
HAL Id: hal-03870924
https://hal.science/hal-03870924

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Targeted energy transfer in a vibro-impact cubic NES:
description of regimes and optimal design

Zhenhang Wu, Manuel Paredes, Sébastien Seguy

To cite this version:
Zhenhang Wu, Manuel Paredes, Sébastien Seguy. Targeted energy transfer in a vibro-impact cubic
NES: description of regimes and optimal design. Journal of Sound and Vibration, 2023, 545, pp.117425.
�10.1016/j.jsv.2022.117425�. �hal-03870924�

https://hal.science/hal-03870924
https://hal.archives-ouvertes.fr


Targeted energy transfer in a vibro-impact cubic NES:
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Abstract

In this study, we address the response regimes of a novel Nonlinear Energy

Sink (NES) that couples both nonlinearities (cubic nonlinearity and impact).

In a non-smooth condition, the conventional multiple scales method is consid-

ered with impact condition. By identifying the occurrence of the collision, the

asymptotic analysis of the equivalent cubic NES model and Vibro-Impact (VI)

NES model can illustrate the fixed point of the Vibro-Impact Cubic (VIC) NES.

Three types of VIC NES are described as a function of clearance length. The

role of clearance length on the response regimes is provided, offering solid crite-

ria for optimal design. Combined with the simulation results, our experimental

observations prove the restraint effect of impact on the stability of the Strongly

Modulated Response (SMR).

Keywords: Strongly modulated response, Nonlinear energy sink, Optimal

design, Multiple nonlinearities

1. Introduction

In a real engineering environment, vibration results in damage to system

structure, reduction of manufacturing accuracy, and human discomfort. Vi-

bration control is therefore a major challenge. The conventional Tuned Mass

Damper (TMD) has been widely adopted due to its reliable configuration and5
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low cost. However, the TMD also brings about the disadvantages of narrow

frequency absorption range and large additional mass, which can be overcome

by means of a Nonlinear Energy Sink (NES), a new research hotspot developed

in the last two decades [1]. The NES uses the nonlinear component to substitute

the linear stiffness in the additional system. According to the source of nonlin-10

earity, it can be classified as cubic NES [2], bistable NES [3], Vibro-Impact (VI)

NES [4, 5], rotary NES [6, 7] and track NES [8]. The NES possesses a wider ab-

sorbing frequency range and a lighter attached mass for 1% of the main system

[9].The self-adjustable nonlinear nature of the NES results in strong robustness

against the degeneration of parameters in the system [10].15

The NES can produce a one-way, irreversible energy pumping process, where

the energy of the primary system is transferred into the NES system and effi-

ciently dissipated through damping [11].The activation of the Targeted Energy

Transfer (TET) is required to exceed specific energy thresholds. If harmonic

force is applied to the system, the Strongly Modulated Response (SMR) ap-20

pears. When the system performs a SMR, the NES and Linear Oscillator (LO)

vibrate in the same frequency, which is referred to as 1:1 resonance. The sta-

bility of SMR is determined by an one map problem in phase plane [12]. The

Slow Invariant Manifold (SIM) can be extracted with the introduction of the

Manevitch variables and Multiple Scales Method (MSM) [13], where each point25

on the SIM represents a certain possible periodic solution for a certain energy

level. The two fold points divide the SIM into unstable and stable regions

according to the Floquet theory. And the threshold amplitude for phase trajec-

tory to cross the fold point and activate the SMR under the harmonic force is

determined [14].30

In addition to cubic nonlinearity, impact is also largely relevant in the NES

design. In the VI NES, the ball can move freely in the cavity and the energy

can be dissipated through mutual impact interaction, which has been exten-

sively investigated [15, 16]. The asymptotic approach originally applied in the

cubic NES is also useful in the VI NES. Based on the multiple-scales method,35

the analytical descriptions of Vibro-impact NES are given in [17, 18] analyt-
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ical descriptions. Similar to the cubic NES case, VI NES exists steady-state

and SMR, the chaotic strongly modulated response is identified with randomly

distributed periods of resonant and non-resonant motion [19]. The SIM of VI

NES has only one stable and one unstable branch. Unlike the two fold points40

in the cubic NES SIM, the VI NES SIM only has one fold point [9]. The re-

sponse regimes of the VI NES are labelled in accordance with the classification

z = p/n, where p is the number of impacts and n is the number of excitation

periods T during the considered time [20]. The variation of clearance leads to

five different response regimes—categorised by the value of z—that appear al-45

ternatively under external excitation [21]. The characteristic behaviour of chaos

and bifurcations of the VI NES has been extensively investigated [22, 23]. The

TET phenomena based on the 1:1 resonance also occurs in the VI NES, with

the efficiency of VI NES being consequently investigated for transient response

and forced excitation [24]. The optimal design criteria of the VI NES, as well50

as multiple VI NES, has been previously proposed [25].

Most current studies primarily consider the single nonlinear component ef-

fect. In fact, due to manufacturing and assembly errors, cubic NES devices often

introduce other constraints—such as displacement restrictions—which can lead

to tight, rigid constraint collisions, while a couple of multiple nonlinearities re-55

main a significant challenge. The cubic NES involved in the impact effect has

been studied for transient response and is known as Vibro-Impact Cubic (VIC)

NES [26]. The energy percentage ceases dramatically while energy percentage

of normal optimal NES possesses a longer time for resonance capture. Even

in a low energy input case, which is not intensive enough to activate the TET60

for normal NES, the VIC NES can still dissipate the energy with a very high

efficiency. Farid [27] described the VIC NES as a Hybrid Cubic Vibro-Impact

(HCVI) NES for harmonic excitation, applying a canonical transformation to

the Action-Angle (AA) variables to describe the response regimes in VIC NES.

Two types of bifurcations were identified, respectively describing the impact65

boundary and critical maximum transient energy level. The coupling effect of

nonlinearity and impact in the vibro-impact dual-mass damper has also been
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Figure 1: Diagram of Linear Oscillator (LO) the Vibro-Impact Cubic (VIC) NES system

studied [28]. The impact surfaces are added between the two auxiliary masses,

one of which is supported by cubic stiffness and linear damping. The experi-

mental result of seismic mitigation and impulsive response shows comparable70

control effectiveness to those of the exiting mass dampers in the optimal loading

and structural situation.

Under non-smooth conditions, the conventional perturbation method is diffi-

cult to apply to those multiple nonlinearities. This study explores the potential

treatments to identify the response regimes of VIC NES and provides the op-75

timal criteria. The study is structured as follows: in Section 2, the VIC NES

is modelled by multiple scales method considering impact conditions; Section

3 describes the detailed response regimes combined with the asymptotic anal-

ysis for various clearance designs; Section 4 analyses the behaviors of the VIC

NES in the amplitude-frequency plan, detailing the optimal design criteria to80

tune the cubic NES; and Section 5 provides experimental evidence of the role

of impact conditions on SMR emergence. Lastly, we highlight the most relevant

conclusions.
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2. Dynamic modeling

The scheme of Linear Oscillator (LO) attached with a NES is presented in85

Figure. 1. The NES mass m2 is coupled with a cubic nonlinearity value k2 and

linear damping c2. The NES mass can only move in the cavity. The clearance

length on each side of the NES is bilateral and equals b. The m1, c1 and k1

are the mass, viscous damping, and linear stiffness of the LO, respectively. This

two-DOFs system is applied by a harmonic excitation xe = G cos(wt). The90

governing equation and impact condition yield:

m1ẍ+ k1x+ c1ẋ+ c2(ẋ− ẏ) + k2(x− y)3 = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2(y − x)3 = 0

∀|x− y| < b

(1)

where x and y represent the absolute displacement of the LO and NES, respec-

tively. When the impact |x− y| = b occurs, the instant displacements of the LO

and NES remain constant, as does the velocity of LO. However, non-smooth dy-

namics bring about a sudden change in the value of the velocity of NES, as well as95

its direction before and after impact. This kind of non-smooth behavior entails

a loss of energy. The actual velocity loss is more complex; the specific technical

tool required to handle this kind of inelastic impact is developed [29] to form

closed-form analytical solutions that automatically satisfy collision conditions

with the energy loss. However, these simplified shock assumptions have been100

proven effective and useful in many VI NES problems [30, 31]. The condition

of total momentum conservation gives the following equations for |x− y| = b:

x+ = x−, ẋ+ + ϵẋ+ = ẏ− + ϵẏ−

y+ = y−, ẋ+ − ϵẋ+ = −r(ẏ− − ϵẏ−)
(2)

where r is the restitution coefficient (with a value between 0 and 1). The +

and – superscripts represent the system parameter after and before impact. By

introducing the rescaled variables Eq. (3) and substituting the new variables105

v = x+ ϵy and w = x− y, the corresponding dimensionless equations are ex-

pressed in Eq .(4).
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ϵ =
m2

m1
, ω2

0 =
k1
m1

,K =
k2

m2ω2
0

, λ1 =
c1

m2ω0

λ2 =
c2

m2ω0
, F =

G

ϵ
,Ω =

ω

ω0
, τ = ω0t

(3)

v̈ + ϵλ1
v̇ + ϵẇ

1 + ϵ
+

v + ϵw

1 + ϵ
= ϵF cosΩτ

ẅ + ϵλ1
v̇ + ϵẇ

1 + ϵ
+

v + ϵw

1 + ϵ
+ λ2(1 + ϵ)ẇ +K(1 + ϵ)w3 = ϵF cosΩt

∀|w| < b

(4)

The cavity limits the displacement of the NES with respect to the LO to no

more than b. Thus, the impact condition for |w| = b can be re-written as

v+ = v−, v̇+ = v̇−

w+ = w−, ẇ+ = −rẇ−
(5)

The Manivitch complex variables are presented to separate the fast oscilla-110

tion components eiΩτ and the slowly invariant amplitude components ϕj(τ), j = 1, 2

where i is the imaginary unit.

