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. In this paper we introduce the analogous notion for complex Hadamard matrices, and we study the self dual class in length at most 98. We use three competing methods of generation: Brute force, Linear Algebra and Groebner bases. Regular Hadamard matrices and Bush-type Hadamard matrices provide many examples. We introduce the strong automorphism group of complex Hadamard matrices, which acts on their associated self-dual bent sequences. We give an efficient algorithm to compute that group.

Introduction

Complex Hadamard matrices are matrices C of order n with entries in the fourth roots of unity Ω 4 = {±1, ±i} satisfying

CC * = nI,
where * denotes the transpose conjugate, and I is the identity matrix of order n. They were introduced by Turyn and studied by Seberry [10], and Kharaghani [START_REF] Kharaghani | Regular complex Hadamard matrices[END_REF][START_REF] Kharaghani | The excess of complex Hadamard matrices[END_REF], among others. A survey is [9]. A webpage is [14]. Complex Hadamard matrices are conjectured to exist for all even n [10].

If n is even and the sum of two squares n = a 2 + b 2 , then at least one regular C is conjectured to exist.

Recently, a notion of bent sequences attached to Hadamard matrices was introduced in [START_REF] Solé | Bent Sequences over Hadamard Codes for Physically Unclonable Functions[END_REF] from a motivation of security. In a companion paper [START_REF] Shi | Self-dual Hadamard bent sequences[END_REF] the self-dual subclass bent sequences for Hadamard matrices is studied. In the present paper we conduct the analogous study for complex Hadamard matrices. The main hurdle in this generalization was in the definition, as explained in the Preliminaries section.

Preliminaries

A self-dual bent sequence attached to the complex Hadamard matrix C is defined as X ∈ Ω n 4 such that

CX = λX,
where λ is an eigenvalue of C.

Proposition 1

If there exists at least one self-dual bent sequence of length n, then n is the sum of at most two squares.

Proof.

By the Hadamard property we see that |λ| 2 = n. By eigenvalue definition, we see that

λ = a + ib ∈ Z[i]. Taking squared norms we get n = a 2 + b 2 . If one of a, b is zero then n is a square. If both are non zero then n is a sum of two squares.
An equivalent definition is thus:

let n = a 2 + b 2 , with a, b ≥ 0. A self-dual bent sequence attached to C is defined as X ∈ Ω n 4 such that CX = (±a + ±ib)X,
where (±a+±ib) is an eigenvalue of C. Note that b+ia = i(a-bi) = i(a+bi) * , so that swapping a and b amounts to simple changes in C and X.

In the case n = 2 2m = (2 m ) 2 , and C the Sylvester Hadamard matrix of order n such sequences were studied in [START_REF] Sok | Patrick Solé Classification and Construction of quaternary self-dual bent functions[END_REF]. The case of n a square and C an arbitrary real Hadamard matrix is treated in [START_REF] Shi | Self-dual Hadamard bent sequences[END_REF].

The even integers ≤ 98 and sum of at most two squares are 

C = H t -iH t -iH t H t .
If the row sum of H is σ, then C is regular of constant row sum (1 + i)σ.

Remark:

The matrix C in this Theorem has an order 4 or a multiple of 8. This is a special case of Theorem 1 of [10]: The Kronecker product of a Hadamard matrix of order n by a complex matrix of order h is a complex Hadamard matrix of order hn. The Magma command is KroneckerProduct(A, B) for the Kronecker product of A by B.

Example: The following program constructs 5 complex Hadamard matrices of order 32 from the 5 non-equivalent Hadamard matrices of order 16.

R<i>:=CyclotomicField(4); C2:=Matrix(R,2,2,[1, i,i,1]); D:=HadamardDatabase();Q:=RationalField(); for j:=1 to 5 do H:=Matrix(D,16,j);H:=ChangeRing(H,R); C32:=KroneckerProduct(C2,H); Eigenvalues(C32); end for; Note that the eigenvalues of these matrices all have squared norm 32. So there are more eigenspaces to consider.

Bush type

A complex analogue of the Bush-type Hadamard matrix is the following result, inspired by [START_REF] Kharaghani | On the twin designs with the Ionin-type parameters[END_REF]Th. 1]. Similar constructions appear in [4, §5].

Theorem 1 Let there exists a complex Hadamard matrix of order 2n. Then there exists a Bush-type complex Hadamard matrix of order 4n 2 . This matrix is regular of row sum 2n. Proof. Let K be a normalized complex Hadamard matrix of order 2n, and let r 1 , r 2 , . . . , r 2n be the row vectors of K. Let C i = r t i r i , for i = 1, 2, . . . , 2n. Then the following properties are easy to check:

1. C t i = C i , for i = 1, 2, . . . , 2n. 2. C 1 = J 2n , C i J 2n = J 2n C i = 0, for i = 2, 3, . . . , 2n. 3. C i C * j = 0, for i = j, 1 ≤ i, j ≤ 2n. 4. C 1 C * 1 + C 2 C * 2 + • • • + C 2n C * 2n = 4n 2 I 2n . Let H = circ(C 1 , C 2 , . . . , C 2n
), the block circulant matrix with the first row C 1 , C 2 , . . . , C 2n . Then H is a Bush-type complex Hadamard matrix of order 4n 2 . The regularity follows by property 2.

