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ABSTRACT 

Introduction: Among the risk factors identified in the sporadic forms of Alzheimer’s disease 

(AD), environmental and lifestyle elements are of growing interest. Clinical observations 

suggest that stressful events can anticipate AD onset, while stress-related disorders can 

promote AD. Here, we tested the hypothesis that a chronic treatment with glucocorticoids, 

is sufficient to trigger or exacerbate AD molecular hallmarks. 

Methods: We first validated a rat model of experimental chronic glucocorticoids consumption 

(corticosterone in drinking water for 4 weeks). Then, to evaluate the consequences of 

chronic glucocorticoids consumption on the onset of amyloid-β (Aβ) toxicity, animals 

chronically treated with glucocorticoids were intracerebroventricularly injected with an 

oligomeric solution of Aβ25-35 (oAβ) (acute model of AD). We evaluated AD-related cognitive 

deficits and pathogenic mechanisms, with a special emphasis on neuroinflammatory 

markers. 

Results: Chronic corticosterone consumption caused the inhibition of the non-amyloidogenic 

pathways, the impairment of Aβ clearance processes and the induction of amyloidogenic 

pathways in the hippocampus. The principal enzymes involved in glucocorticoid receptor 

(GR) activation and Tau phosphorylation were upregulated. Importantly, the AD-like 

phenotype triggered by chronic corticosterone was analogous to the one caused by oAβ. 

These molecular commonalities across models were independent from inflammation, as 

chronic corticosterone was immunosuppressive while oAβ was pro-inflammatory. When 

chronic corticosterone consumption anticipated the induction of the oAβ pathology, we found 

a potentiation of neuroinflammatory processes associated with an exacerbation of synaptic 

and memory deficits but also an aggravation of AD-related hallmarks. 

Discussion/Conclusion: This study unravels new functional outcomes identifying chronic 

corticosterone consumption as a main risk factor for AD and suggests that glucocorticoid-

based therapies should be prescribed with caution in populations with AD risk. 
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INTRODUCTION 

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. This 

pathology is characterized by a progressive impairment of cognitive functions and the 

presence of senile plaques and neurofibrillary tangles (NFT) throughout the brain, including 

areas particularly involved in memory formation and emotional regulation. Plaques are 

composed of insoluble extracellular aggregates consisting mainly of amyloid-β (Aβ) 

peptides, while NFT result from the aggregation of hyper- and abnormal phosphorylation of 

the microtubule-stabilizing protein Tau [1,2]. Familial forms with known mutations of specific 

genes represent less than 5% of cases, while 95% of patients develop sporadic forms, for 

which several risk factors have been identified. Besides aging, there is growing evidence 

that environmental and lifestyle aspects may increase the probability to develop AD [3,4]. 

Clinical observations suggest that stressful life events can reduce the age of onset of AD 

[5], while stress-related disorders like depression or anxiety can promote AD symptoms and 

neuropathology [3,6]. This view is particularly supported by the fact that AD patients 

demonstrated an early deregulation of the hypothalamic-pituitary-adrenal (HPA) axis (stress 

axis), as well as elevated levels of glucocorticoids (GC; stress hormone) in plasma and CSF, 

and GC receptors (GR) impairment [7-9]. 

The HPA axis, pivotal for the stress response, triggers the adrenal cortex to release 

GC. These steroid hormones readily cross the BBB and bind to low affinity glucocorticoid 

receptors (GR) and high affinity mineralocorticoid receptors (MR) [10]. GC are necessary 

for normal cellular activity and fundamental for many CNS functions, including learning and 

memory [11]. While MR are localized mainly in the hippocampus, GR are more ubiquitous 

and highly expressed in the limbic system (prefrontal cortex (PFC), hippocampus and 

amygdala). These structures are strongly involved in cognitive and psychological functions 

and are also important components of the neural circuitry modulating HPA axis activity [12]. 