ϕ1(τ)e
iΩτ =

d

dτ
v(τ) + iΩv(τ)

ϕ2(τ)e
iΩτ =

d

dτ
w(τ) + iΩw(τ)

(6)

To avoid secular terms, only terms with eiΩτ are kept. The slow modulated

system is obtained in Eq. (7).

ϕ̇1 +
iΩ

2
ϕ1 +

ϵλ1 (ϕ1 + ϵϕ2)

2(1 + ϵ)
− i (ϕ1 + ϵϕ2)

2Ω(1 + ϵ)
− ϵF

2
= 0

ϕ̇2 +
iΩ

2
ϕ2 +

ϵλ1 (ϕ1 + ϵϕ2)

2(1 + ϵ)
− i (ϕ1 + εϕ2)

2Ω(1 + ϵ)
+

λ2(1 + ϵ)ϕ2

2
− 3iK(1 + ϵ)ϕ2

2ϕ2

8Ω3
− ϵF

2
= 0

∀|Im(ϕ2e
iτ )| < Ωb

(7)

ϕ2 is the conjugate value of ϕ2, while Im(ϕ2) represents the imaginary part115

of ϕ2 (i.e. the displacement component). The impact condition at the moment

η is expressed with simple algebraic operations:
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ϕ1(η
−) = ϕ1(η

+)

ϕ2(η
+)ϕ2(η

+)− b2

ϕ2(η−)ϕ2(η−)− b2
= r2

(8)

By applying the multiple scales method, the solution ϕj = ϕj (τ0, τ1, . . .) is

expressed by the fast time scale τ0 = τ and the slow time scale τ1 = ϵτ . The

system of Eq. (7) is now examined for different orders of ϵ.120

Order ϵ0:

d

dτ0
ϕ1 = 0

d

dτ0
ϕ2 +

1

2
i (ϕ2 − ϕ1) +

1

2
ϕ2λ2 −

3

8
iKϕ2

2ϕ̄2 = 0

∀|Im(ϕ2e
iτ0)| < Ωb

(9)

Order ϵ1:

d

dτ1
ϕ1 +

i

2
(ϕ1 − ϕ2) + iσϕ1 +

λ1

2
ϕ1 −

F

2
= 0

d

dτ1
ϕ2 +

i

2
(ϕ1 − ϕ2) +

iσ

2
(ϕ1 + ϕ2) +

λ1

2
ϕ1 +

λ2

2
ϕ2 −

3iK(1− 3σ)

8
ϕ2
2 |ϕ2| −

F

2
= 0

(10)

In the order ϵ0 equation, ϕ1 is independent of the fast time scale τ0 and the

excitation terms disappears. The new variables ϕ1(τ1) = N1e
iδ1 and ϕ2(τ1) = N2e

iδ2
125

are introduced to extract its topological structure, known as Slow Invariant

Manifold (SIM), yielding:

Z1 = Z2λ
2
2 + Z2 −

3K

2
Z2
2 +

9K

16
Z3
2 (11)

where Z1 = |ϕ1|2, Z2 = |ϕ2|2. This kind of structure implies the intrinsic prop-

erty of the system. SIM consists of a set of fixed points for amplitude of NES

and LO for the fast time scale, and every point means the potential periodic130

solution. The similar structure can be found other references [14, 32] bistable

NES [33] and VI NES [19]. N10 and N20 are the periodic solution of N1 and N2.

The two singularity points Z2,j , j = 1, 2 divide the SIM into a left–right stable

branch and a middle unstable branch in Fig. 2.

When displacement constraints are present, the periodic solutions of the sys-135

tem behave differently from the unconstrained case. The extra periodic solution
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Figure 2: SIM of the VIC NES with three extra singularity lines (dotted) Z2,e1 = 0.1e-3,

Z2,e2 = 0.5e-3, Z2,e3 = 0.9e-3. The dashed line indicates the unstable region and the solid

lines indicate the stable branches.

is considered to be introduced by an extra singularity value Z2,e. This kind of

singularity is independent of Z2,j and is determined by the clearance length.

Consequently, it is natural to consider the different Z2,e locations in the SIM

structure.140

Z2,j = N2
2,j =

4(2∓
√
1− 3λ2

2)

9K
, j = 1, 2

Z2,e = N2
2,e = b2

(12)

3. Response regimes

The location of the extra singularity line in the SIM structure affects the re-

sponse regimes significantly. SMR as en effective vibration mitigation method,

it is also determined by the various clearance lengths. SMR exists in the vicinity

of the exact 1:1 resonance. The folded singularities gives necessary amplitude145

condition for SMR occurance [12]. The stability of one SMR cycle can be trans-

fered into an 1-D mapping problem. Jumping phenomen, the phase trajectory
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crosses folded singularities (Z2,1, Z1,1) and jumps from the left SIM branch to

right SIM branch, is en essential symbol and it appears a sudden augement of

NES amplitude. This process can be interrupted by the existence of clearance.150

When clearance length b<N2,1(b
2<Z2,1), the extra-singularity line is located

on the left stable branch. The phase trajectory can not reach folded singular-

ity (Z2,1, Z1,1) and trigger the SMR. Therefore, this clearance design is defined

as a narrow case due to that the SMR can not appear for any excitation am-

plitude. If the clearance length b satisfies N2,1<b<N2,2(b
2<Z2,2), it means the155

phase trajectory has the possibility to crosse the folded singularities (Z2,1, Z1,1).

However, the displacement constraint prevents phase trajectory arrives on the

right stable SIM branch but extra-singularity line. When SMR disappears, the

fixed point locates on the extra-singularity line instead of the right stable SIM

branch. In this case, the clearance length design is considered to be modest. If160

N2,2<b(Z2,1<b2), the extra singularity line will be located on the right stable

SIM branch. In this case, it is classified as a large clearance case. The clearance

length does not significantly influence the critical amplitude for SMR occurrence

and disappearance. The analysis of response regimes is developed according to

this classification.165

3.1. Narrow clearance case

If the clearance is relatively narrow (b = 10 mm), the extra singularity

line crosses the left stable branch at a critical point (Z2,e1, Z1,e1); the latter

Z1,e1 is easily obtained by substituting the Z2,e1 into Eq. (11). The simulation

parameters are fixed for ϵ = 0.01, λ1 = 1.67, λ2 = 0.167 and K = 1742. Those170

parameters are the same as reference [34]. The initial conditions for following

simulations are same v(0) = v̇(0) = w(0) = ẇ(0) = 0. In a low energy input

case, the final stable amplitude of the NES is lower than b, which means that

the NES oscillates in the cavity. In Fig. 3, the amplitude of both the NES

and LO increase monotonically and ultimately reach a stable amplitude. In the175

subplot of Fig. 3c, the actual phase trajectory also rises along the left branch

SIM monotonically without coming into contact with the extra singularity line
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Figure 3: (a),(b) Time displacement response of v and w for narrow clearance case G =

0.1 mm, σ = 0. The envelopes represent the reconstructed amplitude, while the thin curves

describe the time responses (c) SIM structure and phase trajectory

Z2 = Z2,e1.

Before the harmonic excitation amplitude causes the collision, the system

behaviors can be analyzed with the framework of the cubic system. The fixed180

points of Eq. (7) are expressed as ϕ10, ϕ20. It is assumed that the imaginary

part of ϕ20 is assumed to satisfy the displacement constraint with a low energy

input. Solving the expression of ϕ10 in the first equation of Eq. (7) and re-

substituting it into the second equation of Eq. (7) yields the expression of ϕ20.

Simple algebraic operations lead to the more convenient equation, with detune185

parameter Ω = 1 + ϵσ:

ϕ̇1 = ϕ̇2 = 0,→ ϕ1(τ) = ϕ10, ϕ2(τ) = ϕ20

ϕ10 =

iϵϕ20

Ω(1 + ϵ)
− ϵ2λ1ϕ20

1 + ϵ
+ ϵF + iϵ2λ1FΩ

iΩ +
ϵλ1

1 + ϵ
− i

Ω(1 + ϵ)

α3Z
3
20 + α2Z

2
20 + α1Z20 + α0F

2 = 0, Z20 = |ϕ20|2

(13)

The coefficients α1, α2 and α3 are determined by the system parameters.

When the collision occurs, the Z20 reaches the extra singularity line Z2 = b2.

