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Existence of minimizers for the Dirac—Fock Model of Crystals

Isabelle Catto* Long Meng' Eric Paturel! Eric Séré?

Abstract

Whereas many different models exist in the mathematical and physics literature for ground-
states of non-relativistic crystals, the relativistic case has been much less studied and we are not
aware of any mathematical result on a fully relativistic treatment of crystals. In this paper, we
introduce a mean-field relativistic energy for crystals in terms of periodic density matrices. This
model is inspired both from a recent definition of the Dirac-Fock ground state for atoms and
molecules, due to one of us, and from the non-relativistic Hartree-Fock model for crystals. We
prove existence of a ground-state when the number of electrons per cell is not too large.

1 Introduction

For solids with heavy atoms, relativistic shifts may affect the bonding properties and the optical prop-
erties. It is shown in [27] that the fact that gold is yellow is a result of relativistic effects. Furthermore,
by studying the relativistic band structure in solids, it is shown in [8, 7] that the relativistic shifts of
the 5d bands relative to the s — p bands in gold change the main interband edge more than 1leV'.

A natural way to build quantum models for the crystal phase is to consider the so-called thermo-
dynamic limit of quantum molecular models. Roughly speaking it consists in considering a finite but
large piece of an (infinite and neutral) crystal. The thermodynamic law predicts that the ground-state
energy of the obtained large neutral molecule is proportional to the volume of this finite piece (which
turns out to be also proportional to the total number of particles composing the molecule). The energy
for the whole crystal is then identified with the limit — if it exists — of the energy per unit volume (or
equivalently per particle) of the large molecule when the size of the considered piece goes to infinity.
This method has been applied successfully by different authors for different well-known models from
quantum chemistry [23, 3, 5, 6] — see also [4] for a review — but always for non-relativistic crystals.

Among relativistic models, the atomic and molecular Dirac—Fock model (DF) is the most attractive
one since it has been formally justified by Mittleman [25]. It gives numerical results in excellent
agreement with experimental data [21, 15, 9]. To our knowledge this model has not been extended to
crystals: there exist fully relativistic treatments of crystals in the physics literature, but they use the
Kohn—Sham approach (see [11, 19] and the references therein).

The mathematical study of the atomic and molecular DF model has been done in [12, 26]. Compared
to the non-relativistic models, the situation is different: Existence of bound-states only holds if the total
positive charge Z is not too large (with physical units, Z < 124). Moreover, the Dirac—Fock energy
functional is strongly indefinite and the notion of ground-state has to be handled very carefully [12].
These difficulties exclude a thermodynamic limit approach to derive the Dirac—Fock model for crystals.

Esteban and Séré [13] showed that certain solutions of the (relativistic) Dirac-Fock equations
converge towards the energy-minimizing solutions of the (non-relativistic) Hartree-Fock equations
when the speed of light tends to infinity. This validates a posteriori the notions of ground-state
solutions and ground-state energy for the Dirac-Fock equations. In Esteban and Séré’s approach, the
ground state is modelled by the electrons’ wavefunction. On the other hand, Huber and Siedentop
introduced a density matrix formulation of the Dirac—Fock model [18]. Recently, one of us proved
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the existence of the ground-state for the Dirac—Fock model in atoms and molecules in terms of density
matrix using a retraction technique [29].

Inspired by this work, we propose a definition for the ground state of Dirac—Fock model for crystals
which is a relativistic analogue of Lieb’s variational principle for Hartree-Fock model [22, 1], and
we prove the existence of minimizers. Our result shows that these minimizers solve a self-consistent
equation, as established in [14] for the periodic Hartree-Fock model. Our theory can be used to
calculate the ground-state of neutral crystals with at least 17 electrons per cell.

2 General setting of the model and main result

2.1 Preliminaries — Functional framework

Throughout the paper, we choose units for which m = ¢ = A = 1, where m is the mass of the electron,
c the speed of light and A the Planck constant. For the sake of simplicity, we only consider the case of a
cubic crystal with a single point-like nucleus per unit cell, that is located at the centre of the cell. The
reader should however keep in mind that the general case could be handled as well. Let £ > 0 denote
the length of the elementary cell @y = (fé, %]3. The nuclei with positive charge z are treated as
classical particles with infinite mass that are located at each point of the lattice ¢ Z3. The electrons are
treated quantum mechanically through a periodic density matrix. The electronic density is modelled
by a Qg-periodic function whose L' norm over the elementary cell equals the “number of electrons” ¢
— the electrons’ charge per cell being equal to —q. Especially, when ¢ = z, electrical neutrality per cell
is ensured.

In this periodic setting, the Qg-periodic Coulomb potential G, resulting from a distribution of
point particles of charge 1 that are periodically located at the centers of the cubic cells of the lattice

is defined, up to a constant, by

— AGy =4n lfig + Z 54]!| . (2.1)

keZ3
By convention, we choose Gy such that
Gyedx = 0. (2.2)
Qe
The function Gy is actually the Green function of the periodic Laplace operator on Q);. The Fourier

series of Gy writes

2im

1 P
Ge(x) = — Z L, for every = € R3. (2.3)
e p[?
PpeZ3\{0}
The free Dirac operator is defined by D% = —; Zizl a0k + 5, with 4 x4 complex matrices a1, ag, ag and
B, whose standard forms are § = <102 (i >, ag = <00 Uok> where 15 is the 2 x 2 identity matrix
—1s k

and the oy’s, for k € {1,2, 3}, are the well-known 2 x 2 Pauli matrices o1 = (0 1) , 09 = (0 _l),

1 0 i 0
(1 0
0’3—071.

The operator D° acts on 4—spinors; that is, on functions from R? to C*. It is self-adjoint in
L?(R3;C*), with domain H'(R?;C*) and form domain H'?(R3;C*) (denoted by L?, H' and H? in
the following, when there is no ambiguity). Its spectrum is o(D°) = (—o0, —1] U [+1, +00). Following
the notation in |12, 26|, we denote by AT and A~ = 172 —A™ respectively the two orthogonal projectors
on L2(R3;C*) corresponding to the positive and negative eigenspaces of D?; that is

DOA+ = ATDO = AT —A = I— AA+;
DA~ =A"D'= A VI-A=-vI-AA

According to the Floquet theory [28], the underlying Hilbert space L?(R3;C*) is unitarily equivalent

to L2(QF) ® L?(Q¢; C*), where QF = (-7, %)3 is the so-called reciprocical cell of the lattice, with



volume |Q¥| = (2m)?/¢3. (In the Physics literature Q} is known as the first Brillouin zone.) The
Floquet unitary transform U : L?(R3;C*) — L*(Q}) ® L?*(Qe; C*) is given by

Ud)e = D, e ™ (- + Lk) (2.4)

keZ3
for every £ € QF and ¢ in L?*(R3;C?). For every £ € QF, the function (U¢)¢ belongs to the space
LE(Qu:CY) = {¢ € Li,o(R* CY) [ e 774 is Q-periodic},

which will be denoted by Lg in the sequel. Functions v of this form are called Bloch waves or Q-
quasi-periodic functions with quasi-momentum £ € Q7. They satisfy

U(- + Lk) = e FEy(.), for every k € Z2.

For any function ¢¢ € L2, using the definition of Fourier series expansion for Q-periodic functions, we
write

Se(x) = Y. e(k) eHHIOT 5o g eR?, (2.5)
keZ3
with coefficients )
d)f(k) _ 6_3 g ¢§(y)e—(2iﬂk/€+i£)~y d’y c (C4.
e

The Hilbert space L is endowed with the norm

R 1/2 1/2
6z = (63Z|¢g<k>|2) - ([ wewras) = ey,

keZ3
Here, and in the whole paper, we use the same notation | - | for the canonical Euclidian norm in R™,
C™ or M,,(C). When applied to self-adjoint operators, |T'| means the absolute value of T'.
We also define
HE(Qe; CY) := LE(Qe; C') n Hig (R CY)

for every real number s, endowed with the norm

1/2
| el s = (63 D (14 [2mk/e+ g |$g<k>|2) :

kezZ3

To simplify the notation, we simply write here and below H, ¢ when there is no ambiguity.
Operators £ on L?(R3;C*) that commute with the translations of £ Z3 can be decomposed accord-
ingly into a direct integral of operators L acting on L? and defined by

Le(Up)e = (ULY)e for every ¢ e L2(R?;C*), ae. £€ QfF (2.6)

(see |28] for more details). We use the notation £ = f% Led¢, with the shorthand f, for ﬁ Jo, to

refer to this decomposition. In particular, for the free Dirac operator D° we have

@
D’ = . Dg d€. (2.7)
4

where the D¢’s are self-adjoint operators on L? with domains Hg and form-domains H El/ ?_ Note that
Dg =1— A¢, where —A = fc% —Ag¢dé. For every function ¢¢ € H}, the operator Dg is also defined
by
3 2w ~ o 2rk
Dg ¢£($) = 2 [Z (7]€j + 5]) T + ﬂ] ¢§(k) ez(TJrf)-z.

kez® Lj=1



In particular,

or 2~
(Ge.|Delde)sz = ¢ 3 \[1+ e+ T 130 (2.8
keZ?

For almost every £ € QF, the positive spectrum of D¢ is composed of a non-decreasing sequence of real
eigenvalues (d;} (£))n>1 counted with multiplicity such that

dt(€) =1, lim d} (&) = +oo.

n—o0

In the same manner, the negative spectrum of Dg¢ is (d;, (§))n>1 is composed of the non-increasing

sequence of real eigenvalues d; (§) = —d;} (£). Finally, one has
U oDe) = (J U {dn (9.5 (&)} = o(D°) = (=00, 1] L [+1, +0). (2.9)
ﬁle feQz‘ n=1

As in the Hartree-Fock model for crystals [5], the electrons will be modelled by an operator on
L?(R3; C*), called the one-particle density matrix, that reflects their periodic distribution in the nuclei
lattice.

We now introduce various functional spaces for linear operators onto L?(Qg; C*) and for operators
onto L?(R3;C*) that commute with translations. Let B(E) be the set of bounded operators on a
Banach space E to itself. We use the shorthand B(LZ) for B(LZ(Q¢);C*). The space of bounded

operators on fgj* Lg d¢ = L2(Qz<) ® L?(Qg; C*) which commute with the translations of £Z3 is denoted
4
by Y. Tt is isomorphic to L*(Qj; B(LZ)). Moreover, for every h = fg)* hedf e,
£

Ihlly := ess sup | helpzz) = Ihl(L2(rsice)
£eQ¥

(see [28, Theorem XIIL.83]). For s € [1,00) and & € Q}, we define

S.(6) = {h e B | Trpz(Ihl") < oo

endowed with the norm y
hlls.e) = (Traz(B))

We denote by Go(€) the subspace of compact operators in B(Lg), endowed with the operator norm
[ - HB(L@. Similarly, for t € [1, +o0], we define

&)
G, = h=][ he d€
Q*

12

he € 64(8) ae. £ € QF,|he|es, ) € Lt(Q?)}

endowed with the usual norm of L*(Q}; &4(¢)) :

1/t
. f hels. o de) -
(Qj}‘ &)

In particular Goo 0 = L*(Qf; 6 (LF)) € Y. We also define

it

X() = {h e B(LY) | IDel*2hIDe|*"* € &1(¢)}

endowed with the norm
Rl o) = HD a/2p D ”‘/QH
H HX €3] | E| | E| &1(6)

and

@
X = h=][ he dg
Q*

2

hee ®1(6) ne €= Q1 [ 11D el DIl o < oo}

12



endowed with the norm

1/s
[hlxe = (]é* ||D5|“/2h5|D5|0‘/2|%1(5)d5> = [[D°1*2h| D%, .-
¢

For any two functional spaces A and B the norm of the intersected space is defined by

IVlans = max{|y]a, |v] 5}

For future convenience, we use the notation X (¢) for X*(¢), and we set X := X{. The functional
spaces 61,1, X and Y will play an essential role in the whole paper, while the functional space &;
and its subspace X2 are mainly used in Section 6. In addition, we will also use the functional space
Gu,1 in Section 6 since &1 o is its dual space.

Definition 2.1 (Periodic one-particle density matrices). We denote by T the set of Qg-periodic one-
particle density matrices

T = {76X’7*=7,0<7<1L2(R3)} cXnY.

Remark 2.2 (Projectors). According to [1, 22, 14] any minimizer of the Hartree—Fock model (both for
the molecules and crystals) is a projector. However we do not know whether minimizers of Dirac—Fock
models are projectors in general.

Remark 2.3. For ye T and for almost every & in QF, the operator ¢ is compact on L2 and admits

a complete set of eigenfunctions (un(€,))n=1 in L2 (actually lying in H, 12 ), corresponding to a non-
decreasing sequence of eigenvalues 0 < A, (€) < 1 (counted with their multzplzczty) This is expressed
as

Ve = Z )‘ |un 3 )> <un(€’ )|’ (Un(g, ')aum(ga '))L2 = 57177” (2'10)

£
n=1

where |uy{u| denotes the projector onto the vector space spanned by the function u. Equivalently, for
almost every & in QF and for any (z,y) € R® x R3, the Hilbert-Schmidt kernel writes

2 A un 5’ (§7y)' (2'11)

n=1

In the above equation, the superscript * refers to the duality in Lg. In particular ve(-,-) is a 4 x 4
complex matriz in My(C), and for every function ¢ € L2,

(vew)(2) =/Q Ye(x,y)p(y) dy = Z An (&)un (€, 2 /Q un(§,9)e(y) dy.

