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Quasiparticle focusing of bound states in two-dimensional s-wave superconductors

Mateo Uldemolins, Andrej Mesaros, and Pascal Simon∗

Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
(Dated: April 12, 2022)

A magnetic impurity on a superconducting substrate induces in-gap Yu-Shiba-Rusinov (YSR)
bound states, whose intricate spatial structure crucially influences the possibilities of engineering
collective impurity states. By means of a saddle-point approximation we study the scattering pro-
cesses giving rise to YSR states in gapped, two-dimensional superconductors. Further, we develop a
theory which relates through a simple analytical expression an arbitrary energy dispersion of normal
electrons in a two-dimensional host to the spatial features of the YSR states. Namely, we find that
flatter segments of the Fermi surface with large Fermi velocity enhance the local density of states
(LDOS) around the impurity. Our analytical approximation is quantitatively accurate against tight-
binding calculations on various lattices with different Fermi surfaces, and it allows to predict the
shape and orientation of YSR states observed in scanning tunneling spectroscopy experiments. We
illustrate our results with a model of NbSe2.

I. INTRODUCTION

The impurity problem has been in the research com-
munity spotlight since the dawn of solid state physics.
Aside from its fundamental interest, studying the sys-
tem’s response to an impurity, and more generally, to
any kind of defect, constitutes a powerful tool to probe
the substrate. A notable example is the seminal work of
Weissmann et al. [1] who imaged the Fermi surface (FS)
of the host by analyzing scanning tunneling microscopy
(STM) topographies around the impurity. Indeed, the
local density of states (LDOS) is focused along perpen-
dicular directions to flat sections of the FS, thereby estab-
lishing a direct relationship between the anisotropy of the
FS and the system’s response. This phenomenon known
as quasiparticle focusing has been thoroughly studied in
the context of Friedel oscillations in normal metals [2];
however, in spite of being widely accepted that it should
also occur in superconducting substrates, a formal treat-
ment is lacking.

Conventional superconductors are largely immune to
non-magnetic disorder [3], nonetheless, magnetic impuri-
ties localize quasiparticle excitations known as Yu-Shiba-
Rusinov (YSR) states [4–8] whose energy lies within the
superconducting gap. YSR states contain information
about the host, for instance, the properties of its band
structure [9], the pairing function [10] or coexisting emer-
gent phases such as charge density waves [11]. But be-
sides their potential as a probing tool [12–19], arrays of
YSR states evidence spectral signatures of Majorana zero
modes [20–26] (see [27] for a review), and hence embody a
promising pathway towards the realization of topological
superconductivity [28–52]. Understanding the connec-
tion between the Fermi surface of the substrate and the
spatial properties of YSR states is therefore a question
of both fundamental and practical interest.

YSR states were first observed on a Nb(110) substrate
more than two decades ago [53] and since, the field has de-
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veloped immensely [54]. Most notably, YSR states have
been realized on a monolayer NbSe2 substrate [55], which
on the one hand enhances their spatial extent due to its
reduced dimensionality, and on the other hand, imprints
a distinctive six-fold symmetry on the LDOS. Subse-
quent experiments on similar substrates found analogous
responses [17, 56] and the accumulation of the LDOS
along preferential directions was ascribed to the quasi-
particle focusing effect discussed in the first paragraph.
However, unlike the charge-density response in a normal
metal which decays algebraically and whose anisotropy
can only be encoded in an overall prefactor, YSR states
are also endowed with an exponential decay length which
also reflects the anisotropy of FS. Very recently, Ortuzar
and coworkers [57] obtained a general integral expression
of the Green’s function of the substrate by approximat-
ing the Fermi contours by regular polygons. However, an
explicit description of the quasiparticle focusing effect in
superconductors, i.e. the link between simple geometri-
cal features of the exact energy dispersion and the LDOS
at the energy of a YSR state, is missing. This is exactly
the purpose of the present paper.

To reach that goal, we perform a saddle-point approx-
imation valid at large distances from the impurity, in-
spired by the treatment of normal metals in Ref. [2]. We
unveil a simple analytical relationship between, on the
one hand, the real-space anisotropy of decay, oscillations
and amplitude of YSR states, and on the other hand, the
momentum-space anisotropy of the Fermi surface, Fermi
velocity and pairing function of the substrate. Further,
we reveal the underlying scattering mechanisms leading
to the formation of YSR states. Our analytical calcula-
tions are qualitatively consistent with experimental STM
measurements on NbSe2, and remarkably, they provide a
quantitatively accurate description of tight-binding cal-
culations on the same compound. Hence we provide a
complete description of the quasiparticle focusing effect
in s-wave superconductors, thereby bringing forth an an-
alytical tool to predict the shape and orientation of YSR
states, and ultimately aid the design of collective impu-
rity states.
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The rest of the paper is organized as follows. In Sec. II
we present the model Hamiltonian of a classical spin-
impurity on an s-wave superconductor. In Sec. III we
discuss the implications derived from the saddle-point ap-
proximation, namely, the scattering processes (Sec. III A)
and the interpretation of the critical points in the limit
of a small superconducting gap (Sec. III B), and we ex-
tend the formalism to k-dependent, gapped pairing func-
tions (Sec. III C). Finally, in Sec. IV we summarize the
conclusions of our work. In Appendix A we extend the
results in [2] to a two-dimensional normal metal. We de-
tail the calculations in Appendix B, we analyze the inter-
play between the LDOS prefactor and the decay length
in Appendix C and we present an example beyond the
small-gap approximation in Appendix D.

II. MODEL HAMILTONIAN

We describe the two-dimensional superconducting sub-
strate at mean field level by the standard BCS Hamilto-
nian for s-wave superconductors,

H0 =
∑
kσ

εkσc
†
kσckσ +

∑
k

∆k c
†
k↑c
†
−k↓ + h.c. (1)

For simplicity we assume that spin-orbit coupling in
the substrate is negligible, and therefore that spin is
a good quantum number. Nevertheless, if that were
not the case Eq. (1) would be formally equivalent in
a pseudo-spin basis. Further, we will consider a sub-
strate with time-reversal symmetry (TRS), and assume
that the energy dispersion of the normal electrons εkσ is
spin-independent and even in k. Finally, let us choose a
gauge such that the superconducting parameter is real,
and assume it to be k-independent, ∆ = ∆∗. Since the
superconducting substrate has TRS, a non-magnetic po-
tential only does not suffice to induce in-gap states. We
will consider a point-like, isotropic, magnetic impurity at
r = 0, described by the Hamiltonian

Himp = −J
(
c†r↑cr↑ − c

†
r↓cr↓

)
δ(r), (2)

where J is the Zeeman splitting between spin-up and
spin-down superconducting electrons. We note that a
complete description of adsorbed atoms and magnetic
molecules typically requires adding a non-magnetic scat-
tering potential to the Hamiltonian. The strength of this
potential affects the energy of the YSR state and yields
some degree of asymmetry between the in-gap DOS at
positive and negative bias, however, it does not alter the
fundamental properties of the spatial distribution of the
quasiparticle excitations, and therefore we will omit it
to simplify matters. Furthermore, we neglect any quan-
tum phenomena associated to the magnetic impurity (e.g.
Kondo screening) [58, 59] and any spatial renormalization
of the superconducting gap around the impurity [60, 61].
The Bogoliubov-de Gennes Hamiltonian (BdG) of the

system in the Nambu basis Ψ = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑)
T reads

H = εkτz + ∆τx − Jσzδ(r). (3)

where k and r designate the electron’s momentum and
position, and Pauli matrices τi and σi act on particle-hole
and spin space respectively.