The corresponding threshold excitation Gc can be calculated with the third
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equation of Eq. (13). The excitation amplitude for impact is expressed in190

Eq. (14)

Gc = ϵFc = ϵ

√
α3K

2b6 + α2Kb4 + α1b
2

−α0
(14)

Figure. 4 presents the analytical threshold excitation (surface) for various

clearance designs, combined with the numerical calculations (dots). The dotted

lines connect the analytical and numerical amplitude threshold and measure

their differences.195

When the excitation frequency equals the natural frequency of the LO (σ = 0),

the required trigger excitation amplitude increases along with the clearance

length design. A critical point (Z2,e1, Z1,e1) requires a more significant excita-

tion amplitude—whose frequency is away from σ = 0—to trigger the collision

conditions. When the excitation frequency is in the vicinity of its natural fre-200

quency, the resonance phenomenon will amplify the amplitude of the system,

facilitating the collision condition for a low excitation amplitude. The excita-

tion threshold Gc grows significantly when the frequency is away from the σ = 0.

In the vicinity of σ = 0, the amplitude threshold values predicted by Eq. (14)

are located exactly on the surface. The error increases along with the lower205

or higher excitation frequency. A bigger clearance design also causes a larger

prediction error (indicated by the longer dotted line in Fig. 4).

It is worth mentioning that all the results resolved in this subsection are

restricted to the case of narrow clearance. In this case, no SMR exists, and

the impact’s triggering is caused by the NES amplitude of a single fixed point210

exceeding b.

Once the excitation amplitude exceeds the threshold value Gc = 0.17 mm

for case σ = 0, the impact occurs. In Fig. 5, the occurrence of impact divides

the response into two parts. At the beginning, the LO and NES oscillate with

a continued increasing amplitude until the NES comes into contact with the215

barrier. In this period, the reconstructed amplitude can accurately describe

the variation of amplitude. The phase trajectory overlaps with the SIM branch
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Figure 4: Analytical and numerical threshold of excitation for different clearance designs. The

surface represents the analytical results. The dots are the numerical results and the dotted

lines are the distance between numerical results and analytical results.

and rises in the direction of the arrow. Once the phase trajectory reaches the

critical point (Z2,e1, Z1,e1), it starts oscillating and decreases along an extra

singularity line. At this moment, the reconstructed amplitude cannot fit the220

time response of NES, for the reason that the maximal ẇ value at the collision

moment can exceed b value and is not limited by the displacement constraint.

The restitution coefficient indicates the energy loss during the impact. This

extra energy dissipation process leads to a decrease in the amplitude of the LO,

instead of crossing the critical point (Z2,e1, Z1,e1) in a pure cubic case after the225

impact occurs. This discontinuity in velocity can be observed in Fig. 5c; quite

similar to the pure VI NES, this discontinuity belongs to the period of two

asymmetric impact per cycle.

When the NES oscillates in a small amplitude due to the displacement con-

straint, the local stiffness becomes extremely low near the equilibrium. The rel-230

atively low velocity of the NES also reduces the influence of the damping terms.

Therefore, it is reasonable to consider the cubic nonlinearity and damping terms

12
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Figure 5: (a), (b) Time displacement response of v and w for narrow clearance case G =

0.2 mm, σ = 0. The envelopes represent the reconstructed amplitude, while the thin curves

describe the time responses (c) velocity of the NES ẇ (d) SIM structure and the phase tra-

jectory. The solid/dashed line is a stable/unstable branch of SIM. The dotted straight line is

the extra-singularity line. Arrows indicate the movement of phase trajectory before and after

the impact.

c2(ẏ − ẋ) + k2(y − x)3 as a small perturbation term O(ϵ), being actually similar

to a pure VI NES:

m1ẍ+ k1x+ c1ẋ+O(ϵ) = k1xe + c1ẋe

m2ÿ +O(ϵ) = 0

∀|x− y| < b

(15)

The following changes in variables are introduced:235

ε =
m2

m1
, ω0 =

k1
m1

, τ = ω0t, λ =
c1

m2ω0
, Ω̃ =

Ω

ω0
,

F

b
= εG (16)

After nondimensionalization, the above equation is simplified with the dis-

placement transfer into x = Xb, y = Y b.

Ẍ + ελẊ +X = εG sin Ω̃τ

εŸ = 0

∀|X − Y | < 1

(17)
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The impact condition gives with R represents the restitution coefficient:

X+ = X−, Y+ = Y−, Ẋ+ − Ẏ+ = −R
(
Ẋ− − Ẏ−

)
, Ẋ+ + εẎ+ = Ẋ− + εẎ−

(18)

In the initial time t = 0, the starting position is assumed to take place in

the left side of the barrier. The solution for this kind of two-impacts-per-cycle240

regime can be expressed as follows :

X(t) = e
−
ελ

2
t
(A1 cos∆t+B1 sin∆t) + α cos(Ωt+ η) + β sin(Ωt+ η)

Y (t) = C1t+D1, 0 ≤ t ≤ t1

(19)

t1 represents the time of impact on the right side of the barrier, while the

expressions of ∆, α, β are given in the appendix.

The analytical solution (19) of the simplified VI NES model for the various

excitations case and for a frequency domain is presented in Fig. 6a,b, respec-245

tively. The parameters of the VI NES are the same as those of the VIC NES.

In Fig. 6a, the excitation amplitude starts above the impact threshold (16.7

mm) to ensure that the system has a periodic impact solution. In the narrow

clearance case, the weak cubic nonlinearity and damping are neglected. The

VIC NES is therefore transferred into a simpler and pure VI NES, whose an-250

alytical treatment has been well established. When the excitation grows, the

analytical amplitude of the simplified model resembles the actual numerical am-

plitude. However, the analytical curve differs from the numerical curve once the

excitation amplitude G increases to 0.3 mm. A different response regime occurs

according to the classification of Peterka [35]. In this regime, there are three im-255

pacts per cycle (Fig. 7, orange curve), while the more conventional two impacts

per cycle (Fig. 7, thick line) appear in the case of G = 0.25 mm. The reason

behind a failed analytical prediction in the form of the hypothetical solution

Eq. (19) can only represent the regime of two impacts per cycle.

In the frequency domain, the frequency interval σ = [-1.2 1.2] produces a260

discontinuous numerical curve (Fig. 6b). According to Fig. 4, when b = 10 mm,
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Figure 6: Comparison between the numerical response and analytical prediction (a) in growing

excitation case for σ = 0 and (b) in the frequency domain for G = 0.25 mm

the excitation for G = 0.25 mm can trigger the impact motion from σ = -1 to

1.1. At this stage, the LO amplitude can be accurately predicted by the stable

fixed point obtained from the VI NES model near σ = 0. The overestimations

of analytical results are observed in the σ< -0.8. The circled points in Fig. 6b265

are obtained through asymptotic analysis of the VI NES from Eq. (19).

When σ switches from -5 to 0, the regimes shift from the intra-cavity motion

into the impact motion, causing a dramatic increase in LO amplitude. The pure

cubic model dominates the stable analytical solutions that can appropriately fit

the numerical results on both frequency sides of Fig. 6b. The stable solutions of270

the cubic NES indicated by the square are calculated through the asymptotic

analysis of Eq. (13), whose stability can be determined by examining both pos-

itive and negative properties of the real part of the eigenvalue equation roots

(once the perturbation is introduced).

On the basis of this discussion, it is feasible to use the VI NES model to275

calculate the fixed point of the VIC NES in the impact conditions near σ =

0. This alternative is possible since the VIC NES numerical solution coincides

with the VI NES analytical solution. When the impact does not appear, the

VIC NES performs as a cubic NES.
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3.2. Modest clearance case280

When the clearance length b is larger than the critical value N2,1 = 16.3 mm,

the extra singularity line Z2 = Z2,e2 will be located on the unstable SIM branch.

In a low energy input case (e.g. G = 0.2 mm in Fig. 8), the displacement has

no influence on the regime of the VIC NES and no impact occurs. Therefore,

the behavior of the VIC NES is the same as the pure cubic NES for the same285

parameters in this stage. As the amplitude of the LO and NES increase, the

phase trajectory rises along the stable branch in Fig. 8c. The final state of phase

trajectory (diamond in Fig. 8c) is located at a higher position before it crosses

the intrinsic singularity point (Z2,1, Z1,1) due to its cubic nonlinearity.

In the pure cubic case, the relaxation-type motion occurs if the amplitude290

exceeds the threshold. This excitation threshold can also activate the SMR in

VIC NES for the same system parameters. The typical SMR motion in a VIC

NES can be classified in four stages as shown in Fig. 9d:

(1) The phase trajectory rises along with the left SIM branch. It results

in both increases of LO and NES amplitudes. In this stage, the displacement295

constraint does not influence the oscillation in the cavity. The behaviors are the
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mm. The envelopes represent the reconstructed amplitude, while the thin curves describe the

time responses (c) velocity of the NES ẇ (d) SIM structure and the phase trajectory. The

solid/dashed line is a stable/unstable branch of SIM. The dotted straight line is the extra-

singularity line.

same as the cubic case.

(2) Once the phase trajectory crosses the singularity point (Z2,1, Z1,1), it

triggers snap-through motion. The amplitude of NES increase dramatically;

meanwhile, the LO amplitude is almost constant. The duration of this snap-300

through motion is short. Compared with the SMR stage of cubic NES, the

phase trajectory arrives in the extra-singularity line Z2 = Z2,e2 instead of the

right SIM branch.

(3) Due to the displacement restriction, the phase trajectory oscillates around

the extra singularity line Z2 = Z2,e2. An efficient TET has been activated, so305

the LO amplitude decreases during this stage.

