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Multi-Agent Cooperative Camera-Based Evidential Occupancy Grid
Generation

Antoine Caillot1, Safa Ouerghi2, Pascal Vasseur 3, Yohan Dupuis 4, Rémi Boutteau 5

Abstract— About a decade ago the idea of cooperation has
been introduced to self-driving with the aim to enhance safety
in dangerous places such as intersections. Infrastructure-based
cooperative systems emerged very recently bringing a new
point of view of the scene and more computation power. In
this paper, we want to go beyond the framework presented
in the vehicle-to-infrastructure (V2I) cooperation by including
the vehicle’s point of view in the perception of the environment.
To keep the cost low, we decided to use only two-dimensional
bounding boxes, thus depriving ourselves of depth information
that contrasts with state-of-the-art methods. With this in-the-
scene point-of-view, we propose a new framework to generate a
cooperative evidential occupancy grid based on the Dempster-
Shafer Theory and which employs a Monte Carlo framework
to incorporate position noise in our algorithm. We also provide
a new cooperative dataset generator based on the CARLA
simulator. Finally, we provide an extended review of our new
cooperative occupancy grid map generation method which
improves the state-of-the-art techniques.

I. INTRODUCTION

Nowadays, navigation and traffic management in intersec-
tions and roundabouts is still a complex task [1], [2]. The
perception of the environment aims at providing an accurate
and robust estimation of the state of other road users in
order to make safe navigation decisions both for humans
and autonomous vehicles.

To perceive the environment, we decided to use data from
the infrastructure but also data from the in-the-scene users’
points of view. The inclusion of vehicle data in the scene
enhances the intersection’s safety while allowing reducing
the number of sensors on the edge of the road and, conse-
quently, the cost of the infrastructure. Currently, to tackle
this challenge, many systems propose the implementation of
infrastructure allowing the observation of a scene [3], [4],
[5], [6] but none of these solutions take into account the
vehicles’ point of view.

In this paper, we use only two-dimensional bounding box
information from cameras to keep the cost of our cooperative
system low and to reduce the required data rate and thus the
communication burden of the cooperative systems. We noted
that the state of the art systems uses range sensors such as
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LiDAR [3], [4], [5] or RADAR[6], which are more expensive
than cameras. Bounding box information extraction is out of
the scope of this paper and is therefore considered given
either by an algorithm such as YOLO [7] or by an ADAS
such as the Mobileye’s solution used in [8].

In this work, we take advantage of the in-scene point
of view from the vehicles in order to enrich a common
map of the scene in the form of an evidential occupancy
grid [9] and to build confidence while decreasing the costs.
Usually, classical occupancy grids as defined in [10] are used
[11], [12]. However, the latter use joint probabilities based
method to merge the grids which do not take into account
the unobserved cells.

We also present a new dataset generator with available
source code1 based on the CARLA simulator [13] allowing
to have several instrumented agents in the scene.

In the remainder of this section, we review publications
related to our work. Then, we start in section II by presenting
the global architecture of the framework made available. The
computation methods used are presented in the section III.
Finally, we present our results in section IV, in which we
present the cooperative vehicle-infrastructure dataset that has
been generated and used to test our system, before bringing
a conclusion in section V.

A. Related work

Cooperative systems are more and more present in the state
of the art of perception in the autonomous driving context
[14]. Today, two main categories of cooperative systems
exist; vehicle-to-vehicle (V2V) systems [15] and vehicle-to-
infrastructure (V2I) systems [3], [4], [5], [6]. Other systems
also exist and are generally grouped under the name of
vehicles-to-everything (V2X). During the last years, the V2I
paradigm has been significantly developed with the aim of
obtaining an omniscient point of view. However, with the
development of the V2I paradigm, more interest has been
devoted to the data at the infrastructure’s level while the
data from the vehicles to the infrastructure has been left
aside which could have been used to refine the detections
made by the infrastructure. This motivated us to take into
consideration these data to propose a framework that is able
to exploit multiple points of view.