The in-gap contribution to the LDOS due to the im-
purity is given by

δρ(r, E) ∼ Tr{Im[Ĝ0(r,0;E)T̂ (E)Ĝ0(0, r;E)]}, (4)

where

Ĝ0(ra, rb;E) =∫
dk

(2π)2

eik·(ra−rb)

E2 −∆2 − ε2
k

(
E + εk ∆

∆ E − εk

)
(5)

denotes the real-space bare propagator from ra to rb at
energy E in particle-hole space, and T̂ (E) corresponds
to the transfer matrix. Since we assumed that the impu-
rity scattering was fully isotropic, the transfer matrix is
momentum-independent, and therefore the spatial struc-
ture of the LDOS is encoded in the bare propagator (5).
This further justifies treating the impurity as a classi-
cal spin [Eq. (2)]. We note that it is possible to express
the energy of the YSR state E in terms of the system’s
parameters under certain assumptions about the DOS
[9], however, it can be easily calculated for an arbitrary
energy dispersion numerically, or measured in an STM
experiment [55]. Therefore, we will treat it as an inde-
pendent parameter in the calculation. In the following
sections we obtain an approximate expression of the in-
tegral in Eq. (5) far away from the impurity for an ar-
bitrary anisotropic energy dispersion and we discuss its
implications.

III. RESULTS

To calculate Ĝ0(r,0;E) and Ĝ0(0, r;E) in the large
r regime we start from the idea of the saddle-point ap-
proximation technique (see Appendix A) and generalize
it to the complex plane (see Appendix B for details). We
assume that rkF, min � 1 where kF, min is the mimimum
Fermi wave vector of an arbitrary Fermi surface. For an
isotropic Fermi surface, it boils down to the usual con-
dition rkF � 1. We do not treat the superconducting
gap self-consistently because the gap should be modified
only on a short lengthscale rkF ∼ 1 [60], much below the
lengthscale on which we apply the saddle-point approxi-
mation. In essence we replace the integral in momentum
space by a sum of the integrand evaluated at the criti-
cal points kj(θr) giving the largest contribution to the
integral,

Ĝ0(r,0;E) ∼
∑
j

eikj(θr)·rG0[kj(θr);E]. (6)
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The set of critical points depends on the observation di-
rection (θr) and they satisfy the following conditions,

εkj,±(θr) = ±iω, (7a)

∇εkj,±(θr) = ±|∇εkj,±(θr)|r̂, (7b)

where ω2 = ∆2 − E2. To understand the nature of the
critical points it is insightful to compare Eqs. (7) with
their analogue for a charge impurity embedded in a nor-
mal metal. The latter result was originally discussed
by Lounis et al. [2, 62] for three-dimensional systems
and we derive its two-dimensional counterpart in Ap-
pendix A. Similarly to the normal metal scenario, the
gradient of the energy dispersion evaluated at the critical
points kj,+(θr) is also parallel to the observation direc-
tion [Eq. (7b)] in the superconductor scenario. There-
fore, in both situations disconnected Fermi contours give
rise to multiple critical points which we denote with the
subscript j. Precisely, if the curvature of the Fermi con-
tours is strictly positive which we will assume in the rest
of the paper, j = 1, . . . , N where N is the number of
non-equivalent Fermi pockets in the First Brillouin Zone
(FBZ). However, there are two crucial differences:

First, we note that for a given observation direction θr
and a given Fermi pocket j there are two critical points
in momentum space, namely the gradient being parallel
[kj,+(θr)] and antiparallel [kj,−(θr)] to the observation
direction, which yield a significant contribution to both
the propagator G0(r,0;E) and the counter-propagator
G0(0, r;E) [see Fig. 1 (a)]. In the normal-metal case,
only kj,+(θr) contributes to the propagator and only
kj,−(θr) contributes to the counter-propagator. As we
discuss below in the analysis of the LDOS, this duality
of critical points increases the number and richness of
scattering processes.

Second, the critical points in a normal metal are
strictly real and they sit on the Fermi contour. However,
in a superconductor, it follows from the in-gap constraint
on the propagator’s energy (i.e. E < ∆ ⇒ ω2 > 0)
and Eq. (7a) that the critical points kj,±(θr) are com-
plex numbers. One can observe in Eq. (6) that the real
part of the critical points yields the oscillatory behavior
of the LDOS, whereas the imaginary part will lead to
an exponential decay. Thus, we can define the oscilla-
tory and decay characteristic lengths of the propagator,
specifically,

λj,±(θr) =
1

Re[kj,±(θr)] · r̂
, (8a)

ξj(θr) =
1

Im[kj(θr)] · r̂
. (8b)

The former is reminiscent of the Friedel oscillations in
a normal metal, while the latter is the natural conse-
quence of evaluating the bare propagator at sub-gap en-
ergies. We note that the critical points of the counter-
propagator G0(0, r;E) are the complex-conjugate of the
critical points of the propagator G0(r,0;E). Further,

we note that owing to the even parity of the energy
dispersion we can relate the real and imaginary parts
of same-pocket critical points, namely, Re[kj,+(θr)] =
−Re[kj,−(θr)] and Im[kj,+(θr)] = Im[kj,−(θr)]. There-
fore, we conclude that each pocket contributes to the
propagator two terms with the same decay length.

The approximate expression for the bare propagator
reads

Ĝ0(r,0;E) ∼ 1

ω
√
r

∑
j, ε=±

Γj,ε(θr) ·

· e−
r

ξj(θr)
+i[ r

λj,ε(θr)
−επ4 ]

(
E + εiω ∆

∆ E − εiω

)
,

(9)

where Γj,ε(θr) =
1

|∇εkj,ε(θr)|
√
κkj,ε(θr)

. (10)

In these expressions |∇εkj,ε(θr)| and κkj,ε(θr) denote

the norm of ∇εk ≡
(
∂kxεk, ∂kyεk

)
and the curvature of

εk = 0 evaluated at kj,ε(θr) -they are therefore complex
numbers. The summation in Eq. (9) accounts for multi-
ple critical points.

