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Existence of minimizers for the Dirac—Fock Model of Crystals

Isabelle Catto* Long Meng' Eric Paturel! Eric Séré?

Abstract

Whereas many different models exist in the mathematical and physics literature for ground-
states of non-relativistic crystals, the relativistic case has been much less studied and we are not
aware of any mathematical result on a relativistic treatment of crystals. In this paper, we introduce
a mean-field relativistic energy for crystals in terms of periodic density matrices. This model is
inspired both from a recent definition of the Dirac—Fock ground state for atoms and molecules, due
to one of us, and from the non-relativistic Hartree-Fock model for crystals. We prove existence of
a ground-state when the number of electrons per cell is not too large.

1 Introduction

For solids with heavy atoms, relativistic shifts may affect the bonding properties and the optical prop-
erties. It is shown in [27] that the fact that gold is yellow is a result of relativistic effects. Furthermore,
by studying the relativistic band structure in solids, it is shown in [7, 8] that the relativistic shifts of
the 5d bands relative to the s — p bands in gold change the main interband edge more than 1leV'.

A natural way to build quantum models for the crystal phase is to consider the so-called thermo-
dynamic limit of quantum molecular models. Roughly speaking it consists in considering a finite but
large piece of an (infinite and neutral) crystal. The thermodynamic law predicts that the ground-state
energy of the obtained large neutral molecule is proportional to the volume of this finite piece (which
turns out to be also proportional to the total number of particles composing the molecule). The energy
for the whole crystal is then identified with the limit — if it exists — of the energy per unit volume (or
equivalently per particle) of the large molecule when the size of the considered piece goes to infinity.
This method has been applied successfully by different authors for different well-known models from
quantum chemistry [6, 5, 3, 23] — see also [4] for a review — but always for non-relativistic crystals.

Among relativistic models, the atomic and molecular Dirac—Fock model (DF) is the most attractive
one since it has been formally justified by Mittleman [25]. It gives numerical results in excellent
agreement with experimental data [9, 15, 21]. To our knowledge this model has not been extended to
crystals: there exist fully relativistic treatments of crystals in the physics literature, but they use the
Kohn—Sham approach (see [11, 19] and the references therein).

The mathematical study of the atomic and molecular Dirac-Fock model has been done in [12, 26].
Compared to the non-relativistic models, the situation is different: Existence of bound-states only
holds if the total positive charge Z is not too large (with physical units, Z < 124). Moreover, the
Dirac—Fock energy functional is strongly indefinite and the notion of ground-state has to be handled
very carefully [12]. These difficulties exclude a thermodynamic limit approach to derive the Dirac—Fock
model for crystals.

Esteban and Séré [13] showed that certain solutions of the (relativistic) Dirac—Fock equations
converge towards the energy-minimizing solutions of the (non-relativistic) Hartree-Fock equations
when the speed of light tends to infinity. This validates a posteriori the notions of ground-state
solutions and ground-state energy for the Dirac-Fock equations. In Esteban and Séré’s approach, the
ground state is modelled by the electrons’ wavefunction. On the other hand, Huber and Siedentop
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introduced a density matrix formulation of the Dirac—Fock model [18]. Recently, one of us proved
the existence of the ground-state for the Dirac—Fock model in atoms and molecules in terms of density
matrix using a retraction technique [29]. This approach guarantees that we exhibit the ground-state
energy of a relativistic crystal, not only a bound-state. Inspired by this work and by the analysis of
the periodic Hartree-Fock model due to Le Bris, Lions and one of us [5], we propose a definition for
the ground state of Dirac—Fock model for crystals which is a relativistic analogue of Lieb’s variational
principle for Hartree—Fock model [1, 22|, and we prove the existence of minimizers. In addition, our
result shows that these minimizers solve a self-consistent equation, as established by Ghimenti and
Lewin in [14] for the periodic Hartree-Fock model. Our method can be used to calculate the ground-
state of neutral crystals with at most 17 electrons per cell. However, some estimates used in this paper
are not optimal, and we strongly believe that this limiting bound can be improved.

The minimization problem under consideration in this paper combines several difficulties related to
compactness issues. Obviously, the Dirac operator is not bounded from below and the kinetic energy
term order is of the same order as the Coulomb-type potential energy terms, a standard feature of
Coulomb-Dirac—Fock type models. Nevertheless, our proof of existence of minimizers for crystals is
neither a straight adaptation of the one for atoms and molecules in [29] or of the one for crystals
in Hartree—Fock theory in [5]: A major issue arises from the regularity in the momentum variable
& resulting from the Bloch decomposition of the space, the density matrices and the self-consistent
operator. Compactness in the momentum variable is crucial to deal with the periodic exchange term
and with the nonlinear constraint that ensures that the electrons lie in the positive spectral subspace of
the self-consistent periodic Dirac—Fock operator. Our results rely on a careful analysis of the periodic
exchange potential. (In passing, we have corrected some false estimates on the exchange term in [5] and
improved the regularity results therein.) Furthermore, we provide an asymptotically optimal constant
for the Hardy inequality associated with periodic Coulomb potential that is new in the literature, as
far as we know.

In addition, compared with existing results for crystals, such as the Hartree—Fock one [5], we provide
a new general method to prove the existence of minimizers for crystals: Based on the spectral analysis
of the self-consistent operator, we can describe the behaviour of the minimizing sequences with respect
to the momentum £ and rely on it to improve the regularity, hence the compactness of subsequences.

2 General setting of the model and main result

2.1 Preliminaries — Functional framework

Throughout the paper, we choose units for which m = ¢ = A = 1, where m is the mass of the electron,
c the speed of light and & the Planck constant. For the sake of simplicity, we only consider the case of a
cubic crystal with a single point-like nucleus per unit cell, that is located at the centre of the cell. The
reader should however keep in mind that the general case could be handled as well. Let £ > 0 denote
the length of the elementary cell @y = (fé, %]3. The nuclei with positive charge z are treated as
classical particles with infinite mass that are located at each point of the lattice ¢ Z3. The electrons are
treated quantum mechanically through a periodic density matrix. The electronic density is modelled
by a Qg-periodic function whose L' norm over the elementary cell equals the “number of electrons” ¢
— the electrons’ charge per cell being equal to —q. Especially, when ¢ = z, electrical neutrality per cell
is ensured.

In this periodic setting, the Qg-periodic Coulomb potential G, resulting from a distribution of
point particles of charge 1 that are periodically located at the centers of the cubic cells of the lattice
is defined, up to a constant, by

— AGy =4n lfig + Z 54]!| . (2.1)

keZ3

By convention, we choose G, such that
/ Gedx = 0. (2.2)
4

The function Gy is actually the Green function of the periodic Laplace operator on Q);. The Fourier



series of GGy writes

2im

1 P
Ge(z) = — Z L, for every = € R3. (2.3)
l p[?
peZ3\{0}
Remark 2.1. The size of the unit cell £ does not play a specific role here. It is however involved in

the study of the Hardy-type inequalities for the periodic Coulomb potential (see Section 4.1). When £
goes to infinity, one expects to recover the Dirac—Fock model for atoms.

The free Dirac operator is defined by D = —i Zizl a0k + B, with 4 x 4 complex matrices ay, ag, a3
and 3, whose standard forms are § = (102 (i > , = <UO Uok> where 15 is the 2 x 2 identity matrix
—1s k

and the oy’s, for k € {1,2, 3}, are the well-known 2 x 2 Pauli matrices o1 = <0 1> , Og = (0 _l>,

1 0 i 0
(1 0
03 = 0 —1 .

The operator D° acts on 4—spinors; that is, on functions from R? to C*. It is self-adjoint in
L?(R3;C*), with domain H'(R?;C*) and form domain H'?(R3;C*) (denoted by L?, H' and HY? in
the following, when there is no ambiguity). Its spectrum is o(D°) = (—o0, —1] | J[+1, +0). Following
the notation in |12, 26], we denote by A™ and A~ = 172 —A™ respectively the two orthogonal projectors
on L2(R3;C*) corresponding to the positive and negative eigenspaces of D?; that is

DOA+ — A*DO — A*VT—A = VI— AA+:

DA~ = A"D° — —A~VI—A = —VI—AA~.
According to the Floquet theory [28], the underlying Hilbert space L?(R3;C*) is unitarily equivalent
to L2(QF) ® L?(Q¢; C*), where Qf = -7, %)3 is the so-called reciprocical cell of the lattice, with

volume |Q¥| = (2m)3/¢3. (In the Physics literature Q} is known as the first Brillouin zone.) The
Floquet unitary transform U : L?(R3; C*) — L*(QF) @ L?*(Qe; C?*) is given by

(Ug)e = D, e "eg(- + L) (2.4)

keZ3
for every £ € QF and ¢ in L?(R3;C*). For every ¢ € QF, the function (U¢)¢ belongs to the space
LE(QuCY) = {¢ e LY (R* C*) | e ™ *¢ is Q-periodic},

which will be denoted by Lg in the sequel. Functions v of this form are called Bloch waves or Q-
quasi-periodic functions with quasi-momentum £ € Q. They satisfy

Y(- + Lk) = e FEy(.), for every k € Z2.

For any function ¢¢ € Lg, using the definition of Fourier series expansion for Qg-periodic functions, we
write

Se(x) = Y. e(k) ePHIHOT ae g eR?, (2.5)
keZ3
with coefficients 1

Qﬁg(k) _ 6_3 ¢£ (y)ef(ka/éJrig)-y dy c (C4.
Qe

The Hilbert space L? is endowed with the norm

A 1/2 12
61z = <€3Z|¢g<k>|2) - ([ 1coras) = loclhacen

keZ3

Here, and in the whole paper, we use the same notation | - | for the canonical Euclidian norm in R",
C™ or M,,(C). When applied to self-adjoint operators, |T'| means the absolute value of T'.

We also define
H(QuCY) o= LE(Qu: CY) [ Hy\o (R CY)



for every real number s, endowed with the norm

1/2
Il s = (63 > <1%|2wk/e+gﬁ>s|&%<kn2) .

keZ3

To simplify the notation, we simply write here and below H, ¢ when there is no ambiguity.

Operators £ on L2(R3;C*) that commute with the translations of £Z3 can be decomposed accord-
ingly into a direct integral of operators L acting on L? and defined by

Le(Ug)e = (ULY)e for every ¢ € L*(R3;,C*), ae. €€ Qf (2.6)

(see |28] for more details). We use the notation £ = f% L¢d€, with the shorthand f, for ﬁ Jo to

refer to this decomposition. In particular, for the free Dirac operator D° we have

®
DY = , De d¢. (2.7)

where the D¢’s are self-adjoint operators on L? with domains Hg1 and form-domains H, 51/ % Note that

DZ =1~ A¢, where —A = JCS* —A¢d€. For every function ¢¢ € H}, the operator Dy is also defined
2

by

l%%@ﬂ=§3[Z(%%f“ﬂ-%+ﬁ]@wn*¥”9%

keZ3

or 2~
(@e.|Deldelsz = ¢ 3 \[1+ e+ T e 2.8
keZ?

For almost every £ € QF, the positive spectrum of D¢ is composed of a non-decreasing sequence of real
eigenvalues (d;} (£))n>1 counted with multiplicity such that

j=1

In particular,

dH) =1, lim df (&) = +o.

n
n—0o0

In the same manner, the negative spectrum of Dg¢ is (d;; (§))n>1 is composed of the non-increasing

sequence of real eigenvalues d; (§) = —d;} (£). Finally, one has
U o@e) = | J{dn(©).d}(€)} = a(D%) = (—o0, =1] | [+1, +o0). (2.9)
fesz §€sz n>1

As in the Hartree—Fock model for crystals [5], the electrons will be modelled by an operator on
L?(R3; C*), called the one-particle density matrix, that reflects their periodic distribution in the nuclei
lattice.

We now introduce various functional spaces for linear operators onto L?(Qg; C*) and for operators
onto L?(R3;C*) that commute with translations. Let B(E) be the set of bounded operators on a
Banach space E to itself. We use the shorthand B(LZ) for B(LZ(Q¢);C*). The space of bounded

operators on fg* Lg d¢ = L*(Q}) ® L?(Qg; C*) which commute with the translations of /Z3 is denoted
£
by Y. Tt is isomorphic to L*(Qj; B(Lg)). Moreover, for every h = fg* hedéeY,
£

Ihlly := ess sup [[helsr2) = [hlB(L2(rscs)
£eQf

(see [28, Theorem XIII.83]). For s € [1,0) and & € Q}, we define

&,(¢) i= {he € BILY) | Trz(Ihel’) < 0}

endowed with the norm

1/s
el = (Trra(lhe))

4



We denote by &4 (£) the subspace of compact operators in B(Lg), endowed with the operator norm
| - HB(L%)- Similarly, for ¢ € [1, +0], we define

@
SRS hz][ he d€
Q*

14

he € 65(¢) ae. £€QF, |hele, () € Lt(Q?)}
endowed with the usual norm of L*(Q}; &4(¢)) :

1/t
Ihls.. = (72 ) d«g) .

In particular Goo 0 = L*(Qf; 65 (LF)) < Y. We also define

X°() = {he B(LY) | |De*/2he| De|*2 € &1(6) |

endowed with the norm

o - i
lhelxaqe) = | |Del*he| De| o e)

and

@
X = h=][ he d¢
QF

endowed with the norm

he e ®1(6) ne €21, [ 11D el Dl o < oo}
12

1/s
Il xe = (72* ||D£|a/2h§|D§|a/2|%1(§)d5> = [ID°|*2h| D", ..
‘

For any two functional spaces A and B the norm of the intersected space is defined by

IVlans = max{|y]a, [v]z}-

For future convenience, we use the notation X (¢) for X1(¢), and we set X := X{. The functional
spaces 61,1, X and Y will play an essential role in the whole paper, while the functional space &1
and its subspace X2 are mainly used in Section 6. In addition, we will also use the functional space
S4,1 in Section 6 since &1 o is its dual space.