In order to make a cooperative system, the question of
the data sharing level arises. Several strategies have been
investigated in the state of the art [16]. Either raw data,

1https://github.com/caillotantoine/
carla-V2X-dataset-generator

https://github.com/caillotantoine/carla-V2X-dataset-generator
https://github.com/caillotantoine/carla-V2X-dataset-generator


directly provided by sensors can be shared [15], [4] or data in
the form of labels where the agents do most of the processing
locally before sharing them as in [5], [6], [3]. Sharing raw
data has the advantage of densifying the measurements and
thus having an impact on the accuracy of the detection
whereas, for label sharing, the majority of the detections are
done locally on each of the agents which reduce the impact of
the cooperation on the system performances. However, raw
data sharing comes at the cost of higher network pressure
and bandwidth requirements. In our paper, we have decided
to work with pre-processed data where only bounding boxes
of other detected vehicles in the scene are shared without the
use of the whole image. This relies on performing an early
detection at the sensor’s level. This can be generated by a
detection algorithm in order to satisfy the requirements of a
cooperative environment in terms of bandwidth as presented
in [3], [17].

On the other hand, occupancy grids have been extensively
used for mapping but generally using either multiple range
sensors [10], [18] or with cameras but from a single point of
view [19]. This motivated us to use vision-based occupancy
grid mapping in a cooperative context using bounding boxes
detection. We project bounding boxes corresponding to the
detected vehicles onto the ground using back-projection as
presented in [20]. In the latter, the back-projected images on
the ground are merged by using the union method. However,
our merging method is based on Dempster Shaffer Theory
[21], [22] as presented in [9]. We have also used the average
occupancy fusion method based on the intersection between
detections to assess the efficiency of each fusion method in
our vision-based cooperative context.

II. SYSTEM ARCHITECTURE

In this section, we present our cooperative V2I bi-
directional framework for creating occupancy grids from
camera data based on ROS [23]. Our framework is made of
two types of elements: agents and a Road Side Unit (RSU).

A. Agents

The agents can be intelligent roadside sensors or connected
vehicles and can be of an arbitrary amount in the scene.
They are equipped with an image sensor and a system to
identify vehicles in their field of view that extracts bounding
boxes. Every agent publishes their messages on a global topic
containing every bounding box of every agent and will be
read by the RSU as illustrated in Fig. 1.

In our work, we consider that the extraction of bounding
boxes is derived from off-the-shelf solutions and is therefore
not a topic covered here. We consider that timestamps are
generated at the time of shooting from a GPS clock and thus
the sensors are roughly synchronized. Therefore, we used
the synthetic data from the ground truth to which we added
random Gaussian noise.

B. Road Side Unit

The Road Side Unit (RSU) is the central element of
our framework. It aggregates every agents’ messages and
compiles them to form an occupancy grid of the mobile
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Fig. 1: Macro organisation of the agents and the RSU.

objects in the scene. It is composed of different blocks as
illustrated in Fig. 2. We explain the role of each of the blocks
in the following subsections, the mathematical details will be
given later.

Monte Carlo Uncertainties Sampler:
This block takes the bounding boxes and the sensor
pose from which they are extracted and models the
uncertainties by applying noise to the parameters on N
samples created from each original measurement, with
N the larger possible.

Back Projector:
This block uses the bounding box parameters for each
of the N samples, finds the 4 corners of the bounding
box, and projects them on the ground by ray tracing.

Rasterizer:
This block takes the 4 projected points on the ground of
each bounding box and N samples and rasterizes them
on the N occupation grid.

Sample Merger:
This block merges the N occupancy grids forming a
local occupancy grid (LOG) for a sensor.

Stack:
This block keeps the LOGs until the next block empties
it.

Basic Belief Assignment (BBA):
This block assigns, from the observations, the masses
to the different classes used with the DST method to
each cell of the occupation grids. This block appears
only for the DST fusion. In other cases, it is bypassed.

Combiner:
This block merges the occupancy grids of the stack
either based on the DST and the BBA values or directly
with the probabilities contained in the occupancy grids.

III. METHODS

In this section, we provide more details about the func-
tioning of the blocks composing the RSU. We start with the
basic principle of our system: the Back Projection, which
allows us to obtain the footprints of the bounding boxes. We
also present the methods allowing us to generate the local
occupancy grids (LOG). Finally, we present the details of
the methods for merging the LOG. As we go along, we also
give details on the use of Monte Carlo methods.
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Fig. 2: Illustration of bounding box processing and fusion framework in the RSU.

