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Abstract 

A straightforward, cost effective and eco-friendly protocol for the Biginelli reaction relying on the use of readily 

available hypophosphorous acid is presented. The methodology developed displays improvements compared to 

existing methods, is high-yielding, robust and was applied to a panel of dihydropyrimidines and thio-derivatives 

with various substituents. Related urea derivatives such as guanidines, benzimidazoles and benzothiazoles also 

reacted efficiently to afford more complex scaffolds. Thus, this rapid and convenient catalysis allows access to a 

wide diversity of structures including original biologically relevant heterocycles. 

Introduction 

3,4-Dihydropyrimidin-2(1H)-one (DHPM) is a biologically relevant heterocycle with great interest thanks to its 

anticancer,1 antifungal,2 anti-hypertensive,3 antimalarial,4 anti-HIV5 and anti-tubercular activities6. It is found in 

several drug candidates such as monastrol,7 an effective non-tubulin-interacting mitosis inhibitor, SQ-32926,8 a 

calcium channel antagonist with antihypertensive activity, or Bay 41-4109,9 a potent human hepatitis B virus 

(HBV) inhibitor with an IC50 of 53 nM (Figure 1). 

 (S) Monastrol                          (R) SQ-32926                                  (S) Bay 41-4109

Figure 1: Examples of pharmacologically active DHPMs.

A straightforward way to produce the DHPM scaffold is the well-known Biginelli reaction.10 This multicomponent 

reaction involves a one-pot cyclocondensation of ethyl acetoacetate, urea and an aromatic aldehyde. It follows the 

principles of diversity-oriented synthesis and is therefore useful to produce rapidly series of analogues with great 

structural diversity during drug discovery processes. The synthesis of DHPM derivatives is presently an active 

research area, efforts are currently dedicated to the development of new ecofriendly synthetic routes. 

Usual 
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conditions for the Biginelli reaction are based on prolonged heating of the ternary mixture of reactants under strong 

Brønsted acidic conditions.11,12 Other conditions have been reported for this reaction such as microwave-assisted 

transformations,13,14 Mechanochemical conditions,15,16  catalysis using adequate bases such as K2CO3,
17 Lewis 

acids such as BF3.Et2O,18 lanthanum salts LaCl3,
19 ionic liquids,20,21 boric acid22 or α-zirconium 

sulfophenylphosphonate.23 Despite undeniable improvements, all these protocols still present drawbacks such as 

extended reaction times, high temperatures, use of hazardous chemicals or toxic solvents, high loadings of 

expensive heavy metal catalysts, or displaying low product yields.24 One the other hand, sequential multistep 

strategies have been proposed to produce DHPM compounds with somewhat higher overall yields but lack the 

attractiveness of the one-pot procedure.25 In this context, we found appealing to develop new conditions for the 

Biginelli reaction that overcome these drawbacks and will be closer to the precepts of green synthesis. Phosphorus 

derivatives particularly attracted our attention as they are widely available from phosphate, a natural resource 

almost inexhaustible (world resources of phosphate rock are more than 300 billion tons, with no imminent 

shortages according to USGS 2020).26 Moreover, they have been recently proposed as efficient catalysts in several 

organic chemical processes such as the asymmetric hydrosilylation of alkenes,27 or the production of 5-

hydroxymethylfurfural.28 Therefore, in continuation of our studies directed at the development of green 

processes,29–34 we report here the screening of phosphorus derivatives for the catalysis of Biginelli reaction and 

their use to produce a panel of DHPM and related heterocycles under eco-friendly conditions.  

Results and discussion 

Our interest first focused on common readily accessible phosphorus derivatives to test the catalytic activity for the 

Biginelli reaction. These derivatives were selected for their availability, their safety and eco-friendly features. 

They encompass synthesized organic derivatives, mineral acids, natural ores and recycled industrial waste (Table 

1).  

The catalytic activity was assayed on a model Biginelli reaction with benzaldehyde, ethyl acetoacetate and urea as 

substrates (Table 1). The catalyst loading was first set up at 20 mol% to evaluate the reactivity of various 

phosphorus derivates, compared to most efficient procedures described in the literature (Table 1, entries 1-7). 