Definition 2.2 (Periodic one-particle density matrices). We denote by T the set of Qg-periodic one-
particle density matrices

Ti={veX|y* =7,0<y< @} c X[ Y.

Remark 2.3 (Projectors). According to [1, 14, 22] any minimizer of the Hartree—Fock model (both for
the molecules and crystals) is a projector. However we do not know whether minimizers of Dirac—Fock
models are projectors in general.

Remark 2.4. For v e T and for almost every & in Q}, the operator ¢ is compact on L2 and admits

a complete set of eigenfunctions (un (&, -))n=>1 in L2 (actually lying in H, 1/2 ), corresponding to a non-
decreasing sequence of eigenvalues 0 < A, (€) < 1 (counted with their mult@phczty) This is expressed
as

Ve = D5 Anl€) [un(€)) wn(€, )]s (unl€, ), um(€, )z = Gnm (2.10)

n=1

where |uy{u| denotes the projector onto the vector space spanned by the function u. Equivalently, for
almost every & in QF and for any (z,y) € R® x R®, the Hilbert-Schmidt kernel writes

n=1



In the above equation, the superscript * refers to the duality in Lg. In particular ve(-,-) is a 4 x 4
complex matriz in My(C), and for every function @ € L2,

(reg) (@) = /Q el )y = 3 A(Eun(eor /Q WA (E,1)ey) dy.

By definition of the trace of an operator,
Trpz(ve) = ) An(6).
This allows us to define the trace per unit cell as
Tt f, Tz )
where the ~ reminds us that 7y is not trace-class on L*(R?).

Definition 2.5 (Integral kernel and electronic density). Let v belong to T. Then we can define in a
unique way an integral kernel y(-,-) € L?(Q x R3) (| L2(R? x Q¢) with v(- + k,- + k) = (-, -) for any
ke Z? and a Qe-periodic density p- associated to v by

v(x,y) = ]{2;? Ye(,y) d§ (2.12)
and
() = ]{? , Trare(oe) (2.13)

where the notation Try stands for the trace of a 4 x 4 matriz. The function p. is non-negative and
belongs to L1 (Qe;R). Indeed, using the decomposition (2.11), we have

][ ) [un (€, 2)|? de (2.14)
Q¥

¢ n=1
[, §
Q¥

In the physical setting we are interested in, the value of the above integral is the number of electrons
per cell q.
By the Cauchy—Schwarz inequality, it is easily checked that

|’y(x,y)|2 < p’Y(z) p'y(y)a a.e. 1'5 y € RB- (215)

Note that, when h is a Q¢-periodic trace-class operator but is not necessarily a positive operator, we still
may define py, with the help of (2.13), but (2.15) becomes |h(x,y)|* < py)(x)pin (y) where |h| = v/h*h.

and

M@ = f o0

¢ n=1

We can now introduce the periodic Dirac-Fock functional.

2.2 The periodic Dirac—Fock model

We introduce the following set of periodic density matrices :

q = {7 € T| H7H61,1 = q}
and
Iegi={veT| e, <d}

When ¢ is an integer, I'; and I'¢, are the sets of all Dirac-Fock states of a system of exactly g,
respectively at most ¢, electrons per unit cell.



For v € I'<q, we define the periodic Dirac-Fock functional

E27(1) = f Triy[Derelde - oz [ Gulalp, (z) da

Q¥ Qe
(6%
+5 // P (2)Ge(x — y)py (y) dady (2.16)
QexQy

-5 A @ [ b one oW - € -y dody
QF xQF Qex Qe

In the above definition of the energy functional, the so-called fine structure constant « is a dimensionless
positive constant (the physical value is approximately 1/137). Note that Dgve is not a trace-class
operator, so Tr L2 [Deve] is not really a trace, it is just a notation for the rigorous mathematical object

Trp: [|De|Y27¢ | De|/?sign(Dg)]. We will make this abuse of notation throughout the paper.

The last term in (2.16) is called the “exchange term ”. The potential W that enters its definition

is defined by
il k-m A

e 1 ok
o _ _ar i(25k—n)w 2.17
o (n, ) 2 |z + (K] /3 k§3|22kin|ge ( )

(see [5] for a formal derivation of the exchange term from its analogue for molecules). It is Q}-periodic

with respect to 1 and quasi-periodic with quasi-momentum 7 with respect to z. For every v e I'<,, we
now define the mean-field periodic Dirac operator

@
D, = fQ* D¢ d¢  with Dy¢:= D¢ —az Gy + aV, ¢
¢

where
V’%E = P~ * Ge — ng (2.18)
with
py # Go(x) = ; Go(y — =) py(y) dy = Trp2[Go(- — x) 7] (2.19)
£
and

Woctelr) = f de' [ WA €0 =) 960 velw) o

(In (2.19) we keep the notation - * - for the convolution of periodic functions on Q.)

The relation between P and D, is the following : If v and v + h are in I'¢, with A in 7, then
the right derivative of t — EPF(y + th) at t = 0 is fQ* Trp (D che) d€.
£

Our goal is to define the ground-state despite the fact that this functional is strongly indefinite on
I'<y, due to the unboundedness of the Dirac operator D°.

2.3 Ground-state energy and main result

We follow Dirac’s interpretation of the negative energy states of Dirac-Fock models: such states are
supposed to be occupied by virtual electrons that form the Dirac sea. Therefore, by the Pauli exclusion
principle, the states of physical electrons are orthogonal to all the negative energy states. The ground-
energy and state should thus be defined on the positive spectral subspaces of the corresponding Dirac—

Fock operator. Let
@

PF = ” Prod¢  with  Pr,:=1g, (Dye).
Note that by definition POJ—F5 = 1g, (D¢ — azGy). We define the set

If:={yely|y=P P} (2.20)



and the ground-state energy

I, := inf EPF (). (2.21)

We need the following assumption.

Assumption 2.6. Let ¢ := max{q,1}, k= a (Caz + Cppq™) and A = $Cgp (1 — I ) W
We demand that

1. k<1l-— %CEEqu ;

2. 24 \/max{(1 —k — $Cprpqt) 1 (1 —k)~Tc*(¢ + 1)g,1}¢+ < 1.

The positive constants Cq, Crr, Cry and Ao are defined respectively in Lemmas 4.1, 4.7 and 4.10
below.

Our main result is the following.

Theorem 2.7 (Existence of a minimizer). When «, q, z and ¢ satisfy Assumption 2.6, there exists
vx € T} such that

EPF(ve) = I, = min EPF (7). (2.22)

+
vyely

Besides, vy solves the following nonlinear self-consistent equation
v = 1[071,) (D,y) + 6 (2.23)

where 0 < 6 < 1,1 (Dy) and 0 < v < (1 — k)" 'e*(q + 1), with & = k(z,q,4,a) > 0 being defined in
Assumption 2.6 below and
c*(k) := sup df (€) (2.24)
ceQ¥

with the djf (£)’s appearing in (2.9).
Remark 2.8. In Solid State Physics, the length of the unit cell is about a few Angstréms. In our
system of units, h =m =c =1, thus a ~ # and ¢ ~ 1000. Under the condition q = z for electrical

neutrality, Assumption 2.6 is satisfied for ¢ < 17. The proof is detailed in Appendiz D. Our estimates
are far from optimal : The ideas of this paper are expected to apply to higher values of q.

3 Sketch of proof

We are convinced that the constraint set F;r is not convex, and we are not able to prove that it is
closed for the weak-* topology, and this is the source of considerable difficulties. Mimicking [29], we
shall use a retraction technique as for the Dirac—Fock model for atoms and molecules. This imposes
to search the ground-state in the set I‘;rq defined by

IL, ={yeT< |y =Py }.

However, under above constraint, the minimizers may not be situated in Ff{. To overcome this problem,

we next subtract a penalization term ep ﬁL2 (7), for some parameter ep > 0 to be chosen later, and
first study the minimization problem for the penalized functional with relaxed constraint :

I, := min [SDF(V) - epﬁLz(y)] .

'yerq
We prove below that, when ep is sufficiently large, every minimizer of problem I, is indeed in 1"(‘1*,
thus is a minimizer of I, (Corollary 3.3).

For the penalized problem, the analogues to Assumption 2.6 and Theorem 2.7 read as follows.

Assumption 3.1. Let ¢* = max{q,1}, k := a (Cqgz+ Cppq*) and A := §Cpp (1 - ﬁ)_l/QAal/Q. We
assume that



1. k<1l-— %CEEqu

2. 2A\/max{ (1-rx—-5Cpeq") tepq, 1}gt < 1.

Theorem 3.2 (Existence of a minimizer for the penalized problem). We assume that Assumption 3.1
on q,z,ep holds. If ep > (1 — k)~te*(q + 1), then there exists vy € F;rq such that

EPF (7,) — epTr2(vs) = Iq- (3.1)

Besides, ﬁLQ (%) = fQj}‘ TrLg (7#,6) d€ = q and 74 solves the following nonlinear self-consistent equa-

tion

Y= 1[0,1/) (D,y) + ) (32)
where 0 < 0 < 1g,,(D,) and v is the Lagrange multiplier due to the charge constraint Trz2(7y) < q
satisfying 0 v<(1—r)"tc*(g+1).

Corollary 3.3 (Existence of a minimizer for the original problem). We assume that Assumption 2.6
on q,z holds. Then, there is a constant ep > (1 — r)~1c*(q + 1) such that Assumption 3.1 is satisfied.
Therefore I, is achieved and the minimizer -y, solves (2.23).

Proof of Corollary 3.3. The first claim is obvious: Under Assumption 2.6 on g, z, there is a small
constant € > 0 such that ¢,z and ep = (1 — k) "Le*(q + 1) + € satisfy Assumption 3.1. By Theorem
3.2, since ep > (1 — k) ~'¢* (g + 1), any minimizer v, of I, lies in I'}. Thus,

EPF (1) = ep g = EPF (1) — epTrpa(s) > min [EPF (1) — epTra ()]

+
vely

= min [EPF (] —epa = I<qg = EP (74) —epa.
~e

Therefore, all inequalities in the above string of inequalities are equalities, and

SDF('Y*) = Helllﬂ EDF('Y) =1,
TEL g

O

We therefore focus on the proof of Theorem 3.2. Before going further, we explain our difficulties
and method by comparing with the Hartree—Fock ones [5]. Indeed, the method used in [5] is based on
some properties of the Schrodinger operator —A:

1. This operator is non-negative. Hence the Hartree—Fock model for crystals is well-defined and the
kinetic energy is weakly lower semi-continuous w.r.t. the density matrix ;

2. The exchange potential W° is rather easily controlled by the Schrédinger operator —A.

In [5], these properties allow to deduce bounds on the minimizing sequence of density matrices w.r.t.
the &, x and y variables, and to pass to the limit in the different terms of the energy functional, in
particular in the exchange term which is the most intricate one. In the proof, the strong convergence
of the density matrix kernels v, (z,y) = szg Yne(z,y) d¢ plays an important role. In addition, the
charge constraint in the periodic Hartree—Fock model is linear with respect to the density, and there
is no possible loss of charge in passing to the limit.

In the Dirac—Fock model for crystals, two additional difficulties occur. First of all, the Dirac opera-
tor does not control the potentlal energy terms, which are of the same order. Secondly, the convergence
of the nonlinear constraint fQ* - 575655 = fQ* ~Yed€ requires stronger compactness properties of the
sequence of density matrices w1th respect to the & variable. Therefore the proof of existence of mini-
mizers in the periodic Hartree-Fock setting cannot be applied mutatis mutandis. On the other hand,
compared to the Dirac—Fock model for atoms and molecules, we suffer from a serious compactness
issue in the &-variable. The functional space &1 is natural to give a sense to the energy functional
and to the constraints, but the weak-convergent of minimizing sequences in &, ; is not strong enough
to deal with exchange term and the non-linear constraints. The whole paper (except Section 5 about
the retraction) is devoted to solving the difficulties arising from the integration w.r.t. the £ variable.



Our strategy rather relies on the spectral analysis of the periodic Dirac-Fock operator, which is
totally new for the proof of existence of minimizers in the periodic case. In Lemma 4.12 together with
Lemma 5.1 (see also Remark 4.13), we can prove that any minimizer of I¢, actually lies in & 4, and
is situated in Br, where we have defined

Br:={veXnY||yls,. <R} (3.3)
and
Ry:=q+M with M being defined in Lemma 4.11 below. (3.4)

In particular, any minimizer ~, satisfies ¢4 (&) := Tr L2 (7s,¢) < Ro for every £ € QF. We may therefore
assume that, for any minimizing sequence, if ¢, (§) = TrLg (Vn,e), then vy, ¢, |gn ()] < R for any R > Ry
independent of n and &, at least for n large enough. In particular, by dominated convergence theorem,
qn (&) = g(€) strongly in L' (QF) (up to subsequences).

The main idea in the proof of the existence of minimizers of I, is therefore to use the fact that
any minimizer will be situated in Bg,, and then in any set Br with R > Ry. Then, thanks to
Lemma 6.2, for any minimizing sequence 7y, of I<,, we can find another minimizing sequence %,
with better regularity ; that is 7, € Bg,. Setting an equivalent minimization problem in a ball Bg
with R > Ry helps considerably to overcome the difficulty in passing to the limit in the constraint
f% P;t edé = szk Yed€. In addition, the exchange term is well-controlled for density matrices in this

set. Moreover, it turns out that the minimizers in this set do not saturate the constraint |v|es, ., < R.
More precisely, existence of minimizers for the penalized problem will be a consequence of the
followings.

Proposition 3.4 (Existence of a minimizer in the set Bgr). Let Ry := q + M where M is defined in
Lemma 4.11 below. Under Assumption 5.1, if ep > (1 — k)"tc*(q + 1) and for any R > Ry, there
exists vy in I‘;rq (\ Br such that

Iegri= _min  [EP7(9) = epTrpa(y)| = £ (4) = epTrra (). (3:5)
vert, N Br

Besides, v« € Br, and ﬁLz (vx) = q. Furthermore, 4 solves the following nonlinear self-consistent
equation

v = 1[071,) (D,y) +94 (36)

where 0 < 0 < 1g,,(D5) and v is the Lagrange multiplier due to the charge constraint ﬁLz (7) < ¢
satisfying 0 < v < (1 — k)" Le* (g + 1).