By definition of the trace of an operator,

Trpz(ve) = ), Aal€).

This allows us to define
T i= f Toualre)de,
Qf

where the ~ reminds us that v is not trace-class on L?(R3).

Definition 2.4 (Integral kernel and electronic density). Let v belong to T. Then we can define in a
unique way an integral kernel y(-,-) € L?(Qp x R3) n L2(R?® x Q) with v(- + k,- + k) = ~(-,-) for any
ke Z? and a Qe-periodic density p- associated to v by

T,Y) = x,y)d€ 2.12
A (@) ]{ﬁvg( ) (2.12)
and

- 7{?* Tryve (z, z) dE, (2.13)



where the notation Try stands for the trace of a 4 x 4 matriz. The function p, is non-negative and
belongs to L1 (Qe;R). Indeed, using the decomposition (2.11), we have

][ ) [un (€, 2)|? dt (2.14)
Q¥

¢ n=1
[ ptase- £,
QF

In the physical setting we are interested in, the value of the above integral is the number of electrons
per cell q.
By the Cauchy-Schwarz inequality, it is easily checked that

(@, 9)* < py(2) po(y),  aee. 2,y e R (2.15)

and

M@t = Trz(oe)de

¢ n=1

Note that, when h is a Q¢-periodic trace-class operator but is not necessarily a positive operator, we still
may define p, with the help of (2.13), but (2.15) becomes |h(z,y)[* < pp(x)pjn|(y) where |h| = v/h*h.

We can now introduce the periodic Dirac—Fock functional.

2.2 The periodic Dirac—Fock model

We introduce the following set of periodic density matrices :

Fq = {'7 € T| H7H61,1 = q}
and
g :={veT|lle.. <dq}-

When ¢ is an integer, I'; and I'¢, are the sets of all Dirac-Fock states of a system of exactly g,
respectively at most ¢, electrons per unit cell.
For v € I'<q, we define the periodic Dirac-Fock functional

EPE(y) = ][TrL2 [Devyel d€ — ozz/Gg(z) S (x) de

Qe
w5 || 0 @Gate 0, ) dedy (2.16)
Qere
-5 A @ [ b one oW - € -y dody
QF xQ¥ Qex Qe

In the above definition of the energy functional, the so-called fine structure constant « is a dimensionless
positive constant (the physical value is approximately 1/137). Note that D¢ve is not a trace-class
operator, so Tr L2 [Deve] is not really a trace, it is just a notation for the rigorous mathematical object
Trp: [|De|Y27¢| De|/?sign(Dg)]. We will make this abuse of notation throughout the paper.

The last term in (2.16) is called the “exchange term ”. The potential W that enters its definition
is defined by

€ 1 2nk
WEma)= Y = o N (B ) (2.17)
lw+ Lk £ & |22k |

(see [5] for a formal derivation of the exchange term from its analogue for molecules). It is Q}-periodic

with respect to  and quasi-periodic with quasi-momentum 7 with respect to z. For every v € I'¢,, we
now define the mean-field periodic Dirac operator

@
)= 7{2* Dyedé with Dyei=De—azGr+aV,,
4



where

Viye=pyx* Gy — W, e (2.18)

with
pyGila) = [ Guly— ), w) dy = Tora [ Gel- — )] (2.19)
Qe

and

Woctelr) = f de' [ WA €0 =)0 velw) o

(In (2.19) we keep the notation - * - for the convolution of periodic functions on @,.)
The relation between P and D, is the following : If v and v + h are in I'¢, with A in 7, then
the right derivative of t — EPF(y + th) at t = 0 is fQj}‘ Trp (D che) dE.

Our goal is to define the ground-state despite the fact that this functional is strongly indefinite on
I'<q, due to the unboundedness of the Dirac operator DO,

2.3 Ground-state energy and main result

In most situations of physical and chemical interest, the negative energy states of Dirac—Fock models
are irrelevant for the description of electrons.The ground- energy and state should thus be defined on
the positive spectral subspaces of the corresponding Dirac—Fock operator. Let

@
+ . +
PF = - Plod¢  with  Pr,:=1g, (D).
Note that by definition P(fg = 1, (D¢ — azGy). We define the set
+._ _ pt~pt
I :={yely|y=P P}
and the ground-state energy
I, := inf EPF(y).
WEF;
Our main result is the following.

Theorem 2.5 (Existence of a minimizer). Under some conditions on «, q, z and £ that are detailed
in Assumption 2.6 below, there exists vy € 1"(‘1* such that

EPF (ve) = I, = min EPF (v). (2.20)
very

Besides, vy solves the following nonlinear self-consistent equation
v = ]‘[OW) (Dry) ) (221)

where 0 < 6 < 1,1 (Dy) and 0 < v < (1 — k)" 'e*(q + 1), with k = k(z,q,4,a) > 0 being defined in
Assumption 2.6 below and
c*(k) := sup df (€) (2.22)
eQy

with the d;f (€)’s appearing in (2.9).

Assumption 2.6. Let ¢ := max{q,1}, k := a (Caz + Cppq™) and A := $Cgp (1 - n)71/2/\0_1/2.
We demand that

1. k<1-— %CEE(]+ N

2. 24 \/max{(1 —k — $Cprpqt) (1 —k)~Te*(¢ + 1)g,1}¢+ < 1.

The positive constants Cq, Cgg, Clrr and Ao are defined respectively in Lemmas 4.1, 4.7 and 4.10
below.

Remark 2.7. In Solid State Physics, the length of the unit cell is about a few Angstréms. In our
system of units, h =m =c =1, thus a ~ # and ¢ ~ 1000. Under the condition q = z for electrical
neutrality, Assumption 2.6 is satisfied for ¢ < 17. The proof is detailed in Appendiz D. Our estimates

are far from optimal : The ideas of this paper are expected to apply to higher values of q.



3 Sketch of proof

We are convinced that the constraint set F;r is not convex and we are not able to prove that it is closed
for the weak-# topology, and this is the source of considerable difficulties. Mimicking [29], we shall use
a retraction technique as for the Dirac—Fock model for atoms and molecules. This imposes to search
the ground-state in the set F;rq defined by

qu = {’y el |7= P;r'yP;r}.

However, a direct computation shows that 0 is a minimizer. To overcome this problem, we next
subtract a penalization term ep Try2(7y), for some parameter ep > 0 to be chosen later, and first study
the minimization problem for the penalized functional with relaxed constraint :

I<4 = min [EDF(V) — epﬁp('y)] .

~el'Z,

We prove below that, when ep is sufficiently large, every minimizer of problem I, is indeed in Ff{,
thus is a minimizer of I, (Corollary 3.3).

For the penalized problem, the analogues to Assumption 2.6 and Theorem 2.5 read as follows.

Assumption 3.1. Let ¢* = max{q,1}, k := a (Cqgz+ Cppq") and A := §Cpp (1 - ﬁ)_l/QAal/Q. We
assume that

1. k<1l-— %CEE(]+ N

2. 24 /max{(1 -k — $Cppq™) lepq,1}¢T < 1.

Theorem 3.2 (Existence of a minimizer for the penalized problem). We assume that Assumption 3.1
on q,z,ep holds. If ep > (1 — k) "Le*(q + 1), then there exists vy € qu such that

EPT (v4) — €pTrp2(v4) = Iy (3.1)

Besides, ﬁLz (%) = szk TrLg (7#,6) d€ = q and 74 solves the following nonlinear self-consistent equa-
tion

Y =1p0,)(Dy) +6 (32)
where 0 < 0 < 1g,,(D-) and v is the Lagrange multiplier due to the charge constraint Trz2(7y) < q
satisfying 0 < v < (1 — k)" Le* (g + 1).

Corollary 3.3 (Existence of a minimizer for the original problem). We assume that Assumption 2.6
on q,z holds. Then, there is a constant ep > (1 — k)~ c*(q+ 1) such that Assumption 5.1 is satisfied.
Therefore I, is achieved and the minimizer -y, solves (2.21).

Proof of Corollary 3.3. The first claim is obvious: Under Assumption 2.6 on g, z, there is a small
constant € > 0 such that ¢,z and ep = (1 — k)" 1c*(q + 1) + € satisfy Assumption 3.1. By Theorem
3.2, since ep > (1 — k) "'¢* (g + 1), any minimizer v, of I, lies in I'}. Thus,

P () = epa = €77 () = epTipa(73) > min €27 (7) = epTrpa(4) |
Y€lq

MN] —epq=I<g = EP (7s) —€pq.

Therefore, all inequalities in the above string of inequalities are equalities, and

77 () = min £77(3) = I,
TELq



We therefore focus on the proof of Theorem 3.2. We consider a minimizing sequence (v )n>1 in
I‘;rq and first prove that it is bounded for the norm of X n'Y (Lemma 4.15). The singular behaviour
of the potential W/ (&, z) with respect to £ € QF (of order 1/|¢|?) leads to the failure of the direct
convergence study. Whereas in the Hartree-Fock model, the potential W;° can be controlled directly
by the Schrédinger operator [5], it is not the case for the Dirac operator D°. We overcome this difficulty
by first considering existence of minimizers into the following set

Bri={ve X nY|lrle,, <) 33

with R large enough. For density matrices in this set, the exchange term is well-controlled. Moreover,
it turns out the minimizers in this set do not saturate the constraint |y|s, ., < R. Existence of
minimizers for the penalized problem will be a consequence of the followings.

Proposition 3.4 (Existence of a minimizer in the set Br). Let Ry := q + M where M is defined in
Lemma 4.15 below. Under Assumption 3.1, if ep > (1 — k)"tc*(q + 1) and for any R > Ry, there
ETIStS Yy N qu N Br such that

Ieri= min [€27(9) = epTrpa(9)] = €77 () = epTrpa (). (3.4)

VEF;{\BR

Besides, vy« € Br, and ﬁLz (vx) = q. Furthermore, 4 solves the following nonlinear self-consistent
equation
7= 1) (Ds) +6 (3.5)

where 0 < 0 < 1g,,(D) and v is the Lagrange multiplier due to the charge constraint Trre () <gq
satisfying 0 < v < (1 — k)" Le* (g + 1).

Theorem 3.2 is a direct consequence of the following.

Corollary 3.5 (Existence of a minimizer for the penalized problem). We assume that ep > (1 —
k)"c*(q + 1) and that Assumption 3.1 holds. Then I<, is achieved. Any minimizer vy of (3.4) is a

minimizer of I<,. It satisfies Trpe (%) = q and vx lies in &1 .

Proof of Corollary 3.5. The proof follows immediately from the fact that any minimizer in Bp lies in
Rp, and by observing that R +— I<, r is non-increasing with I<, = limp_, y I<¢, R- O

Next sections are devoted to the proof of Proposition 3.4.

In Section 4, we collect some fundamental estimates on the potentials Gy and W;°. In Subsection
4.2, we study the spectral properties of the Dirac-Fock operators D, ¢ for every { € Qf. Relying on
them, we study in Subsection 4.3 the properties of minimizers of a linear Dirac-Fock problem. Finally,
we collect first estimates on minimizing sequences.

In Section 5, we study the linearization problem associated to (3.4). We conclude that the mini-
mizers of (3.4) are in Br, n '} and solve a self-consistent equation. In Hartree-Fock type models for
molecules [24] or crystals [14], it is a standard fact that the approximate minimizers are also approxi-
mate ground states of their mean-field Hamiltonian. The proof relies on the convexity of the constraint
set. However, in Dirac-Fock model (both for molecules and crystals), the constraint set qu is more
sophisticated. By using a retraction technique, a similar result has been recently proved by one of
us in the Dirac—Fock model for molecules [29]. Adapting the technique in [29], we build a regular
map 6 : ¥V — V on an open neighborhood V of the minimizing sequence of (3.4) in qu such that

0(y) = szv)
constraint ; namely

O(V)P&w. Next, we consider an equivalent minimization problem with locally convex

min_ EPT(0(v)) — epTrL2[0(7)].
YeVNI'<qynBr
In Section 6, we build an approximate minimizing sequence with better regularity and convergence
properties. Finally, we conclude on the convergence of a minimizing sequence on the set Br and the
existence of minimizer; that is, the proof of Proposition 3.4.

Assumption 2.6 involves optimal constants in Hardy-type inequalities introduced in Subsection 4.1.
Therefore, in Appendix A-C, we prove Lemma 4.1, Lemma 4.5 and Lemma 4.7 respectively. Finally,
in Appendix D, we calculate the maximum number of electrons per cell allowed by the model, relying
on approximate values of the constants obtained in Appendices A-C.



4 Fundamental estimates

In this section, we give Hardy-type inequalities for the periodic Coulomb potential and provide esti-
mates on the interaction potential between electrons in crystals. Then we study the spectrum of the
periodic self-consistent Dirac—Fock operators. Finally, we derive properties of minimizing sequences of
the linearized and the penalized problem from the spectral analysis.