Hypophosphorous acid was found to be the best reagent to promote this three-component reaction with 99% 

conversion after 6h in ethanol at reflux, and was therefore selected for further optimization. Decreasing the reaction 

time from 6h to 4h still retained high conversion (97%) whereas decreasing the amount of catalyst led to lower 

yields (Table 1, entries 8-10). Thus, the ratio of hypophosphorous acid was maintained at 20 mol% and several 

solvents and temperatures were assayed. Aqueous conditions proved clearely detrimental because of solubility 

issues. Acetonitrile or solvent-free conditions gave interesting results, even if they presented lower conversions 

than ethanol (Table 1, entries 11-14). Finally, decreasing the temperature to 50°C or 20°C led to a significant 

drop in the reaction rate (Table 1, entries 15-16). 



Table 1: Screening and optimization of reaction conditions for the synthesis of dihydropyrimidinone 1a 

 

Entry Catalyst 
Amount of 

catalyst 
Solvent Time 

Temperature 

(°C) 

Yields a 

(%) 

Reference 1 35 H3[PW12O40] 0.1g ethanol 5h 80 95 

Reference 2 
23

 
α-zirconium 

sulfophenylphosphonate 
12% --- 18h 80 89 

1 --- --- ethanol 8h 80 13 

2 phosphoric acid 20% ethanol 6h 80 91 

3 

N-

(phosphonomethyl)iminodiacetic 

acid hydrate 

20% ethanol 6h 80 80 

4 2-ethylhexylphosphate b 20% ethanol 6h 80 96 

5 hypophosphorous acid 20% ethanol 4h, 6h 80 97, 99 

6 phosphogypsum c 20% ethanol 6h 80 12 

7 apatite d 20% ethanol 6h 80 3 

8 hypophosphorous acid 10% ethanol 6h 80 81 

9 hypophosphorous acid 5% ethanol 6h 80 74 

10 hypophosphorous acid 1% ethanol 6h 80 60 

11 hypophosphorous acid 20% water 6h 80 28 

12 hypophosphorous acid 20% 
ethanol/water, 

50/50 
6h 80 44 

13 hypophosphorous acid 20% acetonitrile 6h 80 93 

14 hypophosphorous acid 20% solvent-free 6h 80 85 

15 hypophosphorous acid 20% ethanol 6h 20 32 

16 hypophosphorous acid 20% ethanol 6h 50 77 
a: Conversion based on LCMS analyses at 280 nm. b: 2-ethylhexylphosphate (MPE) was synthesized by a procedure adapted from the literature.36 c: by-

product formed after the attack of phosphate rock with sulfuric acid (ore transformed in Jorf Al Asfar plant, Morocco).d: Natural phosphate from an ore 

extracted in Khouribga region (Morocco) 

From a mechanistic point of view, the urea derivative reacts with the aldehyde to form an hemiaminal product. 

Hypophosphorous acid (pKa 1.2) is believed to protonate this hemiaminal, promoting its dehydration to an 

iminium intermediate, which subsequently reacts with ethyl acetoacetate. Final cyclodehydration provides the 

desired DHPM derivative (see below Figure 2).37,38 

With these optimized conditions in hand (heating in ethanol at 80°C for 4h in the presence of 20% of 

hypophosphorous acid), the scope of the protocol was studied by reacting various (hetero)aromatic/aliphatic 

aldehydes, diketones and (thio)urea derivatives (Table 2). All compounds were recovered by simple filtration and 



washing after ice-cooling of the reaction mixture and were purified by recrystallization. Under these conditions, 

model dihydropyrimidinone 1a was obtained with 96% yield. 

