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Muon -2: BMW calculation of the hadronic vacuum polarization contribution

We compute the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. The calculations are performed using four flavors of stout smeared staggered quarks, with quark masses at their physical values. The continuum limit is taken using six different lattice spacings ranging from 0.132 fm down to 0.064 fm. All strong isospin breaking and electromagnetic effects are accounted for to leading order. A controlled infinite volume limit is taken thanks to dedicated simulations performed in box sizes up to 11 fm. Putting all these ingredients together, we find [( -2)/2] LO-HVP = 707.5[5.5] × 10 -10 , which has a total uncertainty of 0.8%. Compared to determinations based on the + -→ hadrons cross section, our result significantly reduces the tension between the standard model prediction for the muon -2 and its experimental value.

Introduction

The muon is an ephemeral sibling of the electron. It is 207 times more massive, but has the same electric charge and spin. Similarly to the electron, it behaves like a tiny magnet, characterized by a magnetic moment. This quantity is proportional to the spin and charge of the muon, and inversely proportional to twice its mass. Dirac's relativistic quantum mechanics predicts that the constant of proportionality, , should be 2. However, in a relativistic quantum field theory such as the standard model, this prediction receives small corrections due to quantum, vacuum fluctuations. These corrections are called the anomalous magnetic moment and are quantified by ( -2)/2. They were measured to an exquisite 0.54 ppm at the Brookhaven National Laboratory in the early 2000s [START_REF] Bennett | Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL[END_REF], confirmed recently by Fermilab [START_REF] Abi | Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm[END_REF], and have been calculated with a comparable precision (see [START_REF] Aoyama | The anomalous magnetic moment of the muon in the Standard Model[END_REF] for a recent review).

At this level of precision, all of the interactions of the standard model contribute. The leading contributions are electromagnetic and described by quantum electrodynamics (QED), but the one that dominates the theory error is induced by the strong interaction and requires solving the highly non-linear equations of quantum chromodynamics (QCD) at low energies. This contribution is determined by the leading-order, hadronic vacuum polarization (LO-HVP), which describes how the propagation of a virtual photon is modified by the presence of quark and gluon fluctuations in the vacuum. Here we compute this LO-HVP contribution to ( -2)/2, denoted by LO-HVP , using ab initio simulations in QCD and QED. In the present work, we include both QED and QCD, as well as four non-degenerate quark flavors (up, down, strange and charm), in a lattice formulation taking into account all dynamical effects. We also consider the tiny contributions of the bottom and top quarks.

We compute LO-HVP in the so-called time-momentum representation [START_REF] Bernecker | Vector Correlators in Lattice QCD: Methods and applications[END_REF], which relies on the following, zero three-momentum, two-point function in Euclidean time :

( ) = 1 3 2 =1,2,3 ∫ 3 ( ì , ) (0) , (1) 
where is the quark electromagnetic current with / = 2 3 ¯ -

1 3 ¯ -1 3 ¯ + 2 3 ¯
. , , and are the up, down, strange and charm quark fields and the angle brackets stand for the QCD+QED expectation value to order 2 . It is convenient to decompose ( ) into light, strange, charm and disconnected components, which have very different statistical and systematic uncertainties. Integrating the one-photon-irreducible (1 I) part of the two-point function (1) yields the LO-HVP contribution to the magnetic moment of the muon [START_REF] Bernecker | Vector Correlators in Lattice QCD: Methods and applications[END_REF][START_REF] Lautrup | Recent developments in the comparison between theory and experiments in quantum electrodynamics[END_REF][START_REF] Rafael | Hadronic contributions to the muon g-2 and low-energy QCD[END_REF][START_REF] Blum | Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment[END_REF]:

LO-HVP = 2 ∫ ∞ 0 ( ) 1 I ( ) , (2) 
with the weight function,

( ) = ∫ ∞ 0 2 2 2 2 2 - 4 2 sin 2 2 , (3) 
and where ( ) = [ + 2 -( + 4)] 2 / ( + 4), is the fine structure constant in the Thomson limit and is the muon mass. Since we consider only the LO-HVP contribution, for brevity we B. C. Toth drop the superscript and multiply the result by 10 10 , i.e. stands for LO-HVP × 10 10 throughout this work.

The subpercent precision, that we are aiming for, represents a huge challenge for lattice QCD. To reach that goal, we have to address the following critical issues: scale determination; noise reduction; QED and strong-isospin breaking; infinite-volume and continuum extrapolations. We briefly discuss these one by one. For a more detailed exposition we refer the reader to the Supplementary Information in [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF].

Scale determination

The quantity depends on the muon mass. When computing (2) on the lattice, has to be converted into lattice units,

, where is the lattice spacing. A relative error of the lattice spacing propagates into about a twice as large a relative error on , so that has to be determined with a few permil precision. We use the mass of the Ω -baryon, Ω -= 1672.45 [START_REF] Lehner | RBRC Workshop on Lattice Gauge Theories[END_REF] MeV [START_REF] Tanabashi | Review of Particle Physics[END_REF], to set the lattice spacing. Here we describe how we determine its QCD contribution; QED corrections are described below.