GC act synergistically with excitatory amino acids (like glutamate) and can induce 

neurotoxicity. Hence, a deregulation of the HPA axis activity and/or modification of GR 

functioning could be extremely toxic, especially in limbic structures [13], and thus could 

contribute to the cognitive decline and psychological symptoms that occur in AD. In 

transgenic (Tg) animal models of AD, chronic stress accelerates the onset of cognitive 

deficits, triggers amyloid precursor protein (APP) misprocessing, enhances plaque 

pathology, reduces Aβ clearance, increases Aβ levels, stimulates Tau hyperphosphorylation 

and its neuronal accumulation [14-16]. In an acute pathomimetic model of AD obtained after 

a single intracerebroventricular (icv) injection of an oligomeric solution of Aβ25-35 (oAβ25-35) 
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[17-20], we demonstrated a strong, long-lasting activation of the HPA axis. This was 

associated with a modification of GR and MR expression in brain regions involved in the 

control of GC secretion (i.e. hippocampus, amygdala and hypothalamus) [21], supporting its 

involvement in the etiology of AD [14,22-25]. We also observed that an antagonist and two 

selective GR modulators (sGRm) could potently counteract the effects of oAβ25-35 icv 

injection in the hippocampus and in the PFC, strongly arguing in favor of a therapeutic 

potential of modulating GR activity and a plausible pharmacological entry points to modify 

the progression of AD [4,19,20]. 

In the present study, we aimed to determine in vivo the physiological impact of a 

chronic GC supplementation in an AD context. For this purpose, we first established and 

validated a rat model of experimental chronic GC supplementation (chronic corticosterone 

consumption in drinking water for 4 weeks). Such long-term exogenous GC exposure in 

rodents has been widely described to induce anxiety/depressive-like behaviors [26-28] HPA 

axis impairment [29], memory and neurogenesis deficits, and hippocampal damages [27,30-

32]. Then, to evaluate the consequences of chronic GC consumption and to decipher the 

impact of HPA axis dysregulation on the onset of Aβ toxicity, animals chronically treated 

with GC were icv injected with oAβ25-35 (CCoAβ group). We evaluated AD-related cognitive 

deficits and pathogenic mechanisms, with a special emphasis on neuroinflammatory 

markers. 

MATERIALS AND METHODS 

Animals 

Adult male Sprague-Dawley rats (Janvier Lab., Le Genest-Saint-Isle, France) 

weighing 260-280g (8 weeks) at the beginning of the experiments were housed 1 week 

before experiments in a standard animal facility of the University of Montpellier (CECEMA, 

registration number D34-172-23) (12H/12H light/dark cycle with lights on at 07H00; 21 ± 

1°C, food and water ad libitum). All experiments, including sacrifices, were performed in 

conscious rats between 09H00 and 12H00, during the diurnal trough of the HPA axis 

circadian rhythm. Male has been preferred to female because the latter may present a 

confounding factor of the estrous cycle, a parameter that needs to be systematically 

controlled. Although unlikely, a possibility still exists that mixing males and females in each 

experimental group may introduce a variable difficult to account for. Furthermore, doubling 

the number of groups and rats goes beyond the 3R rule. We do recognize the prospective 

importance of using both genders, and results will need to be verified in female. 
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Amyloid-β peptide 

In patients, soluble Aβ oligomers contains mainly the sequences Aβ1-40 and Aβ1-42 [2]. 

Nevertheless, they also contain peptides with shorter sequences such as Aβ25-35 or Aβ25-

35/40 [33-35], with no difference between human and rodent [36]. These shorter peptides can 

be produced in AD patients by enzymatic cleavage of Aβ1-40 [33,35]. They contain 

extracellular and transmembrane residues that have been reported to be a biologically 

active region of Aβ [37-39] and to contain the highly hydrophobic region forming stable 

aggregates [38]. Interest in this undecapeptide, which itself shows a β-sheet structure 

[17,38], has grown over the last fifteen years, mainly because it induces neurite atrophy, 

neuronal cell death, synaptic loss, as well as synaptic plasticity and memory deficits in a 

similar way to Aβ1-40 and Aβ1-42 [40], but with better solubility and efficiency [41]. Aβ25-35 and 

scrambled Aβ25-35 peptides (Eurogentec, France) were dissolved in sterile water (1 µg/µl) 

and stored at -20°C. Since soluble Aβ oligomers correlate better with the progression of the 

disease [42], Aβ25-35 and scrambled peptides were pre-aggregated by an in vitro incubation 

at 37°C (4 days) to obtain a solution mainly composed (more than 95%) of a mixture of 

soluble oligomer species (oAβ25-35), as previously characterized [18]. 