Table 2: Scope and limitations of the proposed conditions.a Synthesis of 3,4-dihydropyrimidin-2(1H)-(thi)ones 

1a-y 

H3C R2

O O

N
H

NH2

X HN

NH

X

R1

O

R2

H3C

20% H3PO2

R1 H

O

+ + R3
Ethanol, 80°C

 

Entry R1 R2 R3 X Product b Yield c (%) 

1 

 

OEt H O 1a 96 

2 

 

Me H O 1b 94 

3 

 

Me H S 1c 98 

4 

 

OEt Me S 1d 98 

5 

 

OEt H O 1e 93 

6 

 

OEt H O 1f 94 

7 

 

OEt H O 1g 97 

8 

 

Me H O 1h 98 



9 

 

OEt H O 1i 92 

10 

 

 

Me H O 1j 94 

11 OEt H O 1k 98 

12 OEt H S 1l 97 

13 

 

OEt H O 1m 97 

14 

 

Me H O 1n 96 

15 

 

OEt H O 1o 82 

16 

 

OEt H O 1p 91 

17 

 

Me H O 1q 94 

18 

 

 

OEt H O 1r 90 



19 OEt H O 1s 89 

20 

 

OEt H O 1t 95 

21 

 

OEt H S 1u 92 

22 

 

OEt H O 1v 84 

23 

 

OEt H S 1w 79 

24 

 

OEt H O 1x 78 

25 

 

OEt H O 1y 92 

a Reaction conditions: aldehyde (1 mmol), β-dicarbonyl derivative (1.2 mmol), urea derivative (1.2 mmol) for 6h at 80°C, b: All products were characterized 

by 1H NMR, 13C NMR and LC-MS compared with those reported in the literature, c: Isolated yields.  

Derivatives bearing electron-donating groups, such as 4-dimehylamino, 4-methoxy, 4-hydroxy, and 3-hydroxy, 

respectively, at different positions on the ring reacted in efficient way with both ethyl acetoacetate and 

acetylacetone as R2 and (thio)urea R3 to produce the corresponding DHPMs 1f-l in excellent isolated yields (92–

98%) (Table 2, entries 6-12). A benzaldehyde derivative with an electron-accepting nitro or cyano group on the 

ring showed also a good reactivity to afford the products 1m-o in good isolated yields ranging from 82%-97% 

(Table2, entries 13-15). Benzaldehyde derivatives with halogen atoms at different positions on the aromatic ring 

(4-fluoro, 2,6-dichloro, and 3-bromo) also underwent reaction to form the corresponding products (1p-r) in good 

isolated yields that ranged from 91–94% (Table2, entries 16-18). Heteroaromatic aldehydes, such as 3-pyridine-

aldehyde, 2-furylaldehyde, thiophene-2-aldehyde and 4-bromo-thiophene-2-aldehyde led to the corresponding 

products with the same efficiency 78%-95% (Table 2, entries 19-24). Remarkably, the aliphatic 

phenethylaldehyde were also converted to their DHPM products with 92% yield (Table 2, entries 25).  

In summary, the developed protocol proved robust upon variation of the substituents on the benzaldehyde both in 

terms of electronic nature and position. Moreover, these optimized reaction conditions are suitable for 

heteroaromatic aldehydes as well as for aliphatic phenethylaldehyde that reacted with the same efficiency. The 

scope of the reaction proved also broad towards replacement of β-ketoester by 1,3-diketone or using substituted 

urea and thiourea derivatives. In all cases, high yields were achieved after a straightforward isolation and 



purification procedure. All the synthesized compounds were fully characterized (see experimental part) and 

showed analytical data in accordance with the literature, except for 5, 20 and 23 that represent new compounds.  

To extend the scope of the present methodology, the synthesis of fused-dihydropyrimidinones and more complex 

heterocycles was attempted by extrapolating the urea reagent. We first tried the reaction with 2-

aminobenzimidazole in view to obtain a 1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine tricyclic scaffold. The 

reaction could occur by condensation of 2-aminobenzimidazole and the aldehyde under hypophosphorous acid 

catalysis. Subsequent reaction with a 1,3-dicarbonyl compound and cyclodehydration should provide the desired 

heterocycle. The reaction was performed with five different (hetero)aromatic aldehydes allowing the formation of 

the corresponding 1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidines 2a-2e with satisfactory yields, ranging from 

61% to 92% (Table 3). 

 

Table 3: Synthesis of 1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidines 2a-2e by Biginelli type tricomponent 

reaction in the presence of hypophosphorous acid. 