To extract the mass of the positive-parity, ground-state Ω baryon, a number of different operators are available in the staggered formalism. First, there are two operators from the pioneering work of Golterman and Smit [START_REF] Golterman | Lattice Baryons With Staggered Fermions[END_REF]. To label these operators we use the convention of [START_REF] Ishizuka | Operator dependence of hadron masses for Kogut-Susskind quarks on the lattice[END_REF]:

Ω VI ( ) = even [ 1 12 13 
-2 21 23

+ 3 31 32 ] ( ), (4) 
Ω XI ( ) = even [ 1 2 3 ] ( ). (5) 
Here, ( ) is the strange-quark field with color index . The operator performs a symmetric, gauge-covariant shift in direction , while ≡ . Both Ω VI and Ω XI couple to two different tastes of the Ω baryon, which become degenerate in the continuum limit. At finite lattice spacing however, there is a splitting between the two tastes. In principle they could be disentangled by carrying out an analysis involving the correlators of both Ω VI and Ω XI and also their cross terms. Later, Bailey successfully constructed an operator which only couples to a single taste [START_REF] Bailey | Staggered baryon operators with flavor SU(3) quantum numbers[END_REF]. To achieve this, two additional (valence) strange quarks are introduced: the strange-quark field gets an additional "flavor" index: with = 1, 2, 3. The operator is then given as

Ω Ba ( ) = 2 1 2 3 -3 1 2 -2 3 1 + (. . . ↔ . . . ) • • even 1 12 13
-2 21 23

+ 3 31 32 
( ). ( 6 
)
The mass of this state becomes degenerate with the above two taste partners in the continuum limit. We investigated the difference between these three operators on an ensemble with large statistics. At = 3.7000, corresponding to our coarsest lattice spacing, we computed the corresponding Ω propagators on about 3000 configurations in addition to those used for the current propagator measurements. The effective masses for the above three operators are shown in Figure 1. In the asymptotic regime we see deviations below 0.1%, which gives an estimate of the taste violation. We expect that these will get smaller as we go to finer lattice spacings. In this work we chose the Ω VI operator for our scale setting measurements. This is justified, since typical statistical and systematic errors on our ensembles are around 0.1%, and thus cover the taste-violation effects estimated here.

On the Ω propagators we perform a four-state fit using the fit function ℎ, with two positive and two negative parity states:

ℎ( , , ) = 0 ℎ + ( 0 , ) + 1 ℎ -( 1 , ) + 2 ℎ + ( 2 , ) + 3 ℎ -( 3 , ) (7) 
with ℎ + ( , ) = -+ (-1) -1 -( -) and ℎ -( , ) = -ℎ + ( , -) describing the time dependence of the positive and negative parity states. Here 0 and 0 are the mass and amplitude of the ground state. In order to stabilize the fit, a prior term was introduced, containing priors on the masses except for the ground state. The prior for the negative parity ground state, 1 = 2012 MeV, is motivated by the recent observation from the Belle collaboration [START_REF] Yelton | Observation of an Excited Ω -Baryon[END_REF]. The excited states, 2 = 2250 MeV and 3 = 2400 MeV, have not been discovered in experiments so far, so their priors follow from the quark model [START_REF] Capstick | Baryons in a Relativized Quark Model with Chromodynamics[END_REF]. The existence of these undiscovered states is also motivated by lattice thermodynamics below the chiral transition [START_REF] Bazavov | Additional Strange Hadrons from QCD Thermodynamics and Strangeness Freezeout in Heavy Ion Collisions[END_REF][START_REF] Alba | Constraining the hadronic spectrum through QCD thermodynamics on the lattice[END_REF].

In addition to the above four-state fit to the Ω propagator we also used a mass extraction procedure proposed in [START_REF] Aubin | A new approach for Delta form factors[END_REF], which is based on the Generalized Eigenvalue Problem (GEVP). The method has the advantage of not using priors.

For each time slice we construct a 4 × 4 matrix H , ( ) = +( -1)+( -1) ( , = 1, . . . , 4), from the hadron propagator . Then for a given and let ( , ) be an eigenvalue and ( , ) an eigenvector solution to this 4 × 4 generalized eigenvalue problem:

H ( ) ( , ) = ( , )H ( ) ( , ). (8) 
Here we select the smallest eigenvalue and use the corresponding eigenvector to project out the ground state:

+ ( , )H ( ) ( , ), (9) 
B. C. Toth which then can be fitted to a simple exp(-) type function. The mass extracted using the GEVP gives a third Ω value for each ensemble, beside the results with the four-state fit procedure with two fit ranges. We will use the deviation between these three values as a systematic error in the Ω mass determination. More details on the scale determination can be found in Ref. [START_REF] Varnhorst | High precision scale setting on the lattice[END_REF] and in the Supplementary Information of [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF].

Isospin-breaking effects

Our staggered path integral includes four flavors of quarks, = { , , , }, gluon fields and photon fields and is given by:

= ∫ [ ] exp(-[ ]) ∫ [ ] exp(-[ ]) det 1/4 [ exp( ), ]. (10) 
The photon integral measure [ ] and action are defined in the QED L scheme [START_REF] Hayakawa | QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons[END_REF]. The one-hop staggered matrix in a background field can be written as

[ , ] = [ ] + = [ ] + , (11) 
where is the covariant differentiation in the direction involving and its adjoint † together with the obligatory staggered phases. In the path integral the fermions are coupled to a gauge field that is a product of the exponentiated photon field and of the smeared gluon gauge field . ∈ {+ 2 3 , -1 3 , -1 3 , + 2 3 } stand for the quark electric charges in units of the positron charge , for the quark masses and = 2 /(4 ). We use the notation ≡ for the difference in the up and down quark masses and ≡ 1 2 ( + ) for their average. To simplify later formulas we also introduce the notations

≡ [ , ] and dets[ , ; { }, { }, ] ≡ det 1/4 , (12) 
where the latter is the product of all fermion determinants. In this work isospin-breaking is implemented by taking derivatives with respect to the isospinbreaking parameters and by measuring the so obtained derivative operators on isospin-symmetric configurations [START_REF] Rm | Leading isospin breaking effects on the lattice[END_REF]. We introduce a set of notations for isospin-symmetric observables and their isospin-breaking derivatives. Consider the observable ( , ), which is a function of and . Then we define 0 ≡ (0, 0), ′ ≡ (0, 0),

′ 1 ≡ (0, 0), ′′ 2 ≡ 1 2 2 2 (0, 0). ( 13 
)
We take into account only leading-order isospin-breaking in this work, so no higher derivatives are needed.