(4) After most energy of LO is dissipated. The LO amplitude is reduced.

Another snap-through motion occurs. The phase trajectory jumps back to the

left SIM branch, and it brings a reduction of NES amplitude. Then a new cycle

of SMR start.310

In the pure cubic case, the relaxation-type of motion occurs if the amplitude

exceeds the threshold. To calculated this threshold, the second equation of order
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describe the time responses (c) velocity of the NES ẇ (d) SIM structure and the phase tra-

jectory. The solid/dashed line is a stable/unstable branch of SIM. The dotted straight line is

the extra-singularity line. Arrows indicate the movement of phase trajectory before and after

the impact.

ϵ0 Eq. (9) in the function of Z2 is introduced into the first equation of order ϵ

in Eq. (10). It gives Eq.(20) that contains the fixed points of the system. The

Φ means the final solution of ϕ2 when τ0 → ∞. After substituting the variable315

ϕ2(τ1) = N2e
iδ2 into Eq.(20), the real part and imaginary part can be separated

as Eq. (21).

d

dτ1

[
2i

(
−λ2

2
Φ− i

2
Φ +

3iK

8
Φ2Φ

)]
+2i

(
i

2
+ σi +

λ1

2

)(
−λ2

2
Φ− i

2
Φ +

3iK

8
Φ2Φ

)
− i

2
Φ− F

2
= 0

(20)

d

dτ1
N2 =

f1 (N2, δ2)

g (N2)
,

d

dτ1
δ2 =

f2 (N2, δ2)

g (N2)
(21)

with
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f1 (N2, δ2) = −9λ1K
2N5

2 + 24λ1KN3
2 − 12FKN2

2 cos δ2

−16
(
λ2 + λ1 + λ2

2λ1

)
+ 16F cos δ2 + 16λ2F sin δ2

)
f2 (N2, δ2) =

(
−54K2σ − 27K2

)
N4

2 + (96Kσ + 12K − 24λ2λ1K)N2
2

+36KFN2 sin δ2 − 12λ2
2 − 32σ − 32σλ2

2 +
16λ2F cos δ2 − 16F sin δ2

N2

g (N2) = 54K2N4
2 − 96KN2

2 + 32 + 32λ2
2

(22)

The Eq. (21) describes the slow varying amplitude part N2 and phase part δ2

of NES. Two types of fixed points exist: (1) ordinary fixed point for f1 = f2 = 0, g ̸= 0,320

(2) folds singularities for f1 = f2 = g = 0. The second type of singularity corre-

sponds the threshold of SMR occurs and disappears. The condition f1 = g = 0

will cause the f2 = 0 to be satisfied. So the expression of folds singularity is

obtained as:

∆2,j = arcsin

 4λ2√
9K2N4

2,j − 24KN2
2,j + 16 + 16λ2

2


± arccos

N2,j

16λ1 − 24λ1KN2
2,j + 9λ1K

2N4
2,j + 16λ2 + 16λ1λ

2
2

4F
√
9K2N4

2,j − 24KN2
2,j + 16 + 16λ2

2

 (23)

It’s easy to solve the condition for latter terms in Eq. (23) and obtain the325

expression of force amplitude Gj,c. The threshold of SMR occurrence G1,c has

been deduced and given by Eq. (24). From this equation, we can conclude that

the SMR trigger conditions are the same for the VIC NES and the cubic NES.

Because both cases share the same fold line N2,1. However, since the other

fold line N2,2 is inaccessible in the modest clearance case, which leads to the330

calculation of G2c threshold for SMR disappearance can not fit the VIC NES.

And the extra singularity value N2,2 = N2,e = b is applied in Eq. (24) to obatin

the threshold.
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G1c = ϵF1,c =
ϵN2,1

(
16λ1 − 24λ1KN2

2,1 + 9λ1K
2N4

2,1 + 16λ2 + 16λ1λ
2
2

)
(4
√
9K2N4

2,1 − 24KN2
2,1 + 16 + 16λ2

2)

Ge = ϵFe =
ϵb

(
16λ1 − 24λ1Kb2 + 9λ1K

2b4 + 16λ2 + 16λ1λ
2
2

)
(4
√

9K2b4 − 24Kb2 + 16 + 16λ2
2)

(24)

In the cubic NES case, the analytical amplitude threshold calculated in

Eq. (24) for the SMR occurs between [0.22 mm, 0.35 mm]. The numerical335

thresholds are [0.24 mm, 0.41 mm]. In the VIC NES, the analytical result indi-

cates that the SMR starts and ends at [0.22 mm, 0.24 mm] by Eq. (24), while

the numerical simulation found that the SMR appears between [0.24 mm, 0.28

mm]. Numerical and analytical results both confirm that the SMR starts in

the same amplitude excitation cases for the VIC NES and cubic NES. The an-340

alytical predictions for SMR extinction show some differences with numerical

simulation. The displacement constraint results in the SMR of the VIC NES

ending at a much lower excitation amplitude case.

Figure. 10 shows the stable periodic response of the system when the excita-

tion exceeds the force threshold. The critical force prevents the phase trajectory345

from jumping back to the left stable branch and being located at a similar height

of singularity point (Z2,2, Z1,2), having slowly decreased along the extra singu-

larity line Z2 = Z2,e2. In this critical situation, the LO amplitude possesses the

minimal stable amplitude, which can only be realized in an optimal cubic NES

in the larger energy input case. Thus, the displacement constraint enables the350

system to enter the optimization state in a lower excitation amplitude case.

As in the previous narrow clearance case, the VI model can accurately pre-

dict the fixed point of the VIC NES under impact conditions. In Fig. 11a,

the system shows a stable response to impact when the excitation amplitude

increases beyond 0.28 mm. In the relatively low energy case, the analytical355

prediction has a more significant value than the simulated one. As excitation

increases, both results almost overlap.

In the frequency domain (Fig. 11b), impact appearance separates the nu-
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Figure 10: (a),(b) Time displacement response of v and w for modest clearance case G =

0.28 mm, σ = 0. The envelopes represent the reconstructed amplitude, while the thin curves

describe the time response (c) velocity of the NES ẇ (d) SIM structure and the phase tra-

jectory. The solid/dashed line is a stable/unstable branch of SIM. The dotted straight line is

the extra-singularity line. Arrows indicate the movement of phase trajectory before and after

the impact.

merical frequency response into two parts. When the VIC NES performs as a

cubic NES, the numerical amplitude of the VIC NES coincides with the square360

point on both [-5, -3.2] and [2.8, 5] σ intervals.

Unlike the narrow clearance case, the analytical predictions of pure cubic

NES possess two stable fixed points and one unstable fixed point between the

σ = [-3, -1.6] and [1.2, 2.6]. The lower stable LO amplitude branch better

describes the numerical simulation (squares in Fig. 11b). In this stage, the365

NES amplitude tends to have a higher value, which means that more energy

of the LO will be transferred into the NES, leading to a lower LO amplitude.

Therefore, the numerical results of the LO amplitude are located on the lower

stable solution branch. The intervals [-3, -1.6] with three fixed points mean that

the NES possesses three potential amplitude cases. The impact is triggered due370

to the resonance peak, whose appearance does not strictly follow the criteria

for the appearance of the three fixed points at σ = -1.6. On the other side,

that of interval [1.2, 1.6], the impact is accompanied by a SMR. When the
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Figure 11: Comparison between the numerical response and analytical prediction (a) in the

growing excitation case for σ = 0 and (b) in the frequency domain for G = 0.35 mm

SMR disappears at σ = 1.6, the response becomes an inter-cavity motion again.

According to the best of our knowledge, there is no effective theoretical tool to375

predict the threshold of SMR occurrence and disappearance under non-natural

frequency excitation, which means that Eq. (24) is only valid for σ =0. When

the frequency is away from the natural frequency, the system still performs a

stable response without impact. The fixed point of this stable periodic response

can be described by the framework of the pure cubic NES model.380

The stable analytical branch of the VI NES model (circles in Fig. 11b) also

fits well to the VIC NES numerical results in the vicinity of the natural frequency

when impact occurs. This interval is distinguished by the drastic increase in

LO amplitude between [-1.4, 1]. The overlapping of the maximal and average

amplitude curves implies a stable response of the system. The separation of385

both curves indicates the occurrence of a SMR in the frequency interval [1.2,

1.6]. Compared with the pure cubic NES case, this interval is relatively narrow

for SMR occurrence.

3.3. Large clearance case

If clearance length b is >N2,2 = 27.4 mm, this design can be considered390

as large clearance design. In the simulation, b value is fixed for 30 mm so

that the extra singularity line Z2 = Z2,e3 is located on the right stable SIM
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Figure 12: (a),(b) Time displacement response of v and w for large clearance case G = 0.25

mm, σ = 0. The envelopes represent the reconstructed amplitude, while the thin curves

describe the time responses (c) velocity of the NES ẇ (d) SIM structure and the phase tra-

jectory. The solid/dashed line is a stable/unstable branch of SIM. The dotted straight line is

the extra-singularity line.

branch (Fig. 12d). In the lower energy case, the system performs more like a

cubic NES. The phase trajectory rises along the left stable SIM branch until

the excitation amplitude exceeds the threshold G1,c. A large clearance ensures395

that the influence of the displacement constraint is validated only for the higher

energy input case.