Example:

The following matrix K is a complex Hadamard matrix of order 4

K =     1 1 1 1 1 i -1 -i 1 -1 1 -1 1 -i -1 i     , The matrix C 1 = J 4 . The matrices C 2 , C 3 and C 4 are C 2 =     1 i -1 -i i -1 -i 1 -1 -i 1 i -i 1 i -1     , C 3 =     1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1     , C 4 =     1 -i -1 i -i -1 i 1 -1 i 1 -i i 1 -i -1     .
The matrix

H = circ(C 1 , C 2 , C 3 , C 4
) is a Bush-type complex Hadamard matrix of order 16.

Another construction of Bush-type complex Hadamard matrix is as follows.

Proposition 3 Let there exist a Bush-type Hadamard matrix of order n 2 . Then there exists a Bush-type complex Hadamard matrix of order n 2 having the entries belonging to the set Ω 4 .

Proof.

Let H = [H i j] be a a Bush-type Hadamard matrix of order n 2 , where H i j, 1 ≤ i, j ≤ n, are blocks of order n. By multiplying the off-diagonal blocks with i, we obtain a Bush-type complex Hadamard matrix.

Conference matrices

A construction indicated in [2, p.67] and in [10, Theorem 3] is connected to Paley II. The Jacobsthal matrix is the matrix C q defined in [7, chap. 2, §3] by C q (x, y) = χ(y -x), for x, y ∈ F q . Here χ denotes the quadratic character defined by the three following mutually exclusive cases:

χ(z) =      0 if z = 0, 1 if z = , -1 if z = .
Note that C q is symmetric if q ≡ 1 (mod 4), since then -1 is a quadratic residue. Its extended version S q is obtained by adding a border of ones according to the rule in [START_REF] Van Lint | A course in Combinatorics[END_REF][START_REF] Solé | Bent Sequences over Hadamard Codes for Physically Unclonable Functions[END_REF].

S q = 0 j j t C q ,
with j being an all one row vector of length q.

Proposition 4 If q is a prime power ≡ 1 (mod 4), and S q denotes the extended Jacobstahl matrix, then iI +S q is a complex Hadamard matrix of order q + 1.

Proof.

It is known that S q is a so-called conference matrix [7, chap. 2, ( 16)], and therefore satisfies S q S t q = qI. Hence (iI + S q )(iI + S q ) * = (iI + S q )(-iI + S q ) = (q + 1)I, where the second equality follows by S q = S t q = S * q . The calculation in the proof extends to the situation when we replace S q by conference matrices with zero diagonal [START_REF] Balonin | A Review and New Symmetric Conference Matrices[END_REF]. In particular this constructs complex Hadamard matrices of orders {10, 18, 26, 50, 58, 74, 82, 90, 98}.

Unfortunately, the spectrum of a matrix in that family is not favorable to the existence of self-dual bent functions.

Proposition 5 Let q be a prime power ≡ 1 (mod 4), and with S denoting the extended Jacobstahl matrix, write C = iI + S q . The minimal polynomial of C is x 2 -2ix -(q + 1).

Proof. Since S is real and symmetric, we get C * = -iI + S q = C -2I. The Hadamard relation entails then C(C -2iI) = (q +1)I. the result follows.

Given that the roots of the quadratic are i ± √ q, they belong to Q(i) iff q is a perfect square. That leaves the following orders to test for that construction: {10, 26, 50, 82}.

Williamson type

A Hadamard matrix H of order 4m is said to be quaternionic if there are four matrices A, B, C, D of order m such that

H = A ⊕ I + B ⊕ i + C ⊕ j + D ⊕ k,
where i, j, k are quaternionic units given by

i =     0 1 0 0 -1 0 0 0 0 0 0 -1 0 0 1 0     , j =     0 0 1 0 0 0 0 1 -1 0 0 0 0 -1 0 0     , k = ij.
If furthermore, we assume A, B, C, D to be symmetric and circulant, we shall say that H is Williamson type.