In the case of the fermion determinant, the isospin-symmetric value is denoted by dets 0 . Since dets is symmetric under the exchange ↔ , the strong-isospin-breaking of dets is zero at leading B. C. Toth order: dets ′ = 0. The electromagnetic derivatives are

dets ′ 1 dets 0 = 4 Tr -1 [ ] , (14) 
dets

′′ 2 dets 0 = 1 2       dets ′ 1 dets 0 2 - 2 4 Tr -1 [ 2 ] - 2 4 Tr -1 [ ] -1 [ ]       ,
where Tr is trace over color and spacetime indices and the argument of the operator is a 3 × 3 complex matrix valued field, e.g. 2 has components 2

, [ ] , . The implementation of these derivatives is detailed in Refs. [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF][START_REF] Parato | QED and strong isospin corrections in the hardonic vacuum polarization contribution to the anomalous magnetic moment of the muon[END_REF].

We also make a distinction between the electric charge in the fermion determinant and in the operator that we measure. We call the former sea electric charge and denote it by , the latter is the valence electric charge and is denoted by . For an observable that depends on both the valence and sea charges, ( , ), the second order electric charge derivatives are defined as follows:

′′ 20 ≡ 1 2 2 2 (0, 0), ′′ 11 ≡ 2 (0, 0), ′′ 02 ≡ 1 2 2 2 (0, 0). ( 15 
)
For functions that depend on either or , but not on both, we use the single digit notations of Equation [START_REF] Yelton | Observation of an Excited Ω -Baryon[END_REF].

The expectation value of an operator is calculated by inserting [ , ] into the integrand of the path integral of Equation ( 10) and normalizing the integral by . Here we consider operators whose photon field dependence arises entirely from the photon-quark interaction, i.e.

= [ , ]. The expectation value of this operator depends on , and , and the expansion in isospin breaking corrections can be written as:

= [ ] 0 + 2 ′′ 20 + ′′ 11 + 2 ′′ 02 + ′ . (16) 
Here, the individual terms can be expressed as expectation values obtained with the isospinsymmetric path integral, which we denote by . . . 0 . The concrete expressions are: isospin-symmetric: [ ] 0 = 0 0 qed valence-valence:

′′ 20 = ′′ 2 0
qed sea-valence:

′′ 11 = ′ 1 dets ′ 1 dets 0 0 qed sea-sea: ′′ 02 = 0 dets ′′ 2 dets 0 0 -0 0 dets ′′ 2 dets 0 0 strong-isospin-breaking: ′ = ′ 0 ( 17 
)
In the derivation of these expressions we use dets ′ 1 dets 0 0 = 0. Note that Equation ( 16) is an expansion in bare parameters and not what we consider a decomposition into isospin-symmetric and isospin breaking parts. The latter involves derivatives with respect to renormalized observables and our prescription for that is given in Section 3.1. There is no need to introduce a renormalized electromagnetic coupling though: its running is an ( 4 ) effect, i.e. beyond the leading order isospin approximation that we consider here.
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Isospin-breaking decomposition

For various purposes it is useful to decompose the observables into isospin-symmetric and isospin-breaking parts. This requires a matching of the isospin symmetric and full theories, in which we specify a set of observables that must be equal in both theories. Of course, different sets will lead to different decompositions, which is commonly referred to as scheme dependence. Only the sum of the components, i.e. the result in the full theory, is scheme independent.

A possible choice for the observables are the Wilson-flow-based 0 scale and the masses of mesons built from an up/down/strange and an anti-up/down/strange quark, / / . These mesons are defined by taking into account only the quark-connected contributions in their two-point functions [START_REF] Borsanyi | Isospin splittings in the light baryon octet from lattice QCD and QED[END_REF]. Their masses are practical substitutes for the quark masses. Also, they are neutral and have no magnetic moment, so they are a reasonable choice for an isospin decomposition. These masses cannot be measured in experiments, but have a well defined continuum limit and thus a physical value can be associated to them. In particular, we use the combinations 2 ≡ 1 2 ( 2 + 2 ) and Δ 2 ≡ 2 -2 . For the determination of the physical values of 0 , and Δ 2 , see the Supplementary Information of [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF].

For the decomposition we start with the QCD+QED theory and parameterize our observable with the quantities defined above:

( 0 , 0 , 0 , Δ 0 , ) . (18) 
Here, the continuum limit is assumed. We can isolate the electromagnetic part by switching off the electromagnetic coupling, while keeping the other parameters fixed. The strong-isospin-breaking part is given by the response to the Δ parameter, and the isospin-symmetric part is just the remainder:

qed ≡ 2 • 2 0 , 0 , 0 ,Δ 0 , =0 (19) 
sib ≡ (Δ 0 ) 2 • (Δ 0 ) 2 0 , 0 , 0 ,Δ 0 =0, =0 (20) 
iso ≡ ( 0 , 0 , 0 , 0, 0).