We emphasize that the observation direction deter-
mines the set of critical points kj,ε(θr) through the gradi-
ent equation (7b). Therefore, the anisotropy of the LDOS
at the YSR-state energy is encoded in the exponential de-
cay and in the oscillation period, as well as in an overall
prefactor which depends inversely on the curvature and
the norm gradient of the energy dispersion. Under the
assumption of a non-vanishing curvature, we obtain that
the power-law decay of the LDOS of the YSR state is
isotropic and it goes as 1/r. We conclude that in generic
situations solely the substrate dimensionality determines
the power-law, while exceptional behavior can occur if
the observation direction is perpendicular to a strictly
linear segment of the Fermi surface (then the segment
forms a continuum of critical points, with vanishing cur-
vature for each), or if the observation direction has crit-
ical points lying on zero-curvature points of the Fermi
surface (arguably this leads to a slower algebraic decay
[2]).

We note that owing to the even parity of the energy
dispersion Γj,+(θr) = Γ∗j,−(θr), thus both critical points
(±) belonging to a given pocket j contribute a term with
equal amplitude and exponential decay to the propaga-
tor.

We remark that the LDOS inherits its anisotropic fea-
tures from the Fermi contour, therefore, our approximate
expression for the bare propagator (6) together with the
knowledge of an arbitrary energy dispersion εk allows to
predict the orientation and shape of the YSR state. We
leave this discussion to Section III B where we provide a
physical interpretation of the real and imaginary parts
of the critical points in terms of the energy dispersion
in the limit of a small superconducting gap and we pro-
vide a few examples. Next, we continue discussing the
scattering processes involved in the LDOS.
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FIG. 1. Scattering processes for a Fermi contour with two pockets, j = 2. (a) The black, dashed lines represent the Fermi
contour. The gray arrows indicate the normalized gradient of the energy dispersion at the Fermi contour. The black arrow
signals an arbitrary observation angle θr. The color markers indicate the real part of the critical points on the Fermi contours
(see Sec. III B for details) for the observation direction θr and each color corresponds to a different Fermi pocket. The
color arrows represent the normalized gradient of the energy dispersion evaluated at the critical points, which is parallel and
antiparallel to the observation direction. (b) Summary of the oscillation and decay lengths in the relevant scattering. Colored
frames correspond to intrapocket processes. Shaded entries indicate the processes present in a normal metal. Note that we

dropped the redundant labels in λε,ε
′

j,j′ to lighten the notation. (c) Examples of normal-metal like and condensate-mediated

scattering process [cf. Eqs. (13a) and (13b) respectively]. Color markers indicate the corresponding entry in panel (b).

A. Underlying scattering mechanisms

In order to interpret the significance of the critical
points kj,±(θr) it is insightful to write explicitly the prod-

uct δĜ(r, r;E) ∼ Ĝ0(r,0;E)T̂ (E)Ĝ0(0, r;E) up to lin-
ear order in the impurity potential. For concreteness
we present the electron-electron component which cor-
responds to the LDOS measured at positive bias; the
hole-hole entry is analogous up to a phase factor. The
full expression can be found at the end of Appendix B.
The relevant term contributed by Fermi pockets j and j′

is

δGj,j
′

ee ∼
1

r

∑
ε,ε′=±

Γj,ε(θr)Γj′,ε(θr)

· e
− r
ξ
j,j′ (θr)

+i r

λ
ε,ε′
j,j′

(θr)
Gε0e,α

Gε
′

0α,e ,

(11)

where

ξj,j′(θr) =

(
1

ξj(θr)
+

1

ξj′(θr)

)−1

, (12a)

λε,ε
′

j,j′(θr) =

(
1

λj,ε(θr)
− 1

λj′,ε′(θr)

)−1

. (12b)

The summation in α runs over particle-hole space. The
products of the matrix entries read

Gε0e,e
Gε0e,e

= (E + εiω)2, (13a)

Gε0e,h
Gε
′

0h,e
= ∆2, (13b)

Gε0e,e
Gε0e,e

= ∆2. (13c)

A term shown in Eq. (11) represents one of the possible
electron-electron scattering processes up to linear order
in the impurity potential. Let us start by considering the
case of a single-pocket Fermi contour, and thereby drop
the summation in j, j′.

Case of a single-pocket Fermi contour, j = 1. As we
discussed in the context of the bare propagator, the pair
of critical points belonging to the same pocket yields
states with the same decay length ξ1. Therefore, in
this case all scattering processes have the same decay
length ξ1,1. Further, scattering processes which reverse
the momentum of the excitation, i.e. from k1,ε(θr) to
k1,ε(θr) exhibit an oscillatory character controlled by

λε,ε1,1(θr). Within this class, we can distinguish a conven-

tional scattering process [Eq. (13a), Fig. 1 (c) top] and a
condensate-mediated scattering process [Eq. (13b)]. By
taking the ∆ → 0 limit while keeping the energy of
the propagator finite it can be observed that the for-
mer is reminiscent of the normal-metal scattering while
the latter arises due to the superconducting nature of
the substrate. On the other hand, scattering processes
which conserve the momentum of the excitation, i.e. from
k1,ε(θr) to k1,ε(θr), do not exhibit an oscillatory char-
acter [λε,ε1,1(θr)−1 = 0]. All processes belonging to this
class are mediated by the superconducting condensate
and therefore their amplitude scales with ∆2 [Eq. (13b),
Fig. 1 (c) bottom, and Eq. (13c)]. This is consistent
with our previous discussion on the critical points, where
we pointed out that in the normal-metal scenario only
k+(θr) and k−(θr) contribute to the propagator and
counter-propagator respectively. Therefore we conclude
that momentum-conserving scattering processes are a
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distinctive feature of the superconducting medium.
Case of a multi-pocket Fermi contour, j > 1. If there

is more than one pocket in the Fermi contour, the discus-
sion of the previous paragraph applies to all intrapocket
processes. Each pocket contributes to the propagator
eight terms which decay with ξj,j(θr). Now there also
exist interpocket scattering processes which decay with

ξj,j′(θr) and oscillate with λε,ε
′

j,j′(θr) [see Fig. 1 (b)]. Note
that since the LDOS decay length is the harmonic mean
of the propagator decay lengths from the existing pockets
[Eq. (12a)], the largest ξj,j′(θr) always belongs to an in-
trapocket process, i.e. j = j′. Furthermore, in general all
interpocket processes have an oscillating character even
if ε = ε′. As predicted for the normal metal, here the
existence of several characteristic frequencies also gives
rise to a beating pattern. However, the fact that the
largest decay length corresponds to an intrapocket pro-
cess which has one characteristic frequency only implies
that in the very large |r| limit the beating pattern will
be suppressed. Finally, we remark that the classifica-
tion of the scattering processes into normal-metal-like
and condensate-mediated discussed previously applies to
interpocket processes as well.