Experimental procedures 

First, to validate the chronic corticosterone consumption model, animals received 

drinking water containing 1, 5 or 10 mg/kg corticosterone (Sigma-Aldrich, France) dissolved 

in 0.45% β-cyclodextrin (Sigma-Aldrich, France) [27] for 4 weeks (SFig. 1A). A control cohort 

received the vehicle alone (0.45% β-cyclodextrin) in drinking water. All animals were 

weighed once per week. The general behavior or anxiety state of the different groups of rats 

was tested at the end of the treatment (after 4 weeks) in an open-field or in an elevated plus 

maze test (EPM), respectively. Animals were sacrificed by decapitation. Pituitary and 

adrenals were rapidly harvested to be weighed and blood samples were collected for 

corticosterone assay. 

Then, a new cohort of rats received drinking water containing the effective dose of 

corticosterone (10 mg/kg) or the vehicle (β-cyclodextrin) for 5 weeks. At week 4, animals 

were divided into three groups. The first groups had no surgery (control groups), the second 

received an icv injection of incubated scrambled peptide (10 µg/rat; scrambled groups) and 

the third received an icv injection of oAβ25-35 (10 µg/rat; oAβ groups) (Fig. 1A). The animals 

were anesthetized with an intraperitoneal (ip) injection of 1 ml of a mixture of Ketamine and 

Xylazine (80 and 10 mg/kg b.w., respectively). As previously described [17,18], oAβ25-35 was 

injected directly into the lateral ventricles using a David-Kopf stereotaxic apparatus 

(Phymep, France), (coordinates: AP -1 mm, L ±1.5 mm, DV -3.5 mm) [43]. All animals were 
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weighed before, 4 weeks after the treatments and 1 week after the icv injection of oAβ (week 

5) (Fig. 1A). Short-term memory was tested in a T-maze 1 week after the icv injection of oAβ 

(Fig. 1A). Then, animals were sacrificed by decapitation. Blood samples and hippocampi 

were rapidly collected during the diurnal part of the HPA axis rhythm (between 09H00 and 

12H00) for corticosterone assay and WB analysis. Naive rats received no treatment but 

were manipulated in the same manner as treated rats. 

General behavior 

The open-field test was used to characterize general behavior of rats, as previously 

reported [44]. The apparatus consists of a squared open-field (1 m2 x 0.6 m high) made of 

white PVC with an infrared light emitting floor. An infrared sensitive CCD camera was placed 

above the field and connected to a videotracking system (Noldus EthoVisonXT, France). 

Animals were allowed to freely explore the open-field during 10 min. This test evaluates 

locomotion-related parameters, such as the total distance travelled or walking speed; 

exploratory-related parameters, including locomotion, immobility and number of rearings; 

anxiety-related indexes, such as latency to start and thigmotaxis (locomotion along the 

walls); and stereotyped responses, like rearing or grooming. 

Spatial short-term memory 

As previously reported, the T-maze test was used to rapidly assess cognitive ability 

in rats, especially the short-term memory deficits when performed in two successive 

sessions [17-19,21,45]. The T-maze consisted of two short arms (A and B), extending from 

a longer alley (C) and enclosed with high walls. The test involved two trials separated by 1 

h. During the training session, one short arm (B) was closed. Rats were placed at the end 

of the long alley, allowed to visit the maze for 10 min and then returned into their home cage. 

During the test session, which was videotracked (Noldus EthoVisonXT, France), animals 

were placed in the maze for 2 min, with free access to all arms. The number of visits and 

time spent in each arm were measured. The results were expressed as ratio of the time 

spent in the initially closed novel arm, over the time spent in the previous arm and as a ratio 

of the number of entries into the novel arm over the familiar one. The apparatus was cleaned 

with diluted ethanol (50%) between animals. 