One can also define the decomposition at a finite lattice spacing, for which 0 in lattice units can be additionally fixed. In doing so the isospin symmetric part iso has to be distinguished from the value of the observable at the bare isospin-symmetric point [ ] 0 .

Noise reduction techniques

In this section we consider quantities at the isospin-symmetric point; noise reduction techniques for the isospin-breaking part are discussed in Refs. [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF][START_REF] Parato | QED and strong isospin corrections in the hardonic vacuum polarization contribution to the anomalous magnetic moment of the muon[END_REF]. For the strange and charm connected contributions, strange 0 and charm 0 , and for the disconnected contribution disc 0 we use the same measurements that are presented in our previous work [START_REF] Borsanyi | Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles[END_REF]. A new measurement procedure is implemented for the light connected component light 0 . It is used to reanalyze the old configurations and make measurements on new ensembles. This plays a key role in reducing the final statistical error in .

Low Mode Averaging

The technique utilizes the lowest eigenmodes of the fermion matrix; for an early work with low eigenmodes, see [START_REF] Neff | On the low fermionic eigenmode dominance in QCD on the lattice[END_REF]. The way in which we use these modes here is essentially the same as in [START_REF] Li | Overlap Valence on 2+1 Flavor Domain Wall Fermion Configurations with Deflation and Low-mode Substitution[END_REF], where it is called Low Mode Substitution. In the space orthogonal to these modes, the computational effort is reduced considerably by applying imprecise (aka. sloppy) matrix inversions. This is called the Truncated Solver Method [START_REF] Bali | Effective noise reduction techniques for disconnected loops in Lattice QCD[END_REF] or All Mode Averaging [START_REF] Blum | New class of variance-reduction techniques using lattice symmetries[END_REF]. Here we describe the technique for the connected part of the current propagator. The same technique was applied recently for magnetic moment computations in [START_REF] Aubin | Light quark vacuum polarization at the physical point and contribution to the muon -2[END_REF] also.

We consider the connected current propagator for timelike separation, and perform an averaging over the source positions, together with a zero spatial-momentum projection at the sink:

( , ¯ ) ≡ 1 3 3 ì ¯ , ì , =1,2,3 conn , , , ¯ ( , 0) = - 1 12 3 =1,2,3 ReTr D , -1 D , ¯ -1 , (22) 
where

D , = ì [
] is an operator that performs a symmetric, gauge-covariant shift on a vector :

[D , ] = , , + + † , - - • 4 , , (23) 
where , are the staggered phases. We use the simplifying notation D = D , and D = D , ¯ in following. In Equation ( 22), we apply the real part to reduce noise, because the imaginary part vanishes anyway after averaging over gauge configurations.

Using the lowest eigenmodes of we split the quark propagator into an eigenvector part and into its orthogonal complement, denoted by "e" and "r", respectively:

-1 = -1 + -1 , -1 = 1 † and -1 = -1 1 - † , ( 24 
)
where / is the -th eigenvector/eigenvalue of the operator . Correspondingly, splits into eigen-eigen, rest-eigen and rest-rest contributions:

= + + = - 1 4 3 = , = , ReTr D -1 D -1 , (25) 
where an average over is assumed but not shown explicitely. The benefit of this decomposition is that the trace in the eigen-eigen part can be calculated exactly, and is thus equivalent to calculating the propagator with all possible sources in position space. This is the main ingredient for the noise reduction. Though no extra inversions are needed in this part, it has to be optimized carefully, since there is a double sum over the eigenmodes, where each term is a scalar product † D . In the resteigen part we have terms † D -1 D and also terms where D and D are exchanged. Therefore, this part is only a single sum over the eigenmodes, and each term involves one matrix inversion. Note that these inversions are preconditioned by the eigenvectors, so they need many fewer iterations than standard inversions. Additionally, we speed up the inversions by running them with a reduced precision, and for some randomly selected eigenvectors we correct for the small bias by adding the difference between a high precision solver and the reduced precision one [START_REF] Bali | Effective noise reduction techniques for disconnected loops in Lattice QCD[END_REF][START_REF] Blum | New class of variance-reduction techniques using lattice symmetries[END_REF]. Finally, the rest-rest part is evaluated using random source vectors : we calculate † D -1 D -1 , which requires two inversions per random source. The reduced precision inverter technique is used here too. The improvement achieved by using these noise reduction techniques is shown in Figure 2. 

Upper and lower bounds on

In the case of the light and disconnected contributions to the current propagator, the signal deteriorates quickly as distance is increased. To calculate the HVP, a sum over time of the propagator has to be performed. As was suggested in [START_REF] Lehner | RBRC Workshop on Lattice Gauge Theories[END_REF][START_REF] Borsanyi | Slope and curvature of the hadronic vacuum polarization at vanishing virtuality from lattice QCD[END_REF], we introduce a cut in time , beyond which the propagator is replaced by upper and lower bounds, thereby reducing the statistical noise. Our estimate is given by the average of the bounds at a where the two bounds meet. The bounds are derived from the fact that the current propagator is a sum of exponentials with positive coefficients.