Theorem 3.2 is a direct consequence of the following.

Corollary 3.5 (Existence of a minimizer for the penalized problem). We assume that ep > (1 —
k)"'c*(q + 1) and that Assumption 3.1 holds. Then I<, is achieved. Any minimizer vy of (3.5) is a

minimizer of I<q. It satisfies Trpe (v+) = q and vy lies in S .
Proof of Corollary 3.5. First of all, since I<q < I<q r for any R > Ry, we have

ng é Rlilgo ng,R. (37)

As R — I, g is non-increasing, we have infp> g, I<q,r = Imp 40 I<q,r. Let (Yn)n in F’\;q be a mini-
mizing sequence of I<,. It is easy to see that v, € Jp- g, (T, N Bgr) since 'L, = Ursr, (T, N Br).
Thus,

inf Teqr <EPF () — epTrpe(yn).
R>R0

Taking n — oo and using (3.7), we have

I, = inf I< R = lim I< R-
ST RsRe ST Rt TP

According to Proposition 3.4, for any R > Ry, any minimizer v s of I<4 r is actually located in Bp,.
Therefore, I<y r = I<qr for any R, R’ > Ry. Thus I¢, = limp~p, I<qr = I<qr for any R > Ry.
This implies that any minimizer of I<4 g, for R > Ry, is a minimizer of I<,. This ends the proof. O
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Organisation of the paper. Next sections are devoted to the proof of Proposition 3.4. Our
paper is organized as follows.

In Section 4, we collect some fundamental estimates on the potentials G, and W;”. In Subsection
4.2, we study the spectral properties of the Dirac-Fock operators D, ¢ for every { € QF. Relying on
them, we study in Subsection 4.3 the properties of minimizers of a linear Dirac-Fock problem. Finally,
we collect the first estimates on minimizing sequences.

In Section 5, we study the linearization problem associated to (3.5). We conclude that the mini-
mizers of (3.5) are in Bg, (T} and solve a self-consistent equation. In Hartree-Fock type models for
molecules [24] or crystals [14], it is a standard fact that the approximate minimizers are also approxi-
mate ground states of their mean-field Hamiltonian. The proof relies on the convexity of the constraint
set. However, in Dirac—Fock model (both for molecules and crystals), the constraint set F’\;q is more
sophisticated. By using a retraction technique, a similar result has been recently proved by one of us
in the Dirac—Fock model for molecules [29]. Adapting the technique in [29], we build a regular map
6 :V — V on a relatively open neighborhood V of the minimizing sequence of (3.5) in I', such that
0(y) = P&v)e(v)P&w. Next, we consider an equivalent minimization problem with locally convex
constraint ; namely

In Section 6, we build an approximate minimizing sequence with better regularity and convergence
properties. Finally, we conclude on the convergence of a minimizing sequence on the set Br and the
existence of minimizer; that is, the proof of Proposition 3.4.

Assumption 2.6 involves optimal constants in Hardy-type inequalities introduced in Subsection 4.1.
Therefore, in Appendix A-C, we prove Lemma 4.1, Lemma 4.5 and Lemma 4.7 respectively. Finally,
in Appendix D, we calculate the maximum number of electrons per cell allowed by the model, relying
on approximate values of the constants obtained in Appendices A-C.

4 Fundamental estimates

In this section, we give Hardy-type inequalities for the periodic Coulomb potential and provide esti-
mates on the interaction potential between electrons in crystals. Then we study the spectrum of the
periodic self-consistent Dirac—Fock operators. Finally, we derive properties of minimizing sequences of
the linearized and the penalized problem from the spectral analysis.

4.1 Hardy-type estimates on the periodic Coulomb potential

First of all, and this is a major difference with the usual Coulomb potential |71‘ in R3, the periodic
Coulomb potential Gy may not be positive, since it is defined up to constant, but it is bounded from
below (see Lemma A.1). Nevertheless, it is the kernel of a positive operator on L?(Q;) in virtue of

(2.3). Moreover, we have the following Hardy-type estimates concerning the periodic potential Gy.

Lemma 4.1 (Hardy-type inequalities for the periodic Coulomb potential). There exist positive con-
stants Cp = Cg(£) > 0 that only depends on £ and such that

Gy < |Gg| <Cpy |DO| (4.1)

in the sense of operators on L*(QF) @ L*(Qe; C*).
Moreover, there exists a positive constant Cg = Cg(£) with Cq = Cy that only depends on £ and
such that
|Ge|D°17H ]y = Ce- (42)

Remark 4.2. In (4.1), the inequality A < B is equivalent to : For almost every £ € Q}, A¢ < Bg in
the sense of operators on Lg.

Remark 4.3. The constant Cg({) is estimated in (A.4) in Appendiz A below. While it is far from
optimal when £ is small, it converges to 2 when £ goes to infinity; that is, to the value of the optimal
constant for the Coulomb potential on the whole space. By interpolation,

Ch < Cg. (4.3)

Therefore, (4.1) holds with Cg being replaced by Cq. However, Cy is expected to converge to w/2 as ¢
goes to infinity; that is, to the best constant in the Kato—Herbst Inequality on the whole space [17, 20)].
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A by-product of Lemma 4.1 is the following.
Corollary 4.4 (Estimates on the direct term). For any v € X, we have
lpy * Gelly < Cr 7] x (4.4)

and

[(py = G) DMy < Ce [vle, .1 (4.5)

Proof. For every x € R? and ye X

[Py % Gile)| =

¥/
Q*

14

<f JIDd2Gute = lnd 7]
L

F . TrualGita — ) re0)] de
Qf

Tz [|Del /2 Ge(w — )1 Dl /% | De[*2¢| Del ]| d

IDe[*€ D2 - de < Ol x.

B(LZ) ‘ S1(§

Indeed, the bound (4.1) in Lemma 4.1 yields
|1Ga(- = @) 21Del 72 < (Cnr) M2

uniformly in z. We now turn to the proof of (4.5). For every £ € Q} and ¢¢ in Lg, we have
lio» 61D 0cl, < [ 1o Gt = 2)|Del "
e

< sp |G =) 1D el [ o@ldr < ol locliz (46
xTe

4
In (4.6), we have used the bound (4.2) in Lemma 4.1 and the obvious fact that it remains true for
Gyo(- — z) for any z € R3.
(|

Now, we consider the exchange term. We can separate the singularities of W° with respect to
n € 2Q; and x € 2Q as follows

Wem,z) = Wam,e(n, ) + Wape(n,z), VmeN,m =2, (4.7)
with 4 i
_ T (2 —n)a
WZm,@(nax) = /3 |M ~ |2 et
|klo=m | ¢ n
kez®
and 1 1
7 27k
_ W= —n)x
Wem,e(n, z) = /3 2 |M _ |2 € (%7 =)
[k|oo<m L
kez3

where |k|o = max{|k1], |kz|, |k3|}. It is easy to see that the singularity of W, ¢ behaves like #, and

we will show in Appendix B that the singularity of W, ¢(n, *) behaves like = or equivalently G(z).

[]
Then we have the following estimates.

/

Lemma 4.5 (Estimates on W, ¢). There exist positive constants Cw = Cw (£), Cy, = Ciy, (€) and
Cli, = CU (£) that only depend on £ such that

Wyly < Cw [7lxny ifvex(Y, (4.8)
3/4 1/4 .
Wy < Gl (vlx + IMEE I ) ifye X[ )61, (4.9)
W, 1D° "y < iy 7l 1y ifve e[ (4.10)

12



Remark 4.6. The constants Cyw, Cyy, and Cyy, are estimated in (B.15).

Gathering together Lemma 4.1, Corollary 4.4 and Lemma 4.5 we can get some rough estimates on
the self-consistent potential V,, ¢ defined in (2.18). We can obtain much better estimates by a careful
study of the structure of V,, ¢.

Lemma 4.7 (Estimates on V. ¢). There exist positive constants Cgg = Cgr({) > 0 and Cgp =
Clhp () > 0 that only depend on ¢ and such that

IVyely < Ceelvlxny (4.11)
and
[Vag IDel "My < Cplvle,.ny- (4.12)
For any ¢ € ng,
(Ve Vagthe) 2| < CEElMIel,lmy\lwfl\zéxz (4.13)
Furthermore, if v = 0, for any ¢ € L2,
~Chulle Ny velis < (e Vaeve) s - (4.14)

Remark 4.8. The constants Cgg, Cyp and Ch g are estimated in (C.7), (C.5) and (C.8) in Appendiz
C' respectively.

4.2 Spectral properties of the mean-field Dirac—Fock operator

Recall that k := « (CGz + C};Eq+). We start with the following.

Lemma 4.9. Let vy € &1 Y. We assume that Cqz + Chp|vls, ,ny < 1/a, then D¢ is a self-

adjoint operator on Lg with domain Hg and form-domain Hg/Q. In addition, the following holds

1/2

1D, [21D° 12 < (1+ a (Coz + Crplleniny)) (4.15)
and
ID°[2D, |12 < (1= a (Coz + Crpllle., nv) . (4.16)
In particular, if v € I'<q, we have
(1—&)|D°| < |D,| < (1+k)|DY. (4.17)
Proof. Recall ¢t = max{1,¢}. By Lemma 4.1 and Lemma 4.7, we obtain
[(ma2Ge+a V) ID°| 7Yy < a(Coz+ Crg e, ny)- (4.18)

In particular, D, is self-adjoint on fgj* H} d¢ by the Rellich-Kato theorem if Cgz + Crgllvls, , ny <
# :
1/a (see [28, Theorem XIII-85]). Let now & € Qf and ug € H{(Qr). We have

|Dyeuelrz < (1+aCoz +aChplvle,ny) IDeuel e, (4.19)
which implies (4.15). On the other hand,

| De ugllzz < [(Dy,¢ = De) ez + | Dy gue] 2
<o (Caz+ Chpa”) |Deuelrz + [ Dy.c uel 2,
Hence,
[ Deuelrz < (1 —a(Caz + Crplvle,,ny)) ™ 1Dy .6 uel 2 (4.20)

which implies (4.16). Since v € Ty, [V|s, . Ny < ¢*. Thus (4.19) and (4.20) together give (4.17).
This concludes the proof. ([l
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As a consequence of (4.20), we deduce that the spectrum of D, (and of any D, ¢) is included in
R\[—1+ &;1—&]. In order to allow for as many electrons as possible per cell, we need a more accurate
estimate on the bottom of |o(D.)|.

Lemma 4.10 (Further properties of the bottom of the spectrum of D.,). Let ve I's,. Then
inf |o(Dy)| = Ao =1 — &,
with Ao := 1 — amax{Cyz + Chpqt, e 0>+ Cgrpqt}.
Proof. Let wg = Agwg and ¢y = Agve. Notice that Dy e = D¢ — azGy + aV, ¢ and V, ¢ satisfies
(4.13) and (4.14). Now, combining with (A.1) we have
(98:D208) s e = (1= aCirz 4 Chrpllen ) 16 [y

and

C
~ (5. D2607) iy = (10 (G2 Conlrlonany ) ) 12 By
5

We get

el Dl gzve > R (68 = 05 Drcve)

—1/2
xHg

2
(“/’s’ vﬁ“/’s) e, 1/2*@57 vf“/’s) e, 1/22’\0”1/’6“@/2'
5

Further spectral properties of the self-consistent operator D, are collected in the following.

Lemma 4.11 (Properties of positive eigenvalues of D, ¢). Assume that k < 1 and let v € T'¢,. We
denote by A\ (§), for k = 1, the k-th positive eigenvalue (counted with multiplicity) of the mean-field
operator D~ ¢. Then, there exist positive constants c*(k) and cy (k) independent of &, with 1 < ¢4 (k) <
c*(k) and cx (k) — 400 when k — +00, such that A\, (€) is situated in the interval [cy(k)(1—k), c*(k)(1—
k)™Y]. This interval is independent of vy. Moreover, there are constants e > c¢*(q + 1)(1 — k)~! and
M > 0, such that each operator D. ¢ admits at most ¢ + M eigenvalues in [0, e].