Entry R Product a Yield b (%) 

1 C6H4 2a 70 

2 4-OMe-C6H4 2b 84 

3 3-Br-C6H4 2c 92 

4 2-Thiophene 2d 77 

5 3-OH-C6H4 2e 61 

a: All products were characterized by 1H NMR, 13C NMR and HR-MS / LC-MS, b: Isolated yields.  

To further explore the efficiency of hypophosphorous acid to produce more complex scaffolds via the Biginelli 

reaction, the conditions developed were applied to other urea derivatives: 2-aminobenzothiazole, N3-phenyl-4H-

1,2,4-triazole-3,5-diamine and N-amidinothiourea (Table 4). The reaction proceeded smoothly with 2-

aminobenzothiazole furnishing, after cyclocondensation, the desired 4H-benzo[4,5]thiazolo[3,2-a]pyrimidine 

derivative 3 with 84% yield. Interestingly, the obtained product 3 showed a tautomeric dearomatisation behavior 

on the benzothiazole core, as already reported for 2-aminobenzothiazole derivatives linked to electron-



withdrawing groups.39 The reaction also proceeded with N3-phenyl-4H-1,2,4-triazole-3,5-diamine to provide 5,8-

dihydro-[1,2,4]triazolo[4,3-a]pyrimidine analog 4 with 43% yield. Finally, these conditions were attempted with 

N-amidinothiourea as substrate to study the regioselectivity of the cyclocondensation. Indeed, two reaction 

products 6 and 6’ can be possibly formed (Figure 2). A full selectivity was obtained towards the cyclisation via 

the thiourea part, relative to the guanidine part. However, a second benzaldehyde condensation occurred on the 

terminal guanidine nitrogen of 6, leading to the corresponding imine derivate 5 in 72% yield.  

Table 4: Synthesis of complex heterocyclic systems by Biginelli-like reaction using urea analogues  

 R3 Product a Yield b (%) 

 
 

 
3 

84 

 

 

 
4 

43 

 

 

 
5 

72 

a: All products were characterized by 1H NMR, 13C NMR and HR-MS / LC-MS, b: Isolated yields. 

 

 



 

Figure 2: Reaction mechanism and possible regioisomer products for the three-component reaction with N-

amidinothiourea 

Ultimately, our hypophosphorous acid conditions successfully provided the desired heterocycles with all the 

substrates tested. From the synthesized compounds, 3 has already been described, obtained in the presence of 

TMGT (1,1,3,3-N,N,N’,N’- tetramethylguanidinium trifluoroacetate) ionic liquid at 100°C for 5h with only 66% 

yield, 40 whereas 4 and 5 are new compounds. These experiments further underline the advantages of the use of 

H3PO2 as green catalyst to provide a broad scope of products with improved yields and shorter reaction times, 

while relying on environmentally benign procedure and easy workups. 

Beyond the establishment of efficient conditions based on the use of readily available hypophosphorous acid, the 

developed methodology is particularly interesting to open access to complex heterocycles with biologically 

relevant structures. Indeed, the 1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine tricyclic scaffold presents a 

benzimidazole condensed ring system that has shown interesting anticancer activities against a panel of cancer cell 

lines and the 4H-benzo[4,5]thiazolo[3,2-a]pyrimidine core has demonstrated efficiency in antibacterial and 

antimycobacterial models.41 Moreover, the new scaffolds 4 and 5 possess very interesting structural features to be 

evaluated for potential future applications in anticancer, inflammation and antibacterial models. 



 In summary, we developed an efficient hypophosphorous acid-based protocol for the Biginelli reaction, 

showing effectivity improvements compared to the existing methods, and advantages in the context of green 

chemistry as it is catalyzed by a readily available simple chemical: H3PO2, and does not require the use of toxic 

metals or solvents. Moreover, it displays a broad scope in terms of substrates, exemplified through the synthesis 

of 33 compounds DHPM, thio derivatives, as well as new bi- and tricyclic structures such as 

benzo[4,5]imidazo[1,2-a]-pyrimidine, 4H-pyrimido[2,1-b]benzothiazole and 5,8-dihydro-[1,2,4]triazolo[4,3-

a]pyrimidine. Overall, the methodology presented allows a rapid, versatile and ecofriendly access to a great 

diversity of functionalized DHPMs and related structures with potential biological interest. 
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