For the light connected propagator at the isospin-symmetric point the bounds express the positivity (lower bound) and that the propagator should decay faster than the exponential of two pions (upper bound). They are given as

0 ≤ light ( ) ≤ light ( ) ( ) ( ) , (26) 
where ( ) = exp(-2 ). For 2 we use the energy of two non-interacting pions with the smallest non-zero lattice momentum 2 / . The larger the the better the upper bound, but it comes with more statistical noise. The exponential decay above assumes an infinite time extent, = ∞. We incorporate the effects of a finite-using next-to-leading-order chiral perturbation theory. There the exponential decay with the two-pion energy gets replaced by the following cosh-type form:

exp(-2 ) -→ cosh[ 2 ( -/2)] + 1 cosh( 2 /2) -1 . ( 27 
)
In the case of the isospin-symmetric disconnected propagator the bounds are

0 ≤ -disc ( ) ≤ 1 10 light ( ) ( ) ( ) + strange ( ) + charm ( ). ( 28 
)
Since the strange and charm terms fall off much faster than the light and disconnected one, their contribution does not change the value of obtained.

Finite-size effects

We compute finite-size effects on in a systematic way, which includes dedicated lattice simulations, chiral perturbation theory and phenomenological models. The concrete goal is to provide a single number that is to be added to the continuum-extrapolated lattice result obtained in a reference box, which is defined by a spatial extent of ref = 6.272 fm and a temporal extent of ref = 3 2 ref .

For a more extensive description see Ref. [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF]. We perform dedicated lattice simulations with two different lattice geometries: one is a 56 × 84 lattice with the reference box size and the other is a large 96 × 96 lattice with box size = big = 10.752 fm and = big = big . Since taste violations distort the finite-size effects, we designed a new action with highly-suppressed taste breaking, which we call 4HEX (see [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF]). Our strategy is then to compute the finite-size correction as the following sum:

(∞, ∞) -( ref , ref ) = = [ ( big , big ) -( ref , ref )] 4HEX + [ (∞, ∞) -( big , big )] XPT . ( 29 
)
The first difference on the right hand side is taken from the dedicated 4HEX simulations. The second difference is expected to be much smaller than the first and is taken from a non-lattice approach: two-loop chiral perturbation theory. We consider four non-lattice approaches to compute both differences on the right hand side of Equation ( 29). In the case of the first difference, the results obtained are compared to our 4HEX simulations. The first approach is chiral perturbation theory (XPT) to next-to-leading and nextto-next-to-leading orders (NLO and NNLO), the second is the Meyer-Lellouch-Luscher-Gounaris-Sakurai model (MLLGS), the third approach is that of Hansen and Patella (HP) [START_REF] Hansen | Finite-volume effects in ( -2) HVP,LO[END_REF] and the fourth is the rho-pion-gamma model of [START_REF] Chakraborty | The hadronic vacuum polarization contribution to from full lattice QCD[END_REF], which we abbreviate as RHO here.

We compute the first difference in Equation ( 29) using dedicated simulations with the 4HEX action. We use the harmonic-mean-square (HMS) to set the physical point:

-2 ,HMS ≡ 1 16 -2
, , defined as an average over the masses of the 16 pion tastes, , . We set ,HMS to the physical value of the pion mass, which requires lowering the Goldstone-pion mass to 110 MeV. This way of fixing the physical point results in much smaller lattice artefacts than the usual setting with the Goldstone-pion, at least for an observable like the finite-size effect. To generate the 4HEX data set, we performed simulations with two different Goldstone pion masses:

= 104 MeV and 121 MeV. To set the physical point as described above, we perform an interpolation from these two pion masses to = 110 MeV. To compute light from the current propagator in our 4HEX simulations we use the upper and lower bound technique described in Section 4.2. Results for the = 121 MeV simulation point are plotted in Figure 3. The bounds meet at around 4.2 fm and 4.7 fm on the small and large volumes, respectively. At these distances we take the average of the two bounds as an estimate for light .

We only have one lattice spacing with the 4HEX action, so the finite-size effects cannot be extrapolated to the continuum limit. We estimate the cutoff effect of the result by comparing with the 4HEX action at this single lattice spacing to the continuum extrapolated 4stout lattice result, both in the ref volume. The 4HEX result is about 7% larger than the continuum value. Therefore we reduce the measured finite-size effect by 7%, and assign a 7% uncertainty to this correction step. For the difference we get

( big , big ) -( ref , ref ) = 18.1(2.0) stat (1.4) cont . (30) 
The result includes a 9 10 charge factor, and the first error is statistical and the second is an estimate of the cutoff effect.

The finite-size effects computed in various non-lattice approaches are collected in Table 1. Except for the NLO result, the different models give finite-size effects of similar size, which agree well with the lattice determination of Equation [START_REF] Borsanyi | Slope and curvature of the hadronic vacuum polarization at vanishing virtuality from lattice QCD[END_REF]. We also see that, according to the models, the finite-effect is much smaller than the finite-effect.

The good agreement for the finite-size effect in the reference box, between the models and the lattice, gives us confidence that the models can be used to reliably compute the very small, residual, finite-size effect of the large box. The corresponding model estimates can be found in Table 1. For an infinite-time extent the NNLO XPT, the HP and RHO approaches agree nicely. As a final value for the large-box, finite-size effect we take the NNLO XPT result including finite-effects:

(∞, ∞) -( big , big ) = 0.6(0.3) big ,
where the uncertainty is an estimate of higher-order effects, given here by the difference of the NNLO and NLO values.