In addition, every eigenfunction uy¢(x) associated to A\, (§) lies in Hg and satisfies

(4.21)

s < (1= )7 M) Junel 2 < (k) (1 — )

Proof. We rely on a variational characterization of eigenvalues of Dirac operators (see [10] and ref-
erences therein). The proof of the condition (i)-(iii) in [10] is postponed to the end of the proof.
Let

1 D

Af = 1g(De) = = + ——
and ) D

A7 i=1p-(Dg) = = — —%—.
From [10, Equation (1)], the k-th positive eigenvalue A;(§) of D, ¢ is obtained through the formula

D
A (§) = inf sup (»ygiug,ug) (4.22)
V subspace ongHgl/2 uee(V @ AT HY?)\{0} HU’ﬁHL%
dim V=k £

— /2 . -
Let u¢ € (V@ A; Hg/ )\{0}. We write ug = ug + ug with
uf = AfueceV, ug =Afuce AgH”.
By definition of Agi,

(Dgug,ug) = (|D5|ug,ug), (Deug ,ug ) = —(|Delug ,ug ) and (Dgug,ug) =0.
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Therefore,
(Dyeug, ug) = (Deug, ug) + ((Dy,e — De)ug, ue)
= (IDelug uf) = (1Delug,ug ) + ((Dag = De)uf uf ) + ((Dae = De)ug g )

+ 2R ((Dy.¢ = Do, ug ) - (4.23)
To get the lower bound, we observe that
D
Mel6) > nf SO0 e, ug)
V subspace of/\zr Hgl/2 ugeV\{0} Huf HLZ
dim V=k ¢

By (4.23) and (4.18), for any u¢ € AgHg/Q,

(D g ug,ug) = (|Delug,ug) + (—azGr + aVy)ug,ue) = (1 — k) (| De| ug, ug) -

Thus,
D
(1= ) Ak(6) = inf qup  Delue o)

V subspace ong Hﬁl/2 ugeV\{0} HUEHLZ

dim V=k 3

We define b

ca(k) i= inf dif(¢) = inf inf qup  UDelue ue)
€eQf £eQ¥ v subspace ofA;r Hgl/2 ueeV\{0} H’U,g HLg
dim V=k

Obviously, ¢y (k) = 1 and ¢« (k) goes to infinity together with k. Also,
Me(€) = (1 — k) cx(k), for every € € QF.
For the upper bound, we proceed as follows. (4.18) and (4.23) yield
(D~ ,cue, ue) = (|D§| ug',ug') + ((fozzGe +aly) ug,ug) + 2R ((fozng +al,) ug,ug)
+ ((Dye = De)ug ug ) = (1Delug g

< (1 +r) (IDeluf uf) = (=) (1Delug,ug ) + 25 1De2uf |1z 1Dl ug | 2

= (L+ )IIDelPuf 172 + 25 || D" Puf 12 1|1 Del"Pug |12 — (1= m)[[[Del>ug |72

< (L= R) T IDelPuf |7z,

by Young’s inequality. Let now

(1Delug )

c*(k) := sup df (§) = sup inf sup —
£eQF £eQF V subspace of AJngl/2 uf eV\{0} HUE HL?
dim V=k

As Hug HL? < HuiﬂLg, we obtain
Ak(€) < (1—kK)"'e*(k). (4.24)

By construction, ¢y (k) < ¢*(k) and ¢4 (k) and ¢*(k) are non-decreasing with respect to k. Finally, by
definition of c*(k) and cy(k), for any e > ¢*(q + 1)(1 — )71, there is an integer M > 2 such that
cx(qg+ M —1) <e <cy(qg+ M). Therefore, D., ¢ admits at most ¢ + M eigenvalues in [0, ] for every

§eqQy.
Using (4.20) in Lemma 4.9, we obtain

Ae(6) lurelrz = [Dyguelrz = (1= k)| Deuel 2.
Hence (4.21).
To end the proof, it suffices to check the condition SUPge supu&EAgH;/z\{O} %ﬁ’;g) <0<
infec o A1(€) in [10]. It follows from the decomposition (4.23) of D, ¢ ; namely (D¢ ¢¢, ¢¢) < 0 for
every ¢¢ € AEHg/Q whenever k < 1. O
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4.3 Properties of the minimizers of a linear problem

Recall that Br := {y€ XY ||y|e,.. < R} and Ry := q + M where M is a constant defined in
Lemma 4.11. The following lemma will be used in the next sections.

Lemma 4.12. Let g € I'y be given, and assume £ < 1. Then for each ep > 0, the minimization
problem

inf 7[* Tng [(Dg.e —€p)ve] d§

admits a minimizer. Every minimizer vy is of the form vy = JCSB* Ljo,0)(Dge) d§ + 6, with 0 < 6 <
2
fg* L4y (Dy.e) d€ for some v € (0,ep] independent of § € QF .
Furthermore, for every ep, we have v < (1 kK)“Lc*(q+1) andv4 € Br,. Ifep > (1—r)"1e*(q+1),

any minimizer vy s independent of ep, and TrLz (v+) = q.

Proof. For any £ € Qf we can choose an orthonormal eigenbasis {¢x(&,)}x=1 of D%EP;@ such that

DgePle = D7 Ml e (&) (¥ (&) -

k=1

According to Lemma 4.11, each positive A;(§) is bounded independently of €. Let us introduce as in
[2, 14] the function

C:s ( Zmecmo () < s}l.
k=1

It is non-decreasing on R. In addition, by Lemma 4.11, C'(0) = 0 and C(+®) = +oo. Thus, there
exists v € [0, +00) such that
lim C(s) < ¢ < lim C(s). (4.25)

s—vy s~>l/1Jr

We are going to prove that every minimizer v, € I', is of the form
®
Ve = ][ Ljo,0)(Dyg,¢) d€ + 6
Qf

with 0 < fQ* 143 (Dg,¢) d€ and v := min{vy, ep}. The proof is inspired by [2].
We first consider the case vy < ep. According to (4.25), there is a density matrix § = 1jg ,,,)(Dgy)+0
where 0 < § < 1y,,3(Dy) is chosen such that

Trr2(3) = q.
For any v € I'<,, we write

£, Trial(Das e 30 s

14

=][ Tr2[(Dg,e = v1) (e = Ye)] d€ + ][ Trrz[(n1 —ep) (e = e)] d€
QF Qf

[4 12

- ][ , Trez[(Dg.e = m) (v = Fe)] d€ + 11 — ep]

4

1, T~ as

14

> Trgl(Dye - m)e - o)l de. (4.26)

4

Since 0 < ¢ < ILE’ we have (y¢r(§), ¥r(€)) € [0,1], for almost every £ € Q. Hence,

F Tzl = m)lae - o)l dg

£

= 1,0 T12l(Dos = 1) 00 ~ o) (Doe))] €
£
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]2 A () = 21 | (e won (), (€)) — 1]

e A (&)<
s T IO -l e, vn()] de > (4.27
Qe Ak (&)>v1
Thus 7 is a minimizer. According to (4.26) and (4.27), if v is a minimizer, then v must be of the form
v = f% 110,0)(Dy)d€ + § with v = v; = min{v1,ep} and Trz2(y) = ¢. In particular, in this case, vy is

independent of ep.
For the case ep < 1y, we prove that every minimizer -y, satisfies v, = JCS* 1[0,€P)(Dg,5)d§ + 4,
4

with 0 < § < fgjzg Lie,y (Dyge)d§ being chosen such that ﬁLz (7x) < q. If not, using (4.27) again (by
replacing v; by €p), we get

| [ = en) 0 = 1o (Die)] ¢ >0,

£

which contradicts the fact that 4 is a minimizer. Thus any minimizer satisfies
@
Vi = ][ Li0,0)(Dg.¢)d€ + 6,
Qf
with v = ep = min{v,ep} and 0 < § < fc% 14,1 (Dy,¢)d€ being chosen such that Trre (vx) < ¢

We turn to prove v < (1 — k)" le* (q + 1), and this leads to v € FRO. More precisely, we prove
that (1 — k)cs(q—1) <1 < (1 — k)" te* (g + 1). If not, we first assume that v; > (1 — k)" 1c*(g + 1).
Then by Lemma 4.11 and (4.25),

¢= lim C(s) = C((1 —r)"'e*(g+1) = q+1,

which contradicts (4.25). Analogously, if 11 < (1 — k)cs«(g — 1), then
g< lim C(s) < C((1 —k)ex(g — 1)) < ¢ — 1.

é—”Ul

Thus, (1—k)cs(q—1) <11 < (1—k)"te*(g+1), then v = min{vy,ep} < (1—k)"1c*(g+1). Moreover,
by Lemma 4.11, we have

0 <7xe <1 (Dge), and [yile, . <q+M.
Thus, 74 € Br,- If ep > (1 —x)"1c¢*(g + 1), then v = v < ep, thus any minimizer is independent of
ep and satisfies TI”Lg (%) = q. O
Remark 4.13. Actually, in the proof, we show that SUDge Rank(yse) < g+ M.

For the minimum problem given in Lemma 4.12, the following proposition gives the estimates on
the minimizers in X (Y, which will be used in the proof of Proposition 5.1.

Proposition 4.14. Assume that k < 1. Let v, € I'<q such that

0 <7 < 1o 1—m)-1e# (g+1)] (Dr.g)-
Then,
1V lxny < max{(1— k) 2qc*(q +1),1}.

Proof. By Lemma 4.9, we have
F (Dl ds = £ ToalIDyehilde > (1= n)1 L.
Q¥ Qf
Since 7' € I'<q, we have

]2* Trps[Dyeveld§ < (1— k)7 c* (g +1) ][ ,Troz(ve) dE < q(l—r)"'e*(g + 1),

L

Then ||7|x < (1 — k)72gc*(q + 1). Consequently, from the fact that [y]|y < 1, we deduce
I7lx ny < max{(1 - x)"*qc*(q + 1), 1}.
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4.4 First properties of minimizing sequences in qu
We prove the following.

Lemma 4.15 (Boundedness of minimizing sequences). Assume that k < 1. Then, there is a minimiz-
ing sequence (Vn)n>1 of I<q.r N F;rq, such that for any n € N,

EPF(v,) — epTrr2(7m) < 0.
Moreover, if k <1 — $Cgrq*, then, for everyn > 1,
« _
[yl xny <maX{(1—f€— 5Cmrd") 16Pq,1} (4.28)

and

«
max{\|7n|D0|1/2HGlm H%HY} < \/max{(l — K — §CEEq+)*1€P q, 1} q+.

Proof. Note that the operator 0 belongs to I'Z, and satisfies £7F(0) — epTrr2(0) = 0. Thus, I<qr =
inf,Yerq NEnr [EDF(W) — GP;,[V‘I‘Lz (7)] < 0. In particular, there exists a minimizing sequence, such that
5DF(’7n) - GPTI/'Lz (’yn) <0.

For simplicity, we skip the n index in the following. As D, ¢ve = |Dy¢|ye for any v € F’\;q, by
(4.13) and (4.17) we get

~ «
EPT(y) = epTrpa(y) = . Trz[(Dye —ep — 5 Vgl d€
4
«
= TI"LE[(|D%£| —€tp— §V%£)V£] 3
Qf
«
> 1 Trp[((1=#)[De| —ep = 5 Vae)rel dg

Qf
[0
> (1 =#)lx = 5Ceelle. . nylvlx —erlvle..
[0
>(1—-k— ECEEQJF)H’YHX —€rq

Hence,

(e
(1—r— §CEEQ+)H7HX —epq<0.

Whenever 1 — k — §Cppqt > 0, (4.28) holds since ||y[y < 1.
The last inequality follows from Holder’s inequality and the fact that v > 0; namely

1/2 1/2
V1D e, 2 < 172l 192 D016, < IVIE2, VIR

From now on, we define the set
Vo i= {7 eT?, ] EPF(y) — epTrps(7) < o} (4.29)

to which the minimizing sequences belong under Assumption 3.1.

5 Approximation by a linearized problem
The aim of this section is to show the link between a minimizing sequence (v, )n>1 in Vy and the linear
Dirac—Fock problem introduced in Lemma 4.12.

Proposition 5.1 (Link with the linearized problem). Let R > Ry = q + M. Under Assumption 3.1,
let (vn) € qu (\ Br be a minimizing sequence of (3.5). Then, as n goes to infinity,

][ Trrz [(Dy,.c — €p)yne]dé —  inf ][ Trrz [(D+,.c — €p)ve] d€ — 0. (5.1)
QF QF

v€l<q
_pt +
wa,m'yP,m
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This property is used in Lemma 6.2 below to build a new minimizing sequence with further regu-
larity, and it is also used at the end of Section 6 to show some properties of the minimizers of I,.
As mentioned at the end of Section 3, the main difficulty is to deal with the nonlinear constraint
I‘;rq. To do so, we introduce a retraction technique first used in [29]. We are going to construct a
regular map 6 from a locally convex set V in I'¢, into a neighborhood of Vj in qu. More precisely,
we will have Vo < 0(V) < F;F - Consequently,
Iy = inf (EPF(7) = epTrp2 (7)) = inf (EPF(0()) — epTr2 [0(4)])- (5.2)

veVo yevy

The locally convex set V is defined by

V:= (Vo + Bxny(p)) ﬂrsq (5.3)
for some p > 0 small enough. The map 6 is defined by
0(y) = lim T"(7)
for any v € V where the map 7" onto V is given by
. +.pt
T:~y— PJyP].
We also denote by Fix(T') the set of fixed points of the map T (i.e., for any v € Fix(T), T'(y) = 7).
Obviously, T'(v) is self-adjoint and 0 < T'(y) < 1. In particular, I'Y, = <, (Fix(T). Unfortunately,
given v in T'<y, T'(7y) may not stay in I'L, : P;(W)T(W)P;(’Y) may be different from T'(7).

Now the constraint v € V in (5.2) is locally convex. To prove Proposition 5.1, we will study the
differentiability of the new functional in (5.2).
We first introduce an admissible set U for the retraction such that T maps U to U.

Definition 5.2 (Admissible set for the retraction). Assume that k = o (Caz + Cpq™) < 1 and let

5Cep (1 — 5)71/2/\51/2 <A<4i Givenl<rt<gy, let M :=max (2+‘3q+, 1_%147), then we define

I/{ = {’yel—‘gq

max{171D° e, .. v} + MITG) —7lxpy <7}

Remark 5.3. We must impose T > 1 in Proposition 5.4: Otherwise, any minimizer vy of I<q r s not
inU if g =1 since |y«|y = 1.
For any differentiable function F': i/ — X (Y and a € U, we define dF(a) by
|F(z) — F(a) —dF(a)(z — a)|xny

=0.
r—a,reU H.CC — (IHX ny

Then we have the following.
Proposition 5.4 (Existence and differentiability of the retraction). Let k, A, 7,U as in Definition 5.2.

Then the sequence of iterated maps (TP), converges uniformly on U to a limit 0 with O(U) = qu Nu
and Fix(T) = I‘zq (U. We have the estimate

— kP
Vel [000) =T"Mlxny < 7= IT0) =7lxny-

Moreover § € CH" (U, X Y) and dO(TP) converges uniformly to df on U.
In this way we obtain a continuous retraction 0 of U onto quﬂu whose restriction to U is of

class CV* . This map and its differential are bounded and uniformly continuous on U.
For any v € Fiz(T) (U and any h € X (Y, the linear operator h — df¢(v)h satisfies
P;tgd@g(fy)hPJr& = P;’,fth;} and P;’fdt?g(fy)hP;g =0,

s

where 0() = fg* ¢ (v)d€, according to the Floguet-Bloch decomposition. In other words, the splitting
£
Lg = Ping @PW}L? gives a block decomposition of dfe¢(y)h of the form

P+ h P+ b (h)*
— [Tty Pt
dbe(v)h < be c(h) 0 > (5.4)
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The proof is Proposition 5.4 is postponed to the end of this section.
To apply Proposition 5.4 to the proof of Proposition 5.1, we need to verify that V < U for some 7
given in Definition 5.2. From Lemma 4.15, we can observe that any v € Vy is indeed in U if

T> \/max{(l —K— %CEE(]+)_1€PQa 1}qt.