4.1 Hardy-type estimates on the periodic Coulomb potential

First of all, and this is a major difference with the usual Coulomb potential |71‘ in R3, the periodic

Coulomb potential Gy may not be positive, since it is defined up to constant, but it is bounded from
below (see Lemma A.1). Nevertheless, it is the kernel of a positive operator on L?(Q) in virtue of
(2.3). Moreover, we have the following Hardy-type estimates concerning the periodic potential Gy.

Lemma 4.1 (Hardy-type inequalities for the periodic Coulomb potential). There exist positive con-
stants Cp = Cg(£) > 0 that only depends on £ and such that

Go < |G| < Cy |D°| (4.1)

in the sense of operators on L*(QF) @ L*(Qe; C*).
Moreover, there exists a positive constant Co = Cg(£) with Cq = Cy that only depends on £ and
such that
IGe 1Dy = Ca. (4.2)

Remark 4.2. In (4.1), the inequality A < B is equivalent to : For almost every £ € Q}, A¢ < Bg in
the sense of operators on Lg.

Remark 4.3. The constant Cg(0) is estimated in (A.4) in Appendiz A below. While it is far from
optimal when £ is small, it converges to 2 when £ goes to infinity; that is, to the value of the optimal
constant for the Coulomb potential on the whole space. By interpolation,

Ch < Cg. (4.3)

Therefore, (4.1) holds with Cy being replaced by C. However, Cy is expected to converge to w/2 as {
goes to infinity; that is, to the best constant in the Kato—Herbst Inequality on the whole space [20, 17].

A by-product of Lemma, 4.1 is the following.

Corollary 4.4 (Estimates on the direct term). For any v € X, we have

loy = Gelly < Cr |lvlx (4.4)
and

[(py = G) DMy < Ce e, (4.5)

Proof. For every t € R? and ye X

[ * Gi(a)] =

<
s

e

< HD ~12|0(x — D —1/2” HD 12, 1D 1/2” e <C .
1 e et = upe ], o sedpe | ae < cu i

F, TrplGete = e de
ot

Trpz [| De 2| Gel(w — )| D72 |D§|1/27§|D£|1/2]‘ dg

Indeed, the bound (4.1) in Lemma 4.1 yields

1Gel- =) 2D 2] < (Cn)
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uniformly in z. We now turn to the proof of (4.5). For every £ € Q} and ¢¢ in Lg, we have
lio+ GOIDdcl,z < [ 0@ [Get- = 2)1Del el o
£

< sup 6o~ ) 1D el [ ol do < Calrlen oz (06)
zeR3 £ JQu
In (4.6), we have used the bound (4.2) in Lemma 4.1 and the obvious fact that it remains true for
Go(- — z) for any = € R3.

O

Now, we consider the exchange term. We can separate the singularities of W with respect to
n € 2Q; and x € 2Q, as follows

wa(n’ 1') = W>m,€(77a ZL') + W<m,€(77a ZL'), vm € Nvm 2 27 (47)
with 4 i
m il 22k _ ).z
Wame(n,x) = Va @6 (% -n)
|klo=m | ¢ n
kez®
and 1 1
7 il 22k ).z
Weme(n,z) = o= Z on 2 ¢ (23 =n)
|klo<m |72 — 77|
kez®

where |k|o := max{|k1], |k2], |ks|}. It is easy to see that the singularity of W, ¢ behaves like #, and

we will show in Appendix B that the singularity of W, +(n, ¥) behaves like = or equivalently Gy(z).

[]
Then we have the following estimates.

Lemma 4.5 (Estimates on W, ¢). There exist positive constants Cww = Cw ({), Cy, = Cjy, () and
Cly = Cyy(£) that only depend on £ such that

W,y < Cw |vllxny ifve XY, (4.8)
IWally < Gl (Ivlx + IS IIEE) ifyeXn6iom, (4.9)
W, (DO Yy < Ciy |7lles2ny ifreGinY. (4.10)

Remark 4.6. The constants Cyw, Cyy, and Cy, are estimated in (B.15).

Gathering together Lemma 4.1, Corollary 4.4 and Lemma 4.5 we can get some rough estimates on
the self-consistent potential V, ¢ defined in (2.18). We can obtain much better estimates by a careful
study of the structure of V, ¢.

Lemma 4.7 (Estimates on V, ¢). There exist positive constants Cgg = Cggr({) > 0 and Cgp =
Clhp () > 0 that only depend on ¢ and such that

IVselly < Cer |[vllxny (4.11)
and
Ve IDel "My < Cp I ]leramy- (4.12)
For any ¢ € H§/27
(Ve Vagthe) 12| < CEEHWHGI,mYHWHi;/z (4.13)
Furthermore, if v = 0, for any ¥ € L2,
~Crplvlesinyvells < (e, Vyethe) s - (4.14)

Remark 4.8. The constants Cgg, Crp and Chp are estimated in (C.7), (C.5) and (C.8) in Appendiz
C' respectively.
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4.2 Spectral properties of the mean-field Dirac—Fock operator

Recall that k := « (CGz + Chpq® ) We start with the following.

Lemma 4.9. Lety € &1 1nY. We assume that Cqz+Chp|v|s, .~y < 1/a, then D, ¢ is a self-adjoint
operator on Lg with domain Hg1 and form-domain Hg/Q. In addition, the following holds

1/2
1D, 2D° 2 < (1+ a (Coz + Chpllensny)) (4.15)

and s
1z (4.16)

ID°[2D, 12| < (1= a(Coz + Cpllls,ny))
In particular, if v € I'<q, we have
(1—&)|D°| < |D,| < (1+k)|DY. (4.17)
Proof. Recall ¢* = max{1,¢}. By Lemma 4.1 and Lemma 4.7, we obtain
l(—azGe+aVy) |D°| Yy < a(Caz+ Chg Ve, ny)- (4.18)

In particular, D, is self-adjoint on fQ@* Hg d¢ by the Rellich-Kato theorem if Caz + Crplvl6,1ny <
£ s
1/a (see [28, Theorem XIII-85]). Let now & € Qf and ug € H{(Qq). We have

|Dscuelrz: < (1+aCoz + aCpplle, ny) |De uel e, (4.19)
which implies (4.15). On the other hand,
| De uelrz < |(Drg — De) uglpz + [ Dy uel 2
<a (Coz+Chpq”) |Deuelrz + | Dy uel 2,

Hence,
| Deuelpz < (1 = a(Caz + Cpplvle,.ny)) ™ | Dy.c uel 2 (4.20)

which implies (4.16). Since v € I'<q, |V[&,,ny < ¢*. Thus (4.19) and (4.20) together give (4.17).
This concludes the proof. ([l

As a consequence of (4.20), we deduce that the spectrum of D, (and of any D, ¢) is included in
R\[-1+ &;1—&]. In order to allow for as many electrons as possible per cell, we need a more accurate
estimate on the bottom of |o(D.)|.

Lemma 4.10 (Further properties of the bottom of the spectrum of D.,). Let ve I',. Then
inf [o(Dy)] = Ao = 1 — &,
with Ao := 1 — amax{Cyz + Chpqt, e 0>+ Cgrpqt}.

Proof. Let 1/); = AZ¢5 and ¥y = A5 Ye. Notice that Dy ¢ = D¢ — azGy + oV, ¢ and V, ¢ satisfies
(4.13) and (4.14). Now, combining with (A.1) we have

(v Dvetd) o = (1= alCrz + Chplilerany)) 10E 1,
H5 ><H5 ¢
and
Co +12
= (V8 Do ) i,y = (1= 0 ( T2+ Comllensny ) ) 108 e
5
We get

ol D lgzon > R (6 =05 Drcve)

—1/2
xH,

_ — 2
(% ) 7,5% ) 1/2 g1/2 - (1/]5 aDmﬁwg )Hgl/szglp = )\OH'L/J§HH£1/2.
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Further spectral properties of the self-consistent operator D, are collected in the following.

Lemma 4.11 (Properties of positive eigenvalues of D, ¢). Assume that k < 1 and let v € T'<,. We
denote by Ag(§), for k = 1, the k-th positive eigenvalue (counted with multiplicity) of the mean-field
operator D~ ¢. Then, there exist positive constants c*(k) and cy (k) independent of &, with 1 < ¢4 (k) <
c*(k) and cx (k) — +00 when k — +00, such that A\, (§) is situated in the interval [cx(k)(1—k), c*(k)(1—
k)~Y]. This interval is independent of vv. Moreover, there are constants e > c*(q + 1)(1 — k)™ and
M > 0, such that each operator D. ¢ admits at most ¢ + M eigenvalues in [0, e].

In addition, every eigenfunction uy¢(x) associated to A\ (§) lies in Hg1 and satisfies

[1Delurellnz < (1—r)7" M) lunellz < €* (k) (1 — k)2 fupere- (4.21)

Proof. We rely on a variational characterization of eigenvalues of Dirac operators (see [10] and ref-
erences therein). The proof of the condition (i)-(iii) in [10] is postponed to the end of the proof.
Let

1 D
Af = 1g(De) = = + ——

and ) D
A7 = 1p-(De) = = — —*—

From [10, Equation (1)], the k-th positive eigenvalue A;(§) of D, ¢ is obtained through the formula

D
Ak(€) = inf sup M (4.22)
V subspace ofAergl/2 uee(V @AgHgl/Q)\{O} HUEHLE
dim V=k

Let ue € (V@AgHg/2)\{0}. We write us = ug + ug with
_ _ 12
uf = ANug eV, ug =A§u§eAEH§/ .
By definition of Agi,
(Deug ,ug) = (ID¢luf uf),  (Deug,ug) = —(|Delug ,ug ) and (Deuf, ug) = 0.
Therefore,
(D gug, ug) = (Deug, ug) + ((Dy,¢ — De)ue, ue)
= (IDeluf ug ) = (1Delug g ) + ((Doe = Deuf uf ) + ((Dre = De) ug ;)
+ 2R ((Dy.¢ = Do, ug ) - (4.23)

To get the lower bound, we observe that

D
Ae(§) = inf s (757“2“5)
V subspace ofAzr H;/Q ugeV\{0} H’u,g HL2
dim V=k 3

By (4.23) and (4.18), for any u¢ € Af H}'?,

(D g ug,ue) = (|De|ug, ug) + (D¢ — De) ug,ug) = (1 — k) (| De| ug, ug) -

Thus,
D
D (= inf qup  Delue ue)
V subspace ong [—]51/2 ueeV\{0} H’U,E HLZ
dim V=k 3
We define .
ce(k) = inf df(€) = inf inf sup Mg“ﬁ)
ceQ¥ £eQ¥ V subspace ong+ Hgl/2 ueeV\{0} Hu5 HL2
dim V=k 3
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Obviously, c«(k) = 1 and ¢4 (k) goes to infinity together with k. Also,
M(€) > (1— k) cu(k), for every € € QF.
For the upper bound, we proceed as follows. (4.18) and (4.23) yield
(D~ cue, ue) (|D5|uE ,ug) + ((D — D¢)uf ,ug) + 2R (( —Dg)ug,ug)
+ ((sz - Dg)ug,ug) - (|Ds| ULUE)

< (1+8) (IDelug uf) = (1= ) (1Delug,ug ) + 20 11Dl |z [1DeVug | 2

= (1+ R)IDelPuf |72 + 25 1D 2uf | 12 | Del Pug |2 — (1 = m)[[[Del ug |7

< (1= r) 7 DelPuf |72,

by Young’s inequality. Let now

(1Delug ,uf)

c*(k) :== sup dj (§) = sup inf sup 3
feQz" feQz" V subspace of AT H 1/2 +€V\{O} H’U,f HL%
dim V=k

As [uf HL? < HU5HL§, we obtain

Me(€) < (1 — k) re* (k). (4.24)
By construction, ¢y (k) < ¢*(k) and ¢4 (k) and ¢*(k) are non-decreasing with respect to k. Finally, by
definition of c*(k) and cy(k), for any e > ¢*(q + 1)(1 — )71, there is an integer M > 2 such that
cx(qg+ M —1) <e <cy(qg+ M). Therefore, D., ¢ admits at most ¢ + M eigenvalues in [0, e] for every

£eqQy.
Using (4.20) in Lemma 4.9, we obtain

Me(€) [unellz = [ Drguglrz = (1= w)| Deug| 2-
g g g

Hence (4.21).

To end the proof, it suffices to check the condition SUPge# SUP Doeuesue) ()

ugeAg H/P\(0} ~ Jue [
infc o A1(€) in [10]. It follows from the decomposition (4.23) of D, ¢ ; namely (D, ¢ ¢, ¢§) < 0 for
every ¢¢ € AgHg/Q whenever k < 1. O

4.3 Properties of the minimizers of a linear problem

Recall that Br := {ye X nY | ||s,.. < R} and Ry := q + M where M is a constant defined in
Lemma 4.11. The following lemma will be used in the next sections.