For our final result for the finite-size effect in the reference box, we also include the contribution of isoscalar channel and isospin-breaking effects giving: (1.4) The first error is the statistical uncertainty of our 4HEX computation, the second is an estimate of the 4HEX cutoff effects, the third is the uncertainty of the residual finite-size effect of the "big" lattice, the fourth is a XPT estimate of the = 0 finite size effect and the fifth is an estimate of the isospin-breaking effects. The last, total error in the square-brackets is the sum of the first five, added in quadrature.

(∞, ∞) -( ref , ref ) = 18.7(2.0) stat

Taste improvement

As is well known, some of the most important cutoff effects of staggered fermions are taste violations. At long distances, these violations distort the pion spectrum. Since is predominantly a long-distance observable, dominated by a two-pion contribution, including the resonance, we expect these effects to be largest in the light-quark terms.

We investigate various physically motivated models for reducing long-distance taste violations in our lattice results. We consider three techniques: next-to-next-to-leading order chiral perturbation theory (NNLO XPT), a Meyer-Lellouch-Lüscher-Gounaris-Sakurai model (MLLGS) and the rhopion-gamma model (RHO). A detailed exposition of these models can be found in the Supplementary Material of Ref. [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF]. We investigate and discuss the suitability of their staggered versions for reducing the taste violations present in our lattice data. We call the resulting corrections taste improvements, because they improve the continuum extrapolation of our lattice data without, in principle, modifying the continuum-limit value. Indeed, these corrections vanish in that limit, as taste-breaking effects should. These improvements are applied on light-quark observables at the isospin-symmetric point, whose taste violations have the largest impact on our final uncertainties.

The models NNLO XPT, MLLGS and RHO describe the long-distance physics associated with finite-volume effects, as measured in our simulations. One can also define corresponding models describing the taste violations, they are denoted NNLO SXPT, SMLLGS and SRHO. We find that they describe the physics associated with taste violations, at least at larger distances. This is illustrated in Figure 4, where cutoff effects in the integrand of light are plotted as a function of Euclidean time. More specifically, we define the physical observable, obtained by convoluting the integrand of light with a smooth window function

( ; 1 , 2 ) ≡ Θ( ; 1 , Δ) -Θ( ; 2 , Δ) with Θ( ; ′ , Δ) ≡ 1 2 + 1 2 tanh[( -′ )/Δ] (31) 
of a width of 2 -1 = 0.5 fm and starting at a time of 1 . Then we consider the difference in the value of this observable, obtained on a fine and a coarse lattice at a sequence of 1 separated by The plot shows the difference between a fine and a coarse lattice, whose sizes are = 6.14 fm and = 6.67 fm. The black squares with errors are obtained from the simulation. The colored curves are the predictions of NLO and NNLO SXPT, the SRHO and the SMLLGS models. They are computed at the parameters (pion mass, taste violation, volume) of the simulations.

2 . Because the determination of this quantity does not require overcoming many of the challenges described above, other lattice groups have obtained it with errors comparable to ours [START_REF] Aubin | Light quark vacuum polarization at the physical point and contribution to the muon -2[END_REF][START_REF] Rbc | Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment[END_REF]. This allows for a sharper benchmarking of our calculation of this challenging, light-quark contribution that dominates . Our light ,win differs by 0.2 and 2.2 from the lattice results of [START_REF] Aubin | Light quark vacuum polarization at the physical point and contribution to the muon -2[END_REF] and [START_REF] Rbc | Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment[END_REF], respectively. Moreover, ,win can be computed in the R-ratio approach [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF]. However, here we find a 3.7 tension with our lattice result.

Conclusions

Combining all of these ingredients we obtain, as a final result, = 707.5(2.3) (5.0) [5.5]. The first, statistical error comes mostly from the noisy, large-distance region of the current-current correlator. The second, systematic error is dominated by the continuum extrapolation and the finitesize effect computation. The third, total error is obtained by adding the first two in quadrature. In total we reach a relative accuracy of 0.8%.

Figure 6 compares our result with previous lattice computations and also with results from the R-ratio method, which have recently been reviewed in [START_REF] Aoyama | The anomalous magnetic moment of the muon in the Standard Model[END_REF]. As one can see, there is a tension between our result and those obtained by the R-ratio method. For the total, LO-HVP contribution to , our result is 2.0 , 2.5 , 2.4 and 2.2 larger than the R-ratio results of = 694.0(4.0) [39], = 692.78(2.42) [START_REF] Keshavarzi | -2 of charged leptons, ( 2 ) , and the hyperfine splitting of muonium[END_REF],

= 692.3(3.3) [START_REF] Colangelo | Two-pion contribution to hadronic vacuum polarization[END_REF][START_REF] Hoferichter | Three-pion contribution to hadronic vacuum polarization[END_REF] and the combined result = 693.1(4.0) of [START_REF] Aoyama | The anomalous magnetic moment of the muon in the Standard Model[END_REF], respectively. It is worth noting that the R-ratio determinations are based on the same experimental data sets and are therefore strongly correlated, though these data sets were obtained in several different and independent experiments that we have no reason to believe are collectively biased. Clearly, these comparisons need further investigation.