A. Back Projection

The 2D bounding boxes are given in the camera’s image
frame in pixel coordinates. Therefore, we need to back-
project them into the 3D world space. The projection of
a point PW = (XW , YW , ZW )ᵀ expressed in the world’s
reference frame into image point p = (u, v)ᵀ, where u and
v are pixel coordinates, involves two steps: The first one
considers transforming the point into the camera’s reference
frame, given by the position of the optical center of the
camera tc in the world frame and the rotation Rc from the
world back to the camera frame.

The second step consists in transforming the 3D point into
the 2D image plane which requires the intrinsic parameters
matrix K of the camera. The pinhole camera model can be
expressed using homogeneous coordinates as:

s

uv
1

 =

f 0 uc
0 f vc
0 0 1

 [Rc|tc]


XW

YW
ZW

1

 = KTW
C

(
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1

)
(1)

where s is an unknown scale factor, f the focal length, the
parameters (uc, vc) represent the camera’s principal point
coordinates in pixels and TW

C the extrinsic transformation
from the world’s reference frame to the camera’s reference
frame.

It is therefore possible to compute the inverse transforma-
tion to estimate the 3D position of a point in 3D space up
to a scale factor s.

In fact, for each bounding box, we have a set of five
points including the camera’s pose and the four corners of the
bounding box and we need to compute their projection onto
the ground. We start, first, by finding the corresponding 3D
points up to a scale that belong to rays passing through both
the optical center and the 2D points in front of the camera us-
ing the inverse transformation of the pinhole model. Second,
we compute the projection of these points onto the ground
and we use the Plücker coordinates which is a convenient
representation for directed lines in affine 3D space, in our
case the rays from the center to the corners.

The ground is assumed to be a plane π that can be

represented in 3-space as in (2),

π1X + π2Y + π3Z + π4 = 0 (2)

where the vector π = (π1, π2, π3, π4)ᵀ refers to its homoge-
neous representation [24].

Using Plücker coordinates, a ray is represented using a
4x4 Plücker matrix defined according to Equation (3),

L = ABᵀ −BAᵀ (3)

where A = [x1, y1, z1, w1]ᵀ and B = [x2, y2, z2, w2]ᵀ

are two points in the 3D space expressed in homogeneous
coordinates.

Given the ground plane and the set of four rays cor-
responding to the four corners of each bounding box, the
intersection between each ray L and the ground plane π can
be found according to equation (4),

Xgnd = Lπ (4)

where Xgnd is a four-dimensional vector in homogeneous
coordinates. Thus, we obtain for each bounding box a set of
four projected points on the ground plane forming a polygon
that represents a footprint on the ground of the detected
object at a given point of view.

B. Local Occupancy Grids generation
We consider a local occupancy grid (LOG) as an occu-

pancy grid containing the information provided by a single
sensor. Let M be the occupancy grid map over a region
of interest divided into square cells Mx,y where 〈x, y〉
correspond to the position of the cell Mx,y within M
as defined in [25]. Thus, the problem addressed is the
determination of the probability of occupancy of each grid
cell given the measurements. The assigned values to Mx,y

are {mx,y ∈ Z| − 1 ≤ mx,y ≤ 100} where −1 denotes a
cell of unknown occupation, 0 denotes a free cell and 100
an occupied cell as given in ROS documentation.

1) From Ground coordinates to Occupancy Grid (OG)
coordinates : Let δ be the length of the square cell in meters,
(Ox, Oy) correspond to the position of the origin in the
occupancy grid. The position of a footprint is obtained in
cell coordinates from metric coordinates according to (5),

xgrid =

⌈(
1/δ 0 0 Ox

0 1/δ 0 Oy

)
Xgnd

⌉
(5)



where xgrid is a 2-vector and Xgnd a 4-vector.
2) Rasterisation: As explained earlier, detected objects

are projected on the ground plane as polygons forming
footprints which now need to be rasterized in order to fill
the corresponding cells of the occupancy grid. To do so,
we considered the occupancy grid as an image and used the
fillpoly function from the OpenCV library [26]. We used
the 8-connected line parameter, also known as the Moore
neighborhood, for the polygon edges. At this point, the
occupancy of a cell is not proportional to the area occupied
by the polygon but is assigned in a binary manner. Therefore,
the cells in the camera frustum take the value 0, those in the
bounding box frustum takes the value 100 and all the others
of unknown state take the value −1.