Lemma 4.12. Let g € 'y be given, and assume k < 1. Then for each ep > 0, the minimization
problem

inf ][ Trr2[(Dg.c — €p)vel d€
Q*

v€l'<q, ]
_pt~pt 0
V,Py 'yPg

admits a minimizer. Every minimizer vy is of the form vy = JCSB* Ljo,)(Dyge) d§ + 6, with 0 < 6 <
e

fg* 1y (Dy e) d€ for some v € (0,ep] independent of § € QF .
Furthermore, for every ep, we have v < (1 kK)“Lc*(q+1) and v4 € Br,. Ifep > (1—r)"1e*(q+1),
any minimizer v s independent of ep, and TrLz (%) = q.

Proof. For any & € Qf we can choose an orthonormal eigenbasis {{ (¢, )} k=1 of Dy ¢P 0. E’ such that

0Pl = D7 A(€) [¥r(©) (Wr ()] -

k=1
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According to Lemma 4.11, each positive A;(§) is bounded independently of €. Let us introduce as in
[14, 2] the function

C:s 3ZH&QM0 () < s}l.

R

It is non-decreasing on R. In addition, by Lemma 4.11, C(0) = 0,C(+w) = +oo. Thus we deduce
that there exists v € [0, +00) such that

lim C(s) <g¢< lim, C(s). (4.25)
s—vy s/

We are going to prove that every minimizer v, € I', is of the form
@
Vx = ][ 1[0,1/) (Dg) ¢ +9
Qf

with 0 < 4§ < fQ* 14y (Dg,¢)d€ and v := min{vy, ep}. The proof is inspired by [2].
We first consider the case 11 < ep. According to (4.25), there is a density matrix 7 = Lio,m) (Dg)+6
where 0 < 6 < 1y,,3(D,) is chosen such that

ﬁL?ﬁ) =q.

For any v € I'<y, we write

F gDy — er)loe — Fe))

4

—f Tra((Dae = )06 ~3eNde + F _ Tragon =€) e — e
Q¥ QF

= f., TP =) = Fe)de + o sl £ Tepz 0T

14

> f oDy - )06 ~ e (4.26)

14

Since 0 < ¢ < ILE’ we have (y¢r(§), ¥r(€)) € [0,1], for almost every £ € Q. Hence,

][ Tr2((Dge — 1) (e — Fe))dg

E

=f T2 (Do — 12) (o — Ljoun) (D)) d€

é () — 21 | (rewhn (€), i (€)) — 1] de

o A (&)<vr

é [0 () — 1] (et (€), e (€))] dé > 0. (4.27)

e A (&)>11

Thus '7 is a minimizer. According to (4.26) and (4.27), if -y, is a minimizer, then v must be of the form
v = fQ* 110,0)(Dy)d€ + § with v = v; = min{v1,ep} and Trpe (7) = ¢. In particular, in this case, vy is
1ndependent of ep.

For the case ep < vy, we prove that every minimizer v, satisfies v, = fc% L[0,ep)(Dyge)dE + 6,

with 0 < § < 69* 1y (Dy ¢)d€ being chosen such that ;,[V‘rLz v%) < gq. If not, using (4.27) again (by
Q¥ HHer}\ g€

replacing v; by €p), we get

[, T2 (Dag = )0k = Loy (D)) dé >0,

L
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which contradicts the fact that 4 is a minimizer. Thus any minimizer satisfies
@
AR
Qf

with v = ep = min{v1,ep} and 0 < § < fg* 111 (Dy,¢)d€ being chosen such that Trre (%) < gq.
2

We turn to prove v < (1 — k)" 1c*(q + 1), and this leads to 4 € FRO. More precisely, we prove
that (1 — k)cs(q —1) <11 < (1 —k)"te*(g + 1). If not, we first assume that v; > (1 — k) "te* (g + 1).
Then by Lemma 4.11 and (4.25),

qg= lim C(s)=C((1—r)"'c*(g+1)=q+1,

s—v
which contradicts (4.25). Analogously, if 11 < (1 — K)cx(g — 1), then

g< lim C(s) < C((1 —kK)c*(¢g—1)) <qg—1.

S—”Ur

Thus, (1—k)ex(g—1) < vy < (1—k)"'c*(g+1), then v = min{vy,ep} < (1—k)"'c*(¢+1). Moreover,
by Lemma 4.11, we have

0 < 7se < Llo,e(Dge), and |y, ., <qg+ M.

Thus, 74 € Br,. If ep > (1 — x)"1c*(q + 1), then v = v < ep, thus any minimizer is independent of
ep and satisfies TYLg (%) = q. O

Remark 4.13. Actually, in the proof, we show that SUDge Rank(yse) < g+ M.

For the minimum problem given in Lemma 4.12, the following proposition gives the estimates on
the minimizers in X n'Y, which will be used in the proof of Proposition 5.1.

Proposition 4.14. Assume that k < 1. Let v, € I'<q such that

0 <7 < Ljo,(1-m)-1e% (g+1)] (D.6)-

Then,
17| x~y < max{(l—r)"?¢c*(q +1),1}.

Proof. By Lemma 4.9, we have
][ Trp2[Dy,evel d€ = ][ Trp2[|Dy.elvel d€ = (1 = k)] x-
QY QY
Since v € I'¢y, we have
F syl de < (1= 0) et g+ 1)
Qr

L Trez () dg < q(1 = R)T'e* (g + 1),

Then |v|x < (1 — &)"2¢gc*(q + 1). Consequently, from the fact that |v|y < 1, we deduce
7y < max{(1 = k) 2ge* (g + 1),1}.

4.4 First properties of minimizing sequences in qu

We prove the following.
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Lemma 4.15 (Boundedness of minimizing sequences). Assume that k < 1. Then, there is a minimiz-
ing sequence (Vn)n>1 of I<q.r N F;rq, such that for any n e N,

EDF(%L) - GPﬁIP (ym) < 0.
Moreover, if k <1 — $Cgrq*, then, for everyn > 1,
o _
[Vnllx Ay <max{(1fnf §C’EEq+) 1epq,l} (4.28)

and

«
max {7 D°[ V2, 1 [mly | < %nax{(l k= SCrrq*)lep g 1 g+

Proof. Note that the operator 0 belongs to 'Y, and satisfies £PF(0) — epTrye (0) = 0. Thus, I<q.r =
infwerzquR [SDF('y) — epTrpe ('y)] < 0. In particular, there exists a minimizing sequence, such that
EPF(y,) —epTrp2(vn) < 0.

For simplicity, we skip the n index in the following. As D, ¢ve = |D~¢lye for any v € qu, by
(4.13) and (4.17) we get

[0
Trp2[(Dyg = ep = 5 Va6)ve] d€

EP7 (1) - erTipa(n) = f .

Q¥

(6%
= Tal0Dnel = p = SVl e

l
«
> f Tl 9Dl - ep — 51,0l de
Q¥
(e
= (1=#8)|vlx - §CEEH7H61,mYHVHX —epr|7]e:,
(e
>(1-r~— ECEECI+)|M|X —€pg.

Hence
b a +
(1—-r~— 5CEEd )vllx —epg <0.

Whenever 1 — k — §Crpqt > 0, (4.28) holds since vy < 1.
The last inequality follows from Holder’s inequality and the fact that v > 0; namely

1/2 1/2
IV 1D° s, < IW2les. W2 1D s, ., < V1L, IVIXE.
O
From now on, we define the set
Voi= {rerd, ’ EP(y) = epTrpa() < 0} (4.29)

to which the minimizing sequences belong, at least from a certain rank, under Assumption 3.1.

5 Approximation by a linearized problem

The aim of this section is to show the link between a minimizing sequence (v, )n>1 in Vy and the linear
Dirac—Fock problem introduced in Lemma 4.12.

Proposition 5.1 (Link with the linearized problem). Let R > Ry = q + M. Under Assumption 3.1,
let (vn) € TL, N Br be a minimizing sequence of (3.4). Then, as n goes to infinity,

]é* Tr2[(Dy, 6 — ep)melds —  inf ][* Trpz[(Ds,.c — €p)ve] d€ — 0. (5.1)
2

v€l<q ;
—_pt + g
’Y_P’Yn’Yp’Yn
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This property is used in Lemma 6.2 below to build a new minimizing sequence with further regu-
larity, and it is also used at the end of Section 6 to show some properties of the minimizers of I,.

As mentioned at the end of Section 3, the main difficulty is to deal with the nonlinear constraint
I‘;rq. To do so, we introduce a retraction technique first used in [29]. We are going to construct a
regular map 6 from a locally convex set V in I'¢, into a neighborhood of Vj in qu. More precisely,
we will have Vo < 0(V) < F;F - Consequently,

Ieg = nf (E77(7) = epTrpa(7)) = inf (€77 (0(y)) — epTrra[0())): (52)

The locally convex set V is defined by
V:i= (Vo + Bxny(p) nT'gq (5.3)

<

for some p > 0 small enough. The map 6 is defined by

6(y) = lim T"(3)

n——+0o0

for any v € V where the map T onto V is given by
T:v— P;r '}/P;r .

We also denote by Fix(T') the set of fixed points of the map T (i.e., for any v € Fix(T), T'(y) = 7).
Obviously, T'(7) is self-adjoint and 0 < T'(y) < 1. In particular, qu = I'<q n Fix(T). Unfortunately,
given v in T'<y, T'(7y) may not stay in I'L, : P;(V)T(’Y)P;(W) may be different from T'(7).

Now the constraint v € V in (5.2) is locally convex. To prove Proposition 5.1, we will study the
differentiability of the new functional in (5.2).

We first introduce a admissible set U for the retraction such that 7" maps U to U.

Definition 5.2 (Admissible set for the retraction). Assume that k = o (Caz + Crpq™) < 1 and let

A:=35Cgp(1- H)_1/2A81/2 < % Given 1 <1 < ﬁ, let M := max (ZJ”;lq+ , ﬁ), then we define

I/{ = {’yel—‘gq

max{ |7 D2 e, 1, [y} + MIT() = vlxny < T}‘
Remark 5.3. We must impose 7 > 1 in Proposition 5.4: Otherwise, any minimizer vy of I<q r s not
inU if g =1 since |y«|y = 1.
For any differentiable function F : Y — X n'Y and a € U, we define dF(a) by
L IF@) ~ Fla) — dF(a)(w ~ a)lxoy

r—a,ceU Hx — aHme

= 0.

Then we have the following.

Proposition 5.4 (Existence and differentiability of the retraction)._ Let k, A, 7,U as in Definition 5.2.
Then the sequence of iterated maps (I), converges uniformly on U to a limit § with 6(U) c qu nU

and Fix(T) = I‘zq NU. We have the estimate

— kP
Vo ell, 10(:) = T()xey € 7o I T() ~ Al k-

Moreover 6 € CH*"(U, X nY) and dO(T?) converges uniformly to df on U.
In this way we obtain a continuous retraction 6 of U onto F;rq NU whose restriction to U is of class

CYvmif - This map and its differential are bounded and uniformly continuous on U.
For any v e Fiz(T) nU and any h € X nY, the linear operator h — df¢(y)h satisfies

+ + _ p+ + - - _
P7edOc()hP], = PTche PT, and P dO¢(v)hP, . =0,

where 6(y) = fg* O (v)d€, according to the Floguet-Bloch decomposition. In other words, the splitting
4
L = P,;fng (—DP,;ELE gives a block decomposition of dO¢(y)h of the form

Pr hePF, by e(h)*
dfe (~ h=< 1T Tye Tt > 5.4
S AT &
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The proof is Proposition 5.4 is postponed to the end of this section.
To apply Proposition 5.4 to the proof of Proposition 5.1, we need to verify that V < U for some 7
given in Definition 5.2. From Lemma 4.15, we can observe that any v € Vy is indeed in U if

T> \/max{(l —K— %CEE(]+)_1€PQa 1}qt.

Thus, according to the continuity of T in X n'Y (will be shown in (5.11)), we have

Corollary 5.5. Assume that k <1 — §Cppq*, and let A be as above. Assume in addition that

2A\/max{(1 — K- %C’EEqJF)*lqu, gt <1

Then there exist 7 as in Definition 5.2 and p > 0 such that YV c U.

We are now in the position to prove the main result of this section.

Proof of Proposition 5.1. We argue by contradiction. Otherwise, there would be an ¢y > 0 such that,
for n large enough,

][ TrLg((D,Ymg — €p)Yn,e)dé = inf ][ Trr2[(Ds,.c — €p)V]dE + €o.
Q¥ er ¢

'YEFqu
—_pt
=P

By Lemma 4.12, there exists an operator v,, € I'<, such that v, € '<, n Bg, (where Bp, is given in
(3.3) and Proposition 3.4) and ~/, minimizes the following problem

v€l'<q,
—_pt+
=P ~

F o TnlDe - eonielde = it Tepp[(D,c - erel de
ot ot

From Lemma 4.12 and Proposition 4.14, v, € Br and |v,,|xny is uniformly bounded. So according
to Corollary 5.5, there is ¢ > 0 such that for any n large enough and any s € [0, 0], (1 — $)yn + s, €
I'<;Bxny(m,p)(1Br < V()Bgr. Then from Proposition 5.4, the function f, : s € [0,0] —

(EPF — e pTrp2)(0](1— 8)yn + 574]) is of class C! and the sequence of derivatives (f!) is equicontinuous
on [0,0]. From (5.4), we infer

f;z(o) = ﬁLz (D% — ep)(’y;l — ’Ym)) < _%O_

So there is 0 < s9 < o independent of n such that for any s € [0, so] we have f] (s) < —<. Hence,

(EPF = epTrpa)(01(1 = s)va + 57,]) = fuls0) < £ul(0) = 4% = (€27 = Trpa) () — 2

But 0[(1 — s)yn + sv,,] € T, Br and EPF(v,) — epTrpe (7n) — I<q,r. This is a contradiction.
Hence the proposition. [l

We are now in the position to prove Proposition 5.4. This is essentially the same as in [29]. Recall
now that Py” = 1+ (D — azGy) and A = §Cpp (1 — /ﬁ)_l/Q)\al/Q with Ag given in Lemma 4.10.