To conclude, when combined with the other standard model contributions (see eg. [START_REF] Aoyama | The anomalous magnetic moment of the muon in the Standard Model[END_REF]), our result for the leading-order hadronic contribution to the anomalous magnetic moment of the muon, ] iso . The data points are extrapolated to the infinite-volume limit. Two different ways to perform the continuum extrapolations are shown: one without improvement, and another with corrections from a model involving the -meson (SRHO). In both cases the lines show linear, quadratic and cubic fits in 2 with varying number of lattice spacings in the fit. The continuum extrapolated result is shown with the results from other lattice groups, RBC'18 [START_REF] Rbc | Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment[END_REF] and Aubin'19 [START_REF] Aubin | Light quark vacuum polarization at the physical point and contribution to the muon -2[END_REF]. Also plotted is our R-ratio-based determination, obtained using the experimental data compiled by the authors of [START_REF] Keshavarzi | -2 of charged leptons, ( 2 ) , and the hyperfine splitting of muonium[END_REF] and our lattice results for the non light connected contributions. This plot is convenient for comparing different lattice results with each other. Regarding the total ,win , for which we also have to include the contributions of other-than-light flavors and isospin-breaking effects, we obtain 236.7 [1.4] on the lattice and 229.7 [1.3] from the R-ratio, the latter is 3.7 or 3.1% smaller than the lattice result. for the leading-order, hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. See [START_REF] Aoyama | The anomalous magnetic moment of the muon in the Standard Model[END_REF] for a recent review. Green squares are lattice results: this work's result, denoted by BMWc'20 and represented by a filled symbol at the top of the figure, is followed by LM'20 [START_REF] Lehner | Consistency of hadronic vacuum polarization between lattice QCD and the R-ratio[END_REF], Mainz'19 [START_REF] Gerardin | The leading hadronic contribution to ( -2) from lattice QCD with f = 2 + 1 flavours of O( ) improved Wilson quarks[END_REF], FHM'19 [START_REF] Davies | Hadronic-Vacuum-Polarization Contribution to the Muon's Anomalous Magnetic Moment from Four-Flavor Lattice QCD[END_REF], ETM'19 [START_REF] Giusti | Electromagnetic and strong isospin-breaking corrections to the muon -2 from Lattice QCD+QED[END_REF], RBC'18 [START_REF] Rbc | Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment[END_REF] and our earlier work BMWc'17 [START_REF] Borsanyi | Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles[END_REF]. Red circles were obtained using the R-ratio method: the combined result WP'20 [START_REF] Aoyama | The anomalous magnetic moment of the muon in the Standard Model[END_REF] is followed by DHMZ'19 [START_REF] Davier | A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to (m 2 Z )[END_REF], KNT'19 [START_REF] Keshavarzi | -2 of charged leptons, ( 2 ) , and the hyperfine splitting of muonium[END_REF] and CHHKS'19 [START_REF] Colangelo | Two-pion contribution to hadronic vacuum polarization[END_REF][START_REF] Hoferichter | Three-pion contribution to hadronic vacuum polarization[END_REF]; these results use the same experimental data as input. The blue shaded region is the value that LO-HVP would have to have to explain the experimental measurement of ( -2), assuming no new physics.
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 2 Figure 2: Comparison of a conventional random source based technique, as we applied it in our earlier work [23], and the low-mode improvement technique of this work on a = 3.9200 4stout ensemble for the case of [ light ] 0 's upper and lower bounds (see Section 4.2).

Figure 3 :

 3 Figure 3: Upper and lower bounds on the light isospin-symmetric component of . The results shown here are obtained with the 4HEX action on two different volumes at = 0.112 fm lattice spacing and = 121 MeV Goldstone-pion mass. We also have another simulation with = 104 MeV mass. From these two we interpolate to = 110 MeV.

Figure 4 :

 4 Figure 4: Isospin-symmetric component of light computed with a sliding window. The window starts at 1 and ends 0.5 fm later. The plot shows the difference between a fine and a coarse lattice, whose sizes are = 6.14 fm and = 6.67 fm. The black squares with errors are obtained from the simulation. The colored curves are the predictions of NLO and NNLO SXPT, the SRHO and the SMLLGS models. They are computed at the parameters (pion mass, taste violation, volume) of the simulations.
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 5 Figure 5: Continuum extrapolation of the isospin-symmetric, light, connected component of the window observable ,win , denoted by [ light ,win] iso . The data points are extrapolated to the infinite-volume limit. Two different ways to perform the continuum extrapolations are shown: one without improvement, and another with corrections from a model involving the -meson (SRHO). In both cases the lines show linear, quadratic and cubic fits in 2 with varying number of lattice spacings in the fit. The continuum extrapolated result is shown with the results from other lattice groups, RBC'18[START_REF] Rbc | Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment[END_REF] and Aubin'19[START_REF] Aubin | Light quark vacuum polarization at the physical point and contribution to the muon -2[END_REF]. Also plotted is our R-ratio-based determination, obtained using the experimental data compiled by the authors of[START_REF] Keshavarzi | -2 of charged leptons, ( 2 ) , and the hyperfine splitting of muonium[END_REF] and our lattice results for the non light connected contributions. This plot is convenient for comparing different lattice results with each other. Regarding the total ,win , for which we also have to include the contributions of other-than-light flavors and isospin-breaking effects, we obtain 236.7[1.4] on the lattice and 229.7[1.3] from the R-ratio, the latter is 3.7 or 3.1% smaller than the lattice result.