Thus, according to the continuity of 7" in X (Y (will be shown in (5.13)), we have

Corollary 5.5. Assume that k <1 — %CEEq+, and let A be as above. Assume in addition that

2A\/max{(1 —K— %C’EEqJF)*lEPq, l}gt <1

Then there exist 7 as in Definition 5.2 and p > 0 such that YV < U.

We are now in the position to prove the main result of this section.

Proof of Proposition 5.1. We argue by contradiction. Otherwise, there would be an ¢y > 0 such that,
for n large enough,

v€l<q

Trgl(Ds = erbinel de > inf o Tra[(Dy, 6~ enhielde + o
vl

Qf

By Lemma 4.12, there exists an operator ), € I'<, such that v, € T'<, (| Bgr, (where Bp, is given in
(3.3) and Proposition 3.4) and v/, minimizes the following problem

72 LTl — el lde = int ]2 Trga[(Dy, ¢ — ep)re] dé
¢ V=P ~ ¢

From Lemma 4.12 and Proposition 4.14, ,, € Bg and |7, xny is uniformly bounded. So according
to Corollary 5.5, there is ¢ > 0 such that for any n large enough and any s € [0, 0], (1 — $)y, + s7), €
I<qBxny(m,p)(\Br < V()Bg. Then from Proposition 5.4, the function f, : s € [0,0] —

(EPF — epTrr2)(0](1—5)vn + 57,]) is of class C' and the sequence of derivatives (f!) is equicontinuous
on [0,0]. From (5.4), we infer

£3(0) = T2 [(Dy, — ep) (7 — )] < —%0.

So there is 0 < s9 < ¢ independent of n such that for any s € [0, so] we have f; (s) < —%. Hence, for
any s € [0, so],

(EPF = epTrr2) (011 = s)m + $74]) = Fuls) < ful0) = 22 = (€77 = Trpa) () — 22

But 0[(1 — s)yn + sv,,] € T, Br and EPF (y,) — epTrre (7n) — I<q,r. This is a contradiction.
Hence the proposition. [l

We are now in the position to prove Proposition 5.4, as in [29] for atoms. As in [29], we introduce
the following set:

Fegri={rve X nY;disty, , ~v(7,T<q) <7}
Then analogously to Lemma 4.9 and Lemma 4.10, we have for any v € I'<q »,
(1= k)| D" < |D5y| < (1 + £,)| DY (5.5)
and
inf[o(D4)] = Aoy =1 — Ky, (5.6)
where r, := a (Cgz + Chp(g" +2r)) and

C
Ao i=1— amax{CHz + Cppr + Chp(qt + 1), 702 + Cpplqt + r)}

Recall now that Py" = 1g+ (D — azGy) and $Cer (1— ﬁ)_l/QAal/Q <A< % with Ag given in Lemma
4.10.
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Lemma 5.6. Assume that k < 1. We introduce the map

Q:’y'—>P,?'—PO+

in such a way that Q() := fg)zg Qe (y) d€ with Qe(7y) := P;:& - P&'g.
Then for r > 0 small enough, the map Q is in Cl’”p(ngyr,B(LQ(Rg,(C4),H1/2(R3),(C4)) and we

have the estimates
VyeT<gr, YheX(NY: [ID°[P2dQ(hly < (A=n)hlxny (5:7)
and
¥7,7 € Peqr ID°1P[AQ(NA = dQ(IRID 2y < K|y =+ Ixnvlblxny,  (58)
where K is a positive constant depending only on k which remains bounded when k stays away from 1.

Proof. As k < 1, by our definition of k, and since \g = 1 — k > 0, it is easy to see that k, < 1 and
Ao,r > 0 for r small enough.

By Lemma 4.9, D, ¢ is a self-adjoint operator for all v € I',»» and 0 is in its resolvent set. Then
by Taylor’s formula [20, Chapter V1.5, Lemma 5.6] or [16], we have

+ 1 1 e 1
—00
and, by the second resolvent identity,
+0
@ S N—1 S N—1
Qe(7) = —5- (Dy,e —i2)" Vye(Dog —iz)” dz.
—0

Hence, for every h € X (Y, we deduce from (5.9) and the second resolvent formula again, that
a [T
dQe()h = dPJ  h = f%/ (Dyg —i2) Vi e(Dye —iz) dz. (5.10)
— 00

Besides, for any u¢ € L(Qy), we have

+00
| (e D el? 4 12P) 21D el (Do + [2)2ue) |, s = eluel.
—o £

We infer from (5.6) that
11D,y < A5

Thus gathering with Lemma 4.7, for any ¢¢, ¢ € L7 we have

(e, [De[2dQe(7)hoe)

«
2T

400
/ (’l/)g, |D§|1/2(D%£ — ’L'Z)ilvhﬁg(Dmg — ’L'Z)ild)g)L2 dz
3

—0

- o 1 12, [? 2 o 1,002

sellVcllsuy ([ [0re =i nd 2o, ) ([ 1Dne a2 ol a2
o 2 o €

« _ _

2 1 Vael ) [1Del 21Dy 6| =2 0lls22) [ Dr el ™2 Iy e 22 ¢

(e _ —
< 5Cmp(1 =) 7200 P Rl v el |0e] 22

1/2

N

N

(5.11)
Hence we obtain (5.7), i.e.,

« — —1/2
[1D°[Y2dQ(mAID°IV2 |y < S Cp(1 — k) eIl Ay
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As A>SCpp (1 - k)22 "2 we know that there exists 7 small enough such that

%CEE(l k)P <A

This proves the first inequality.
For the second inequality, we have

a? [t* o o N
dQe(v)h — dQe(7)h = — o (Dye —i2) Vo ye(Dy e —i2) 'Wihe(Dy e —iz) " dz
—0
OCQ +00

-5 »

(D'v’,E - iz)_lvh,E(Dmf - iz)_lv'r’*mf(D'v’yf - iz)_ldz.

Proceeding as above, we get (5.8). The fact that Q e C11"?(T', s B(L?, H/?)) follows from (5.7) and

(5.8).

O

Lemma 5.7. Assume that k <1 and let A > %CEE (1- m)_l/Q)\alp. Then, for r > 0 small enough,
the map T : v — PyP; is well-defined and of class C1'' on T'<q, with values in X (Y. Moreover,

for any yeT'<qr,

I7%(v) =T xny < QA(maX{HT(WNDOWQHGMa 1Ty}
Ag™

+ S = T)lxny ) ITG) = vlx -

Moreover, there are two positive constants Cy, Ly such that

VyeTlegr [dT()sxny) < Cn (1+ max{|y[D°[?|e, ., [7I¥}),

and

V7,7 € Py [dT(Y) = dT()sx vy < Lie(1 + max{[7| D12 [e, 1, [y Iy DIV = YIx v

Proof. Let y,7' € g Then P — P,:C can be written as

1
Pl - P} = / dQ(Y +t(y =)y —~)dt.
0
From (5.7),
[ID°2(Pf = Pi)ly < (A=) |y =+'Ixny-
For the estimate (5.12), we have

TQ(V)—T(V) = (qu(»y) _P;r)T(V) (PTJ‘F(V) _Pv+ +P~;r) +PV+T(7)(P7J‘F(7) _Pv+)

= (P;(v) - PJF)T(V) + T('Y)(P;(V) - P;r) + (P']T('y) - PVJF)T('V)(P;(W) - P;r)

Then
I72(v) = T(lxny < I(Pfyy = POT)Ixny
+ HT('V)(P;—(W) - P»;F)HXHY + H(P;(w - P»;F)T('V)(P;(v) - P»:F)HXQY-
We have
TPy = Py < 1D, — Py max{| T(ID 2 s, . IT()]v ),
and

1P}, = POT() (P, = PD)lxy < IID°2(PY, = POIRITG)ern 1y

22

(5.12)

(5.13)

(5.14)



Notice that |T(7)|e,,ny < |7le..ny < ¢ + 2r. Gathering together these estimates with (A —
r)(gT + 2r) < Aq™ for r small enough, we obtain (5.12).
We turn now to the proof of (5.13) and (5.14). From Lemma 5.6, T"is in C!(T'<,,) with

dT(v)h = (dQyh)yPy + Pyy(dQyh) + PyhP;.
Notice that for any v € I'4» and 7 small enough,

(1 + k)2
(=)'

(14 k)2
(1)

[[D°2PF D72y < (1= rep) 21D, [V2RF D072y < <2 (5.15)

)|

Then, for r small enough,
[T () |sx vy < O+ |ID°V2PFID 2 3) (1 + max{ |y D)2 e, s [y D (1dQ Ay + Bl x )
< Cu(1 + max{[|D°"?|e, 1, 7]y })-
Finally, for the term dT'(y") — dT'(7y), we have
dTe(Y)h — dTe(y)h = (dQy eh)ve Py g + PyeYe(dQy gh) + Py ghe Py g
- (dQv’,ih)VéPv’,ﬁ - P’y’,ﬁ'Yé(dQv’fh) — Py che Py e
Proceeding in the same way as for (5.13), we can get (5.14). O

We now show that T satisfies all the assumptions in [29, Proposition 2.2]. Before going further, we
also define

U, = {’y elgq,r

max{[7| D% e, 1, [y} + MIT() = vlxny < T}-

Proposition 5.8. Let k, A, T be as in Definition 5.2. Then for v small enough, T is in C°(U,) (" CY¥" U, X Y)
be such that T(U,.) < U, satisfies the following estimates

sup [dT'(7)[xqy <o, sup [T(y) —7v|xny <©
YEUr YEU,

and
Vyel, [T%(x)-T(2)|xny <k|T(2)-2z|xny
with k := 2AT < 1.
Proof. For any v € U,., we have
TP 610 < VD1 N6y + (v = TODID 610 < WD |e, + |7 = T x
and
Ty <lvly < lvly + v =Ty

As a result, as M > #, (5.12) implies that

IT*(v) =T xny <KIT() = 7lx

1
1-2A7>

max{|T(y)|D°"2 e, ., [Ty} + MIT?(3) = T()|xny
< max{[1| D[, v} + (1 + MR)IT(H) = vlxny <.

with k = 2a7 < 1. Moreover, using the inequality M >

So T'(vy) € Uy.
The fact that sup,ey, [dT'(7)|xny < o0 and dT" is Lipschitz continuous on U, follows from (5.13)
and (5.14). Besides, using (5.15) and v € U, we have

2
I7() =Alxny < ITMlxay +IVixay < 7= Ilxny-

This ends the proof. [l

Notice that U, is an open subset of I'<,. Notice that I'<y; < I'yr and U < U, for » > 0. Then
Proposition 5.4 follows from Proposition 5.8 and [29, Proposition 2.1 and Proposition 2.2] by choosing
U=U,T =Tgy, and X :=span{y — 7' | 7,7’ € T'<qr} = X[\Y. Here the notation X, U and T is
given in [29, Proposition 2.2]. The proof of (5.4) is exactly the same as in [29, Theorem 2.10]. This
ends the proof of Proposition 5.4.
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6 Existence of minimizers in the set By

In this section, we are going to prove the existence of minimizers of I<, r (i.e., Proposition 3.4).
According to Lemma 4.15, there is a minimizing sequence (v,)n>1 in BRﬂl";r that is uniformly
bounded in X (Y. We split (v,)n>1 into two parts: (¥, )n>1 and (vn, — Y )n>1 where, for each n,

'771 = DnYnPn  With  py, = 1[0,6] (Dvn) (61)

with e > ¢*(¢+1)(1 —&)~! defined in Lemma 4.11. An important fact in this lemma is that for almost
every & € QF, the rank of p, ¢, and therefore of %, ¢, is at most ¢+ M. We prove in Lemma 6.1 that, for
eachn > 1,79, € X2 whereas v, € X; roughly speaking, we reach a L*(Q5; H, g(Qg)) regularity instead
of a L2(QF; Hé/Q(Qg)) regularity for the associated eigenfunctions (Lemma 6.1). Hence (¥,,),>1 is an
approximate minimizing sequence with higher regularity than (y,)n>1.

The structure of the proof of Proposition 3.4 is as follows. In Subsection 6.1, we will show ||, —
Ynllx — 0 when n goes to infinity. In Subsection 6.2, we study the convergence of the kernel of
(W5, .¢)n>1. Then thanks to the constraint v, € Br, we deduce the strong convergence of (V,,, ¢)n>1.
As aresult, [Py, — P |y — 0. Hence in Subsection 6.3, we can pass to the limit in the energy and in
the constraints.

6.1 Decomposition of minimizing sequences

We start with some regularity and bound results on 7.

Lemma 6.1. Let k < 1. Then the sequence (Vn)n>1 and the sequence of kernels (Fn (-, *))n>1 are
uniformly bounded in X2 and L*(QF; H (Qe x Qq)), respectively.