Anxiety behavior 

The anxiety state of rats was measured using their ability to explore open and 

enclosed arms of an elevated plus maze (EPM), as previously detailed [21]. The clear 

plexiglass apparatus consisted of two open arms (50 x 10 cm) and two enclosed arms (50 

x 10 x 45 cm high), extending from a central platform and placed 60 cm above the floor. 
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Each rat was placed at the center of the EPM facing the closed arm and its exploration 

behavior was recorded for 10 min (Noldus EthoVisonXT, France). The results were 

expressed as total time spent in the open arms and the total number of entries was counted 

to verify general motor activity. An entry into an arm was recorded if the animal crossed the 

line that connected that arm with the central platform with all four legs. The apparatus was 

cleaned with diluted ethanol (50%) between animals. 

Corticosterone assay 

Blood samples were collected at the time of sacrifice on 1 mg/ml EDTA (Sigma-

Aldrich, France), centrifuged at 4°C, and plasma stored at -20°C until assayed for 

corticosterone [18]. Plasma corticosterone concentrations were assayed using a 

conventional ELISA kit (Enzo-Life Sciences, USA) in a 10 µl plasma sample diluted (1:40) 

with the assay buffer. The assay sensitivity was 27 pg/ml. The intra- and inter-assay 

coefficients were 6.6 and 7.8%, respectively. 

WB analysis 

WB were performed as previously described [18] in the whole hippocampus. All 

antibodies used are detailed in the Supplementary Table 2. Briefly, after sacrifice, 

hippocampi were micro-dissected, weighed, immediately frozen in liquid nitrogen and stored 

at -20°C. Tissues were sonicated (VibraCell; Sonics & Materials, USA) in a lysis buffer [18] 

and centrifuged (4°C). Supernatants were collected and the protein concentration was 

measured using a BCA kit (ThermoFisher Scientific, France). Sixty µg from each sample 

were taken for WB analysis. Samples were separated in SDS-polyacrylamide gel (12%) and 

transferred to a PVDF membrane (Merck-Millipore, France). The membrane was incubated 

overnight (4°C) with the primary antibody, washed and then incubated for 2H with the 

appropriate horseradish peroxidase-conjugated secondary antibody. Peroxidase activity 

was revealed by using enhanced-chemiluminescence (ECL) reagents (Luminata-

Crescendo, Merck-Millipore). The intensity of peroxidase activity was quantified using 

Image-J software (NIH, Bethesda, MA, USA). β-tubulin (β-Tub) was used as a loading 

control for all immunoblotting experiments. 

Statistical analysis 

Data are presented as mean ± SEM and analyzed using one-way or two-way ANOVA 

followed by a Tukey’s multiple comparison test (GraphPad-Prism 9.0). In addition, T-maze 

data are analyzed in comparison to chance level (CL), i.e., maximal deficit, using a one 

sample t-test (GraphPad-Prism 9.0). P 0.05 was considered significant. The number of 

animals in each group is indicated within the columns and was determined by a statistical 
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power analysis based on our previous studies (G*Power software). Before each analysis of 

variance, the Gaussian distribution was evaluated and validated by a Kolmogorov-Smirnov 

test (GraphPad-Prism 9.0). 

RESULTS 

Validation of the chronic corticosterone consumption model 

To validate this model (SFig. 1A), we assessed relevant parameters associated with 

chronic corticosterone treatment in drinking water [26,27,29]. The daily dose of 10 mg/kg of 

CORT was the sole dose that significantly increased the plasma concentrations of CORT, 

while the vehicle (0.45% β-cyclodextrin) and the doses of 1 and 5 mg/kg induced no 

modification in comparison to control rats (SFig. 1B). The dose of 10 mg/kg/day was also 

the most efficient to atrophy adrenal glands (STable 1) and to induce anxiety-like behavior. 

Indeed, in the open-field test (SFig. 1C), we identified several characteristic features of 

anxiety, such as the increase of the latency to start moving and of the total immobility time. 

We also observed a decrease of visits in the arena center and the number of grooming and 

rearing, while locomotion was not affected by the different doses. To confirm these general 

observations, we performed a well-defined anxiety test, the EPM. Animals treated with the 

two highest doses of corticosterone (5 and 10 mg/kg/day) displayed a decrease of the time 

spent in the open arms, characteristic of an anxious state (SFig. 1D). 