Lemma 5.6. Assume that k < 1. We introduce the map

Q:’y'—>P;r—PO+

in such a way that Q(v) := JCQ®;“ Qe () d€ with Qe (y) = P,;fg - PoJ,rg'
Then the map Q is in CH1P(T'<,, B(L?(R3,C*), HY/2(R?),C*)) and we have the estimates

VyeT<y, VYheXnY: [|D°V2dQ()h|y < Alh|xny (5.5)
and

V.7 € Teq L IID°I2[AQ(R — dQ(Y)RID [Py < Ky = |xav Rl xay, (5.6)

where K is a positive constant depending only on k which remains bounded when x stays away from 1.
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Proof. By Lemma 4.9, D, ¢ is a self-adjoint operator for all v € I'<, and 0 is in its resolvent set. Then
by Taylor’s formula [20, Chapter V1.5, Lemma 5.6] or [16], we have

+ 1 1o 1
P’;f = 5 + %/ (D,y,§ — iz)_ dz (57)
— 00
and, by the second resolvent identity,
+00
(07 N—1 N—1
Qe(7) = —5- (Dye —iz)” Vye(Dog —i2) dz.

— 00

Hence, for every h€ X nY, we deduce from (5.7) and the second resolvent formula again, that
a +00
dQe(y)h = dP} h = f%/ (Dye —i2) Wi e(Dy e —i2) dz. (5.8)
—00

Besides, for any u¢ € L(Qy), we have

+00
/ (e (IDsel? + 121372105 el 1Dy el + 12 2ue) | dz = mluel?.

. €

We infer from Lemma 4.10 that
DL~y < Agt

Thus gathering with Lemma 4.7, for any ¢¢, ¢ € L? we have

(e, | Del 2dQe (1)he) 12

«

21

+o0
/ (wg, |Del"/*(Dyy.¢ = i2) " Vi e(Dy g - iz)flﬂﬁ&)m dz
3

—00
@ o 1 12, [? 2 e 1y |2
selViellsuy ([ [0re =i o e, a2) ([ 1Dne = i)l a2)
™ o L2 o €
« _ _
2 1Vael ) [1Del 21Dy 6| =2 0llis22) 1 Dr el ™2 Iy e 2 ¢ 2

[0 _ _
< 50ee(l = 8) AT 2Bl x v ez el oz

1/2

N

N

Hence we obtain (5.5), i.e.,
« 1/
1D 2@ D2y < S (1 — 1) ™25 2 Bl ey

For the second inequality, we have

a2 +00 ' B ) B ' B
dQe(v)h — dQe(v')h = — Py (Dye —i2) "Vy—ye(Dyre —iz) Wi e(Dy e —iz)~'dz
—0o0
S 1 1 1
~ 5 (Dyg = i2)" Vhe(Daye —i2)7 Vg e(Doyr g —i2)" dz.
-0

Proceeding as above, we get (5.6). The fact that Q e CVP(T',, B(L?, H'/?)) follows from (5.5) and
(5.6). O

Lemma 5.7. Assume that k < 1 and let A> $Cpp (1 - H)_1/2)\81/2. Then the map T : v — P,TvP,f
is well-defined and of class C1'' on I'<, with values in X n'Y. Moreover, for any v € <,

I72(7) = T(Mxmy < 2A(maX{HT(V)IDOImHel,I, 1Ty}

- ATtﬁ”V*T(V)mey)HT(V) —xny- (5.10)
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Moreover, there are two positive constants Cy, L, such that
Vyelaq [dT(Msxny) < Co(l+max{|4| D[, . [7]v}), (5.11)

and

77,7 € P<g, [dT(7) = dT () 5x vy < Lol +max{[y[D°["?|s, ., NIy DIV = vlxay.  (5.12)

Proof. Let 7,7 € I'<q. Then P — P,;t can be written as
1
+ + _ / ’ ’
Pr—Pj = /O dQ(Y" +t(y =) (v —7)dt.
From (5.5),

[ID°[V2(Pf = Py < Aly =+ |xny-

For the estimate (5.10), we have

T*(7) —T(7) = (Pf(,, — P))T(y )(P;m Pt +P+) + PIT() (P, — )
(qu(v) P;r)T(’Y)"‘T( )(Pr, T(v) P;r) (P;“r(y) PVJF)T( )(P;() PVJF)

Then

I7%(v) = T(Nlxay < [P,y = T x 0y

+ HT( )( T(v) PJF)HXﬁY+ H( T(v) PJ)T( )(P;(W) ;r)HXﬁY-

We have

IT()(Pf, = P)llxny < IIDYY2(PF ) = PH)ly max{|T()|D°[ P2, . [Ty},
and

1P, = POT() (P, = PO xey < IID12(Pf) = PHRATO) ey sy

Notice that [|T(7)||le, .~y < [~y < ¢T. Gathering together these estimates, we obtain (5.10).
We turn now to the proof of (5 11) and (5.12). From Lemma 5.6, T is in C'(I'g,) with

dT ()h = (dQyh)yPy + Pyy(dQyh) + PyhP,.

Notice that for any v € I'<q,

H|D0|1/2P+|DO|—1/2 H < (1 fi)_l/2 H|D |1/2P+|D0|—1/2H < (1 s [i)l/Q ( 13)
= = (1 — fi)l/Q : :
Then,

[dT (Nl sxny) < O+ D2 RS IDO Y2 [3) (1 + max{ |y DO 2 ey ., Iy D (1@ hlly + [h]xqy)
< Cn(1 + max{|[y D12 sy ., IVlv ).

Finally, for the term dT'(y') — dT'(7y), we have

dTe(y')h — dTe(y)h = (dQ~,eh) Ve Py g + Py e7e(dQn ch) + Py che Py ¢
— (dQy gh) Ve Py & — Py 76 (dQyr ch) — Py ghe Py e

Proceeding in the same way as for (5.11), we can get (5.12). O

We now show that T satisfies all the assumptions in [29, Proposition 2.2].
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Proposition 5.8. Let k, A, 7, U be as in Definition 5.2. Then T is in CO(U) n CH"P (U, X Y be
such that T(U) < U satisfies the following estimates

sup [dT(7)[x~y < 0, sup|T(y) =[x~y <0
veU yeU

and
Vyeld, [T%(x)-T(x)|xny <k|T(z) —2|xny
with k = 2A1 < 1.
Proof. For any v € U, we have
TP 61, < VD1 2610 + (= TONID M2 ler,0 < VD12 @10 + Iy = T(9) 1 x

and
TNy <lvly < lvly + Iy =Ty
As a result, as M > #, (5.10) implies that

IT2(y) = T(Y) | xny < K|T(y) = vlx

. _ . . . 1
with k = 2ar < 1. Moreover, using the inequality M > 1—4-,

max{|T(y)[ D2 e1, ITO) Iy} + MIT?(y) = T(3) | xy
< max{[y| D’ [y} + (L + MR)IT() = vlxay <7

So T'(y) e U.
The fact that sup. o, [dT'(v)|x~y < o and dT is Lipschitzian on ¢ follows from (5.11) and (5.12).
Besides, using (5.13) and v € U, we have

2
I7() = Yxay < ITMlxay + IVlxay < 7—Ilxay-

This ends the proof. O

Notice that U is an open subset of I',. Then Proposition 5.4 follows from Proposition 5.8 and |29,

Proposition 2.1 and Proposition 2.2| by choosing U = U,I' = I'¢gand X := span{y — ' | 7,7 € ['<q} =
X nY. Here the notations X, U and I" are given in [29, Proposition 2.2]. The proof of (5.4) is exactly
the same as in [29, Theorem 2.10]. This ends the proof of Proposition 5.4.

6 Existence of minimizers in the set By

In this section, we are going to prove the existence of minimizers of I<4 r (i.e., Proposition 3.4).
According to Lemma 4.15, there is a minimizing sequence (vy)n>1 in Br n I'J that is uniformly
bounded in X n'Y. We split (y,,)n>1 into two parts: (5 )n>1 and (v, — Yn)n>1 where, for each n,

'771 = DnYnPn  With  py, = 1[0,6] (Dvn) (61)

with e > ¢*(¢+1)(1 —&)~! defined in Lemma 4.11. An important fact in this lemma is that for almost
every £ € QF, the rank of p, ¢, and therefore of %, ¢, is at most ¢+ M. We prove in Lemma 6.1 that, for
eachn > 1,7, € X2 whereas v, € X; roughly speaking, we reach a L*(Q5; H, g(Qg)) regularity instead

of a L2(QF; Hé/Q(Qg)) regularity for the associated eigenfunctions (Lemma 6.1). Hence (¥,,),>1 is an
approximate minimizing sequence with higher regularity than (y,)n>1.

The structure of the proof of Proposition 3.4 is as follows. In Subsection 6.1, we will show ||, —
Ynllx — 0 when n goes to infinity. In Subsection 6.2, we study the convergence of the kernel of
(W5, .¢)n>1. Then thanks to the constraint v, € Br, we deduce the strong convergence of (V,,, ¢)n>1.
As aresult, [Py, — P |y — 0. Hence in Subsection 6.3, we can pass to the limit in the energy and in
the constraints.
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6.1 Decomposition of minimizing sequences
We start with some regularity and bound results on 7.

Lemma 6.1. Let k < 1. Then the sequence (Vn)n>1 and the sequence of kernels (Yn (-, *))n>1 are
uniformly bounded in X2 and L®(Q¥; H (Qr x Qr)), respectively.

Proof. We first prove that |p,|xz is bounded. Let (unk(§))k=1 be the normalized eigenfunctions of
the operator D, ¢ with the corresponding eigenvalues X, 1(§) counted with multiplicity. Hence,

with dp = 1if 0 < A\, 1 (€) < e and 5n1k = 0 otherwise.
By Lemma 4.11, we know [{k € N* | §,, x(§) = 1}| < ¢+ M. By (4.21), for any eigenfunction u, x(§),
we have Hémk(f)un,k(f)HLw(Q Q) S < (1 —r)"e. Now,

q+M
Z O,k (€) [,k (€ )H?{l < (¢ + M)sup H(Sn,k(g)un,k(g)”?il
3 k;l 3

Hence,
Ipuls < (a-+ M)(1~ 5) 2
Since Pn = p37 '771 = pn%npn and 0 < '771 < 1L2(]R3)a we have
[Fnllxz = [1D°17a]D%le:... = [1D°1Panpnl DOl ..
< Fnly [1D°Ipals, . < lpallxz < (g+ M)(1 —r)"2e%
In terms of kernels, it writes
11Dl Fn,e (s M L2(@ex@e) = I DelAnellenie) < Pnelxzce) < (g +M)(1 = k)22,
the same holding for |Dg¢ y[Vn¢(-,-). Thus, (@, y) € L2 (QF; H (Qe x Qr)), and
e (- ')HLOC(Q;";Hl(ngQ[)) <2(g+ M)(1 - k)22 (6.2)
O

We begin the proof by showing the following result as in the case of molecules [29, Lemma 3.4].
Lemma 6.2. Let R > Ry = q + M. Under Assumption 3.1, whenever ep > (1 — k) ~te*(q + 1), for
any minimizing sequence (Yn)n=1 of (3.4) in qu N Br we have

Trr2(ym) = ¢, v —Fnlx — 0.