Figure 6 :

 6 Figure 6:Comparison of recent results for the leading-order, hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. See[START_REF] Aoyama | The anomalous magnetic moment of the muon in the Standard Model[END_REF] for a recent review. Green squares are lattice results: this work's result, denoted by BMWc'20 and represented by a filled symbol at the top of the figure, is followed by LM'20[START_REF] Lehner | Consistency of hadronic vacuum polarization between lattice QCD and the R-ratio[END_REF], Mainz'19[START_REF] Gerardin | The leading hadronic contribution to ( -2) from lattice QCD with f = 2 + 1 flavours of O( ) improved Wilson quarks[END_REF], FHM'19[START_REF] Davies | Hadronic-Vacuum-Polarization Contribution to the Muon's Anomalous Magnetic Moment from Four-Flavor Lattice QCD[END_REF], ETM'19[START_REF] Giusti | Electromagnetic and strong isospin-breaking corrections to the muon -2 from Lattice QCD+QED[END_REF], RBC'18[START_REF] Rbc | Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment[END_REF] and our earlier work BMWc'17[START_REF] Borsanyi | Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles[END_REF]. Red circles were obtained using the R-ratio method: the combined result WP'20[START_REF] Aoyama | The anomalous magnetic moment of the muon in the Standard Model[END_REF] is followed by DHMZ'19[START_REF] Davier | A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to (m 2 Z )[END_REF], KNT'19[START_REF] Keshavarzi | -2 of charged leptons, ( 2 ) , and the hyperfine splitting of muonium[END_REF] and CHHKS'19[START_REF] Colangelo | Two-pion contribution to hadronic vacuum polarization[END_REF][START_REF] Hoferichter | Three-pion contribution to hadronic vacuum polarization[END_REF]; these results use the same experimental data as input. The blue shaded region is the value that LO-HVP would have to have to explain the experimental measurement of ( -2), assuming no new physics.

  Effective mass of the ground state of the Ω baryon in lattice units on our coarsest ensemble with = 3.7000. Results with three different staggered operators, Ω VI , Ω XI and Ω Ba are shown. The horizontal lines and the shaded regions represent the fit values and the errors obtained with a four-state fit, Equation[START_REF] Blum | Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment[END_REF]. The dashed lines are the effective masses computed from the fitted functions.
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 1 cont (0.3) big (0.6) =0 (0.1) qed[2.5] . Finite-size effect in the reference box of the isospin-symmetric component of . The figures are obtained in various model approaches.
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weakens the longstanding discrepancy between experiment and theory. However, as discussed above and can be seen in Figure 6, our lattice result shows some tension with the R-ratio determinations. Obviously, our findings should be confirmed -or refuted-by other collaborations using other discretizations of QCD.

B. C. Toth 0.1 fm. These are compared to the NLO SXPT, NNLO SXPT, SRHO and SMLLGS predictions for this quantity, evaluated at the exact parameters of the ensembles.

The SMLLGS, the SRHO and the NNLO SXPT taste improvements describe the numerical data very nicely for 1 > ∼ 2.0 fm, fairly well for 1 > ∼ 1.0 fm and all the way down to 1 ≃ 0.4 fm in the case of SRHO. All three slightly overestimate the observed cutoff effects, the rho-meson based approach performing best, whereas NNLO displays a large deviation from the lattice results in the 1 ≤ 0.8 fm region. The lattice results have a maximum at 1 = 1.4 fm, as does the SRHO improvement, reinforcing our confidence that this model captures the relevant physics.

These findings lead us to apply the following taste corrections to our simulations results for light ( , , ), obtained on an 3 × lattice with lattice spacing , before performing continuum extrapolations:

with sep = 0.4, 0.7, 1.0, 1.3 fm, and where the factor (10/9) is related to the quark charges. Note that by using ref and ref in the above Equation, we are applying a very small volume correction to interpolate all of our simulation results to the same reference, four-volume so that they can be extrapolated to the continuum limit together. The taste-improved data is then extrapolated to the continuum using our standard fit procedure, in the course of which isospin-breaking effects are also included. For estimating the systematic error we use a histogram technique [START_REF] Borsanyi | Leading hadronic contribution to the muon magnetic moment from lattice QCD[END_REF].

The procedure described above does not yet take into account the systematic uncertainty associated with our choice of SRHO for taste improvement for > 1.3 fm. Since applying no taste improvement in that region is not an option, because of the nonlinearities introduced by two-pion, taste violations, we turn to NNLO SXPT, only as a means to estimate the uncertainty associated with this choice. Thus, we define this systematic uncertainty as ERR = (SRHO -NNLO SXPT) for > 1.3 fm. Then, we perform the same histogram analysis but with SRHO, SRHO-ERR and SRHO+ERR improvements. From this histogram we extract the contribution which comes from the variation in the improvement model from SRHO-ERR to SRHO+ERR. We assign this full spread to the systematic uncertainty associated with the taste-improvement procedure. We add this error in quadrature to the error given by the histogram technique discussed in the previous paragraph.

Intermediate window

The work [START_REF] Rbc | Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment[END_REF] defined a particularly useful observable ,win , in which the current propagator is restricted to a time window [ 1 , 2 ], using the smooth weight function ( ; 1 , 2 ) defined in Equation [START_REF] Hansen | Finite-volume effects in ( -2) HVP,LO[END_REF]. The advantage of ,win over is that, by choosing an appropriate window, the calculation can be made much less challenging on the lattice than for the full . Here we will be interested in the window between 1 = 0.4 fm and 2 = 1.0 fm, i.e. in an intermediate time range. By this choice we eliminate both the short-distance region, where large cutoff effects are present, and the long-distance region, where the statistical uncertainties and finite-size effects are large. Moreover, in the case of staggered fermions, it has reduced taste-breaking artefacts. This is shown in Figure 5, where the light, connected component of ,win is plotted as a function of