Impact of chronic corticosterone on oAβ toxicity 

We next evaluated the impact of chronic corticosterone consumption (10 mg/kg/day) 

on the Aβ toxicity one week after the icv injection of oAβ25-35 (CCoAβ group) (Fig. 1A). Five 

weeks of chronic corticosterone consumption in drinking water induced short-term memory 

deficits (T-maze test) and potentiated significantly the oAβ25-35-induced alterations of 

memory performances (Fig. 1B). No effects of scrambled peptide nor vehicle treatment were 

evidenced (Figs 1-4). One week after the icv injection of oAβ25-35, an increase of plasma 

CORT concentrations was observed, which was partially blunted by the upstream chronic 

corticosterone consumption (Fig. 1C). In addition, an additive effect of CCoAβ treatment 

was evidenced on body weight (Table 1) and on the hippocampal expression of cleaved-

caspase 3, while the two treatments alone did not impact the later parameter (Fig. 1D). 

Impact on GR signaling pathways 

As previously reported in the PFC [20], the icv injection of oAβ25-35 altered GR-

associated signaling pathways in the hippocampus (Fig. 2A). Indeed, one week after oAβ25-

35, the expression of total and activated GR (phosphorylated on Ser211) was increased [44] 
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(Fig. 2B-D), and was associated with an increase of heat-shock protein 90/70 (HSP90/70) 

ratio (Fig. 2B,E), two GR chaperones reflecting the activity of GR and highly involved in AD 

pathophysiology [47-49] and an increase of Annexin A1 (a potent endogenous anti-

inflammatory effector functioning in synergy with GR) [50,51] (Fig. 2B,F). We also observed 

the increased expression of the Src-kinase Fyn (Fig. 2B,G), the active form of GSK3β 

(phosphorylated on Tyr216) (Fig. 2H,I), the total form of Cdk5 (Fig. 2H,J) and the p25/p35 

ratio (associated with the activation of Cdk5) [52] (Fig. 2H,K). These three enzymes are 

particularly relevant since they are involved in GR activation but also in the 

hyperphosphorylation of Tau [46,52-55]. Chronic corticosterone consumption induced a 

similar effect as oAβ25-35 on all of these markers, except on Annexin A1 (Fig. 2B,F) and the 

p25/p35 ratio where we evidenced an additive effect of CCoAβ treatments (Fig. 2H,K). 

Impact on APP metabolism 

Then, we characterized by Western blot the different pathways of APP maturation, 

through the assessment of the main cellular elements involved in the amyloidogenic and 

non-amyloidogenic pathways (Fig. 3A). One week after oAβ25-35 injection and as previously 

reported [16,18], we evidenced the induction of the amyloidogenic pathway in the 

hippocampus (Fig. 3J), consistent with an Aβ1-42 increase, as previously reported by our 

group [20,56,57]. We observed an increased expression of both full-length APP (precursor 

of amyloid proteins) (Fig. 3B,C), C99 (precursor of Aβ peptides) (Fig. 3B,D), BACE1 (β-APP 

cleaving enzyme, β-secretase) (Fig. 3B,E) and PS1 (presenilin-1, γ-secretase subunit) (Fig. 

3B,F). This induction is associated with a concomitant inhibition of non-amyloidogenic 

pathways (Fig. 3J), characterized by a decrease of sAPPα (α-secretase-cleaved soluble 

APP ecto-domain) (Fig. 3B,G), α-secretase ADAM10 (A disintegrin and metalloprotease 

domain-containing protein 10) (Fig. 3B,F) and IDE (insulin-degrading enzyme, involved in 

the clearance of Aβ) (Fig. 3B,G). Interestingly, chronic corticosterone consumption induced 

the same modifications as those observed 1 week after the icv injection of oAβ25-35 (Fig. 3), 

and CCoAβ treatment induced no supplementary effects, except for BACE1 where we 

showed a significant additive effect (Fig. 3B,E). 