B. Small-gap limit

To elucidate the meaning of complex critical momenta
it is useful to reconcile the normal-metal solution with
the superconductor counterpart. As we discussed at the
beginning of Sec. III, if ∆ is strictly zero, the critical
points are real and sit on the Fermi surface. In Appendix
B 2 we show that in the limit ∆→ 0,

Re[kj,±(θr)] ∼ ±k̃j(θr), (14)

1

Im[kj(θr)] · r̂
≡ ξj(θr) ∼

|∇εk̃j (θr)|
ω

, (15)

where k̃j(θr) ∈ R2 is the normal-metal critical point, i.e.
a point lying on the Fermi contour where the gradient of
the energy dispersion lies parallel to r̂.

The exponential decay of each pocket is hence given
by its anisotropic Fermi velocity. This result provides a
transparent generalization of previous analytical studies
which assumed an isotropic energy dispersion and found
that the LDOS decays with the superconducting coher-
ence length, ξiso ∼ ~vF

∆ [6, 55].
The second source of anisotropy in the propagator is

the prefactor Γj,ε(θr) which itself depends on two quan-
tities [see Eq. (10)]: it goes inversely with the norm of
the gradient of the energy dispersion, and inversely with
the curvature, both evaluated at the critical point. The
inverse curvature causes a phenomenon discussed in the
context of charge impurities in three-dimensional met-
als [2, 62]: quasiparticle focusing. Namely, the inverse
curvature is highest on the flattest parts of the Fermi
surface, and the prefactor Γ will be enhanced for obser-
vation directions perpendicular to such segments. The

saddle point approach makes this connection explicit: if
the observation direction is perpendicular to such a flat-
ter segment, and hence it is aligned with the energy gradi-
ent there, the critical point will indeed be on the segment
[see Eq. (7b)] and its inverse curvature will be high. The
quasiparticle focusing in our theory for superconductors
hence justifies why previous experimental works show an
enhancement of the LDOS along directions perpendicular
to the flattest segments of the Fermi surface [17, 55, 56].

The norm of the gradient of the energy dispersion plays
a crucial role in the anisotropy of the YSR LDOS. Firstly,
through the decay length which is enhanced where the
gradient is the highest, as we discussed in the beginning
of this subsection. Previous studies of superconductors
failed to point out this dependence, which constitutes
a fundamental difference with respect to the normal-
metal scenario where the impurity response lacks any
exponential decay length. Secondly, as a quantity enter-
ing inversely in the prefactor Γj,ε(θr), which stems from
the reduced dimensionality of the substrate (we find the
same prefactor in a two-dimensional normal metal, see
App. A). Hence the norm of the gradient reduces the
prefactor Γj,ε(θr) for observation directions for which it
enhances the decay length, and naively one would expect
a competition. Nevertheless, we observed in all studied
examples that overall the prefactor Γj,ε(θr) and the char-
acteristic length ξj(θr) grow and shrink in phase as the
observation direction θr varies. This behavior is possi-
ble because the reduction of Γ due to the inverse norm
gradient can be more than compensated by the inverse
curvature. In Appendix C we provide a scaling argument
to justify that indeed overall Γj,ε(θr) varies as the inverse
curvature (e.g., it is highest on the flattest segments of
the Fermi surface).

1. Application to a single-pocket model

To illustrate the relationship between the Fermi con-
tour and the anisotropy of the YSR states, let us consider
a nearest-neighbors tight-binding energy dispersion on a
square lattice,

εk = µ− 2t(cos kx + cos ky), (16)

where µ is the chemical potential and t is the hopping
amplitude. As we tune the chemical potential away from
the mid-band point the Fermi contours become more
isotropic [see Fig. 2 (a)], and so does the LDOS at the
YSR-state energy [see color maps in Fig. 2 (c-f)].

For a given doping, the LDOS prefactor is most promi-
nent along directions perpendicular to the flattest sec-
tions of the Fermi contour, namely θr = ±π4 [Fig. 2
(b)]. Nevertheless, we recall that the prefactor does not
only depend on the curvature of the Fermi contour, but
also on the inverse of the angle-dependent Fermi veloc-
ity. Compare, for instance, the pale-orange (µ/t = 1/80)
and brown (µ/t = 7/8) curves in Fig. 2 (a) and (b) at
θr = 0. Although for that direction the curvature of
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FIG. 2. (a) Fermi contours of the energy dispersion in Eq.
(16) at several doping values. The long, black arrow indicates
an arbitrary observation direction θr, and the small, colored
arrows the normalized gradient of the energy dispersion at
the corresponding critical points. Note that for a perfectly
circular Fermi contour the critical point would sit at θr ex-
actly. (b) Polar plot of the LDOS prefactor in log-scale for
the energy dispersions represented in (a). (c-f) Electron part
of the LDOS at the YSR-state energy calculated numerically
from the energy dispersions in (a). Field of view is 401 by
401 lattice sites around the impurity. Color bar in arbitrary
units, log-scale. The color curve is a polar plot of the decay
length. The solid line indicates the analytical approximation
and the circular markers are extracted from fitting cuts of the
numerical LDOS. We note that the scale of the polar curves
is different from the scale of the underlying color maps; the
circumscribing circle of the color curve in (c) corresponds to
65 lattice sites. Numerical parameters: t = 200 meV, ∆ = 5
meV, J = 285 meV.

the µ/t = 1/80 contour is larger, the Fermi velocity is
substantially smaller, leading to a larger prefactor.

On the other hand, the exponential decay length [color
line in Fig. 2 (c-f)] is wholly governed by the angle-
dependent Fermi velocity and as we argue in Appendix
C, it is in phase with the prefactor.

Finally, we remark the excellent agreement between
the decay length calculated with the small-gap analyti-
cal approximation and the decay length extracted from
the tight-binding calculation [solid color line and markers
in Fig. 2 (c-f) respectively]. To obtain the former we find
the critical points lying on the Fermi surface and fulfill-
ing ∇εk ‖ r̂, and subsequently we evaluate expression
(15). To obtain the latter, we compute the LDOS at the
YSR-state energy for the energy dispersion (16) numer-
ically [55] and we extract the decay length from fitting
radial cuts to the envelop function of the LDOS, namely
a
r e
−r/ξLDOS . In the next subsection we perform the same

analysis of a realistic tight-binding model, thereby show-
ing all the power of the analytical approximation.

2. Application to a multi-pocket model

Next, we apply the approximation presented above to a
fifth-nearest neighbors tight-binding energy dispersion on
a triangular lattice, which is known to faithfully describe
some monolayer transition metal dichalcogenides, such
as NbSe2 [55, 63]. The energy dispersion evaluated at
the hopping parameters extracted from best-fitted NbSe2

yields a disconnected Fermi surface which has three non-
equivalent Fermi pockets, specifically at Γ, K and K ′

points. Therefore, for a given observation direction θr
we have three pairs of critical points [see Fig. 3 (a)].