3) Modeling uncertainties: The position estimation of
the camera in the scene is subject to noise as well as the
bounding box position and dimension determination on the
image. To model these uncertainties, we created N samples
from each original measurement, with N the larger possible.
Then, we applied noise to the pose estimation and bounding
box estimation parameters for each of the sample. The
noise follows a Gaussian distribution with parameters µ the
original measurement and σ the standard deviation presented
in [27] and in [28]. Each of the N samples is projected on
N sample grids and then merged by averaging the cells.

C. Local Occupancy Grids Merging

Since each sensor provides a local occupancy grid, these
latter have to be merged in order to create a global one.
The LOG is already created with respect to a global frame
reference and can therefore be directly merged without
frame transformations. In fact, two main paradigms have
been investigated in the state of the art to perform the
merging namely the probabilistic approach and the Evidential
approach.

Let M be a global occupation grid. Let’s consider a local
occupation grid Ml and Mi

x,y a given cell of Ml where
〈x, y〉 refer to the location of the cell and i to the index of
the agent 1 ≤ i ≤ NA with NA the number of the available
agents.

1) Probabilistic merging method: The probabilistic
method is based on making the intersection between the
probabilities of occupation of Mi

x,y, i ∈ {1, 2, ..., N} to
erode detections to get the final shape at the intersection
of the point of views. We consider the probability of each
cell as independent, thus P (Mi

x,y ∩Mj
x,y) = P (Mi

x,y) ×
P (Mj

x,y), i 6= j ∈ {1, 2, ..., N}. Therefore, we propose two
methods that perform a product between cells to determine
its occupancy probability as given in (6) [29]. The former,
named inter1, considers the cells having an unknown state
(−1) as having a probability of 0.5 before performing the
product of the cells. The latter, named inter2, ignores the
cells having an unknown value (−1) in the product. For both
of them, values between 0 and 100 are divided by 100.

Mx,y =

N∏
i=1

Mi
x,y (6)

Algorithm 1 Basic Belief Assignment

Require: C ∈ M
m(∅),m(O),m(F ),m(Ω)← 0
if C = -1 then

m(Ω)← 1
else

if C is from an infrastructure sensor then
m(F )← 1.0− C

100
m(Ω)← C

100
else

m(O)← C
100

m(Ω)← 1.0− C
100

end if
end if

2) Evidential merging method: We can also use the
Dempster-Shafer Theory (DST) [21] to merge the LOGs as
attempted in [9]. We give two possible statuses forming the
universe given by the equation (7). O describes the status
of an occupied cell and F that of a free cell. The elements
of the power set 2Ω represent the status of the cell and are
formed by (8).

Ω = {O,F} (7)

2Ω = {∅, {O}, {F},Ω} (8)∑
X∈2Ω

m(X) = 1 (9)

Thus, Ω represents an unknown state. For example, if a cell
has the value -1, we know that it has not been observed and,
consequently, it can be either free or occupied without being
able to choose one state more than the other. Each state has
a mass m corresponding to the probability of the cell being
in that state respecting the distribution of the equation (9).
Since a cell is either occupied or free, m(∅) = 0.

The association of a mass with a 2Ω status is performed
by a function named basic belief assignment (BBA). Our
basic belief assignment function is given by the Algorithm
1. We distinguish two distinct points of view, that of a vehicle
with a grazing view on the scene giving an estimation of the
occupation and that of the infrastructure with a quasi bird eye
view giving an estimation of the absence of occupation of a
cell. Once each cell of each LOG has had its masses assigned,
it is possible to merge them one by one with Dempster’s
rule of combination given in the equation (10) to merge two
cells where X ∈ 2Ω is defined by equation (11) with K =∑

Y ∩Z=∅m1(Y )m2(Z).

mf (X) = m1(X)⊕m2(X) (10)

mf (X) =
1

1−K
∑

Y ∩Z=X 6=∅
m1(Y )m2(Z) (11)

mout(X) =

N⊕
i=0

mi(X) (12)

Dempster’s rule of combination being commutative and
associative, it is, therefore, possible to combine N masses



as expressed in equation (12). Thus, we combine the masses
associated with cells of the same coordinate in each layer.

We propose two methods to associate the values to the
cells from the masses of the final grid. The former, named
dst1, directly assigns to the cell the mass of the set O while
the latter one, named dst2, assigns to the cell the value of
O if the mass of the set F is bigger than the mass of the set
O and Ω, the value of -1 if Ω is bigger than O and F and
the value of 100 in every other cases.