Proof. According to Proposition 5.1, any minimizing sequence (v, )n>1 in I'E, N Bp satisfies (5.1). By
Lemma 4.12, the minimizers of the problem

inf ][Q TrLg [(D'vmf — EP)’}/g:I d¢

vel<q, y=PH,vPF, J Qi

are of the form 7/ := fQ* 110, (Do) d€ + & with some 0 < § < f% 1,,(D., ¢)d¢ such that
Trr2(v.,) = q and for some v, € [0, (1 — k)~'¢* (g + 1)]. We denote

&) ® ®
Ty = ][ 1(6700)(1)%“5)6[6, 7T;l = ][ 1(un,e](Dvn,£) df, 7T,’,; = ][ 1[0,1/71](Dvn,§) df

12 [4

We can write p,, = 7, + 7r and v/, = 7/~} 7. Proceeding as for (4.26) and (4.27), we have

n/)/n n*

TYLQ[(D%@ —€p)Yn.g] d€ — TYLQ[(Dvmﬁ - GP)%/@,g] dg§
QF ¢ QF ¢

= ][ Trp2[(Ds,.6 = Vn)Tn . e] d€ + ][ Trp2 (D6 = vn) 6,6 ] d€
QF QF

e

+ ][* Trp2[(Dy,e = vn) (T 6T e = Low,)(Dyag))] dE + (€p — vn) (q —Trpe (%)) :

14
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We observe that the four terms in the right-hand side of the above equation are non-negative whereas,
from Proposition 5.1, their sum goes to 0 as n goes to infinity. Therefore,

][ Trp2 (Yn.g) d§ — q and ][ Trr2[(Dy, e = vn)Tneom.emnel d§ — 0.
Q¥ QF

But (D, ¢ = Vn)Tng = (€ = vn)mn g and T e(Dy, e = Vn)Tng = Tne(|Dy, 6l — vn)mne. So taking
a convex combination of these two estimates leads to

e (&
n D — Yn)in =
e—c*(g+1)(1— H)flﬂ 75( Yn,§ TV ) 53

(Do = Vn)Tn g = Tng| Dy, elmn e
e— Uy

Hence
rouallx = £ TeialmelDelngimel € < (1= 0 £ TepglmelDs, elmneinel dé — 0.
Qe QZ

It remains to study the limit of h,, := 7,7,pn as n goes to infinity. Since (7,)? < v,, we have
(7Tn’7n7rn)2 + hnhz = 7Tn(’7n)27rn < T YnTn-

Hence

o* Tng(ID%§|1/2hn,§h;’;5|D%5|1/2) d§ — 0.
1

Taking any operator A in Y, by the Cauchy-Schwarz inequality,

F Tz AelDs, ol 20l D, o]7) de
@
3

<o
CDE

1/2
x (/Q* Trp2[|Ds, 6l hnghls ¢l sy, ]2 df) :

12

1/2
Tep2[| Dy, ¢ *pne Af Acpn el D, 7] Hm

By Lemma 4.11, there is M > 0 such that p, ¢ has at most ¢ + M eigenfunctions, which means that

Pn.¢ has rank at most ¢ + M and |p,|D-, |'/2|, <e'/2. As a consequence,

ITrr2(1Ds, ¢l *pnc Af Acpn el Doy, 6] ) e < (g + M)e| AlT

So we have
1D, 21l Dy, 2] =0,

Hence, |un,|lx — 0. Finally, |y, — nllx < |mnynmelx + 2|hn|x — 0. O

By Lemma 6.1, up to the extraction of a subsequence, there is 74 in X2 n'Y, such that

Hn =74 for the weak #-convergence in X2 N, (6.3)

since X2 is a subspace of &1, which is the dual space of G4 1 and Y is the dual space of &1,1. We
immediately get the following.

Lemma 6.3 (Strong convergence of the density). The sequence p,lf converges strongly to p#{f m

H4(Qg) with 0 < s < 1, thus in LP(Qy) for every 1 < p < 6. In particular, whenever ep > (1 —
k)~te* (g + 1), we have er Py dT = q.

Proof. The proof is the same as in [5, p. 730] and relies on ¥,, € X2. The fact that the limit of p;{? is
exactly p#{f follows from [5, Eqn. (4.51) and Eqn. (4.55)] since it implies ps, — p,, in L'(Q). O
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6.2 Convergence of (V,, ¢)n>1

Before going further, we introduce the following functional spaces: For p € [1,+], s € (0; +o0], let
LPHE := LP(QF; HE(Qe x Qu; M4(C))) defined by

LpHgS = {f('azay) € L2—5,1(Q2§C4) ®L§,y(Ql;C4) HfHLP(Q;“;HS(QzXQl)) < OO}

endowed with the norm | f|Lrm; = HfHLP(Q;k;HS(QgXQZ)); then we also define the function space
WIPHE := WP(QF; HE(Qr x Q¢)) © LPH endowed with the norm

Flwroszg o= 1f|zosg HIVef (€, M wosms

and the Holder continuity function space C%*H¢ := CO*(Qj; H{(Qe x Q) for pu € (0,1), endowed
with the norm

Hf(évv) f(f, ,)H s
HfHCOvMHg = HfHLOOHg + sup - H*(QexQr)
E£EeQ¥ 1€ —¢'|

For any functions f € LPLZ and g € LP/LE with p € [1,00) and 1/p + 1/p’ = 1, we define the product

][ //Q o Tra[f*g|dzdyde. (6.4)

It is easy to see that (LPLZ, LPILQ, (-,-)) forms a dual pair.

First of all, we study the convergence of the kernel of W5, ¢. Recall that
Wye=Wema~e+Wamqye, YmeNm>=2

where for n € 2QF and x € 2Q¢, the kernels of Wx,, ¢ and W, - ¢ are respectively

Woninclr0) = f W2, € =60 )16 (o) d
4

W<m177§(1'5 y) = ]{2* Wiom,l(g/ - 57 T — y) e (SC, y)dg/
4

Lemma 6.4 (Convergence of the kernel of (W5, ¢)n>1). We have the following properties:

(@) Wamzne = Wamage i LP(QF; LE(Qe x Qo).
(b) |Deo| ™ 2| De |72 W 5,6 = |De ol V2 De y[V2Warm e in LP(QF; LE(Qe x Qo))

Proof. We will prove the boundedness of the sequences, and then deduce the strong convergence by
the Rellich-Kondrachov Theorem.

Uniform boundedness of W_,, 5, ¢ in CO*(Q}; Hg(Qg x Qg)). It is based on Lemma, 6.1, particu-
larly (6.2). Recall

4ﬂ' 1 ZWk
—(€=€))-(z—y)
Pe—a—y =" 3 i _
¢ e (]
kez?
Thus,
H <m Ansn Wzom,’wyn,n HHl (QexQy)
_dr ][ (2= (=€) (z~v) » ][ (2 (=€) () d§
\_3 . 2 ’y"f - . 2 7"5,
& immlVer [ (-9 QF 34— - &) HY(Qux Qo)

kez?
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For each term on the right-hand side, we have

][ ot (2= —(1=€") (z—y) ][ ot (25— =€) - (a—y)

T S T

<][ ((3FE-0-) ev)3,
Qf

HY(QexQr)
1 1

- - [ -m-of

7[ o (P~ (=€) (z~y) ) e (P (' =€) (2—)
+ 2 %n,ﬁ’dg - ][ b 'Yn £’d€
QF 3 - (' =€) QF % = (r = ¢

d
H}(QexQe)

HY(QexQe)

As n, ¢ € QF, according to (6.2), we get

l(FFE=0=)-(e-v)z, .,

< C . ’ < C + M 1 _ _92 2-
H1(Qx Q) Fn.er s, (ixy < Cla+ M)(1— k)%

By the Holder continuity of the function 7 — fQ dr/, there is a 0 < pu < 1 such that

s

L

¥ Tn=n'l? 77|2

1 1
-
U T N (3
< Clg+ M)(1—w)"2|n — |

e (25 —(=¢")- (I*y)rynyg,

2

d
H(QexQp)

For the last term, note that [e =% —e~""%| < |V, " | = |n—n'| < Cln—1/| and |V (e~"% —e~""2)| <
Cln —n'|. We get

2k

(T =(=€))-(a=y) _ / ot (25— =€) (z—y)
][ 5 n,gr € — ][ 5 n,erd€’
Q Q¥

] =0l (@0x0)
Cln—n'|
< 7[ 15 ¢ F d¢’
2 s /(QEXQE)
QF |1BE—(n - ¢)| )

< Clg+M)(1—w)"2en —1'|.
We finally get that there is p € (0,1) such that
HW<mq'~Yn7§HCQM(Q?‘;H%(Q@XQ@)) <Clg+M)(1—r)~%e.

Boundedness of W, 5. ¢ in WH*(Q¥; L?(Q¢ x Q)). For =0 or 1,

IVEWsm 5.

Lo (@sL2QF xQf)) S ]2* IVEWom e (€ = €V nel L= (202 x4

£
By Corollary B.2 and Lemma B.3, we know
IVeWom o(§ =& 2 = y)Tnel2@ixqn < ClAnelm@ixan,

and
Wem,e(€ =€ 2 =) Ane | 22(Qix@r) < ClAnelH1(Qoxq0)-
Thus,

HWZMKNmeHlew(Qf;L?(Qg><Qg)) <Cg+M)(1— H)_2€2-

Convergence. Thanks to Rellich-Kondrachov Theorem and the boundedness of the sequences, these
two sequences converge strongly up to subsequences. Now, we are going to prove that the limits are
the kernels We ,,¢ and Wxo, 4, ¢ respectively.

It suffices to prove that

Wem e — Wemnge and Wops, e > Wop e (6.5)
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in LP(QF; L*(Qr x Q).

By Young’s convolution inequality,

HW<m7g7£|

|L1(Q2‘;L2(Qe xQpg))
< HW<7”1€(£’ xTr — y)HLl(Q;F;LOC(QE ><Qg))”g§/($; y)HLl(Qf;LZ(Qe xQe))"

Swo,1 < HW<maga§ |62,1 = HW<maga§

Then by (6.3) and using (6.4), for any g¢(z,y) € LN(QF; LZ(Qe x Qr)),
(9¢; Weam g ,€) = ][ Trr2[9¢ Wem .6l d€ = ][ Trpz [WE,, o eAne]dE’
QF Q-

- o Tng, [W;km,g,gﬁ*,ﬁ’]df/ = <9§a Weam e > .
£

By Corollary B.2,
[1D° [T W | DI e < N1D°]7 Wi,

(P

-1
< ]2* dé|[|De|™ Wi e(§ = -)g. HLl(Qz‘;Lg(ngQg))

12

< CHgfl (SC, y)HLl( Z‘;Lg,(Qz xQe))"

Hence,
(96 Womgn6) = Womggs ng)
= TPl W2, 1Dl 1D e IDel) ¢
4
- % T‘I‘Lg [W;m,g7§’7*,§,]d€/ = <g€’ WZm,V*,g > :
Q¢
So we have proved (6.5), hence the lemma. O

Lemma 6.5 (Strong convergence of the electron-electron interaction). As n goes to infinity, we have

[[D742Vy, —y [DO| 72y — 0.

n =Yk

Proof. As V¢ = Gy * py — W, ¢, we have

I1DO1 2V, o [ D2y
<D Y26 % (py, = py ) ID 2y DO Y2V, ¢ = Wy )l DO 2y

For the first term in the right hand side, notice that
1Ge (v, = pya)lly < G (py, = p3.)ly +1Gex (3, — Py ly-

By (4.4), we get
|Ge = (py, = p3.) |y < Crllym — Al x — 0.

Notice that, from Lemma 6.3, we infer p5, — p., in L?(Q¢). This and the fact that Gy € L*(Q,) yield
1Ge* (p5, — prys)lLe (o) — O
Thus using |D°|~! < 1, we infer
[1D°1712 G # (pry, = pa)ID°[ T2y — 0. (6.6)
Similarly, we split the second term into two parts :
[1D°]7 2 (W, = W )ID° T2y < Wy, = Wi, [y + |[D°|2(Wy, = Wo,)ID°1 7y, (6.7)
Since 7, and 7, lie in Br and since |y, — Fn|x — 0, we obtain from Eqn. (4.9)

W = Wa, |y — 0. (6.8)
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We split the second term in (6.7) into two parts. Thus by the duality of the operator |Dg ,|~'/2, for

the term associated with W;Om, o

]|Dg,z|-1/2 [ Wernromre 1D o)y
4

LE(Qe)

- H/Q [IDg,x|*1/2|D§7y|71/2W>m,%_V*,g(z,y))] e (y)dy
14

LE(Qe)
</Q [IDeal ™21 Dey| W 5~ (902000 1906 () |y

4
< |IDeul ™1 Dey |72 W 5,y e (- Ne=@#:r2@ix @ ¥elz2@n-

For the other term, analogously we have

‘|D5,m|1/2/ Wi 5 —vsne (@, 9) | Dy | ™20 (y)dy
Qe L2(Qr)

< [ Wamsmne o lizian IDesl P ic(w)ldy
£

< HW<W7’~M—’Y*,§('7 ')HLOO(QZ‘;LE(QZ xQq)) HwEHLZ(Qz)
Gathering these estimates with Lemma 6.4 we infer

[[1D°]7Y2 W5, o ID° 2]y — 0. (6.9)

n Y%

Then this lemma follows from (6.6), (6.8) and (6.9). O
As a result, we have the following.

Corollary 6.6 (Strong convergence of the spectral projectors). As n goes to infinity, we have

|Py, — Pl |y —o.

Proof. By (5.7) and the second resolvent identity, we obtain
1 —+0o0 . )
HP’I:«E - P’IHSHB(LE) < %/ [(Drygee = i2)7 Vo —yge e (Drye — 02) 7 HB(Lg)dZ
—0
1 _ _
< %HlDol V2 (Vi) IDY T2y

+00
< [ D = 2 D P 1D (D = i) say s

—Q0

1
< (1= m)THIDO TRV, DOy

The right-hand side goes to 0 by Lemma 6.5. (|

6.3 Existence and properties of minimizer of I, r

The existence of minimizers of I<, r now follows by passing to the limit in the constraint and in the
energy. The proof is separated into the following two lemmas.

Lemma 6.7. The limit v, lies in F’\;q N Bg.