The SMR starts at G = 0.24 mm, the same as previous cases since displace-

ment constraint has no impact on the SMR occurrence threshold. Figure. 12

presents a classic SMR for G = 0.25 mm.400

A significant feature of the large clearance case—when compared to the mod-

est case (Fig. 9)—is that the time required for a complete SMR is shorter. The

reduction is mainly reflected on the much shorter duration of the 1:1 resonance.

An obvious turn point occurs, above which the phase trajectory oscillates along

the extra singularity line. Once the phase trajectory descends and crosses the405

intersection of the extra singularity line and the right SIM branch, the phase

trajectory is attracted by the right half-branch of the SIM. In Fig. 12d, the

direction of the phase trajectory descent changes at the turning point, from
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vertical descent to descent along the SIM.

When G = 0.44 mm, the stable amplitude of NES exceeds the b, which410

interprets that the line with triangle markers has the some distance to stable

response predicted by the VI NES model in Fig. 13a. As excitation increases,

the final fixed point is located in the extra singularity line instead of in a small

part of the SIM stable branch. In the high energy input case, the VI NES

model can better predict the fixed point of the VIC NES, so that the two curves415

approach each other (Fig. 13a).

In the frequency domain, the VI NES model also demonstrates its effective-

ness in predicting the fixed point of the VIC NES for G = 0.6 mm in Fig. 13.

Since excitation is larger, the system has a greater frequency range for collisions

between [-4, 3.4]. On the lower frequency side of the impact interval, the the-420

oretically predicted values of the circled points are smaller than the simulated

values. On the higher frequency side, theoretical prediction values are larger.

In the large clearance case, collision frequency vanished in the range of [-5,

-4.2] and [3.6, 5]. The numerical simulation accurately locates the analytical

prediction of the cubic NES model. The SMR frequency is in the range of425

[1.8,3.4], where the average and maximal amplitude curves start to separate

in Fig. 13b. Compared with Fig. 11, the frequency range of the SMR is more

significant in this case. The magnitude of the external excitation does not

affect the frequency range of SMR appearance in subsequent studies. Thus, the

influence on the frequency range variation of SMR appearance can only be due430

to the change in clearance length.

4. Frequency domain behaviors and optimal design

In the previous section, the frequency distribution of the system under cer-

tain excitation conditions was discussed. This section focuses on the frequency

distribution of the system under different excitations for modest and large clear-435

ance designs.

Figure. 14 shows the transform of response regimes along with frequency
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Figure 13: Comparison between the numerical response and analytical prediction (a) in grow-

ing excitation case for σ = 0 and (b) in the frequency domain for G = 0.6 mm

increase direction: (1) periodic response without impact, (2) resonance peak,

(3) optimal region and (4) SMR region, (5) periodic response without impact.

On both the low and high frequency sides, the collision is not ensured even in the440

high excitation amplitude. The collision boundary comprises the left boundary

of the resonance peak and the right side of the SMR region. Collision on the

low frequency side results in a sudden increase of the maximum LO amplitude.

This case, deemed dangerous, is known as resonance peak. According to its

interpretation in the cubic NES system [32], the resonance peak results from445

a saddle-node bifurcation where the three solutions of Eq. (13) occur. The

optimization interval has a shape akin to a valley and is located in the middle

of the resonance and SMR. As the excitation amplitude increases, the frequency

required for the optimal point (minimal LO amplitude) increases.

The system does not perform a stable amplitude response during the SMR450

and possesses a large instant amplitude. This region has a narrow width in the

frequency domain. The SMR interval shifts to a higher frequency region when a

higher excitation amplitude is applied. As the excitation amplitude is constant,

the frequency increase causes the system to transition directly from the SMR to

the stable response without collision, skipping the stable response phase with455

collision.
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Figure 14: Maximal LO amplitude in the frequency domain for the modest clearance case, b

= 22.4 mm. (a) 3D view (b) contour map of maximal LO amplitude.

When the clearance is designed to be larger (Fig. 15), the same characteristic

region appears while the collision boundary remains the same (as indicated in

Fig. 14). The most dangerous case occurs in G = 0.55 mm, σ = -0.8, whose

LO amplitude is maximal (equal to 27.1 mm). Under the same condition, the460

LO reaches 26.1 mm in a modest clearance case. The smaller clearance design

slightly reduces the resonance peak. The optimal region occupies a higher ex-

citation amplitude region, starting from 0.35 mm, while the optimal region in

a modest clearance case starts from 0.25 mm. The same increasing frequency

behavior can be observed for the optimal region when the excitation increases.465

A platform appears in the SMR region, being much wider than that of a modest

clearance case.

The narrow clearance prevents the phase trajectory from crossing the singu-

larity point (Z2,1, Z1,1) in the SIM structure, so the SMR cannot appear in this

case. The SMR distributions for the modest, large clearance and cubic cases470

are shown in 16; the cubic NES case is considered as an infinite long clearance

case.

The maximal and average LO amplitudes (and their difference) are calcu-

lated to identify the SMR. When the system performs a stable periodic response,

both amplitudes are almost the same. If the error between maximal and average475
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30 mm. (a) 3D view (b) contour map of maximal LO amplitude.

amplitude is larger than 0.15 mm, the SMR is identified in this condition. Over-

all, the area where the SMR appears expands with increasing clearance length.

The obstruction effect of the impact on SMR emergence is then confirmed. In

Fig. 16a, the widest frequency interval is σ = [ -0.5, 0.7], when G = 0.265 mm.

Maximal interval in Fig. 16b appears in σ = [-1.1, 1] for G = 0.31 mm. The480

cubic NES case shows the largest SMR interval σ = [-1.7, 2.2] for G = 0.37 mm.

As can be seen from the maximal frequency range in which the SMR appears,

the displacement constraint reduces the frequency robustness, narrowing the

range where the SMR appears.

In the higher energy input cases, the SMR appears on the side where σ>485

0. The frequency range in which SMR appears on this side remains constant

as excitation amplitude increases. The width ranges from 0.3 (Fig. 16a), to

0.9 (Fig. 16b), and then to 2.1 (Fig. 16c). Even at high energy inputs, the

frequency range in which SMR appears is also limited by the barrier; the smaller

the clearance length, the smaller the frequency range.490

Although the SMR region is affected by the clearance length, the thresholds

at which SMR appears are all the same, i.e. at G = 0.22 mm, σ = 0. This

phenomenon is consistent with our previous observation that clearance length

value does not affect the threshold for SMR appearance.

Usually, the cubic nonlinearity and clearance both affect behavior of the VIC495

27



-5 -4 -3 -2 -1 0 1 2 3 4 5

(c)

X: -1.7

Y: 0.37

X: 2.2

Y: 0.37

-5 -4 -3 -2 -1 0 1 2 3 4

(a)

X: -0.5

 Y: 0.265 

X: 0.7

Y: 0.265

-5 -4 -3 -2 -1 0 1 2 3 4

(b)

X: -1.1

Y: 0.31

X: 1

Y: 0.31

0.25

0.30

0.35

0.40

0.45

0.20

0.30

0.40

0.50

0.20

0.25

0.30

0.35

σ

σ

σ

E
x
c
it
a
ti
o
n
 a

m
p
lit

u
d
e

 G
/m

m
E

x
c
it
a
ti
o
n
 a

m
p
lit

u
d
e

 G
/m

m
E

x
c
it
a
ti
o
n
 a

m
p
lit

u
d
e

 G
/m

m

(a)

(b)

(c)

Figure 16: SMR distribution for different clearance length cases (a) b = 22.4 mm (b) 30 mm

(c) pure cubic case (b → ∞)
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NES system simultaneously. However, the dominant parameter has a larger

impact depending on the response regimes. For cubic nonlinearity, it plays a

more important role during the no-impact condition. The clearance does not

influence NES behaviours when NES oscillates inside the gap in a low-energy

input case. The fixed point of the no-impact condition is the same as the cubic500

NES case. In the modest and large clearance design, the cubic nonlinearity

has a larger impact on the determination of the excitation threshold for SMR

occurrence.

The clearance is more important when the impact occurs in a high energy

input case in the following aspects. Firstly, according to the previous analysis,505

a narrow design (b<N2,1) can prevent the occurrence of SMR, and a larger

gap also increases the required excitation amplitude to trigger the impact. A

modest design (N2,1<b<N2,2), clearance length determines required excitation

amplitude for SMR disappearance. Secondly, the clearance produces a narrow

frequency range of SMR and weaker frequency robustness compared to the cubic510

NES case. An obvious risk resonance peak is more easily provoked due to

clearance on the σ< case. Thirdly, impact on the gap provides another effective

way to dissipate energy, so the time interval of an SMR cycle turns to be shorter.

4.1. Influence of the restitution coefficient

The restitution coefficient is only valid when there is a collision in the sys-515

tem. The collision thresholds in the narrow clearance case and the modest/large

clearance cases where SMR occurs can be seen as the end of the oscillation within

the cavity without collision. Therefore, the restitution coefficient has no effect

on the start of the collision threshold and the start of the SMR threshold. The

threshold predictions of Eq. (14) and Eq. (24) are still valid for different restitu-520

tion coefficients. The collisions occur in the SMR and stable collision stages, so

that the restitution coefficient analysis focuses on the effects in these two stages.