IV. RESULTS

A. Carla dataset

To the best of our knowledge, we have not identified
any dataset that delivers a vehicle-infrastructure cooperative
experimental framework. Therefore, we created a dataset
generator based on the CARLA simulator [13] allowing the
generation of datasets with one or more viewpoints from
infrastructure and vehicles. For the works of this paper, we
generated a dataset with 4 agents: 3 connected vehicles and
an infrastructure. The vehicles pass through the roundabout
and are in the field of view of the infrastructure. Also, some
vehicles will enter the field of view of one or more other
vehicles and have their fields of view overlapping as shown
in Fig. 3. Each agent can have different sensors:
• 1× RGB camera (90◦ fov, 1384× 1032 pixels)
• 1× Depth camera (90◦, 1384× 1032)
• 1× Semantic segmentation camera (90◦, 1384× 1032)
• 1× LiDAR (32 layers, 40◦ vertical fov)

For the different agents, the rigid transformation between
each onboard sensor and the attached reference frame is the
same. For the infrastructure, the sensors are positioned at
13m altitude at the center of the roundabout (located at the
scene’s center) and with a pitch of −20◦. For the vehicles,
the sensors are located at 1.9m above the chassis. In addition
to the raw data, the vehicle’s state is stored in a JSON file for
each frame. This latter contains the sensor’s transformation
matrix with respect to the world’s reference frame as well as
the vehicle’s transformation matrix, linear velocity, angular
velocity, acceleration, forward vector, and 3D bounding box.

In order to generate the ground truth, we used the JSON
files. We retrieve the 4 points forming the bottom plan of
the bounding box and place them in the scene with the
given transformation matrix to express their coordinates in
the world reference frame. We get a perfect polygon forming
the footprint of the vehicle which is then rasterized on the
grid. Fig. 4c illustrates at the frame 155 of the dataset an
example of the map saved where black color corresponds to
a value of 100 and white color corresponds to a value of 0.
Alongside, in Fig. 4, the outputs of each above-mentioned
algorithm are featured.

B. Qualitative Evaluation

We evaluate our algorithm within 280 frames in which we
can distinguish 6 sequences as described below:
Seq 0: This sequence corresponds to the best coverage from

the cars. Each car sees at least one other vehicle.

Fig. 3: Synchronous video frames from each camera of our
multi-agent dataset made with CARLA.

Seq 1: The infrastructure coverage is maximal: each vehicle
is visible from the infrastructure’s point of view.

Seq 2: The coverage is maximal from every agent. Each
car is seen by at least one vehicle and by the
infrastructure.

Seq 3: This sequence gives an example of partial coverage
where both vehicle and infrastructure operate but not
every car is seen by the infrastructure.

Seq 4: This sequence features monomodal detection. This
means that cars are detected either by the infrastruc-
ture or by other vehicles but not both.

Seq 5: This sequence features single detection. The detected
cars are detected by only one agent and thus is not
a cooperative situation.

C. Quantitative Evaluation

We based our quantitative evaluation on Intersection over
Union (IoU) and F1-score which are two common metrics
for occupancy grid evaluation. Both of them are based on
the number of True Positive (TP ), False Positive (FP ),
and False Negative (FN ). To define if a cell is positive,
we compare its value to a threshold. IoU is defined as in
equation (13) and F1-score is defined in (14).

IoU =
TP

TP + FP + FN
(13)

F1 =
TP

TP + 1
2 (FP + FN)

(14)

Table I gives an overview of the IoU and the F1-score for
each sequence and each algorithm. These results were given
with a noise applied following a normal distribution with
a standard deviation of σ = 0.00243m on the lateral and
longitudinal position and of σ = 0.0518m on the altitude as
we can find in [28]. For the rotations, the noise follows a
normal distribution with a standard deviation of σ = 0.1◦

on all axes as we can find in [27]. The bounding boxes
have a normal distribution noise with a standard deviation
of 5 pixels applied on each edge of the bounding box. The
threshold was set at 0.5 but requires in-depth research to
determine its impact on the results.

We note that inter1 obtains a global result 0%, either on
IoU and F1-score, showing that the basic probability-based



(a) Using inter1. (b) Using inter2. (c) Ground truth. (d) Using dst1. (e) Using dst2.