Proof. As
R X2 nY,
we get
Iyl <liminf|[Fnle, . <R, |yly <liminf |[F,]y <1
n—o0 n—0o0
and

vl xz, < liminf 3 xz, < (g + M)(1 = )72
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1/2

Thus, v« € T and 74 € X nY 1 Bg. Besides, as [y, — Ynllx — 0 and [p5" — p.lYfHLQ — 0, we know

that
][ Trr2yn,ed§ — ][ Trpzvye e dé < q.
* 3 * 3
Q( Ql

Then v4 € I'<q N Bp.
To end the proof, it remains to show that P;; Ve = Va6 in the sense that for every g e G 1,

# Trp2[(P) eveg — Vxg)gel d€ = 0.
Qp
Notice that

Trp2[(P ¢7es — Vee)ge] d| < /Q* Tr2[(P), ¢ — P, ¢)in.c9el d§

e

/Q* TI"LE [PW_:‘@('Y*,E - %nyf)gf] dg§
¢

*
“ (6.10)

+ +

[, 2l Gine = w0 de
QF
As gP, € &1, we know that

o Trp2[ P, ¢ (veg — Ang)ge] d§ — 0 and /sz Trp2[(Fng = Ve.6)g¢] d€ — 0.
For the first term in the right-hand side of (6.10), using Corollary 6.6, we have

<|IPf, = Py Iy [Anle, . lgly — .

[ TP = P cse) de
Qs
Consequently, letting n go to infinity,

=0.

| TP v = e ol
£

Hence v, € qu. This ends the proof. (|
Lemma 6.8. The limit v« minimizes I<q R.

Proof. For the kinetic energy term, we have
| Tz el =molde = [ Triz[Dern =Tuelde + | Tooa[Dene = el de.
QF QF QF
By (6.3), we know that
/ Trpz[De(Vne = vx.6)] d€ = / T2 [| Del (Fn.g — ¥.6) [ Del [ De| ™ De| De| =] dg — 0,
QF QF
as [D°|71D°[D|7 € G 1. Since [y — Fnlx — 0, then [« Trr2[De(Yn.e = Fn.e)ld§ — 0. Hence
£
|, Tz Delne = molde 0.
QFf
The proof for the attractive potential is similar:
/ Trpz(Ge(ng = ) d€ = / Trpz(Ge(mg = Tne)) d€ +/ Trp2(Ge(Yng = Ya.6)) d€
QF Qf QF

and

< Culvwm —7|x — 0.

|, rp(Gelome = n) de
Qf
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As ||[|D°|71Go|D°| e, < Cl|D° e, < +00, we know that |[D°|7*G¢|D°|7! € G 1 and
|, TG = m et = [ Tesz 106l ) IDEIDI Gl Dl d 0.
2 4

For the repulsive potential, according to Lemma 6.5, we have

‘rﬁL2 (V'Yn Tn — V'y* 7*)

= ‘TYLZ (Vo= + Vi 1)
< [ID°1 72V, IOy (]l x + vl x) = .
The lemma follows. O

We now know that <, is a minimizer of I<4r under the condition v, € F’\;q N Br. Applying
Proposition 5.1, we get

v€l<q
—pt
y=Pi

/ Trpz[(Doyg —ep)rag]dé = inf / Trpz[(Day.c — ep)e] €.
QF QF

Then, with ep > (1 — k)" 1c*(¢ + 1), by Lemma 4.12, we get 74 = fg* L10,)(Dyy e)d€ + 6 with
2
some 0 < § < f% 1,(Dy, ¢)d¢ for v € (0,(1 — k)"*c*(g + 1)] independently of ep. Furthermore,

ﬁLz (v«) = q. Besides, if R > Ry, any minimizer v, in qu N Bp lies in ERO- This proves Proposition
3.4.

A Proof of Lemma 4.1

It suffices to prove (4.2). By interpolation, we can choose Cy = Cg.

To deal with (4.2), the idea is to decompose the potential Gy on Q, into two parts, namely ﬁ and
Gy — ﬁ The first term can be treated as the Hardy inequality on @y, whereas the second is bounded.
We begin with the second term and prove the following.

Lemma A.1. There is a constant Cy > 0 independent of { such that

1
]

Co

GE(SC) < 7

sup
IEQ@

This implies
G@(l‘) = —%. (A.l)

In particular, we have

3 27R? 3 Ar R3\ V/? Am R3\ V2 1
Co< inf | — 4+ 4+ 2 min ( > ,(1 ) _—
o<kR<} | 2R 5 472 R3 { 3 3 keg\:{o} |k[4

1/2

Proof. As G1(x) = £ Gy(Lx), it suffices to consider the case £ = 1. Let f(z) = G1(x) — |71\ Eqn. (2.1)
yields
—Af =4m(=1+ D> ).

keZ3\{0}

Let B(z, R) be a ball of center z and radius R chosen such that (U.cg, B(z, R)) n (Z3\{0}) = &.
Obviously, we can assume 0 < R < 1/2. By the divergence theorem, for 0 < r < R and z € Q1 we
obtain

d 1 1 d
— | — ds | = —— d
dr (47r7"2 /aB(z,T) 1) S) dmdr Jg2 J(z+rw)de
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1 of(s) 1
=— = —— A
4mr2 /aB(z,T) on ds 472 /B(z,r) of(z) du

with S? denoting the unit sphere. On the one hand, for any z € Q1,

/ A, fdx
B(z,r)

where the first equation holds since

1

47r?

1
5 / ldz
B(z,r)

47
< —7.
r

(Usen B(2,7) n{ke Z3|k # 0} = &, for0O<r<R.
Therefore, integrating (A.2) with respect to r,

2 2
78%7"2< f(z+rw)dw74ﬂf(z)<8%r2.
SZ

Since [, ) f(2)dz = fOR % (fs2 f(z + rw) dw) dr, integration over [0, R] leads to

/ f(z)dx / Gi(x)dx / 1 dx| +
B(z,R) B(z,R) B(z,R) ||

On the other hand,

3 2 R? 3
< <

= A7 R3 *

+ 47 R3

4n B3\ 1 [ 4r B3
/ G (x)dz| < |B(z, R)["?|G1| 2=, ) < < ) 1G 2@y = = | —=— D]
B(2,R) 3 & 3 im0y
Using (2.2) and by the periodicity of G1, we also have
12 1/2
1 47 R3 1
/ Gi(x)dx| = / Gi(x)dzr| < — (1 i ) Z T
B(z,R) (z+Q1\B(2,R) & 3 keZB\{0} K]
Thus,
1/2 3\ 1/2 1/2
1 47 R3 47 R 1
/ Gi(x)dx <—min{(ﬂ ) ,(1— T ) } Z AT
B(z,R) T 3 3 kez3\{0} |k|
Furthermore,
1 1
/ —dx </ — dx = 27 R?.
B(z,R) || B(0,R) ||
Therefore, the bound holds for £ = 1 and any 0 < R < % with
1/2

3 27R? 3 Ar B3\ 2 ar B3\ 2 1
CO<—+—+T3min{< ) ,(1— ) > TH
9R 5 | 4n’R 3 3 vy 1B

We now consider the Hardy inequality on @, for the potential —.

||
Lemma A.2. Let ue HY(Qy), then

2 48 + 244

u
e

40 + 24

S

iy SVl +
[4

]
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Proof. We start with the relationship:

Thus,

1 2 2,
0</ |Vu|2dz+—/ %d:w—/ Viul -z g,
" 4 Qe |(E| 2 " |fE|

2
lul ) 4z, we obtain
|| ’

Viuf*-z iz |ul? |u|?
7| E dr = / EE dzf/ Wdz.
Qe z 0Q, T Q¢ 1T

where 77 is the outward pointing unit normal at each point on the boundary 0Q,. To end this proof,

By the divergence theorem for | oV

. . Ax|ul?
it suffices to estimate faQ[ TP
Let
A2’3($1)=/( . |u|? (1, T2, 23)drodrs.
—2:3
As |ii-z| = £ and |z| > £ for any x € 0Q,, we have
”9U|U| 2 23, ¢ 2,3,¢ 13, ¢ 13,4 12, ¢ 12,4
dr == A°(—=)+ A*° (=) + AP (—=)+ A2 (2)+ A5 (—=)+ A% (2) ).
| T /|| o= 7 (A3(5) + 4G 4 AB(G) 4 AV () 4 AA=5) 4 A1)
Qe
(A.3)
Let zﬁo) € (—%,£] such that
2,3¢,.(0) 2,3 1 2,3 1 2
A% (xy) < A% (xq1)dxy = = A% (xq) dxy = = |u|* da.
(=L, CJi—r g 14
202 272 4
Then we have
¢ ¢ 8 7] a d
A23(_5 42305 = / _/ 4423 9 42:3(,0) < 2423 (0) / 423
( 2)+ (2) Zgo) _% dl'l d$ + ( 1 ) ( )+ (_%,%] d:cl d$1
As
d 53 0
o dxlA (x1)|dz1 < ; | %u <QHUHB(Q”HVuHLz(QE),
—232 ¢
we get
23, 1 2,3, ¢ 2, 2
A% (—5) + A” (5) < ZHUHLZ(QZ) + 2ul 2@ VUl L2 (@) -
Inserting this into (A.3), we can conclude
1w 12 12
4
As a result, by the Cauchy-Schwarz inequality
u |? 40+ 24 48 + 240
E1 < ——IVuliz g, + = luli -
£
([l

Combining Lemma A.1 and A.2, we obtain

Ca —24/1+—max{\/ \/24+C° 12}. (A.4)

We now turn to the estimates on W, .
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B Proof of Lemma 4.5

We first study the property of W;°, then we prove Lemma 4.5.

Properties of W;°

Recall that WP (n,2) = Wam e(n, ) + Wem,e(n, x) is given by (4.7). We are going to prove the Hardy
type inequalities for W, ¢. A natural idea is to compare it with the potential Gy.

Proposition B.1 (Singularities for the potential Wx,, ¢). For every m > 2, there exists a positive
constant Cs.,, such that, for any £ > 0, we have

Com

sup |Wam.e(n, ) — Ge(z)| < (B.1)
ne2Qy 12
z€Qy
with
1/2
Com < inf V3 m?+2 D 1 L 2ml@m = 1)* + 1] R?
7 ockcye | 2R (m 17 | S TR 5
1/2
3 47 R3\ /2 4 R3\ V2 1
. .
+ A2 R3 min ( 3 ) a( 3 ) Z _|k;|4
keZ3\{0}

Proof. The proof is similar to Lemma A.1. Notice that

WP (n,z) = AWy (g,kz) , neR3 zeR3.

We therefore take ¢ = 1. Observe, from (2.17), that
—A WP (n,z) =4r Z e~ MRS ().
keZ3
Let f(nax) = W}m,l(nax) — G1(.’L') Then
A f(n,x) =4m > (7P —1)op(x) + dm —4m D TR
k#0 1Ko <m

kez® kez?

Let B(z, R) be a ball of center z and radius R chosen such that (U.eq, B(z, R)) n{k € Z3|k # 0} = &.
Obviously, we can assume 0 < R < 1/2. Analogous to (A.2), for 0 < r < R and z € (J; we obtain

d 1 1
— ds | = A, ,x)dx. B.2
dr (471‘7“2 /(7B(z,r) fm.9) S) 4mr? /B(z,r) dhiee ( )

On the one hand, for any z € @1,

1 Db, 4r[(2m —1)3 + 1]
_ 1_ i(2nk—n)-x dz| <
. /B L - 2 ) d - r,

kez®
[klo<m—1

1

47r?

/ A, fdx
B(z,r)

where the first equality holds since
(Useq B(z,7) n{k e Z*|k # 0} = &, for0 <r < R.
Therefore, integrating (B.2) with respect to r,

877 [2m —1)° +

82 [(2m —1)3 + 1] 2
3 .

3

1 2 </ f(n,z+rw)dw —4m f(n,z) <
SZ

33



Then integration over [0, R] leads to

3

2r[(2m — 1)3 + 1] R?
47 R3 '

5

+

F(n.2)] < Axmﬂmﬂw

On the other hand,

1/2

1 dr B3\ dr B3\ V? 1
/ Gi(x)dx <—min{( i ) ,(1— T ) Z T
B(z,R) T 3 3 keZ3\{0} |k|

Furthermore, according to the quasi-periodicity of Ws,, 1 with respect to z € R3, for any 7 € 2Q7,

1/2 Ar R3\?
/ Werm,1(n,2) de| < |B(z, R)[V?[Wam | 128z < ( 3 > IWemallzu)
B(z,R)
12 1/2
47 R3 ) 1
- o1
3 koo m |27k — 7]
12 1/2
47 R3 > |27k |2 1
< A <— sup ———
3 ) ik, ek wémmw4
7762@?‘ -
s 1/2
(47TR3) 2 om24 gL
= —1)2 L
3 m(m—1) ko2m ||
Therefore, the bound (B.1) holds for £ = 1 with
1/2
2 _1)3 2
o < V3 o om?42 Z 1 +27r[(2m 1 +1]R
2(rR)3/2 (m — 1) k2 || 5
1/2 1/2 1/2
+3,47TR3/147rR3/ Z1
1.2 s i A 14 )
472 R 3 3 keBm0) ||
forany 0 < R < % The corresponding result for any ¢ > 0 follows immediately by a scaling argument.
O
We can immediately conclude from Lemma 4.1 and Proposition B.1 the following.
Corollary B.2 (Hardy-type inequalities for the potential W, ¢). For m > 2, we have
HlW 1/2 D —-1/2 <[(C CBm B.3
>m.e| 7| De| HLOO@Q;";B(L@) s\but = (B.3)
and o
— =m
Won Dl s agpsay < (Co+ 552 (B.1)
We also have the following estimate on W;°.
Lemma B.3. Let m = 2. There is a constant C = C(¢, m) such that
sup [ VyWeme(n, )| 2@, < C. (B.5)

7]62@2‘
Proof. Take ¢ =1 for simplicity. Notice that
—A Vo Wop1(n,x) = —4w 2 ike” RS (2) + 4n Z ize! Gk

keZ3\{0} |k\m<3m
keZ
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from which we obtain
|AanW>m,1(77,$)| <C

for any n € 2Q} and x € Q. Following the proof of Lemma B.1, we know
|vnWZm,1(77a$)| <C.