The modest clearance case b = 22.4 mm under excitation G = 0.25 mm

was selected to investigate the role of restitution coefficient. In Fig. 17a, the

displacement of three different cases are almost the same due to the absence525
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Figure 17: Time displacement response of the SMR for different restitution coefficients r: 0.95,

0.65, and 0.35. (a) absolute displacement of the NES (b) absolute displacement of the LO.

The excitation amplitude G = 0.25 mm, σ = 0

of collision. At τ = 224, the NES amplitudes for the three cases sharply and

simultaneously increase. In the energy pumping period, the three cases with

0.95, 0.65, and 0.35 coefficients take 295, 239, and 195 times on the τ time

scale, respectively. A higher value of restitution coefficient means more energy

loss for every impact, accelerating the rate of energy dissipation and leading the530

system amplitude to decrease more rapidly. This faster amplitude reduction

rate is also evident in Fig. 17b. A smaller restitution coefficient enables the

system to have more SMR cycles in the same amount of time.

When the system enters the stable impact response (two impacts per cycle),

the LO amplitude is governed by the coefficient A1, B1, α, β in Eq. (25). The535

stable analytical amplitude is shown as a solid line in Fig. 18. As restitution

coefficient increases, the stable amplitude rises slightly. The numerical results

(dot points in Fig. 18) also confirm this tendency. When restitution coefficient

varies from 0.8 to 0.3, the stable amplitude is reduced from 12.3 mm to 10.8

mm. This difference cannot be considered as significant when compared to the540

wide variation range of restitution coefficient. The system shows low sensitivity

to the various values of restitution coefficient.
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Figure 18: Stable LO amplitudes for various restitution coefficients r under harmonic excita-

tion G = 0.4 mm, σ = 0.

4.2. Clearance design for target excitation

In the previous section, the influence of clearance length has on the different

response regimes was presented. Every clearance length design corresponds to545

a target excitation, under which the LO possesses minimal amplitude.

To find out the corresponding target excitation, various amplitude input

cases are applied to the different clearance designs. The corresponding results

are shown in Fig. 19. The thin solid lines and thin dashed lines are the maximal

and average LO amplitudes, respectively. The diamond-shaped and triangle550

points correspond to the projection of the local maximal and minimal amplitudes

on the b–G plane. The circle points indicate the excitation threshold of SMR

occurrence for various clearance length designs. The thick dashed line and thick

solid line divide the clearance length designs into three categories, which are

classified by singularity value N2,1, N2,2.555

If the clearance length design is b<N2,1 = 16.3 mm, the snap-through motion

is prevented, and the SMR cannot be observed in the first five cases. So the

circle points do not appear in the region Fig. 19. The maximal amplitude curve

and average amplitude curves are overlapped, which means that the SMR is not
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Figure 19: The influence of different clearance length designs on the response regimes. The

range of clearance length is [8, 9.5, 11, 12.5, 14, 15.5, 17, 18.5, 20, 21.5, 23, 24.5, 26, 27.5, 29,

30.5, 32, 33.5, 35] mm.

triggered. In those five cases, the response regimes are classified into two types:560

(1) without impact (2) with impact. In lower energy levels, the NES oscillates

within the cavity. The cubic nonlinearity prevents NES mass from contacting

the barrier. The threshold of excitation for impact can be calculated by Eq. (14).

The occurrence of a collision brings about a sharp drop in amplitude, which can

be seen as an optimization point. Local maximal and minimal amplitude points565

are always adjacent to each other. Before and after impact, the LO amplitude

increases almost linearly with excitation.

When the clearance length b designs are >N2,1, distance between the extra

singularity line Z2 = Z2,e and the singularity point Z2 = Z2,1 in the SIM struc-

ture allows the phase trajectory to feature the snap-through motion. However,570

the extra singularity line prevents the phase trajectory to arrive on the right

SIM stable branch. A complete (classic) SMR cannot occur. As the clearance

length b design increases, the SMR appears in a widened amplitude range. So

the distance between circle points and triangle points enlarge as clearance length
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Figure 20: Optimal clearance design for various targeted excitation amplitude

design increases in Fig. 19. The threshold at which SMR appears (as shown by575

the circle points) remains unchanged. The system changes from a stable re-

sponse to a SMR to a stable response with collisions as excitation amplitude

increases. The local minimal amplitude point occurs after the SMR disappears.

A larger displacement constraint can adjust the VIC NES to optimally adapt

to a larger excitation.580

Once the clearance is designed to be b>N2,2 = 27.4 mm, continuing to

increase the gap length has no effect on the threshold for the appearance and end

of the SMR. The excitation interval for the presence of SMR remains unchanged

in the last four cases, whose clearance lengths are all larger than the critical

value N2,2. So the distances between circle points and triangle points remain585

constant as clearance design increases in Fig. 19. In the third category, the

clearance design has no influence on the optimal point, which appears at the

singularity point (Z2,2, Z1,2) in the SIM structure. The gap-enlarging method

to increase the amplitude that can be optimally absorbed by the system thus

fails.590
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The distributions of target excitation for different clearance length b de-

signs are shown in Fig. 20 (triangle points). Three types of clearance design

are distinguished by thick dashed and solid straight lines. If the excitation

amplitude is below the critical value G1,c, it can be classified as a low energy

input. Therefore, the clearance design that should make the extra singularity595

line Z2 = Z2,e is located on the left stable SIM branch. Collision occurs and

the system achieves the optimal state when the system oscillates in a maximal

amplitude and slightly increases its excitation amplitude. The impact condition

for a narrow clearance is derived from Eq. (14), which leads to the optimal curve

(dash-dotted line in the left side of N2,1). The optimal clearance length bo can600

be solved by setting Gt = ϵFt into Eq. (14). The maximal and minimal ampli-

tude points are very close to each other, with the distance being determined by

the step size of the excitation amplitude in the numerical simulation. In the

ideal case, the maximal and minimal amplitude points are the same and the

triangle and diamond-shaped points overlap. Owing to the step size limitation,605

the triangle and diamond-shaped points distributed on both sides of the optimal

curve validate the optimal design in this case.

If the target excitation is within the interval [G1,c, G2,c], the clearance length

b should be within the interval [N2,1, N2,2]. The clearance length determines the

threshold where the SMR disappears, which is also viewed as an optimal state610

for the LO. The dash-dotted curve is plotted by Eq. (24), demonstrating the

optimal clearance design once the target excitation value has been set. When

the target excitation nears G1,c, the optimal curve is flat and sensitive to target

excitation. A slight variation in target excitation Gt would cause the design

value of b to increase significantly. When the target excitation nears G2,c, the615

analytical prediction will produce a larger design value, causing the system to

perform the SMR. In this design case, the actual optimal clearance should be

slightly smaller than the analytical prediction value. In general, the numer-

ical simulations show a linear relationship and the analytical values reveal a

quadratic term relationship. However, the analytical solution is still referable620

to the optimal curve.
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Figure 21: Optimal result for (a) target excitation Gt = 0.2 mm, σ = 0. The optimal clearance

length for VIC NES is bo = 12.5 mm, (b) target excitation Gt = 0.3 mm, σ = 0. The optimal

clearance length for VIC NES is bo = 24 mm

If the target excitation exceeds G2,c, adjusting the clearance length would

go beyond adapting the increasing excitation. In other words, if the clearance

length is b>N2,2 = 27.4 mm, the target excitation that system can absorb

remains constant Gt = 0.35 mm. The final point of phases trajectory will be625

located at singularity point (Z2,2, Z1,2) (optimal state) in the SIM structure,

which is independent of the extra singularity line Z2 = Z2,e (clearance design).

On the right side of Fig. 20, the triangle and diamond-shaped points are aligned

horizontally. The horizontal analytical curve coincides with the point where the

SMR ends. Note that the numerical result slightly exceeds the analytical design630

value.

The results for the different target excitations are presented in Fig. 21. The

cubic nonlinearity parameter of the optimal cubic NES is determined using the

method proposed in [34], where the final phase trajectory stays in the singularity

point of the SIM.635

When Gt = 0.2 mm, the cubic NES performs a stable periodic response (am-

plitude = 10.2 mm in Fig. 21a), whose phase trajectory is finially located on the

SIM left branch (as in Fig. 5c). However, the optimal VIC NES has a smaller

final LO amplitude for the optimal clearance design bo = 12.5 mm, about 5.2

mm. If the cubic NES is tuned by substituting the original K value (1.742e3)640
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with an optimal cubic nonlinearity parameter K (6.01e3), the system will hold

the minimal LO amplitude (about 2.73 mm). So in a low target excitation case

(Gt < G1,c), the tuning clearance length can lead to an obvious vibration miti-

gation performance. However, the replacement of cubic nonlinearity parameter

can achieve better performance.645

In Fig. 21b, the target excitation is set to 0.3 mm, which is between [G1,c, G2,c].

The SMR constitutes the principal motion for the original cubic NES. Accord-

ing to Fig. 20, the optimal clearance design bo = 24 mm minimizes the LO

amplitude to 4.75 mm. The SMR will reappear under the target excitation in a

larger clearance design. A clearance design <bo will increase the final stable LO650

amplitude. The cubic nonlinearity parameter of the original cubic NES K must

be tuned to 2.61e3 to achieve a minimal amplitude of 4.06 mm. The optimal

cubic NES with the replacement of K represents a not-so-obvious improvement

to the optimal VIC NES.