Fig. 4: Occupancy grid map for different methods (frame 155).

TABLE I: Example of the evolution of the IoU and F1 scores with a threshold of detection of 0.50 (normalized) with 3
vehicles transiting in a roundabout.

Algorithm Metric Seq 0 Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Total

inter1 IoU 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inter1 F1 Score 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
inter2 IoU 0.052524 0.005595 0.004103 0.022008 0.214580 0.019923 0.013490
inter2 F1 Score 0.099806 0.011128 0.008172 0.043068 0.353341 0.039067 0.026620
dst1 IoU 0.055993 0.305245 0.287551 0.233977 0.174009 0.162757 0.223513
dst1 F1 Score 0.106048 0.467721 0.446663 0.379224 0.296435 0.279951 0.365362
dst2 IoU 0.175572 0.217005 0.213857 0.175982 0.172789 0.142080 0.188038
dst2 F1 Score 0.298700 0.356621 0.352359 0.299293 0.294663 0.248810 0.316551
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Fig. 5: Example of the evolution of the IoU with a threshold of detection of 0.50 (normalized) with 3 vehicles transiting in
a roundabout.

occupancy grid fusion method as presented in [29], [30] is
not usable in this situation. However, inter2 offers slightly
better results with a maximum IoU of 21.45% in sequence
4 as shown in Fig. 5 but a global IoU of 1.35%.

This behavior is explainable by the fact that inter2 is
a modified version of inter1. Indeed, although these two
algorithms follow the same merging rule, inter2 excludes
the unobserved cells during the merging. This avoids that
individual detections be removed from the final map because
of the successive multiplications by 0.5 that inter1 would
perform in individual detections. However, this approach
shows its limits since beams appear when projecting the
frustums as shown in Fig. 4b, thus increasing the number
of false negatives. In sequence 4, the position of the vehicles
offers viewpoints to the agents allowing them to reduce the
beams due to frustum and thus to reduce the number of
false positives. Nevertheless, this situation disappears when
moving to sequence 5, and the false-positive rate increases
dramatically.

Regarding the results obtained with our method, the al-
gorithms based on the Dempster-Shafer theory (DST) offers

much better results than the standard method cited in the
previous paragraph. The fusion algorithm dst1 offers a
maximum IoU of 30.52% in the sequence 1 and a global
IoU of 22.35% while dst2 offers a global IoU of 18.8%.

The fusion algorithms dst1 and dst2, based on the DST,
show much better results since the DST allows the manage-
ment of cells with an unknown state. We can consider that
the distribution of masses can give a hint on the confidence
of a measurement. Thus, when a cell is not observed, the
confidence associated with this measurement is null. The
consequence of this behavior is the elimination of the beams
as observed in the methods inter1 and inter2 and thus the
reduction of the false positives. We notice a more erratic
behavior on Fig. 5 until frame 140. This is due to the fact that
a vehicle is too far away to be detected which corresponds
to a false negative. Moreover, the vehicles are distant from
each other, which has the consequence of amplifying the
observation errors. As for the last sequences, the vehicles
move away from each other and leave the field of view of
the infrastructure, thus increasing the measurement errors.
Therefore, we can conclude that the results are given at the



beginning and the end of the traffic circle transit as given
in Fig. 5 are due to measurement errors. To conclude, we
note that dst1 and dst2 do not seem to be affected by the
arrangement of the vehicles as is inter2 and therefore dst1
and dst2 are more robust than the state of the art methods
while providing better results.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach for cooperative
perception in order to create an evidential occupancy grid
map. We used the vehicle point of view in addition to the
infrastructure point of view in order to build confidence at
low cost.

In addition, we propose a method for cooperative gen-
eration of evidential occupancy grid using only the two-
dimensional bounding boxes given by an image sensor as
well as the position of that sensor with the aim of keeping
the system’s cost low as well as reducing the load on the
communication system.

Finally, we propose a study on different data fusion meth-
ods based either on a Bayesian approach or on a Dempster-
Shafer based approach on which we observe much better
results. We have validated our results on a cooperative dataset
that we have created from the CARLA simulator that we
provide and to which we have added measurement noise.