The corresponding result for any ¢ > 0 follows immediately by a scaling argument as for Lemma
B.1. O

Estimates for the exchange term
We consider now the exchange term. Let ¢ € H, 2 As

Wy evellz = sup (0, W e90¢); (B.6)
deeL?, ol 2 =1

we only need to study the inner product (W ¢t)e, ¢¢). For m > 2, £, ¢ € QF and z,y € Qy,
W (6= o —y) = Wome(€— €z —y) + Weme(€ - €z —y). (B.7)

For the term that carries all singularities in the x variable (i.e., Wxy, ¢), we use the decomposition
(2.10) and Corollary B.2. As v e X nY, for any § € Q} we have

| D276l Dl 2 = 37 Xa(€) [oa (€, )) Conl€, )] (B.8)

n=1

with ("Un(g, ')7’Um(§v '))LZ = 5m,n and H'YHX = f % Zn;l |/\n(§)|d§ Hence
3 Qe

e = D) Mal6) [un(€,)){unl€, )]

n=1

with u, (€, ) = [De| 7?0, (&, ). Now, we have

f ae’ / o€ — € — y)oX (@) (2 y)ibe (y) dudy
QzXQz

][dﬁ Zl|)\ |/ (Wam,e(€ =&z —y)|un(€, 2)|un (€, )| Ve ()| 19 (2)| dzdy
"= QexQe

1/2
<]é ¢ S0 ([ 10600y [ Warne = €3 = ) ') )

n=1

1/2
x ( / 6% (@) de /Q W sl — ¢z — ) |un<s',y>|2dy)

(1,

14

Com
(cn+ 2 ) S (@ 11De2unte ',->|%2<5/>d5’) el 2 bl

3
n=1

Com
< (Cu+ ) Il el el (B.9)

Using the Cauchy-Schwarz inequality, we can also argue as follows:

Fag [ Weme(e = €0 = v)or@ne o pvewsdy

F o QexQe
1/2
2
<f (@ | e oz dody (@ J] e @ Wit~ €0 = )| ety sy | ag
Q¥ X Qe exXQy
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Com
< (Ca+ ) Inlow 0wl Lol (B.10)

We now study the contribution of the term involving W, ¢, that carries the singularities in the 7
variable. We first observe that

Very 2k (x,y) = e (@) Yer(w,y) for every & € QF, ke Z® and z, y € R,

In particular, Prery2se = Pre for every ¢’ € QF and k € Z3, and the function of { — TrLg (7e) is
4=

Q7 -periodic. Next, we write

1 i —e-2t) )
¢

! __
Pk ke &=
<EY P2 (@) o2 () ()] |6 (@) dad
B A Pl (B) Pl () W ()] 10 y
W!zizm_l QZ"-&—%" Qz xQe
1 1/2 1/2
e / // |7/§, Pw/g, (Y) e (W) |f (z)| dzdy
(2m— QEXQE
1 Iver e, (e
So2 / r §(|2) d’ Vel 1 d¢ ez, (B.11)
(2m—-1)Q¥F

where the last estimate follows from the Cauchy-Schwarz inequality. Here and below we use the fact
that

/ /_ﬂ , ,
AL SIS Y AR T~y NG

keZS kez3
[klo<m—1 |k|oo<m—1

since (QF + 27k/l) N (QF + 2nk’/l) = & whenever k, k' € Z3 with k # k’. We focus on the quantity
inside the brackets in the last inequality. By Holder’s inequality, for v € &, and some constant
CL,, 4> We obtain

el ag \™* "
Yellsy (¢

/ s </ 8/3> </ |7§’|‘é1<5'>d§,)
em-1QF ¢ —¢| em-1QF ¢ — ¢ (2m—1)Q¥

3/4 1/4
O T (B.12)

<

Alternatively, by using the fact that the ~¢’s are bounded operators on L? uniformly on £ € Q7

f I % ) o)) ety do
QxQe k623 & — ¢ — 22k |?
|Eloo<m—1
4 i(§'—€) (z—v)
<7 3 f //Q o T ) Vel e

2k
\k|oo<m 1QF +25

4
52 f \5'
|k\f<m 197+~

< Came ess sup e |sez,) [¥elzz |9l ez
¢eQf

N
w

OO ge(), 7€ Oe() |
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= Came Il I¥elzs ez (B.13)

with

47 ' (2m—1) dg’
Cemyp = 73 Sup Z ][ T _E 2 / TIER (B.14)

% kez® .
£eQ, |k|oo<(m—1) QF 2kz [-1,1)3

Since |v]s,, < |v|lx and |[D°|=12 < 1, the statement of the lemma follows: from (B.9) and (B.13), we
obtain (4.8); from (B.9) and (B.12), we obtain (4.9); from (B.10) and (B.13), we obtain (4.10). More
precisely,

Cw=Cuy+Ciy Cy =Ca+Cy Cy =Cu+0Cy, (B.15)
with
. Com : Com
Cp := ﬁmlgw < z <m, > , Cp:= T;Ig\l < em 4) (B.16)
m=2 m=2

C Proof of Lemma 4.7
Analogous to (B.6), we have

IV etellLz = sup (D¢, V3.6¢)|. (C.1)
beel, IfellLz=1

We can rewrite as W;° = W2, + G+ (WX, , — Ge). According to Proposition B.1 and (B.13), the
terms associated to W2, and (WZ,,» — Ge) are easily bounded. So the aim of this section is to get
a better estimate on the followmg term :

//Q o, Go(x = y)py(y) % (x) e (x) ddy — ][* d¢’ //Q o Golz — y)oE (x)ve (2, y) e (y) dady.

From now on, for any function f € L?(Q,,C*), we denote f := (f*)1<a<a. We use the decomposi-
tion (2.10) for v € 61,1 nY. Then as G(z) = G(—x), for almost every & € Q7

//Q L Gla= [p%,@)sb;(x)wg(z) — @ (2,9 ()| dudy
//Q Gtz =) (Jun€ )P E (o) = 6 (€ W€ )elw) )y

n>1

=32 2 M) //Q Gtz =) (s )6 — o ')

n=11<a,8<4
x (us(€ 90l (@) = vg (i€, 2)) dedy. (C2)

Estimate for (4.12). By Lemma A.1, we have

// Golw =) (w3 (€ )0l () — 2 (€ 0)) (us(€m)uf (@) — wg ()l (€', 0)) dady
1<a ﬁ<4Q $Q.
) 1/2
<1<§<4//ng|@ z —y)* ui’:(«s’,y)wﬁ(x)—uﬁ(g’,x)wg(y)] d:z:dy)
) 1/2
x <1<a;ﬁ<4//szQz ‘Ui(él,ng(z) —u,‘i(&’,z)(b?(y)‘ dzdy) . (C.3)
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Thus according to the Cauchy-Schwarz inequality, we have

/ Gale —y) (u3(€9)0% (@) — dg i€, 0) " (us (€ )0f (2) — wg ()l (€', 2)) dady
1<« ﬂ<4 oX Qe
1/2
( // |Gl = y)Plun (€, )1 e ()] dzdy) (@// |u:(§’,y>|2|¢z<x)|2dzdy)
Isafsdg,%q, eXQy

< 2C¢| ¢l 2 1 Del el z2-

Substituting this inequality into (C.2) and using the decomposition (2.11), we get

‘//Q g Go(zr —y) (p')’g’ () BF (x)he (x) — BF (x)yer (x,y)wg(y)) d:z:dy‘

< Ca Y (@)l el L2l Delvrel 2 = Cale s, el del || Delvse 2,

n=>1

from which we get

’ I Gl wmwei e ey~ f

2
< Calvlera el Lz 1 Delel Lz

e’ //Q el = )3z e )l decy

(C4)
Combining (C.4) with Proposition B.1 and (B.13), we get for any ¢¢ € L? and ¢ € H},
(e, Vygvbe)l < (Ca + Co)[Vlleny [0l 2 | Del e 2,
hence (4.12) with
C}EE =Cg +Cy (C.5)

with Cy given in (B.16).
Estimate for (4.11). As ye X nY, we use the decomposition (B.8) for v¢. Analogous to (C.3),
we also have

|| Gota =) (ui€ w0l @) - g Wi )" (u(€ vl @) ~ v il 2)) dady
1<a ﬁ<4Q % Qq
1/2
<2 Qﬂ Gl = )l [un (€', 9) 2 e (@ Fdzdy) (@// |Ge(zy>||u:‘;(§’,y)|2|¢z<x>|2dzdy)
exQy eXQy

from which by the decomposition (B.8) we get
v)dzdy —  d VAR () o
‘//QQ e = D) @ertady — f € [ Gl = 00t e u)vely) ey

1/2
! ! T — un /7 2 T 2 "
g(ﬁg/df ;'A”m'//cmz (Ge(w = y)llun (€, y) Pl >|ddy>
1/2
" (72 & L, M@l //QQ IGe<:cy>||un<§',y>|2|¢g(z>|2dxdy)

1

< Ol xlge oz osel 2 (C.6)

where the last inequality holds by using Lemma 4.1.
Combining (C.6) with Proposition B.1 and estimate (B.13), we get for any ¢¢ € L and ¢¢ € Hy,

(9, Vaeve)l < (Cr + Co)lvx v | 9el 2 1 Deltel 2
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hence (4.12) and
Cegrg = Cqy + C,. (C?)

Estimate for (4.13). Combining with Proposition B.1 and estimate (B.13), analogous to (C.6) it
can be derived directly from:

’ //Q L Gelr ) ) )y ]{2 RS //Q |, Gele e (et dedy

< (]fgg, dé/ 7;1 |An(§/)| //QEXQE |G€(1' — y)”un(g/’y)|2|w§(x)|2dzdy>

< Crlyls,,, 1D vellZ:

using the decomposition (2.10) for 7¢. Hence (4.13) and Cgg.
Estimate for (4.14). Notice that |ye (z,y)| < py,, ()2 ps,, (y)"/? since y = 0. Thus, according to
Lemma A.1 and the Cauchy-Schwarz inequality,

7[; % //Q o, Gl =0 e () dody [ Gt up@liet) dudy

QexQp
2C
< //Q o (|Ge(z —y)| — Go(x — y))ﬂw(y)|1/fg(:c)|2 drdy < TOHVHGLJWH%%-
X

Combining with Proposition B.1 and (B.13), we get

Co
(Ve Vaete) = —( + Cé)HWHGl,mYHWHQLga

hence (4.13) and

20,
= 70 +Cy. (C.8)

D Numerical results about constants

In this section, we will show the numerical results about the constants used in Remark 2.7 under the
condition ¢ = 1000. Next, we show that Assumption 2.6 is satisfied for ¢ < 17 for the neutral systems.
We compute numerically the value of the bound of the potential Gy, — ﬁ First of all, we calculate

1
Z — ~ 16.512.

4

keZ3\{0} k|

Thus, Cy ~ 5.019 and we can choose Cy = Cg ~ 2.011. Concerning the estimates involving the
potential Wy, we set m = 2. When R ~ %,

|C>2] <20.912,  Cx<2,1000 ~ 0.010.

Thus, we get Cyw ~ 2.042, and Cf;, ~ 2.042. Then, Cgg ~ 2.052, Czp ~ 2.052 and Cfkp ~ 0.041.
Finally, we estimate c*(q) which is given by (2.22). Let u,¢(x) = e27P/+i)% with p € Z3. Then
(Up,¢)pezs is an orthogonal basis on LF(Qy). Obviously, (A*uy¢), is equally an orthogonal basis on
L?(Q@) Let
V;Z = Span{A+up75(x) |p = (j,0,0),j € {1’ T aQ}}'
Then 1/2, 42
I1De]| / Ug HLg 472(q +1)?

c*(q) < sup sup < — g

¢eQf ufev, HUZ H%g

Now we can check Assumption 2.6 for z = ¢ = 17. The calculation leads to Ag ~ 0.012 and ¢*(17) <
1.006. Hence
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o K+ %CEEqu ~ 0.630 < 1,

o 240\/max{(1 — k — §Ceprpqt) (1 — k)~1c*(¢ + 1)g, 1}¢+ ~ 0.973 < 1.
Consequently, Assumption 2.6 is satisfied for ¢ < 17 whenever £ = 1000.
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