Impact on synaptic deficits and neuroinflammation 

Decreased memory performances and GR signaling pathway alterations observed 

one week after the icv injection of oAβ25-35 were associated in the hippocampus with pre- 

(SYN) and post-synaptic (PSD95) deficits (Fig. 4A-C). These deficits were potentiated by 

the prior overexposure to exogenous CORT in animals injected with oAβ25-35 (Fig. 4A-C). 

Moreover, and as previously reported [19,20], synaptic deficits induced by the Aβ toxicity 
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were associated with important modifications of hippocampal inflammatory processes. 

Indeed, after 1 week, the icv injection of oAβ25-35 provoked both the induction of pro-

inflammatory mechanisms (activation of astrocytes (GFAP) and recruitment of microglia 

(Iba1)) (Fig. 4A,D,E) and the induction of anti-inflammatory components, as interleukin-10 

(IL-10) (Fig. 4A,E,F). By contrast, while chronic corticosterone favored anti-inflammatory 

pathways (Fig. 4G) by inhibiting astrocytes activation (Fig. 4A,D), microglia recruitment (Fig. 

4A,E) and IL-10 induction (Fig. 4A,F), the CCoAβ group displayed exacerbated 

neuroinflammation (Fig. 4G). Indeed, co-treatment increased the activation of astrocytes 

and the recruitment of microglia (Fig. 4A,D-E), and inhibited IL-10 (Fig.4A,F). In addition, 

ADAM17, another α-secretase (also known as tumor necrosis factor-α converting enzyme 

or TACE), highly activated in neuroinflammatory processes and promoting pro-inflammatory 

cytokines maturation in turn (for review, see [58]), was up-regulated after the icv injection of 

oAβ25-35 (Fig. 4A,G). And although chronic corticosterone inhibited the expression of this 

metalloprotease, as previously observed with ADAM10 (Fig. 3B,F), the CCoAβ treatment 

reestablished the hippocampal increase of ADAM17 (Fig. 4A,G). 

 

DISCUSSION 

 In previous studies, we provided evidence for a vicious cycle between AD and the 

HPA axis. We showed that the pathology, and especially the Aβ toxicity, rapidly in- creases 

GC secretion which, in turn, modulates APP processing, Aβ1-42 synthesis, and Tau 

phosphorylation [19-21]. Here, in order to characterize the repercussion of chronic GC 

consumption on AD pathophysiology, we treated animals with corticosterone in drinking 

water upstream of the icv injection of oAβ25-35. We reported that chronic corticosterone 

consumption in the oAβ25-35 model exacerbated cognitive decline, amyloid pathology (Fig. 

3J) and neuroinflammation (Fig. 4H), notably in close association with an enhanced activity 

of GR signaling pathways. Many biochemical AD hallmarks impaired by oAβ25-35 injection 

were equivalently impaired by chronic GC treatment. We could hypothesize that in AD, the 

deregulation of these intracellular pathways could be due to GC overexposure and HPA axis 

impairment induced by Aβ toxicity, more than Aβ toxicity itself. This not only implies a 

specific susceptibility to stress in AD, but also brings new information on how chronic GC 

consumption could be an important risk factor for AD. 

Model of chronic GC consumption 

 Firstly, we aimed to validate our chronic GC consumption model, well known to be a 

model of chronic anxiety/depression [26,27] associated with memory deficits and 
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hippocampal alterations [31,59]. According to the literature, in our study we focused on the 

anxious state displayed in animals treated for 4 weeks with corticosterone in drinking water. 

At the optimal dose determined (i.e. 10 mg/kg/day), animals developed many anxiety-like 

behaviors in the open-field and EPM tasks. At this dose, we also evidenced an increase of 

GC plasma levels associated with an atrophy of adrenal glands. These results are in 

accordance with studies showing that chronic corticosterone administration suppressed the 

inhibitory feedback of GC on the HPA axis activity [29,60], characteristic of mood disorders 

such as generalized anxiety or major depression [61,62]. In accordance to previous works 

conducted by others groups, we validated this model as a chronic model of GC 

overexposure, displaying HPA axis impairment and anxiety-like behaviors. 