Proof. We first prove that |p,[xz is bounded. Let (un k(§))k=>1 be the normalized eigenfunctions of
the operator D,,, ¢ with the corresponding eigenvalues A, (§) counted with multiplicity. Hence,

+o
k=1

with dp = 1if 0 < A\, 1(€) < e and d,, 1, = 0 otherwise.
By Lemma 4.11, we know |{k € N* | §,, x(§) = 1}| < ¢+ M. By (4.21), for any eigenfunction uy (),
we have H(Smk(g)u",k(g)HLW(Qf;Hg(Qg)) < (1 —r)"te. Now,

q+M
Ipnelxse) = 25 0nb(€)lun sy < (a+ M) sup |6 1(€)un b (€) 3y
k=1 =

Hence,

[pallxz < (g + M)A - k)72,

2
0

Since p, = p2, ¥n = PnYnpn and 0 < 7, < 172(rs), we have

[Fnllxz = [1D°Fnl D°llle: o = I1D°lpPnFnpal D°|ls, .
< [Fnly [1D°lpal§, . < IPnllxz < (a+ M)A - k)72

In terms of kernels, it writes

[1D¢.aFne (-, M L2 (@exe) = 1 Delneleaie) < Pmelxz < g+ M)A - k)72,

the same holding for |De¢ y[Vn.¢(-,-). Thus, F,¢(z, y) € L2 (QF; H (Qe x Qr)), and
[Fne (- ')HLI(Q;";Hl(ngQ[)) < 2(g+ M)(1 - k)2 (6.2)
O

We begin the proof by showing the following result as in the case of molecules [29, Lemma 3.4].
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Lemma 6.2. Let R > Ry = q + M. Under Assumption 3.1, whenever ep > (1 — k) ~tc*(q + 1), for
any minimizing sequence (Yn)n=1 of (3.5) in TL, () Br we have

Trpe ('Yn) —q, H'Yn - 'NYnHX — 0.

Proof. According to Proposition 5.1, any minimizing sequence (v, )n>1 in qu () Br satisfies (5.1). By
Lemma 4.12, the minimizers of the problem

inf Trr2| (D —€ d
vel<q, v=PF, vP, ]{?2" b [Py = erhre de

are of the form v/, := fc% 1[0,0,)(Dn,,¢) d§ + 6 with some 0 < 0 < fc% 1y, (Dy,.¢) d¢ such that
Try2(7,) = q and for some v, € [0, (1 — x)~Lc*(g + 1)]. We denote

@ @ @
T, i = ][ 1(e,oo) (Dvmi) dg, 77;1 = 7[ 1(un,e] (Dvn,ﬁ) dg, W;; = ][ 1[01Vn](D’7n1£) dg.
QF QF Qf

"

We can write p,, = m,, + 7 and v,, = @, 7. Proceeding as for (4.26) and (4.27), we have

Trp2[(Dy, e — €p) Vel d€ — Trp2[(Dn, .6 = €P)Vn,e] d6
QF ¢ QF ¢

=+ Trp2[(Dy,e = Vn)TneVneTnel d+ 1 Trp2[(Da, e — V)T e Ve ] d€
QF ¢ QF ¢

e

+ ]2* Trr2[(Dy, ¢ = vn) (M eneTn e = Low,) (Dy,,e))] dE + (ep — vn) (q —Trpe (’Yn)) :
£

We observe that the four terms in the right-hand side of the above equation are non-negative whereas,
from Proposition 5.1, their sum goes to 0 as n goes to infinity. Therefore,

Trp2(yn¢) d€ — q and Trp2[(Day, 6 = Vn)Tn e Yn,eTne] d§ — 0.
QF ¢ QF f

But (D, ¢ = Vn)Tng = (€ = vn)mn g and T e(Dy, 6 = Vn)Tng = Tne(|Dy, 6l — vn)mne. So taking
a convex combination of these two estimates leads to

€ e
D — >
e ot A =)t e D = Vn)Tng

(Do = Vn)Tn g = Tng| Dy, elmn e
e—Up

Hence
routallx = £ TeialmelDelngrmel € < (1= 0y £ TepglmelDs, elmnenel dé — 0.
Qe QZ

It remains to study the limit of h,, := 7,7,pn as n goes to infinity. Since (7,)? < v,, we have
(7rn7n7rn)2 + hnh: = 7Tn(’Yn)QWn < TpYnTn-

Hence

o 2D el el | Do) dE =
£

Taking any operator A in Y, by the Cauchy-Schwarz inequality,

‘]2* Trpz[Ae|Ds, 6l 2uls ¢| Dy, e]2] dE

14

1/2

<
@)

1/2
x </Q* Trp2[|Ds, ¢ *hnghis ¢l Ds, V2] d§> :

14

£3’

Trpe [|D7n,£|1/2pn7€f4z Aepng |D7””5|1/2] HLOO
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By Lemma 4.11, there is M > 0 such that p, ¢ has at most ¢ + M eigenfunctions, which means that
Pn.¢ has rank at most ¢ + M and |p,|D-, |'/2|, <e'/2. As a consequence,

ITrr2(1Ds, ¢l *pne Af Acpn el Doy, el 2 e < (g + M)e| AlT.

So we have
|1D5, [ 2hal D3, 2] 0

Hence, |un|lx — 0. Finally, |vn — Fnllx < |mnynmallx + 2Hh |x — 0. O

By Lemma 6.1, up to the extraction of a subsequence, there is 74 in X2 (Y, such that
~ ¥ . 2
n — vs for the weak = -convergence in X2 ﬂ Y, (6.3)

since X2 is a subspace of &1, which is the dual space of G4 1 and Y is the dual space of &1,1. We
immediately get the following.

Lemma 6.3 (Strong convergence of the density). The sequence pl/Q converges strongly to p.lyf m

H5(Qe) with 0 < s < 1, thus in LP(Qy) for every 1 < p < 6. In partzcular whenever ep > (1 —
k)~te* (g + 1), we have fQ[ Py dT = q.
Proof. The proof is the same as in [5, p. 730] and relies on ¥,, € X2. The fact that the limit of p%{z 2 is

exactly P'v{k follows from [5, Eqn. (4.51) and Eqn. (4.55)] since it implies ps,, — p4, in L*(Qy). O

6.2 Convergence of (V,, ¢)n>1

Before going further, we introduce the following functional spaces: For p € [1, +o0], s € (0; +o0], let
LPH{ := LP(QF; HE(Qe x Qr; M4(C))) defined by

LpHgS = {f(-,z,y) € L2—5,1(Q2§C4) ®L§,y(Ql;C4) HfHLP(Q;“;HS(QzXQl)) < OO}

endowed with the norm | f|Lrm; = HfHLP(QZ";HS(ngQg)); then we also define the function space
WHYPHE := WHP(QF; HE(Qe x Q¢))  LPH{ endowed with the norm

I lwrrmg o= | flrms HIVES (€, ) lLrmg

and the Holder continuity function space CO*H¢ := CO*(Qy; HE(Qr x Qy)) for p € (0,1), endowed
with the norm

loonng = flzemg + sup oI HE Nir@oan
‘ §#EeQf & =&

For any functions f € LPLZ and g € LP/LE with p € [1,00) and 1/p + 1/p’ = 1, we define the product

o =of, ] lsoldyie (6.4)

It is easy to see that (LpLg, Lp/Lg, (+,-)) forms a dual pair.

First of all, we study the convergence of the kernel of W5, ¢. Recall that
Wye=Wemae+Wemqye, YmeNm=2

where for n € 2Q} and x € 2Q, the kernels of Wx,, ¢ and W.p, ¢ are respectively
Wy co0) i= £ WE (€ = €2 = ) re m,0) d€
Qs

and
W e (1) ][ W2, (€ — & — y) e (w,y)de.
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Lemma 6.4 (Convergence of the kernel of (W5, ¢)n>1). We have the following properties:
(@) Wamzne = Wamme in LP(QF LE(Qe x Qu)).
(b) |Deo| ™2 De y| 2 Wern 5,6 = |Deal 2| Dy |72 Wam yye i LP(QF; LE(Qe x Qu))-

Proof. We will prove the boundedness of the sequences, and then deduce the strong convergence by
the Rellich-Kondrachov Theorem.

Uniform boundedness of W_,, 5, ¢ in CO#*(QF; Hg(Qg x Qg)). It is based on Lemma, 6.1, particu-
larly (6.2). Recall

47T 1 2wk
<m Z(é 5 T — ) = 3 2 ﬁ et ( —-(&-¢ ))(Ify)
& im 12— -9
kez®
Thus,
H <m Ansn Wzom,’”yn,n HHl (QexQe)

][ o (25 —(=€") (2 —) ot (2 (=€) (= —)
- neds — A ede
-9 |22k — (i — )]

|k]oo<m—1
kez?

H1(QexQp)

For each term on the right-hand side, we have

o (FE— (=€) (z—y) e ][ ot (B (=€) -(z—y) 2
'771,5 - ’77175'
27k 2 2mk 2
|2ZE — (n— &) 1258 — (o = &) H(QuxQe)
<][ 1 1 (= -8) )y, de’
o ||225 — (i |2 |22k (5 — 5/)|2 " IHN(Qex Qo)

N ][ e( €))-(2=y) 2 ][ e (B (=€) (z—y) o
5, d€ — T n.e
QF I#*(n’*f’ﬂ QF |FE— (=9

H'(Qex Q)
As 1, ¢ € QF, according to (6.2), we get

2.2

2rk T—y)~ ~ -
o (25 —(=€")) (z—) gCH’Y"qf/HHgl,(ngQg) <C(g+ M)(1—r)"e.

Tn,&

HI(QexQr)

By the Holder continuity of the function 7 — fQ dr/, there is a 0 < pu < 1 such that

s

12

¥ Tn—n'l? 77|2
1 1

2w -e)f [Z-m-e)
< Clg+ M) =) e ="

27k T—)~
et i( 22— (n—€"))( y)%hg,

5 d
H(QexQe)

For the last term, note that [e="% —e~""%| < |V, " o |n—1'| < Cln—1'| and |V (e~"% —e~""2)| <
Cln —n'|. We get

6(27rk (77 5)) (I y) e(27rk (77 5)) (1 y)
- 3 '7715 df —][ - D) 'Yn £/d§
|22k — (i — &) |2 — (o — )| H(QixQ0)
Cln —1'| ~ /
<f 313,62 @0 x @) d€
QF |22 — (y — @) o

< C(g+ M) —w)"2*n — 11|
We finally get that there is p € (0,1) such that

o (QF HE@uxey < Cla+ M)(1— k)2,

[Wem .l
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Boundedness of W=, 5, ¢ in WH*(Q¥; L*(Q¢ x Q)). For =0 or 1,
vaW>m,’7n,£HLO@(Q;F;N(Q;FxQ;F)) < ]é* vawzm,e(f — &) An.e HLW(QE‘;LE(Q?‘XQZ"))dg-
4

By Corollary B.2 and Lemma B.3, we know

IVeWeme(€ =& 2 =) neln2(ix0n) < Clne i (Quxqo)s

and
IWeme(€ = €2 =) Ane | 22(Qix@e) < ClAne | H1(Qux0)-
Thus,

HWva'NanfHWI’I(QZK;[?(QgXQg)) < C(q + M)(l — H)_2€2.

Convergence. Thanks to Rellich-Kondrachov Theorem and the boundedness of the sequences, these
two sequences converge strongly up to subsequences. Now, we are going to prove that the limits are
the kernels W, +, ¢ and Wx,, -, ¢ respectively.

It suffices to prove that

Wemine = Wempge and Wops, e = Wop e (6.5)

in L*(QF; L*(Qr x Qu)).

By Young’s convolution inequality,

\|W<m797§”60@,1 < |\W<m,g,£‘|62,1 = HW<m191€HL1(QZ";L2(QZ xQr))
< [Wame(§, o — y)HLl(Q:}‘;Lw(Qg ng))Hgé’(% y)HLl(Q;";LQ(Qe xQe))"

Then by (6.3) and using (6.4), for any g¢(z,y) € LN(QF; LZ(Qe x Qr)),
(96 Wemiin) = . T2l Weme d6 = £ Toug [W2, oA d€
QF QF
- i Tng/ [W;km,g,gﬁ*,ﬁ’]df/ = <9§a W vs 6 > .
2
By Corollary B.2,

DO Wam g D[ e, < IID°1 7 Wamgles,

—1
< ][Q* || De|™ Wam,e(€ = )9-[ 11 (¥ L2(@ex@u)

L

< CHgi'(xay)HLl(Qj‘;Lg,(ngQg))'

Hence,
(96, Wom5,.6) = Weom.ge, ne)
= 7{2* TI'Lg [|D§,|_1W;m,g,£/ |D§/|_1 |D§/ |§n7£/ |D£/ |] dé”
4
- QF TrLg [W;m797€’7*a§’]d’£/ = <95’ Wom .6 > :
4
So we have proved (6.5), hence the lemma. O

Lemma 6.5 (Strong convergence of the electron-electron interaction). As n goes to infinity, we have

[[D742Vy, —y |DO 712y — 0.

n Yk

Proof. As 'V, ¢ = Gy * py — W, ¢, we have

I1D° 2V, o D12y
< IIDOI72Ge  (pr, = po ) IDO 2y + D02 (W 6 = Wiy 1Dy
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For the first term in the right hand side, notice that

|Ge s (pr = Py < G (pr = P30 |y + [Gex (3, = )y -

By (4.4), we get
|Ge = (py, = p3.) |y < Crllym = Al x — 0.
Notice that, from Lemma 6.3, we infer p5, — p., in L?(Q¢). This and the fact that Gy € L*(Q,) yield

|Ge (P35, = pri) L@y = 0.
Thus using |D°|~! < 1, we infer
[[D°1742 G % (py, = pay )ID°| 2y — 0. (6.6)
Similarly, we split the second term into two parts :
[[DO72 (W, = W )IDO |72y < W, = Wiy + IID° 2 (W, = Wo )ID° 2y, (6.7)
Since 7, and 7, lie in By and since |y, — 3| x — 0, we obtain from Eqn. (4.9)
W = Wa, Iy — 0. (6.8)

We split the second term in (6.7) into two parts. Thus by the duality of the operator |Dg ,|~'/2, for

the term associated with W;Om, o

\|Dg,z|1/2 /Q W) [1De |~ 20 (1)]dy
L

LE(Qe)

- H/ [ng’I|_1/2|D5’y|_1/2W>mv'~Yn*’Y*1€($a y))] Ve(y)dy
< L2(Qu)

< [ MDeal ™Dy |72 W g, -6 (9D | 12000 1906 () |dy
Q 13
4

< |D£7I|_1/2|D§,y|_1/2W>m7’7n*’Y*7§(" '))HLOO(QZ";Lg(Qe xQq)) Hw€”L2(Q€)'

For the other term, analogously we have

PRE /Q W - e (29) | Dey| 200 () dy
L

LE(Qe)
< [ Wl ) azollDes oy
£

< ‘|W<m,%fv*,£('a ')HLOO(Q:}‘;LE(QZ ng))l"‘/JSHLz(Qe)
Gathering these estimates with Lemma 6.4 we infer
D2 W5, o, | DO 12y 0. (6.9)
Then this lemma follows from (6.6), (6.8) and (6.9). O

As a result, we have the following.
Corollary 6.6 (Strong convergence of the spectral projectors). As n goes to infinity, we have
| P, — P |y — 0.
Proof. By (5.9) and the second resolvent identity, we obtain
+ + I 1 1
HP’H«E - P’ymeB(L%) < % /_OO [(Dryse = i2) " Vo= (D — i2) 7 HB(Lg)dZ
1 _ _
< 5[1D°) YAV DOy
™
+0
< [ D= 2 D Py 1D (D = i) say s
—00
1
< (1= m)THID TRV, DOy

The right-hand side goes to 0 by Lemma 6.5. (|
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6.3 Existence and properties of minimizer of I, r

The existence of minimizers of I<, r now follows by passing to the limit in the constraint and in the
energy. The proof is separated into the following two lemmas.