As predicted by our theory, the LDOS at the YSR-
state energy is enhanced along directions perpendicular
to flatter sections of the Fermi contours [Fig. 3 (b)]. Re-
markably the analytical approximation for the exponen-
tial decay length and the numerical fits are also in excel-
lent agreement in this case, despite the complexity of the
Fermi surface. As we discussed in Sec. III A, an Nj = 3
Fermi contour, yields six different decay lengths. The
color line in Fig. 3 (b) represents the largest ξj,j′ , nev-
ertheless, we note that for the present energy dispersion,
the difference between the various decay lengths is of a
few lattice sites only, and therefore negligible. This ex-
ample showcases the ability of this method to predict
the shape and orientation of a YSR state on an arbitrary
substrate.

C. Application to extended s-wave pairing

Up to this point we restricted our considerations to
conventional s-wave superconductors. Nevertheless, the
formalism developed in the previous sections allows to
treat more involved situations where the superconduct-
ing gap function is momentum dependent. In order to
conserve the structure of the Green functions (5), we will
stick to singlet pairing and simply incorporate a k in ∆,
but we emphasize that in principle the technique could
be employed in arbitrarily gapped superconductors. Note
that ∆k must be an even function as required by the
fermionic anticommutation rules. It is useful to intro-
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FIG. 3. (a) Fermi surface for fifth-nearest neighbors tight-
binding model on a triangular lattice describing NbSe2, pa-
rameters from band 2 in [63]. Black hexagon marks the first
Brillouin zone. The long, black arrow indicates an arbitrary
observation direction θr, and the small, orange arrows mark
the gradient of the energy dispersion evaluated at the critical
points on the Fermi surface for the choice of θr̂. (b) Same as
panels (c-f) in Fig. 2 for the NbSe2 energy dispersion, with a
field of view of 500 by 500 lattice sties. The circumscribing
circle of the orange curve corresponds to 59 lattice sites.

duce the BdG energy dispersion, Ek =
√
ε2
k + ∆2

k (not
to be confused with E, the energy of the propagator),
which allows to express the critical-point conditions in a
compact form:

Ek′j,±(θr) = ±E, (17a)

∇Ek′j,±(θr) = ±|∇Ek′j,±
| ˆr(θr). (17b)

Naturally, Eqs. (7) reduce to Eqs. (17) if ∆ is indepen-
dent of k. The setting discussed earlier can be formally
understood as a particular case of the present situation;
however, formulating the solution for k-independent pair-
ing in terms of the normal electron energy dispersion and
the actual Fermi surface was more illuminating and per-
mitted a clearer physical interpretation.

The structure of the bare propagator is analogous to
the solution discussed in the preceding sections. The
power-law goes as 1/

√
r as dictated by the dimension-

ality of the substrate, and the anisotropy is encoded in
the argument of the exponential function and in the pref-
actor Γ′j,ε(θr) = 1

|∇Ek′
j,ε

(θr)|
√
κk′
j,ε

(θr)
. Now the curvature

and the norm of the gradient refer to the BdG dispersion
Ek.

To further understand the effect of a nodeless,
anisotropic superconducting gap on the spatial structure
of the YSR state, it is insightful to treat the k dependent
part as a perturbation of a constant background,

∆k = ∆ + ∆′f∆(k), (18)

with ∆′ � ∆ and f∆(k) an even function of k, and fur-
ther, to consider the small-gap limit discussed in Section
III B. We find that the exponential decay length is cor-
rected as follows

ξ′j,ε(θr) ∼
|∇εk̃j (θr)|

ω

(
1 +

∆∆′

ω2
f∆[k̃j,ε(θr)]

)−1

, (19)

where k̃j,ε(θr) ∈ R2 is the critical point in the normal
metal limit.

In order to exemplify this result we benchmark the
analytical approximation for the decay length against a
tight-binding calculation of the LDOS at the YSR-state
energy. We choose the energy dispersion introduced in
Eq. (16) describing a nearest-neighbours tight-binding
model on a square lattice. Further, we take a nearest-
neighbours superconducting coupling such that

f∆(k) = cos kx + α cos ky, (20)

where α ∈ [0, 1] is a parameter to control the anisotropy.
In the limit α = 1 this pairing function is known under
the name of extended s-wave or unconventional s±-wave
and it has been proposed as a candidate to describe iron-
based superconductors [64, 65]. However, we choose α =
0 in our calculations to maximize the variation of the gap
along the Fermi contour, thereby enhancing the effect of
the pairing function anisotropy on the LDOS of the YSR
state.

Results are presented in Figure 4. In the absence of
gap-anisotropy [∆′ = 0, panel (b)] the LDOS naturally
exhibits the four-fold rotational symmetry of the under-
lying lattice model. As discussed in Sect. III B 1, the
decay length is the most prominent along the θr = ±π4
directions for which the gradient of the energy dispersion
is the largest. When we switch on an anisotropic texture
on the superconducting gap the symmetry of the LDOS
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FIG. 4. (a) The color map represents f∆(k) on the FBZ. The dashed line represents the Fermi contour of the tight-binding
energy dispersion (16) with µ/t = 0.25. (b) and (c) Same as panels (c-f) in Fig. 2 for the tight-binding model discussed in the
present section. In panel (b) ∆′ = 0 while in panel (c) ∆′/∆ = 0.8. The field of view of the LDOS plots is 401 x 401 sites while
the largest ξLDOS in the red curves is ∼ 83 sites. Numerical parameters: t = 200 meV, ∆ = 5 meV, J = 285 meV.

is reduced accordingly [see panel (c) in Fig. 4]. We re-
call that within the working approximation, the critical
points sit on the Fermi contour, therefore, if we set the
observation direction along θr = 0 for instance, we have

that f∆[k̃(0)] < 0 [see panel (a) in Fig. 4]. This leads
to an enhancement of the decay length as predicted in
Eq. (19). We note that the approximation captures very
well the intricacies of the spatial structure of the LDOS
despite the seemingly large value of ∆′/∆ employed in
the numerical calculations.

IV. CONCLUSIONS

In this work we provide a precise explanation of the
role of the Fermi surface in the spatial anisotropy of YSR
states in two-dimensional s-wave superconductors. To
summarize, the anisotropy of the LDOS is encoded in
an overall prefactor, and in the exponential decay length
and oscillations. The prefactor also arises in the charge-
density response in normal metals, and it depends in-
versely on the angle-dependent Fermi velocity and on the
curvature of the Fermi contour, meaning that YSR states
show prominent features along directions perpendicular
to flatter sections of the Fermi contours. The decay
length is proportional to the angle-dependent Fermi ve-
locity constituting an elegant generalization of the super-
conducting coherence length which governs the exponen-
tial decay of YSR states on isotropic substrates. Through
a simple scaling argument we show that the prefactor and
the decay length are always in phase, therefore the knowl-
edge of the energy dispersion allows to predict the shape
and orientation of YSR states, even for STM measure-
ments whose field of view is too small to encompass the
exponential decay. Understanding how the Fermi surface
shapes the spatial structure of YSR states eases the path
towards the optimal design of collective impurity states

on superconductors.
We emphasize that contrary to previous works [57] we

do not make any approximations regarding the Fermi sur-
face, but instead, we apply our analytical expression to
arbitrarily complex energy dispersions. Aside from repro-
ducing the symmetry of the YSR states reported in STM
experiments on NbSe2, we achieve an accurate quantita-
tive comparison with a tight-binding calculation using a
realistic energy dispersion for NbSe2 which showcases the
power of our analytical approximation. Further, we find
that under the assumption of a Fermi surface with strictly
positive curvature, the power-law decay of the LDOS
at the YSR-state energy goes as 1/r and depends on
the substrate dimensionality only. Earlier works [56, 57]
had suggested that quasiparticle focusing could lead to
a slower decay. It remains an open question to investi-
gate the next leading terms in the saddle-point expan-
sion, which will arguably have a slower algebraic decay.
These terms will become relevant for observation direc-
tions for which the critical points lie on straight segments
of the Fermi surface or with nearly vasnishing curvature.
Incidentally, the method presented in Ref. [57] becomes
more accurate in this limit, therefore, we conlude that
the two theoretical descriptions complement each other.