The cubic NES with fixed cubic nonlinearity can only adapt a single target655

excitation. If the system is under a smaller excitation, a larger cubic nonlinearity

parameter K is required for optimal energy absorption. In the real mechanical

environment, the replacement of the spring component has a considerable cost

and requires a system redesign. Thus, the VIC NES can provide an alterna-

tive approach to adapt a weaker target excitation without changing its spring660

components.

4.3. Frequency performance

The above optimization strategy focuses on the design for harmonic excita-

tion for σ =0, where the optimal state is the periodic solution with minimal LO

amplitude. However, this optimal strategy leads to the risk of resonance peak665

on the σ<0 side, which can be observed in Fig.14,15.

Its absorbing frequency range for cubic and VIC NES in the vicinity of σ

=0 is emphasized with the comparison of the tuned mass damper.

To achieve an as broad as possible frequency performance for the target

excitation amplitude G = 0.3mm, the cubic nonlinearity parameter K is chosen670
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Figure 22: Frequency absorbing performance comparison between cubic NES (thick solid line),

VIC NES (dotted line), TMD (dashed-dotted line) and single linear oscillator (dashed line)

as 2.4e3 in the cubic NES, slightly lower than K = 2.61e3 in the last subsection.

The VIC NES has applied the same cubic nonlinearity K value, with optimal

clearance length b =23.4mm.

As for the corresponding tuned mass damper system, the attached mass m2

can not be too small to achieve an effective mitigation effect. So the m2 is675

selected to 0.15kg in the simulation, whose mass ratio is 0.03, much larger than

the mass ratio of the NES case, 0.01. The optimal linear stiffness kl for attached

TMD system is calculated as 112 N/m to satisfy the condition kl =
k1ϵ

(1+ϵ)2 . This

optimization strategy can be found in [36] to make two resonance peaks equal.

The system parameters of LO and TMD damping are the same as with nonlinear680

systems. Fig.22 shows the frequency responses of three types of absorber, along

with a single LO without attached system in the vicinity of σ = 0.

In Fig.22, the cubic NES can effectively mitigate the vibration near the nat-

ural frequency through the strongly modulated response. With the introduction

of clearance, the VIC NES causes the resonance peak on the ω/ω0<0 side. Hence685

it damages the frequency robustness of cubic NES. With the increasing or de-

creasing of excitation, the vibration mitigation of NESs is weak, so the three

37



curves are almost overlapping. The absorb frequency range seems to be narrow

due to only the cubic nonlinearity design in our case. However, its frequency

robustness can be enhanced by selecting the proper damping combination, and690

mass ratio [37, 38]. The optimal TMD shows a trade-off characteristic of vibra-

tion mitigation. It performs much better in the vicinity of ω/ω0 =1 than two

types of NES. The minimal LO amplitude of the TMD case has been reduced

96.7% of the single LO frequency response peak. Meanwhile, the cubic NES and

VIC NES only achieve 66.1% and 61.8% LO amplitude mitigation, respectively.695

However, two prominent extra peak occurs on the two side of ω/ω0 =1 due to

the introduction of attached mass.

5. Experimental validation

The experimental setup was designed to observe the influence that impact

has on the behavior of the SMR distribution. Harmonic excitation is initially700

applied to the LO structure at a specific range of resonance frequency. The

threshold value of SMR occurrence and disappearance and the SMR bandwidth

in high energy input cases were recorded.

5.1. Vibro-impact cubic NES construction

The pure cubic nonlinearity is achieved with a four springs system, which705

is tuned to a specific pre-compression length to avoid the linear stiffness com-

ponent in the whole combined force-displacement relationship. The detailed

construction process is detailed [2]. The cubic NES device is classified into two

parts: (1) conical springs mechanism, (2) linear springs mechanism, according

to the characteristic of nonlinearity that is provided by different parts of the710

device.

In the conical springs mechanism, the single conical spring presents a piece-

wise force-displacement curve: linear phase and nonlinear phase. The transition

point divides those two phases during the compression. Once the deflection of

spring crosses the transition point, the nonlinear behaviors start. So to over-715

come the linear stiffness phase, a symmetrical connection type is proposed.
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Figure 23: Experimental device (a) construction of NES and LO (b) realization of displacement

constraint

The two conical springs are pre-compressed at the transition point. When the

center mass moves along the axis of the conical spring, the composed force-

displacement curve is smooth and no longer piecewise.

The composed force-displacement curve of conical springs contains a linear720

stiffness part that prevents the direct application of two conical springs systems.

To construct a pure cubic nonlinearity without a linear part, a negative stiffness

is implemented through two cylindrical compression springs in the linear springs

mechanism. The cylindrical spring can rotate with the other end fixed. The

direction of movement is perpendicular to its axis. The linear stiffness of four725

springs device can be totally counterbalanced through tuning the proper pre-

compression length o linear cylindral springs.

The NES mass is attached to the track through the four springs system, so

that it can move along the axis of the conical spring. The whole NES system

is connected to the LO, which is embedded on a 10 kN electrodynamic shaker.730

Two perpendicular countless laser sensors are used to measure the displacement

of LO and NES, respectively. The experimental setup is presented in Fig. 23.

The two steel screws with galvanised surface are installed in the hole of the

track to stop the relative sliding of the NES into creating displacement con-

straints (Fig. 23b).Due to the design of the track itself, the distance between735
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Table 1: Experimental parameters of environment

Reduced parameters ϵ λ1 λ2 K r b1 b2

1.2% 1.67 0.167 4.88e3 0.65 11.5 mm 16 mm

each hole is 15 mm. By choosing different mounting positions for the screws or

by adjusting the position of the rails, we can obtain different clearance config-

urations. When impact occurs, the side of the NES mass is in contact with the

top of the screw on both sides. The stud of the screw was slightly cut down to

avoid coming into contact with the conical spring coils and screws, thus ensuring740

that the impact only occurs between the screws and NES mass. The parame-

ters of the experimental setup and two types of clearance lengths are given in

Tab. 1. The b1 and b2 parameters lie within the unstable SIM branch. The

restitution coefficient r is measured by connecting the NES to the ground. All

the springs are removed to conserve only the NES mass. An initial NES velocity745

is applied, so that the NES—the velocity measuring instrument—can measure

velocity changes before and after the impact. According to its definition, the

average value of restitution coefficient can be calculated through 10 time tests.

5.2. Dynamic tests

The amplitude of the harmonic excitation amplitude ranges from 0.18 mm to750

0.3 mm, and the difference between the amplitude of adjacent excitation is 0.02

mm. The velocity of frequency sweep is 0.01 Hz/s. Three different clearance

cases (b = 11.5 mm, b = 16 mm and cubic) were chosen to examine the impact

effect. The frequency response for the three clearance cases is shown in Fig. 24.

The triangle marks the interval of SMR appearance. The variety of SMR regions755

according to the clearance changes in Fig. 24 shows the same tendency as the

numerical simulation in Fig. 16. The adjacent responses are marked in different

colours to distinguish between them.

In a low energy input case (e.g. G = 0.18 mm), the NES behaviors in Fig. 24

show the same SMR extinction. The maximal amplitude occurs at its natural760
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Figure 24: Frequency response of the NES for different clearance case (a)b= 11.5 mm case

(b)b = 16 mm case (c) Cubic NES case. The excitation amplitudes are ranged as 0.18 mm

0.2 mm, 0.22 mm, 0.24 mm, 0.26 mm 0.28 mm and 0.3 mm
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frequency f0 = 7.3 Hz for 7.61 mm, 7.68 mm and 7.71 mm, respectively. The

frequency response of the three cases is almost identical, meaning that impact

does not occur.

For a higher amplitude excitation G = 0.20 mm, the SMR first occurs in the

cubic case (Fig. 24c) for [7.28 Hz 7.38 Hz]. The SMR range is selected by the765

complete SMR cycle, including the increasing amplitude-phase and decreasing

phase. There are no obvious SMR behaviors that appear in this energy input

case for both VIC NES cases.

If the excitation reaches 0.22 mm, the obvious SMR behavior occurs in both

cases (Fig. 24a-b). In case b = 11.5 mm, the SMR appears and reaches its widest770

frequency bandwidth for [7.31 Hz 7.41 Hz] at the same time. The SMR range

of the cubic NES case becomes larger than that of the G = 0.20 mm case.

When G = 0.24 mm, the SMR range of Fig. 24a remains constant, compared

with the previous G = 0.22 mm case. In the natural frequency, the response

shown in Fig. 24a turns into a periodic response, which is considered as the775

threshold for SMR disappearance for case b = 11.5 mm. Meanwhile the widest

SMR frequency bandwidth in Fig. 24b case also reaches at G = 0.24 mm for

[7.25 Hz, 7.41 Hz]. In the cubic NES, the SMR range also continues to widen

until the excitation amplitude equals 0.24 mm, which is where the cubic NES

has the widest SMR bandwidth for [7.147 Hz, 7.473 Hz].780

When G = 0.26 mm, the SMR range width remains constant but is located

on a higher frequency side of f0 in (Fig. 24a). The SMR disappears at its

natural frequency f0 = 7.3 Hz in Fig. 24b. Therefore, this case is considered as

a threshold for SMR disappearance for case b = 17 mm. The SMR range for

cubic NES becomes narrower compared to the previous lower amplitude energy785

case.