Lemma 6.7. The limit v4 lies in qu () Bxg.

Proof. As
Fn i'Y* in Xgoﬂya
we get
Iyl <liminf|[Fnle, . <R, [|vly <liminf |[F,]y <1
n—o0 n—0o0
and

Iyl xz, < liminf |3 xz < (g + M)A — )72

Thus, 74 € T and 74 € X (Y [ Bg. Besides, as |y, —Jn]|x — 0 and H/)»lvf - plyf |z — 0, we know
that

F o Tripede — f Tpeds <a
* £ * 3
Qg Qé

Then 74 € <, () Br.
To end the proof, it remains to show that P;; Ve = Va6 in the sense that for every g € G 1,

o TrLg[(P;;,gV*,ﬁ — Vx,e)9e] d€ = 0.
L

Notice that

+ + +
o TI‘Lg [(P7*7§7*,§ — Y ,£)ge] dE| < /Q* TrLg [(P—y*,g - P—ymg)%z,gg&] dg§
‘ ‘ (6.10)
| [ TP e = Tnedae |+ || TriplGine = ree)oel .
Q[ QZ
As gP,;tk € 64,1, we know that
+ ~ ~
o Trp2[P], ¢(Vee = n.g)geld§ — 0 and /sz Trp2[(Fng = Ve.6)g] d€ — 0.
For the first term in the right-hand side of (6.10), using Corollary 6.6, we have
|, Tl = Pl 9o ) < 1P, = P Bl gl =0
2
Consequently, letting n go to infinity,
|, Tl(P eee — . oelde] = 0.
Qf
Hence ~4 € qu. This ends the proof. O

Lemma 6.8. The limit v, minimizes I<y R.

Proof. For the kinetic energy term, we have
|, Tz el =molde = [ Triz e =Tuelde + | Tooa[Dene = el de.
Qf QF QF
By (6.3), we know that

/@* Trp2[De(n.e — vx6)] d€ = /Q* T2 [|De| (¢ — ve.6) [ Del| De| =" De| D ] dg — 0,
£ £
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as [D°|7'DOID°| 7! € Gs,1. Since |y — Fnlx — 0, then [« Trp2[De(Vn.g = n,g)ld§ — 0. Hence
£

/ Trp2[De(n,e = vx,6)]d€ — 0.
Qf
The proof for the attractive potential is similar:
|, TG =0 = | Tr(Gulne ~Fne) e+ [Tz Colfng —me))
2 12 4

and

< Chlvw —7|x — 0.

[, ria(Gelme = ne) e
QF

As ||[|D°|71Go|D°| Y e.., < Cl|D° 7Y e,,, < +00, we know that |[D°|7*G¢|D°|7! € G 1 and
|, TG = m e = [ Tesz 106l G~ IDEIDI 1 Gal Dl d 0.
2 2

For the repulsive potential, according to Lemma 6.5, we have

‘rﬁL2 (V'Yn Tn — V'y* 7*)

= ‘TYLQ (Vy—vs¥n + Vap g V)
<1172V i D72y ([l x + ) = 0.

The lemma follows. O

We now know that vy is a minimizer of I<4 r under the condition vy € quﬂBR. Applying
Proposition 5.1, we get

v€l<q
—_pt
v=Pl

/ Trpz[(Doyg —ep)rag]dé = inf / Trpz[(Day.c — ep)e] €.
QF QF

Then, with ep > (1 — k)7 1c¢*(¢ + 1), by Lemma 4.12, we get 74 = fg* L10,)(Dyy e)d€ + 6 with
2
some 0 < § < f% 1,(Dy, ¢)d¢ for v € (0,(1 — k)"*c*(g + 1)] independently of ep. Furthermore,

ﬁLz (v«) = q. Besides, if R > Ry, any minimizer 7, in qu () Br lies in ERO- This proves Proposition
3.4.
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A  Proof of Lemma 4.1

It suffices to prove (4.2). By interpolation, we can choose Cy = Cg.

To deal with (4.2), the idea is to decompose the potential Gy on Q, into two parts, namely ﬁ and
Gy — ﬁ The first term can be treated as the Hardy inequality on @y, whereas the second is bounded.
We begin with the second term and prove the following.
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Lemma A.1. There is a constant Cy > 0 independent of { such that

1 Co
e | =
This implies that, for any x € R3,
Go(z) = f%. (A1)
In particular, we have
1/2
Co< it |24 278 imin{(“W)l/Q, (1 - 4”R3>1/2} » L
o<kR<i | 2R 5 472 R3 3 3 retm0) |k[4

Proof. As G1(x) = £ Gy(Lx), it suffices to consider the case £ = 1. Let f(z) = G1(x) — |71\ Eqn. (2.1)
yields
—Af=d4m(=1+ > ).

keZ3\{0}

Let B(z,R) be a ball of center z and radius R chosen such that (Uzte B(z,R))N(Z*\{0}) = &.
Obviously, we can assume 0 < R < 1/2. By the divergence theorem, for 0 < r < R and z € Q1 we
obtain

) A I R B VA T S

dr | 472 T drdr 2 4r? on 472
0B(z,r) 0B(z,r) B(z,r)
(A.2)
with S? denoting the unit sphere. On the one hand, for any z € Q1,
1 1
—2/ Amfd$=—2/ ldz <—7Tr.
4mr B(z,r) r B(z,r)
where the first equation holds since
( U B(z,r))ﬂ{k: eZk#0} =, for0<r<R.
2€Q1
Therefore, integrating (A.2) with respect to r,
872 8 2
—ir2< f(z—l—rw)dw—élﬂf(z)girQ.
3 2 3
Since fB(Z R) f(z)dx = OR % (Js f(z + rw) dw) dr, integration over [0, R] leads to
3 21 R? 3 3 1 27 R?
< —— d — < —— G d — —d —
|f(Z)| AT R3 /B(Z,R) f(x) T 5 4T R3 /B(Z,R) 1(1') T+ 4T R3 /B(z,R) |.’L'| T+ )
On the other hand,
12 1/2
47 R3 1 [ 4rR3 1
Gi(z)dx| < |B(ZaR)|1/2HG1HL2(B(Z,R)) < 1G]z == | —5— Z 7
3 i 3 ||
B(z,R) kez3\{0}
Using (2.2) and by the periodicity of G1, we also have
12 1/2
1 41 R3 1
/ Gi(x)dx| = / Gi(x)dzr| < — (1 i ) Z AV
B(z,R) (2+Q1)\B(2,R) & 3 keZ3\{0} K]
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Thus,
1/2

1 {<4WR3>1/2 <1 47rR3>1/2} 5 1
< — min 1= v
T 3 3 keBTN0) ||

1 1
/ —dzx| < / dr = 27 R.
B(z,R) |z B(0,R) |$|

Therefore, the bound holds for £ = 1 and any 0 < R < % with

3 2R 3 dr B3\ dr B3\ 1
Co < = > i (1 L
"SR T T +47r2R3mm{< 3 ) ( 3 ) 2 EE

keZ3\{0}

Furthermore,

1/2

We now consider the Hardy inequality on @, for the potential ﬁ

Lemma A.2. Let ue HY(Q), then

2 40+ 24 48 + 2440

u
=] <7HVUHL2(Q£) 7HUHL2(Q5)
Lo

Proof. We start with the relationship:

Oﬁ/
Qe

1 2 1 Viul?-
Oé/ |Vu|2d$+—/ %dm-ﬁ-— LQIdgc.
2 4 Qe || 2 Qe ||

2
lul +) dx, we obtain
[z] ’

Viuf*-z iz |ul? |u|?
7| E dx =/ BE dx—/ Wdac.
Qe z Q. 1T Q¢ 1T

where 77 is the outward pointing unit normal at each point on the boundary 0Q,. To end this proof,

Thus,

By the divergence theorem for | 0. \Y

it suffices to estimate faQe %‘“2‘2
Let
A2’3(:c1)=/ |u|? (1, T2, 23)drodrs.
—5.50?
As |ii-z| = £ and |z| > £ for any x € 0Q, we have
”9U|U| 2 23, ¢ 23t 13, ¢ 13,8 12, ¢ 12,8
dz = = (A% A% A2 D) 4 AVH(E) 4 AV2(— D)+ AB2 (D)) .
| T /|| o= (A2(-5) + AP(G) + A=) 4 AT 4 AT 4 A2(5)
Qe
(A.3)
Let x(o) (— £, £] such that
2,37,.(0) 2,3 1 2,3 1 2
A% (xy) < A% (xq) dxy = - A% (xq) dxy = = |u|* da.
(4,41 EJi-4.4] Lo,
Then we have
A2’3(—£) A23 / / A23d$ +2A23( (0)) <2A23( (0))+/ d —— A23 dxy.
2 (0) ¢ dry 1 (—L.£] dry
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d 0
—A2’3 d < 2/ - <2 2 2
J ] <2 [ 5] < 2 Fulio)
we get
A2,3 g A2,3 g < 2 2 2 V
(*5) + (5) S ZHUHLZ(QE) + HUHLZ(QZ)H UHLZ(QZ)-

Inserting this into (A.3), we can conclude

1 2

u
0 < [VulFagq,) — 1

6 6
] + zlulZz o + 71l 2o VUl L2@o)-

L2(Qe)
As a result, by the Cauchy-Schwarz inequality

2 40412

24 +12¢
< THVUH%Z(Q[) +

62

u

T ulZ2(q,)-
|| L2(Q0) (Qe)

Combining Lemma A.1 and A.2, we obtain

B Co [T73 3 6
Cg.—2(1+ g)max{ 1+£, €+£2}. (A4)

We now turn to the estimates on W, .

B Proof of Lemma 4.5

We first study the property of W;°, then we prove Lemma 4.5.

Properties of W;°

Recall that WP (n,2) = Wam e(n, ) + Wem,e(n, x) is given by (4.7). We are going to prove the Hardy
type inequalities for W, ¢. A natural idea is to compare it with the potential Gy.

Proposition B.1 (Singularities for the potential Ws,, ¢). For every m = 2, there exists a positive
constant Cs,, such that, for any £ > 0, we have

Com
sup (Wane(n,z) = Ge(z)| < = (B.1)
7]62@2‘ ¢
TEQe
with
1/2
Co < inf V3 o m?42 Z 1 +27r[(2m71)3+1]R2
™ = o<r<1/2 | 2(7R)3/2 (m — 1)2 o |k|4 5
3 AN AN )
- mi 1— -
T e < 3 > < 3 ) 2 B
keZ?\{0}

Proof. The proof is similar to Lemma A.1. Notice that

W (n,z) = AW, (g,/\z) , neR3 zeR3.

We therefore take £ = 1. Observe, from (2.17), that

—A WP (n,z) =4r Z e~ MRS ().
kez3
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Let f(n,2) = Wem1(n,2) — G1(x). Then

—Asf(n,x) = 4 Z (e7"F —1)6),(2) + 4m — dmr Z ei@mk—n)a
k#0 k[ zm
kez? e

Let B(z, R) be a ball of center 2 and radius 1 chosen such that (..o, B(z, R)) ({k € Z3k # 0} = &.
Obviously, we can assume 0 < R < 1/2. Analogous to (A.2), for 0 < r < R and z € (J; we obtain

d 1 1
— | —= = — A . B.2
dr (47r7’2 /aB(z,r) J(n.5) ds) 4772 /B(z,r) of(,2) d (B2)

On the one hand, for any z € @1,

_1)3
_ ig / (1 _ 2 ei(27rkfn)-x) dz| < 47r[(2m 1) + 1] 7
r B(z,r) 3

kez?
[klo<m—1

1
472

/ A, fdx
B(z,r)

where the first equality holds since

(| Bz keZlk#0} =@, for0<r<R
2€Q1

Therefore, integrating (B.2) with respect to r,

_871'2 [(2m3— 1)3 +1] 2 < / Fn 7+ 1w) dw — A f(n, 2) < 8 2 [(2m3— 1)3 +1] 2
SZ

Then integration over [0, R] leads to

3 2r[(2m — 1)3 + 1| R?
< , ) d
0.2 < g | [ S+ -
On the other hand,
1/2 1/2 172
1 47 R3 47 R3 1
/ Gi(x)dx <—min{<ﬂR> ,<1 WR) } Z I
B(z,R) ™ 3 3 keZA\{0} ||

Furthermore, according to the quasi-periodicity of Ws,, 1 with respect to z € R3, for any 7 € 2Q7,

A R3 1/
L2(B(2,R)) < ( ) IWsm

< |B(z, R)[Y?|W2m.a

/ W>m,1(77a95) dx
B(z,R)

3 |L2(Q1)
» 1/2
47 R3 1
<o () | 2
k2 |27k =l
» 1/2
47 R3 |2mk|? 1
<4 — " -
" < 3 > s 27k — 7] |k2> 2k
7]62(9;k oz
. 1/2
(4R w242 L
B 3 w(m —1)2 k|4
[k|oo =m
Therefore, the bound (B.1) holds for £ = 1 with
1/2
2 )3 2
o < V3 om?242 Z 1 N 2r[(2m —1)3 + 1]R
2(mR)3/2 (m — 1) |k|4 5

[kl =m
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1/2
L3 Am R3\ V2 | _An R 12 5 1
—2 3H’llﬂ s — —4 5
An2R 3 3 vy K]

forany 0 < R < % The corresponding result for any ¢ > 0 follows immediately by a scaling argument.