By Lemma 3 of [START_REF] Kharaghani | The excess of complex Hadamard matrices[END_REF], we know that the existence of such a matrix entails that of a complex Hadamard matrix of the form S T -T S where the overline denotes complex conjugation. One may take S = X + iY and T = V + iW, where X = (A + B)/2, and Y = (A -B)/2. Similarly V = (C -D)/2, and W = (C + D)/2. Lemma 6 of [START_REF] Kharaghani | Regular complex Hadamard matrices[END_REF] exploits this correspondance to construct regular complex Hadamard matrices. In the next result, we use a similar construction. To construct B k we apply a greedy algorithm. We construct the list J of the indices of the columns of B k as follows.

1. Initialize J at J = [START_REF] Balonin | A Review and New Symmetric Conference Matrices[END_REF] 2. Given a column of index we compute the ranks over the complex of r and r of the submatrices of B with k rows and columns defined by the respective lists J and J = Append(J, )

3. If r < r then update J := J

Repeat until |J| = rank(B)

Remark: If the first column of B is zero, step 1 does not make sense, but then there is no self-dual bent sequence in that situation, as all eigenvectors have first coordinate zero.

Complexity: Roughly of order v 3 2 k . In this count v 3 is the complexity of computing an echelonized basis of the eigenspace of C attached to a + bi. The complexity of the invertible minor finding algorithm is of the same order or less.

Numerical examples 7 Conclusion 8 Appendix on Hadamard matrices

In this appendix, we indicate how we constructed the matrices used in our computer experiments.

Order 16

One matrix is obtained applying our Theorem 1 . The other matrix is obtained from the real Bush-type Hadamard matrix from a matrix in [START_REF] Kharaghani | On the twin designs with the Ionin-type parameters[END_REF], by multiplying all off-diagonal blocks by i.

Order 36

One matrix is obtained from the complex Hadamard matrix of order 6 using our Theorem 1. Two matrices are obtained from the real Bush-type Hadamard matrices of order 36 given in [START_REF] Janko | The existence of a Bush-type Hadamard matrix of order 36 and two new infi nite classes of symmetric designs[END_REF][START_REF] Janko | A block negacyclic Bush-type Hadamard matrix and two strongly regular graphs[END_REF].

Order 64

Two matrices were constructed from two complex Hadamard matrices of order 8 obtained from the database [14] upon using our Theorem 1. Another matrix was obtained from a real Hadamard matrix of order 8, using the proposition 3.

Theorem 2

 2 If there is a Hadamard matrix H of order 4t 2 with structureH = R S -S R then the matrix E given by 2E = (R + S) -i(R -S) is a complex Hadamard matrix. If, furthermore, X Y is a self-dual bent sequence for H = S -R R S then U + iV is a self-dual bent sequence for E with U = X + Y and V = X -Y.

4 . 5 . 6 .

 456 For all Z ∈ Ω k 4 solve the system in Y given by Z = Y B k Compute the remaining v -k entries of Y B. If these entries are in Ω 4 declare Y B a self-dual bent sequence attached to C

Proof.

The first assertion is Lemma 4 in [START_REF] Kharaghani | Regular complex Hadamard matrices[END_REF]. The second assertion is a simple calculation starting from

and replacing E by its value. Separating real and imaginary parts we get the system

Remark: By [START_REF] Rj Turyn | An infinite class of Williamson matrices[END_REF], we know that the matrix H in this theorem can be constructed in relation with Williamson matrices.

Coding theoretic interpretation

Let C be a quaternary code of length n over the alphabet Ω 4 . Let Z be the Z 4 code determined by i Z = C. The distance properties of C for the squared Euclidean distance d E are equivalent to the distance properties of Z for the Lee distance d L because of the following identity, easily verified by induction on n :

A Hadamard code H is a code of length n over Ω 4 with |H| = n codewords that are pairwise orthogonal for the standard hermitian inner product <, > in dimension n. Thus we can think of its codewords as the rows of a complex Hadamard matrix of size n. The deviation θ(C, x) of an arbitrary vector x ∈ Ω n 4 from C is defined as

It can be seen by expanding < x -y, x -y > that (< x, y >) = n -d L (u, v), for all x, y ∈ Ω n 4 . The total deviation of the code C is then

Proposition 6 If there is a bent sequence for a complex Hadamard matrix H of order n, then its corresponding Hadamard code C has deviation θ(C) = √ n. Proof. See [START_REF] Solé | Bent Sequences over Hadamard Codes for Physically Unclonable Functions[END_REF]Th. 1] for a euclidean inner product version.

Recall that the covering radius of a code Z ⊆ Z n 4 is given by

The simple inequality (< x, y >)

Combining this fact with the above Proposition yields the following bound.

Corollary 1 If there is a bent sequence for a complex Hadamard matrix H of order n, then the covering radius of its attached

This is less satisfying that [11, Lemma 1].

5 Search methods

Brute force

This method is only applicable for small v's.

1. Construct C a Hadamard matrix of order v like in [START_REF] Solé | Bent Sequences over Hadamard Codes for Physically Unclonable Functions[END_REF] by using Magma database.