Moreover, we find that the most likely scattering pro-
cesses involve excitations whose momenta lies on the
Fermi contour where the gradient of the normal energy
dispersion is parallel and anti-parallel to the observation
direction. This implies that each pocket of the Fermi
surface contributes twice as many meaningful scattering
momenta than in the normal-metal scenario. The emerg-
ing scattering processes are indeed mediated by the con-
densate and constitute a distinctive feature of the super-
conducting nature of the substrate. Unfortunately, all
the contributions to the bare propagator stemming from
the same pocket decay similarly, therefore it does not
seem plausible to arbitrarily enhance the Andreev-like
processes; nevertheless, our analysis via the saddle-point
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technique deepens the current understanding of the un-
derlying scattering mechanisms in the YSR problem.

Finally, we demonstrate that the analytical approxi-
mation also offers quantitatively correct results in super-
conductors with a momentum-dependent pairing func-
tion. This opens the door to study more complex sit-
uations such as p-wave superconductors or multi-band
substrates.

Appendix A: Charge impurity in a 2D normal metal

In this Appendix we extend the result derived in [2] to
a two-dimensional substrate. The energy-resolved change
in charge density due to a scalar impurity embedded in
the substrate is given by

δn(r;E) ∼ Im[G0(r,0;E)T (E)G0(0, r;E)], (A1)

where contrary to the superconducting case discussed in
Sec. II the bare propagator G0 and the transfer “ma-
trix” T are scalar. Analogously, under the assumption
of a point-like impurity, all the spatial information is en-
coded in the bare propagator, therefore we will perform
a saddle-point approximation to calculate the integral

G0(r,0;E) =

∫
dk

(2π)2

eik·r

E + i0+ − εk
, (A2)

and its counterpart G0(0, r;E). We introduce an auxil-
iary variable t and write

G0(r,0;E) = −i|r|
∫

dk

(2π)2

∫ ∞
0

dtei|r|φ(k,t), (A3)

where

φ(k, t) = k · r̂ + t(E + i0+ − εk). (A4)

The critical points (kj , tj) giving the largest contribution
to the the integral (A3) fulfill (∇, ∂t)φ(k, t) = 0, and
naturally, they depend on the observation direction (θr).
This yields the following conditions

εkj(θr) = E, (A5a)

∇εkj(θr) = |∇εkj(θr)|r̂, (A5b)

tj(θr) =
1

|∇εkj(θr)|
. (A5c)

Note that Eq. (A5a) follows from taking the limit ∆→ 0
while keeping E finite in the superconductor critical
equation (7a). Contrary to the superconductor scenario,
the “anti-parallel” solution does not contribute to the in-
tegral in the normal metal case [compare (7b) and (A5b)].
Further, we remark that Eq. (A5a) yields an iso-energy
contour at the propagator energy, the relevant contour
corresponding to E = 0, i.e., the Fermi contour. Finally,
we note that the counter propagator G0(0, r;E) yields an
analogous set of equations up to a minus sign in (A5b),
thereby spawning the shaded entries in Fig. 1, panel (b).

From now on, it is understood that critical points de-
pend on the observation direction, therefore we drop (θr)
to lighten the notation. Next, we expand the phase (A4)
up to second order around the critical points. The zeroth
order contribution follows trivially,

G0(r, 0;E) ∼ −i|r|eikj ·r. (A6)

To second order, the integral in t reads∫ ∞
0

d∆tj exp

[
−i|r|1

2

∑
α

∂εk
∂kα

∣∣∣
kj

∆kαj∆tj

]

∼ 4π

|r||∇εkj |
δ(∆kr̂j ),

(A7)

where ∆·j are the integration variables which denote a
small interval around the critical point ·j , δ represents
the Dirac delta distribution, and kr̂j is the projection
of kj along r̂. To approximate (A7) we extended the
integration bounds from [0,∞) to (−∞,∞) and we used

the fact that δ(∇εkj ·∆kj) =
δ(∆kr̂j )

|∇εkj |
which follows from

the critical-point equation (A5b).
Finally, by rotating the integration axes so that they

lie tangent and normal to an iso-energy contour (A5a),
the integral in k reads∫ ∞
−∞

d∆kr̂jd∆kr̂⊥j δ(∆kr̂j ) exp

[
−i|r| tj

2

∑
αβ

∂2εk
∂kα∂kβ

∣∣∣
kj
·

·∆kαj∆kβj

]
∼

 2

π|r||∇εkj |2tj∂2
k2r̂⊥

εkj

1/2

eiϕj ,

(A8)

where ϕj = −π4 sign(∂2
k2r̂⊥

εkj ) and ∂2
k2r̂⊥

εkj is the second

directional derivative tangent to the iso-energy contour
evaluated at the critical point. Putting everything to-
gether

G0(r,0;E) ∼ 1√
r

∑
j

Γj(θr)ei[kj(θr)·r+ϕj ], (A9)

where Γj(θr) = 1
|∇εkj(θr)|

√
κkj(θr)

. In this expression

|∇εkj(θr)| and κkj(θr) denote the norm of the gradient
of the energy dispersion and the curvature of the Fermi
contour evaluated at the critical point kj(θr). The sum-
mation in Eq. (A9) accounts for multiple critical points
stemming from a multi-pocket energy dispersion.