O
We can immediately conclude from Lemma 4.1 and Proposition B.1 the following.
Corollary B.2 (Hardy-type inequalities for the potential W, ¢). For m > 2, we have
1ol 21Dl < (on+ S (B.3)
Zm,t 3 L2(2QF:B(L7) ~ \ W H ¢ :
and
W, el De[ ™| < (05 + & (B.4)
=m el L= 2QF:B(L2) S 7 : :
We also have the following estimate on W;°.
Lemma B.3. Let m = 2. There is a constant C = C(¢, m) such that
sup |VyWeme(n, )| L2, < C. (B.5)

77€2sz
Proof. Take £ = 1 for simplicity. Notice that

—A Vo Wop1(n,x) = —4w 2 ike MRSy (x) + 4m Z iwe’ k=T
keZ3\{0} [kloo <m
kez?

from which we obtain
|AanW>m,1(77,$)| <C

for any 1 € 2Q} and x € Q. Following the proof of Lemma B.1, we know
|V,7W>m,1(77,$)| < C

The corresponding result for any ¢ > 0 follows immediately by a scaling argument as for Lemma
B.1. O

Estimates for the exchange term

We consider now the exchange term. Let ¢ € H, 2 As

[Wetelz = sup (¢, Wy e¥e)l, (B.6)
oceLZ, el 2 =1

we only need to study the inner product (W ¢t)e, ¢¢). For m > 2, £, &' € QF and z,y € Qy,
W (€= €m—y) = Wome(€ =€z —y) + Weme(6— € a—y). (B.7)

For the term that carries all singularities in the x variable (i.e., Wxy, ¢), we use the decomposition
(2.10) and Corollary B.2. As v e X (Y, for any { € QF we have

|De"?7e|Del ' = 37 An(©) [on(€,)) Cwnl§, )] (B.8)

n=1

with (vn(€,), vm(€,)) 2 = Omn and |fx = szk st [An(€)]d€. Hence

e = 2 Aal€) [unl€, ) {un(é, )|

n=1
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with u, (¢, ) = |De|"Y?v, (&, -). Now, we have

f ae’ / o Wom € = €. = ) (@) () elo) docdy

][df PNEMG |/ [Worn (€ = € = )] |un (€', 2)lun (€', ) |t (9)] |67 ()] drdy

>1
" Qex Qe

1/2
<]é ¢ S0 ([ 10600y [ Warn e = €0 = ) ') )

n=1

1/2
x ( / 6% (@) de /Q W s( — ¢z — ) |un<s',y>|2dy>

(£,

L

n=1

Cem
(cn+ 2 ) S (@ 11Deunte ',->|%2<5/>d5’) el Ioelc2

Com
< (Cn+ ) Il el el (B.9)

Using the Cauchy-Schwarz inequality, we can also argue as follows:

Fac [ Weme(e = €0 = v)or@ne . pvewdsdy

F o QexQe
1/2
2
(@//p%, ) |¢F (z)|? dady (@//pws/(x)‘Wzm,e(éé’,xy)‘ [e(y)|* dedy | de’
X Qe X Qe
Cxom
< (Ca+ %) sy IIDelvelsz Lol (B.10)

We now study the contribution of the term involving W, ¢, that carries the singularities in the n
variable. We first observe that

2ikT |

Verronn (@,y) =€ T @ W e (z,y)  for every & € QF, ke Z° and z, y € R>.
&+2% 3 ¢

In particular, Premx = Pre for every ¢’ € QF and k € Z3, and the function of { — TrL% (7e) is

Q7 -periodic. Next, we write

4 —1(5 —£— 27rk) (z—y)
][dg’ // g_;f » oL oy 0% () ver (2,y) Pe (y) daedy
L

. Je—¢
¥ QexQe \k|£€£’; 1 |
dm 1/2 1/2
SO Sy R AT LRI
\k|£€§Z'm 1Qg +2k" QIXQI
o1 12 (0 12 «
- / // o1 (@) 0112 () o) [ ) drdy
(2m—1)Qz< Qere
i hells.e
<o | Deles) gt el 1elze, (B.11)
2T ‘5/75’
(2m—1)Q£

where the last estimate follows from the Cauchy-Schwarz inequality. Here and below we use the fact
that

53
27k ge = ][ FE)dE = / (&) e’
keZS ]é keZZ):" A (27m)° Jem-na¥
[K]oo <m—1 |k|oo <m—1
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since (QF + 27k/0) (\(QF + 27k’ /) = & whenever k, k' € Z* with k # k’. We focus on the quantity
inside the brackets in the last inequality. By Holder’s inequality, for v € &, and some constant

C/sm,ev we obtain
3/4 1/4
Iverlle, e de’
[ D / o) Lo el
em-1QF ¢ —¢| em-1QF |¢ —¢| (2m-1)Q
< bl o7 o (B.12)

Alternatively, by using the fact that the v¢’s are bounded operators on L? uniformly on & € Qj,

47‘(‘ e_i(f/_g_y)‘(l—y)
Quxq. ¢ ke23 &' — & — 22k
|k“3c§m 1
47 7[ // e~ (€' =€) (z~y) . /
NG e () e () e () dndyd
/3 Zﬁ Qex Qe ’6/_6‘2 3

€ % 2k
|k|oo <m—1Q¢ +55°

4
= RICE=INO) (&' =€)
<F X 1 |§, 66 7€ I Oye())
|k\fe<Zm— Qf +2=
< Came ess sup |y |sez,) [Yelzz |9l ez
¢eQf
= C<me 7l el 2z el 2 (B.13)
with
C _ A su Z ][ e’ _ (@m-1) / A& (B.14)
T &= ¢F 2t eF |
£eQ¥ \kloo (m 1) Q¥ 4 2k [—1,1)3

Since |v]s,, < |7|lx and |[D°~2 < 1, the statement of the lemma follows: from (B.9) and (B.13), we
obtain (4.8); from (B.9) and (B.12), we obtain (4.9); from (B.10) and (B.13), we obtain (4.10). More
precisely,

Cw=Cy+Cy Cy=Ca+Cy Cy =Cy+0Cp, (B.15)
with
Cy := inf ey g (Em o (B.16)
¢ meN = ’ ¢ meN V4 smt | '
m=2 m=2

C Proof of Lemma 4.7
Analogous to (B.6), we have

IVyetellLz = sup (D¢, Vy.6¢)|. (C.1)
$eeL?, H¢5HL§ =1

We can rewrite as W;° = W2, + G+ (WX, , — Ge). According to Proposition B.1 and (B.13), the

terms associated to W2, and (WZ,,0 — Ge) are easily bounded. So the aim of this section is to get
a better estimate on the followmg term :

//Q o, Go(x = y)py(y) 5 (x) e (x) dody — ][* d¢’ //Q o Golz — y) ¢ (x)ve (z, y)ve (y) dady.
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From now on, for any function f € L?(Q,,C*), we denote f := (f%)1<a<4. We use the decomposi-
tion (2.10) for v € &1,1 (Y. Then as G(z) = G(—x), for almost every § € QF,

I, 6o =)o @6t @nc(e) — 62 e vt doy
- 2 M(€) //Q o, Grle =) (Jun (€' ) POE @) (w) = 02w (€'2)u (€ ) bely) ) dady
32 X - &) [ aa =) (1316 0ol ) - g i )
x (u%(& WYL @) — V2 (y)ul(2)) dedy. (C2)
Estimate for (4.12). By Lemma A.1, we have
|| 6ute = (w3 0@ - g€ )" (w0 @) - v WiE o)) dady
tse ﬂ<4@ XQu

) 1/2
) Gelw = y)I* [ui (€', 9 (v) = wi(€, )¢ dd>
<1<o;3<4//szQ[| o —y)| ‘u (& e () —up (€', ) 6(y)‘ vy

) 1/2
(€ y)8l (@) — un (€, x)og dd) . c3
- <1<;g4//QeXQe ‘u €9 g(z) un (€, ) E(y)‘ ray (C.3)
Thus according to the Cauchy-Schwarz inequality, we have
L / Gz —y) (up(€ 9oL () - aﬁ?(y)uﬁ(&’,x))* (uf;(f’,y)wf(:c)—wg(y)ug@,x)) dzdy
1<a,B<4 %O
1/2
= ﬂ<4Q x@ eXQy

< 2Cc| dell 2 1 Deltpel Lz

Substituting this inequality into (C.2) and using the decomposition (2.11), we get

‘//Q o Go(zr —y) (p')’g’ () BF (x)be (x) — BF (x)er (x,y)wg(y)) d:z:dy‘

< Ca Y (@)l el L2l Delvrel 2 = Cale s, el del || Delvse 2,

n=>1

from which we get

| I, Gl =t i) ey - ][ [ il i e owels) dedy
< Callley s el 1 Delvel .z

(C.4)
Combining (C.4) with Proposition B.1 and (B.13), we get for any ¢¢ € L and ¢ € Hy,
(9, Vyeve)l < (Ca + Co)lVlle, s 0y 19l 22 11 Delel 2
hence (4.12) with
CJ/EE =Cg+Cy (C.5)

with Cy given in (B.16).
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Estimate for (4.11). As v € X (Y, we use the decomposition (B.8) for 7¢. Analogous to (C.3),
we also have

3 / Gule —y) (w3 (€ )8} (@) — S Wl (€ 0)) (u (€00l () — g (€ ) ) dudy
IsoPsigxa.
1/2
<2L [ 161 = pllune’. ) Ploe(a)Pdady (@ | 16w~ )z P10t (o) Panay
exQy exQe

from which by the decomposition (B.8) we get

‘ //Q  Gele =)o )6 @ ey ~ ]{2 RS //Q , Gele = 9)6E e o )ely) dady

1/2
(6 BN ] 6ol

g’

1/2
X <][Q§/ df’ ;1 |)\n(§/)| //Q[XQ[ |Gé(-’L' — y)||u”(§/’y)|2|¢§($)|2d9€dy>

< Cullvlx el zllvel rz (C.6)

where the last inequality holds by using Lemma 4.1.
Combining (C.6) with Proposition B.1 and estimate (B.13), we get for any ¢¢ € L and ¢ € H{,

[(¢e; Vyeve)| < (Cr + Co)llvlx v [ dell 2 11 Delvbe 2

hence (4.12) and
Cegrg = Cy + C,. (C?)

Estimate for (4.13). Combining with Proposition B.1 and estimate (B.13), analogous to (C.6) it
can be derived directly from:

‘//sz@[ oz = y)er()VE (@)ve( dxdy’][ d¢’ //szQ[ x — y)oE (2)ve (2, y)ve (y) dady

< (][Qg, dé’ 7;1 |An(§/)| //ngQ[ |G€(1' — y)”un(é/’y)|2|w§($)|2d1‘d’y>

< Cr e ll1Del vl 7z
using the decomposition (2.10) for 7¢. Hence (4.13) and Cgg.

Estimate for (4.14). Notice that |ye (z,y)| < py,, (:6)1/2/)%, (y)/? since v = 0. Thus, according to
Lemma A.1 and the Cauchy-Schwarz inequality,

! . * , B B i
Lo [l Gt vmianeaew iy || Gile v @lve) ey
20
< //QgXQe(lGé(x —y)| = Ge(x = y))py () [ve () * dedy < TOHVHGM ”,L/J”2L§.

Combining with Proposition B.1 and (B.13), we get

C
(e, Vagtoe) = —( + Colrlens nvllvelZe,

hence (4.13) and

2C,
Chy =210 (C.8)
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D Numerical results about constants

In this section, we will show the numerical results about the constants used in Remark 2.8 under the
condition ¢ = 1000. Next, we show that Assumption 2.6 is satisfied for ¢ < 17 for the neutral systems.
We compute numerically the value of the bound of the potential G, — ﬁ First of all, we calculate

1
E — ~ 16.512.
o Kl
keZ3\{0}

Thus, Cy ~ 5.019 and we can choose Cyg = Cg ~ 2.011. Concerning the estimates involving the
potential Wy, we set m = 2. When R ~ 1,

|C>2| < 20912, C<211000 ~ 0.010.

Thus, we get Cyw ~ 2.042, and Cj;, ~ 2.042. Then, Cgg ~ 2.052, Chp ~ 2.052 and C%; ~ 0.041.
Finally, we estimate c*(q) which is given by (2.24). Let u,¢(x) = e27P/+i) with p e Z3. Then
(up,¢)pezs is an orthogonal basis on LF(Qy). Obviously, (A*uy¢), is equally an orthogonal basis on
Lg(Qg) Let
V:Z = Span{A+up75(x) ‘p = (j,0,0),j € {17 T aQ}}'
Then 1/2, 42
I De]| / Ug HLg 472(q +1)?

c*(q) < sup sup < — g

£eQf utev, Hug_ H%g

Now we can check Assumption 2.6 for z = ¢ = 17. The calculation leads to Ay ~ 0.012 and ¢*(17) <
1.006. Hence

o K+ %CEEq+ ~ 0.630 < 1,

o 240\/max{(1 — k — $Ceprpqt) (1 — k)~ 1c*(q + 1)g, 1}¢+ ~ 0.973 < 1.

Consequently, Assumption 2.6 is satisfied for ¢ < 17 whenever ¢ = 1000.
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