In future work, we will explore decision taking approaches
for the generation of the occupancy grid map more advanced
than thresholding as well as the impact of the number of
agents in the scene.
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“Providentia - a large scale sensing system for the assistance of
autonomous vehicles,” in Robotics: Science and Systems (RSS),
Workshop on Scene and Situation Understanding for Autonomous
Driving, 2019. [Online]. Available: https://sites.google.com/view/
uad2019/accepted-posters

[7] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[8] M. Baek, D. Jeong, D. Choi, and S. Lee, “Vehicle Trajectory Prediction
and Collision Warning via Fusion of Multisensors and Wireless
Vehicular Communications,” Sensors, vol. 20, no. 1, p. 288, Jan. 2020,
number: 1 Publisher: Multidisciplinary Digital Publishing Institute.
[Online]. Available: https://www.mdpi.com/1424-8220/20/1/288

[9] F. Camarda, F. Davoine, and V. Cherfaoui, “Fusion of evidential
occupancy grids for cooperative perception,” in 2018 13th Annual
Conference on System of Systems Engineering (SoSE), June 2018, pp.
284–290.

[10] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[11] D. Nuss, S. Reuter, M. Thom, T. Yuan, G. Krehl, M. Maile, A. Gern,
and K. Dietmayer, “A random finite set approach for dynamic occu-
pancy grid maps with real-time application,” The International Journal
of Robotics Research, vol. 37, no. 8, pp. 841–866, 2018.

[12] S. Steyer, G. Tanzmeister, and D. Wollherr, “Grid-based environment
estimation using evidential mapping and particle tracking,” IEEE
Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 384–396, 2018.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[14] A. Caillot, S. Ouerghi, P. Vasseur, R. Boutteau, and Y. Dupuis,
“Survey on cooperative perception in an automotive context,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–20, 2022.

[15] Q. Chen, S. Tang, Q. Yang, and S. Fu, “Cooper: Cooperative percep-
tion for connected autonomous vehicles based on 3d point clouds,” in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 514–524.

[16] Z. Zhang, S. Wang, Y. Hong, L. Zhou, and Q. Hao, “Distributed
dynamic map fusion via federated learning for intelligent networked
vehicles,” arXiv preprint arXiv:2103.03786, 2021.

[17] S.-W. Kim, Z. J. Chong, B. Qin, X. Shen, Z. Cheng, W. Liu, and
M. H. Ang, “Cooperative perception for autonomous vehicle control
on the road: Motivation and experimental results,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013, pp.
5059–5066.

[18] H. Moravec and A. Elfes, “High resolution maps from wide an-
gle sonar,” in Proceedings. 1985 IEEE international conference on
robotics and automation, vol. 2. IEEE, 1985, pp. 116–121.

[19] S. Richter, Y. Wang, J. Beck, S. Wirges, and C. Stiller,
“Semantic evidential grid mapping using monocular and stereo
cameras,” Sensors, vol. 21, no. 10, 2021. [Online]. Available:
https://www.mdpi.com/1424-8220/21/10/3380

[20] S.-W. Kim, B. Qin, Z. J. Chong, X. Shen, W. Liu, M. H. Ang,
E. Frazzoli, and D. Rus, “Multivehicle cooperative driving using
cooperative perception: Design and experimental validation,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp.
663–680, 2014.

[21] K. Sentz, S. Ferson, et al., Combination of evidence in Dempster-
Shafer theory. Sandia National Laboratories Albuquerque, 2002, vol.
4015. [Online]. Available: https://www.osti.gov/servlets/purl/800792

[22] G. Shafer, “Dempster-shafer theory,” Encyclopedia of artificial intel-
ligence, vol. 1, pp. 330–331, 1992.

[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[24] R. Hartley and A. Zisserman, “Multiple view geometry in computer
vision 2nd ed., 4th print,” 2006.

[25] S. Thrun, “Learning occupancy grid maps with forward sensor mod-
els,” Autonomous robots, vol. 15, no. 2, pp. 111–127, 2003.

[26] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[27] L. Lecrosnier, R. Boutteau, P. Vasseur, X. Savatier, and F. Fraundorfer,
“Camera pose estimation based on pnl with a known vertical direc-
tion,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3852–
3859, 2019.

[28] R. Abdulmajed and R. ABBAK, “Accuracy comparison between gps
only and gps plus glonass in rtk and static methods,” Ph.D. dissertation,
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