The bare propagator in the normal metal differs from
the bare propagator in the superconducting phase in its
lack of an exponential decay, and in that only the k-
points where the gradient points parallel to the observa-
tion direction contribute to the summation in Eq. (A9).
However, we find the same power-law decay -which, as
emphasized in the main text, depends on the dimension-
ality only-, and an analogous anisotropic prefactor. In-
terestingly, contrary to the three-dimensional case [2],
now the prefactor also depends inversely on the angle-
dependent Fermi velocity |∇εkj(θr)|.
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Appendix B: Saddle point approach for 2D
superconductors

1. General solution

In this Appendix we detail the calculation of the
Fourier transforms of the bare propagator defined in Sec-
tion II. Since critical points in the saddle-point approx-
imation lie somewhere in the complex plane outside the
original integration range, the procedure is slightly dif-
ferent to that of App. A. To perform the approximation
we introduce a new integration variable t and re-express
the bare propagator (5) as

Gαβ0 (r,0;E) = −|r|
∫

dk

(2π2)
fαβ(k)

∫ ∞
0

dt e−|r|φr̂(k,t),

(B1)
where fαβ(k) comprises the matrix entries in Eq. (5), and

φr̂(k, t) = −ik · r̂ + (ε2
k + ω2)t, (B2)

with θr the polar angle determined by r̂. The critical
points (kj , tj) giving the largest contribution to the inte-
gral (B1) satisfy (∇, ∂t)φr̂(k, t) = 0. For a given radial
direction θr this equation yields the set of conditions (7)
presented in the main text which we rewrite here for com-
pleteness along with an extra condition for the t variable:

εkj,±(θr) = ±iω, (B3a)

∇εkj,±(θr) = ±|∇εkj,±(θr)|r̂, (B3b)

tj,± =
1

2ω|∇εkj,±(θr)|
. (B3c)

Next, we recall the following compact expression to
perform the saddle-point approximation on a multivari-
ate complex integral. For details on its derivation we
refer the reader to [66]. Let In(λ) be an integral over n
complex variables defined as

In(λ) =

∫
dzf(z)e−λφ(z), z = (z1, z2, . . . , zn). (B4)

In the “large” λ limit we have

In(λ) ∼
(

2π

λ

)n/2
f(zs)√

det{Hn[φ(zs)]}
e−λφ(zs), (B5)

where zs is defined through the equation ∇zφ(z)
∣∣∣
zs

= 0

and Hn[φ(zs)] = ∂2φ(z)
∂zα∂zβ

∣∣∣
zs

, α, β = 1, . . . , n, as long as

det{Hk[φ(zs)]} 6= 0 for 1 ≤ k ≤ n.

In our problem the large parameter is |r|, namely the
distance from the impurity, n = 3 with z ≡ (kx, ky, t),
and f(z) and φ(z) are defined in Eqs. (B1) and (B2).

The approximate expression for the bare propagator
reads

Gαβ0 (r,0;E) ∼ 1

ω
√
r

∑
j, ε=±

Γj,ε(θr)fαβ [kj,ε(θr)]ei[kj,ε(θr)−επ4 ],

(B6)

where Γj,ε(θr) is the anisotropic prefactor introduced in
Sec. III.

The critical conditions for the counter-propagator

Gαβ0 (0, r;E) read as follows,

εkj,±(θr) = ∓iω, (B7a)

∇εkj,±(θr) = ±|∇εkj,±(θr)|r̂, (B7b)

tj,± =
1

2ω|∇εkj,±(θr)|
. (B7c)

By comparing the sets of equations (B3) and (B7)
it becomes evident that the critical points of the

counter-propagator Gαβ0 (0, r;E) are in fact the complex-
conjugate of the critical points of the propagator

Gαβ0 (r,0;E). It follows,

Gαβ0 (0,r;E) ∼ 1

ω
√
r

∑
j, ε=±

Γj,ε(θr)∗fαβ [kj,ε(θr)]∗e−i[kj,ε(θr)∗−επ4 ],

(B8)

where we used the fact that Γj,ε(θr) and fαβ [kj,ε(θr)] are
real functions evaluated at complex values.

The full expression for the electron-electron component
for the LDOS in terms of the parameters introduced in
the main text reads

δGee ∼
1

r

∑
j,j′

e
− r
ξ
j,j′ (θr)

∑
ε,ε′

Γj,ε(θr)Γj′,ε(θr) exp

{
i

[
r

λε,ε
′

j,j′(θr)
− (ε− ε′)π

4

]}∑
α

Gε0e,α
Gε
′

0α,e . (B9)

2. Small-gap approximation

In this Appendix we provide an interpretation of the
exponential part of the bare propagator eikj,ε(θr)·r by re-

lating the real and imaginary parts of critical points to
the normal energy dispersion. For concreteness, we con-
sider the positive solution ε = + and the pocket j = 1,
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and thereby we drop those labels. Generalizing to other
solutions is straightforward.

We extend the domain of the normal energy dispersion
to the complex plane and we separate it in its real and
imaginary parts,

εk = uε(k
Re
x , kRe

y , kIm
x , kIm

y ) + iuε(k
Re
x , kRe

y , kIm
x , kIm

y ),
(B10)

where k = (kx, ky) and kν = kRe
ν + ikIm

ν for ν = x, y.
Further, we assume that εk is holomorphic and it satisfies
the Cauchy-Riemann relations. Let us introduce

P = {kRe
x (θr), kRe

y (θr), 0, 0}, (B11)

a point living in C2 ∼= R4 whose projection on the real
plane {kRe

x (θr), kRe
y (θr)} is a critical point of the normal-

metal bare propagator. From the normal-metal solution
we know that the critical points lie on the Fermi contours
(see App. A for details), therefore P satisfies the following
equations,

uε(P ) = 0, (B12a)

vε(P ) = 0, (B12b)

∇εk
|∇εk|

∣∣∣
P

= r̂. (B12c)

We consider the ansazt that the critical points of the
superconducting propagator are a perturbation from P ,
namely

P ′ = {kRe
x (θr) + δkRe

x (θr),

kRe
y (θr) + δkRe

y (θr),

δkIm
x (θr), δkIm

y (θr)}.
(B13)

This assumption will remain valid in the small-gap limit,
i.e. as long as ∆� ~kFvF. Naturally, P ′ fulfills Eqs. (7a)
and (7b), therefore we have

uε(P
′) = 0, (B14a)

vε(P
′) = ω, (B14b)

gx(P ′) sin θr = gy(P ′) cos θr, (B14c)

where gν = ∂kRe
ν
uε + i∂kRe

ν
vε for ν = x, y. Next, we

develop to first order the Eqs. (B14). To zeroth order, the
energy equations (B14a) and (B14b) are trivial, while the
gradient equation (B14c) yields the following relations,

∂kRe
x
uε

∣∣∣
P

sin θr = ∂kRe
y
uε

∣∣∣
P

cos θr, (B15a)

∂kRe
x
vε

∣∣∣
P

sin θr = ∂kRe
y
vε

∣∣∣
P

cos θr. (B15b)

To first order, we obtain the following condition,

A


δkRe
x (θr)

δkRe
y (θr)

δkIm
x (θr)

δkIm
y (θr)

 =

0
ω
0
0

 , (B16)

where A is a four by four matrix whose non-zero entries
read

a11 = a23 = ∂kRe
x
uε

∣∣∣
P
, (B17a)

a12 = a24 = ∂kRe
y
uε

∣∣∣
P
, (B17b)

a31 = a43 = ∂2
kRe
x kRe

x
uε

∣∣∣
P

sin θr − ∂2
kRe
y kRe

x
uε

∣∣∣
P

cos θr,

(B17c)

a32 = a44 = ∂2
kRe
x kRe

y
uε

∣∣∣
P

sin θr − ∂2
kRe
y kRe

y
uε

∣∣∣
P

cos θr,

(B17d)

where the equalities between different matrix entries fol-
low from applying the Cauchy-Riemann relations. By
expressing εk as a power series it becomes clear that the
first and second order derivatives of uε with respect to
kIm
x and kIm

y evaluated at P vanish, therefore all the other
matrix entries are zero.

