q}φξ}L2

ξ
}|Dξ|ψξ}L2

ξ
,

from which we get

ˇ̌
ˇ̌
ˇ

¨

QℓˆQℓ

Gℓpx´ yqργpyqφ˚
ξ pxqψξpxq dxdy ´

 

Q˚
ℓ

dξ1

¨

QℓˆQℓ

Gℓpx´ yqφ˚
ξ pxqγξ1 px, yqψξpyq dxdy

ˇ̌
ˇ̌
ˇ

ď CG}γ}S1,1
}φξ}L2

ξ
}|Dξ|ψξ}L2

ξ
.

(C.4)
Combining (C.4) with Proposition B.1 and (B.13), we get for any φξ P L2

ξ and ψξ P H1
ξ ,

|pφξ, Vγ,ξψξq| ď pCG ` Cℓq}γ}S1,1

Ş
Y }φξ}L2

ξ
}|Dξ|ψξ}L2

ξ
,

hence (4.12) with
C 1

EE :“ CG ` Cℓ (C.5)

with Cℓ given in (B.16).
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Estimate for (4.11). As γ P XŞ
Y , we use the decomposition (B.8) for γξ. Analogous to (C.3),

we also have
ˇ̌
ˇ̌
ˇ̌

ÿ

1ďα,βď4

¨

QℓˆQℓ

Gℓpx´ yq
´
uαnpξ1, yqφβξ pxq ´ φαξ pyquβnpξ1, xq

¯˚ ´
uαnpξ1, yqψβ

ξ pxq ´ ψα
ξ pyquβnpξ1, xq

¯
dxdy

ˇ̌
ˇ̌
ˇ̌

ď 2

¨
˝

¨

QℓˆQℓ

|Gℓpx´ yq||unpξ1, yq|2|ψξpxq|2dxdy

˛
‚
1{2̈

˝
¨

QℓˆQℓ

|Gℓpx´ yq||u˚
npξ1, yq|2|φ˚

ξ pxq|2dxdy

˛
‚
1{2

from which by the decomposition (B.8) we get

ˇ̌
ˇ̌
ˇ

¨

QℓˆQℓ

Gℓpx´ yqργpyqφ˚
ξ pxqψξpxqdxdy ´

 

Q˚
ℓ

dξ1

¨

QℓˆQℓ

Gℓpx´ yqφ˚
ξ pxqγξ1 px, yqψξpyq dxdy

ˇ̌
ˇ̌
ˇ

ď
˜
 

Qξ1

dξ1
ÿ

ně1

|λnpξ1q|
¨

QℓˆQℓ

|Gℓpx´ yq||unpξ1, yq|2|ψξpxq|2dxdy
¸1{2

ˆ
˜
 

Qξ1

dξ1
ÿ

ně1

|λnpξ1q|
¨

QℓˆQℓ

|Gℓpx´ yq||unpξ1, yq|2|φ˚
ξ pxq|2dxdy

¸1{2

ď CH}γ}X}φξ}L2

ξ
}ψξ}L2

ξ
(C.6)

where the last inequality holds by using Lemma 4.1.
Combining (C.6) with Proposition B.1 and estimate (B.13), we get for any φξ P L2

ξ and ψξ P H1
ξ ,

|pφξ, Vγ,ξψξq| ď pCH ` Cℓq}γ}XŞ
Y }φξ}L2

ξ
}|Dξ|ψξ}L2

ξ
,

hence (4.12) and
CEE :“ CH ` Cℓ. (C.7)

Estimate for (4.13). Combining with Proposition B.1 and estimate (B.13), analogous to (C.6) it
can be derived directly from:

ˇ̌
ˇ̌
ˇ

¨

QℓˆQℓ

Gℓpx´ yqργpyqψ˚
ξ pxqψξpxqdxdy ´

 

Q˚
ℓ

dξ1

¨

QℓˆQℓ

Gℓpx´ yqψ˚
ξ pxqγξ1 px, yqψξpyq dxdy

ˇ̌
ˇ̌
ˇ

ď
˜
 

Qξ1

dξ1
ÿ

ně1

|λnpξ1q|
¨

QℓˆQℓ

|Gℓpx´ yq||unpξ1, yq|2|ψξpxq|2dxdy
¸

ď CH}γ}S1,1
}|Dξ|1{2ψξ}2L2

ξ

using the decomposition (2.10) for γξ. Hence (4.13) and CEE .
Estimate for (4.14). Notice that |γξ1 px, yq| ď ργξ1 pxq1{2ργξ1 pyq1{2 since γ ě 0. Thus, according to

Lemma A.1 and the Cauchy-Schwarz inequality,

 

Q˚
ℓ

dξ1

¨

QℓˆQℓ

Gℓpx´ yqψ˚
ξ pxqγξ1 px, yqψξpyq dxdy ´

¨

QℓˆQℓ

Gℓpx ´ yqργpxq|ψξpyq|2 dxdy

ď
¨

QℓˆQℓ

p|Gℓpx´ yq| ´Gℓpx´ yqqργpyq|ψξpxq|2 dxdy ď 2C0

ℓ
}γ}S1,1

}ψ}2L2

ξ
.

Combining with Proposition B.1 and (B.13), we get

pψξ, Vγ,ξψξq ě ´pC0

ℓ
` Cℓq}γ}S1,1

Ş
Y }ψξ}2L2

ξ
,

hence (4.13) and

C2
EE “ 2C0

ℓ
` Cℓ. (C.8)
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D Numerical results about constants

In this section, we will show the numerical results about the constants used in Remark 2.8 under the
condition ℓ “ 1000. Next, we show that Assumption 2.6 is satisfied for q ď 17 for the neutral systems.

We compute numerically the value of the bound of the potential Gℓ ´ 1
|x| . First of all, we calculate

ÿ

kPZ3zt0u

1

|k|4 « 16.512.

Thus, C0 « 5.019 and we can choose CH “ CG « 2.011. Concerning the estimates involving the
potential Wℓ, we set m “ 2. When R « 1

2
,

|Cě2| ď 20.912, Cď2,1000 « 0.010.

Thus, we get CW « 2.042, and C 1
W « 2.042. Then, CEE « 2.052, C 1

EE « 2.052 and C2
EE « 0.041.

Finally, we estimate c˚pqq which is given by (2.24). Let up,ξpxq “ ep2iπp{ℓ`iξq¨x with p P Z3. Then
pup,ξqpPZ3 is an orthogonal basis on L2

ξpQℓq. Obviously, pΛ`up,ξqp is equally an orthogonal basis on

L2
ξpQℓq. Let

Vq “ Span
 
Λ`up,ξpxq

ˇ̌
p “ pj, 0, 0q, j P t1, ¨ ¨ ¨ , qu

(
.

Then

c˚pqq ď sup
ξPQ˚

ℓ

sup
u`
ξ

PVq

}|Dξ|1{2u`
ξ }2

L2

ξ

}u`
ξ }2

L2

ξ

ď
c
1 ` 4 π2pq ` 1q2

ℓ2
.

Now we can check Assumption 2.6 for z “ q “ 17. The calculation leads to A0 « 0.012 and c˚p17q ď
1.006. Hence

• κ ` α
2
CEEq

` « 0.630 ă 1,

• 2A0

a
maxtp1 ´ κ´ α

2
CEEq`q´1p1 ´ κq´1c˚pq ` 1qq, 1uq` « 0.973 ă 1.

Consequently, Assumption 2.6 is satisfied for q ď 17 whenever ℓ “ 1000.
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