For the higher amplitude inputs (G = 0.28/ 0.30 mm), the SMR intervals

of the three cases shift to a higher frequency, and a decrease of the SMR range

shown in Fig. 24a is observed. In the vicinity of the natural frequency in Fig. 24c,

the amplitude of the cubic NES tends to become constant. Thus, the excitation790

amplitude threshold for SMR disappearance for cubic case is recorded as 0.28
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mm.

5.3. Results analysis

For the sake of simplicity, the results of the target phenomena are summa-

rized in Tab. 2. According to the parameter of experiment device, the Z2 values795

in the two singularity points are Z2,1 = 9.7e-5 and Z2,2 = 2.7e-04. The cor-

respond critical clearance value N2,1 = 9.7mm and N2,2 = 16.4mm. The two

clearance length (11.5mm and 16mm) are inside the interval of [N2,2, N2,2]. So

those two cases are identified as two modest clearance length cases, which allows

the occurrence of SMR theoretically. The clearance length does not influence the800

SMR occurrence threshold G1,c = 0.16mm with the calculation of experiment

parameters. Compared with experimental observation, the system has SMR at

amplitude G=0.2mm of case(c) and 0.22mm of cases (a) and (b). According to

the simulation discussed in the previous section, the clearance length b param-

eter does not influence SMR occurrence. However, an impact observed in our805

experimental setup leads to the higher required excitation amplitude to trig-

ger the SMR. Our current theoretical tool states that LO and NES amplitudes

reach the singularity point (Z2,1, Z1,1) of the SIM to satisfy the SMR triggering

conditions. From the energy point of view, a loss of energy ensues once the

impact occurs, which may prevent the phase trajectory from fully crossing the810

singularity line Z2 = Z2,1. The system thus requires more considerable energy

(amplitude) excitation to trigger the SMR. This might explains the differences

in the excitation threshold for the SMR.

In the cubic NES without displacement constraint, the theoretical ampli-

tude threshold for SMR disappearance G2,c = 0.25mm. Meanwhile, when ex-815

citation amplitude achieves 0.28mm, SMR disappears at a natural frequency

7.3Hz in case(c). With influence of clearance length, a larger clearance length

in case(b) leads to a lower calculated G2,c 0.25mm, with experimental obser-

vation of 0.26mm in Fig.24b. The most narrow clearance case continues to

reduce calculated G2,c to 0.17mm, compared with the experimental observa-820

tion of 0.24mm. Both theoretical analysis and experiment results show that
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Table 2: Effect of clearance length on the threshold and SMR distribution

Case (a) (b) (c)

Threshold for SMR occurrence (σ = 0) 0.22 mm 0.22 mm 0.2 mm

Threshold for SMR disappear (σ = 0) 0.24 mm 0.26 mm 0.28 mm

Analytical G2,c (σ = 0) 0.17 mm 0.235 mm 0.25 mm

Widest SMR interval 0.10 Hz 0.16 Hz 0.33 Hz

SMR interval for G = 0.3 mm 0.035 Hz 0.106 Hz 0.136 Hz

the larger gap length can raise the critical excitation amplitude for SMR dis-

appearance. The second row in Tab.2 shows an obvious decline in excitation

threshold for SMR disappearance. The LO amplitude reaches its local minima

when the SMR disappears, which is considered to be an optimal design. By825

adjusting the clearance length, the VIC NES can be used as an alternative opti-

mal design. The smaller the clearance length, the narrower the widest range of

SMR frequency occurrence and the smaller the excitation amplitude threshold

value of the SMR disappearance. In the high energy case (G = 0.3mm), the

SMR frequency interval is reduced as the clearance length decreases. Compared830

with the cubic NES case, the SMR bandwidth in case (a) is reduced to 25%,

and the case (b) is reduced to 78%. The impact influence on SMR frequency

distribution is then essential.

The introduction of impact in the cubic NES damages the robustness of

the SMR, as confirmed by both the numerical and experimental tests. If the835

cubic NES system is well tuned, the impact should be avoided. However, if

the cubic NES is not well tuned or is under a weaker excitation amplitude, the

displacement constraint (impact) would provide an alternative approach to tune

the NES, in order to meet the target excitation without modifying the spring

components.840

The steady-state response can be observed by picking the small interval as

the black box in Fig.24. The small time interval of linear sweep experiments

corresponds to a steady-state response. In this narrow interval, the excitation
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frequency can be considered as an approximate constant. In the vicinity of

7.3Hz, three different responses for single frequency excitation are observed845

in three clearance designs. With increasing amplitude, the periodic motion,

SMR and periodic motion appear in turn. When three systems are under the

G=0.18mm, the corresponding NES amplitudes are 7.5mm, 7.4mm, and 7.4mm.

The similar NES amplitudes indicate no impact occurrence. At a frequency

7.3Hz, the SMR only occurs for case (a) for G = 0.22mm. When the clearance850

length enlarges in case(b), SMR appears between G =[0.24 0.26]mm for a natural

frequency excitation. When clearance does not exist in case(c), the amplitude

range for SMR becomes maximal from G =0.22mm to 0.28mm. Steady-state

confirms that a more narrow clearance reduces amplitude range for SMR and

effective vibration mitigation effect.855

6. Conclusions

This current work investigates a novel NES with both cubic nonlinearity and

impact conditions using analytical, numerical and experimental methods. Ac-

cording to the clearance length, the Vibro-Impact Cubic (VIC) NES is naturally

classified into narrow, modest, and large clearance cases. The corresponding re-860

sponse regimes under various energy input cases were analyzed, leading to the

following conclusions:

1. The impact originating from the barrier introduces an extra singularity

line in the Slow Invariant Manifold (SIM) structure. When the system is

not impacted, the characteristics of the VIC NES are determined by the865

cubic nonlinearity. The impact threshold is calculated using the asymp-

totic method. Once the impact occurs, the ensuing response is closer

to the conventional Vibro-Impact (VI) NES. The fixed point of the VIC

NES at different harmonic excitation amplitudes and frequencies can be

accurately predicted using a simplified VI NES model.870

2. Some characteristic regions (e.g. the resonance peak, optimal region and

Strongly Modulated Response (SMR) regions) are found in the frequency
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domain. The displacement constraint destroys the robustness of the SMR,

resulting in a narrower SMR region. A lower value of the restitution

coefficient accelerates the energy pumping rate during 1:1 resonance. The875

fixed point of the system is not sensitive to the variation of restitution

coefficient.

3. The optimal clearance designs are concentrated. The target excitation

must be smaller than the amplitude threshold G2,c under the framework

of the cubic NES in order to make the displacement constraint effective880

and to absorb energy better than the original design of cubic NES. The

piecewise curve of optimal clearance design according to the target excita-

tion is drawn, validated that a lower target excitation requires a narrower

clearance length to be tuned as an optimal state.

4. Our experiments confirm the effect that different clearance lengths have885

on reducing the excitation amplitude threshold for SMR disappearance

and on narrowing the SMR frequency interval, which is also obtained by

numerical simulation. The target excitation can be adapted optimally by

modifying the clearance length. The robustness of SMR in the frequency

domain is reduced for a narrower clearance length.890

7. Appendix

The expressions ∆, α, β:

∆ =

√
4− ϵ2λ2

2
, α = − ΩGλε2

(Ω2 − 1)
2
+ ε2λ2Ω2

, β = −
εG

(
Ω2 − 1

)
(Ω2 − 1)

2
+ ε2λ2Ω2

(25)

To solve the integration constant A1, B1, C1, D1, the expressions given in

Eq. (19) are inserted into the half period condition Eq. (28) as solutions with

two symmetrical impacts per cycle. The solutions for those integration constants895

are:
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A1 = −2(1 +R) (−α sin (τ0) + β cos τ0)εΩes/I

B1 = −A1(ec+ 1)

es

C1 = −∆
(
2ec+ 1 + e−ελπ/Ω

)
(1 +R) (−α sin (τ0) + β cos τ0)

D1 = −C1π

2Ω

(26)

with

e = e−ϵλπ/(2Ω), s = sin(∆π/Ω), c = cos(∆π/Ω)

I = −ε2λ(1 +R)es+ 2Rε∆e(e− c)− 2∆ε(ec+ 1)

−∆
(
1 + e2

)
+ 2∆ec(R− 1) + ∆R

(
1 + e2

) (27)

As with the solutions with two symmetrical impacts per cycle, we can also

consider a half period:

X(0) = X0, X(π/Ω) = −X0, Y (0) = Y0, Y (π/Ω) = −Y0

Ẋ+(0) = Ẋ0, Ẋ+(π/Ω) = −Ẋ0, Ẏ+(0) = Ẏ0, Ẏ+(π/Ω) = −Ẏ0

(28)

Re-substituting Eq. (28) into the initial condition |X − Y | = 1 yields the900

expression of initial time η:

η = arctan
b1
a1

± arccos
1√

a21 + b21
(29)

where a1 and b1 are voluminous and only their appearances are presented.

The η value corresponds to two fixed points.The detailed calculation can be

also found in [9].
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