To this order of approximation we find

{δkRe
x (θr), δkRe

y (θr)} = {0, 0}, (B18)

that is, the real part of the critical points sits on the Fermi
contours mimicking the normal-metal critical points. For
the imaginary part which yields the exponential decay
length we have

δkIm·r̂ =
ω

∂kRe
x
uε

∣∣∣
P

cos θr + ∂kRe
y
uε

∣∣∣
P

sin θr
=

ω

|∇εk(θr)|
.

(B19)
where the last equality follows from noting that the gradi-
ent of the energy dispersion is parallel to r̂ at the critical
point.

Appendix C: Relationship between the prefactor and
the decay length of the approximate bare propagator

In this Appendix we provide a simple scaling argu-
ment to argue that the prefactor of the LDOS, Γ(θr),
and the corresponding exponential decay length, ξ(θr),
are always in phase. We recall that

ξ(θr) ∼ |∇εk(θr)|, (C1a)

Γ(θr) =
1

|∇εk(θr)|
√
κ(θr)

, (C1b)

where it is understood that the right-hand side of
the equations is evaluated at the critical point on the
Fermi contours (in the small-gap approximation), and
we dropped the j, ε labels to lighten the notation. The
curvature of the energy contour is given by

κ =
r̂⊥ ·H(εk) · r̂⊥

|∇εk|
, (C2)

where r̂⊥ is a unit vector perpendicular to the observa-
tion direction r̂ (hence perpendicular to the gradient of
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εk at the critical points) and H(εk) is the Hessian matrix
of the normal energy dispersion.

Let us consider the coordinate transformation

x′ = γx, (C3a)

y′ =
y

γ
, (C3b)

whereby we create an anisotropy of a previously isotropic
dispersion, while preserving the total area of the Fermi
surface. This operation decreases the curvature and in-
creases the norm of the gradient of the energy disper-
sion along the x-direction, and vice versa along the y-
direction.

For concreteness, let us consider a critical point sitting
on the x axis such that θr = 0. It follows that

|∇εk(θr = 0)|′ = γ|∇εk(θr = 0)|, (C4a)

κ′(θr = 0) =
1

γ3
κ(θr = 0). (C4b)

Putting all together we find

ξ′(θr = 0) = γ ξ(θr = 0), (C5a)

Γ′(θr = 0) =
√
γ Γ(θr = 0). (C5b)

For the chosen coordinate transformation and observa-
tion direction, both the prefactor and the decay length
are enhanced. Obviously, in the perpendicular observa-
tion direction, one has γ → γ−1 so both are diminished.
Therefore, as observed in Fig. 2 the prefactor and the
decay length are in phase as we vary the observation di-
rection θr. The underlying reason is that even though
the prefactor inversely depends on the norm of the gra-
dient, this is compensated by an opposite behavior of the
curvature.

Appendix D: Beyond the small-gap approximation

To better understand the meaning of complex critical
points it is illustrative to consider a toy model for which
Eqs. (7) can be solved analytically, namely an ellipsoidal
energy dispersion:

εk = τ(αk2
x + k2

y)− µ, (D1)

where α ∈ (0, 1] controls the anisotropy (for α = 1 the
Fermi surface is a circle and in the limit α→ 0 the Fermi
surface becomes a line), µ is the chemical potential which
effectively controls the “size” of the Fermi surface, and
τ = ~kFvF is a trivial prefactor to adjust the units. The
Fermi surface is the ellipse(x

a

)2

+
(y
b

)2

= 1, (D2)

with aFS =
√

µ
τα and bFS =

√
µ
τ . The positive solution

of Eq.(7) reads(
Re[kxj ],Re[kyj ]

)
=

R cosϕ√
cos2 θr + α sin2 θr

(
1√
α

cos θr,
√
α sin θr

)
,

(D3)

(
Im[kxj ], Im[kyj ]

)
=

R sinϕ√
cos2 θr + α sin2 θr

(
1√
α

cos θr,
√
α sin θr

)
,

(D4)

where R =
(
µ2+ω2

τ2

)1/4

, and ϕ = 1
2 arctan ω

µ . The neg-

ative solution of Eq. (7) is analogous up to an overall
minus sign for the real part, in agreement with the re-
lationship discussed at the end of Section III for even
energy dispersions. The real and imaginary parts of the
critical points lie on ellipses [Fig. 5 (a)] such that

aRe =
R cosϕ√

α
, bRe = R cosϕ, (D5)

aIm =
R sinϕ√

α
, bIm = R sinϕ. (D6)

To first order in ω we have (aRe, bRe) ≈ (aFS, bFS) and
(aIm, bIm) ≈ ω

2µ (aFS, bFS). As we discussed in Section

III B, in the small-gap limit the real part of the critical
points collapses to the Fermi surface, while the imaginary
counterpart is linear in the superconducting parameter.
The relevant quantities characterizing the anisotropy of
the bare propagator follow:

ξdecay(θr) ≡ 1

Im[k(θr)] · r̂

=
1

R sinϕ

√
α

cos2 θr + α sin2 θr
,

(D7)

λoscill.(θr) ≡ 1

Re[k(θr)] · r̂

=
1

R cosϕ

√
α

cos2 θr + α sin2 θr
,

(D8)

Γ(θr) ≡ 1

|∇εk(θr)|
√
κk(θr)

=

1

2
√
R(cos2 θr + α sin2 θr)1/4

e−i
ϕ
2 .

(D9)

As shown in Fig. 5 (b) the propagator is enhanced
along directions perpendicular to flatter sections of the
Fermi surface and the decay length ξdecay is in phase.
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FIG. 5. Saddle-point approximation beyond the small-gap
limit for the ellipsoidal toy model. (a) Real and imaginary
parts of the set of critical points as a function of the obser-
vation direction θr which is color-coded. The dashed line
indicates the Fermi surface. (b) Polar plot of the dimension-
less quantities encoding the anisotropy of the bare propagator.
The system’s parameters are µ = ω = τ = 1 a.u. and α = 0.25
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erichs, and S. Blügel, Science 323, 1190 (2009),
https://www.science.org/doi/pdf/10.1126/science.1168738.

[2] S. Lounis, P. Zahn, A. Weismann, M. Wenderoth, R. G.
Ulbrich, I. Mertig, P. H. Dederichs, and S. Blügel, Phys.
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