Synergistic effects 

 Secondly, we compared the effects of chronic GC consumption alone or in 

combination with the icv injection of oAβ25-35. CORT treatment caused short-term memory 

and synaptic deficits in the hippocampus, with no modification on caspase 3 levels. These 

alterations following GC overexposure are widely described in the literature. It was shown 

that chronic stress or GC administration altered synaptic terminal structure, neurogenesis 

and induced neuronal atrophy, more particularly in the hippocampus [13,29,63-65]. Since 

CORT treatment also induced anxiety-like behaviors in the EPM, we could not totally 

exclude this emotional aspect in the T-maze performance. However, as reported by others, 

CORT treatment induced many hippocampal alterations (dendritic retraction, decreased cell 

proliferation and global volume) [31,58] sufficient to induce such short-term memory deficits. 

In addition, Han et al., [16] also reported an aggravation of cognitive impairment in APP/PS1 

mice submitted to chronic unpredictable stress. By contrast, it is interesting to note that 

CCoAβ group displayed exacerbated memory and synaptic deficits. Furthermore, we also 

observed a synergistic effect of this co-treatment, that induced caspase 3 expression in the 

hippocampus, whereas the two treatments alone did not impact it. This suggested that the 

potentiation of synaptic and memory deficits could be due to the induction of apoptosis 

processes. 

Additive effects 

 Moreover, we evidenced some additive effects of the exogenous GC treatment and 

the icv injection of oAβ25-35. Indeed, we showed that the induction of BACE1 was potentiated. 

This enzyme was identified as the major β-secretase-like protein, highly involved in the 

amyloidogenic cleavage of APP, and thus in Aβ peptides production [66]. These findings 

are consistent with the study conducted by Green et al., [14]. The authors have shown that 
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one-week treatment of dexamethasone in 4 months-old 3xTg mice significantly increased 

BACE1 expression and higher levels of Aβ1-40 and Aβ1-42. Our result was in accordance with 

the literature since BACE1 production could be triggered by chronic stress as well as by Aβ. 

In fact, BACE1 transcription is under a direct control of GC since a glucocorticoid response 

element (GRE) has been described in the promoter region of BACE1 [67]. In addition, 

BACE1 production could be also indirectly regulated by stress and Aβ through the activation 

of others intracellular mediators. (i) Both chronic GC overexposure [68,69] and Aβ toxicity 

[2,70] induce the c-jun N-terminal kinase/activator protein 1 (JNK) pathway (or stress-

activated kinase (SAPK)), one of the main pathways favoring BACE1 production [71]. (ii) 

The p25/Cdk5 pathway, upregulated in our study, was also known to trigger BACE1 

transcription [66]. This complex of enzymes is highly involved in AD pathology, particularly 

for its action on Tau hyperphosphorylation [2,52], but also on GR activation via 

phosphorylation on Ser211 in rodent (Ser224 in human) [72]. Some studies demonstrated 

that chronic unpredictable stress [73,74], as well as Aβ pathology [52,75] increased 

p25/Cdk5 expression and activity. (iii) These mechanisms could be due to an increased 

activity of Calpain1, a member of cysteine proteases family showing aberrant activity in AD 

[76] . This enzyme is particularly involved in the activation of GSK-3β [77] and the maturation 

of p35 to p25 [78]. Interestingly, we demonstrated recently in the oAβ25-35 model that all 

these enzymes (i.e. GSK3-β, p25/Cdk5 and calpain1) were directly or indirectly regulated 

by GC and GR in the prefrontal cortex [20]. Our results suggest that Calpain1 activity may 

also be potentiated by chronic GC overexposure since the hippocampal expression of two 

of its principal substrates was increased. So, by these different mechanisms, it was not 

surprising that combined toxicity of chronic corticosterone consumption and oAβ25-35 

injection had additive effects on the expressions and/or activities of BACE1 and p25/Cdk5. 

Since these two enzymes are highly involved in amyloid and Tau pathologies, it brings new 

data on how chronic GC consumption is detrimental in AD development. However, further 

specific investigations are needed to characterize precisely tau system, in particular to 

assess the levels of Tau hyperphosphorylation epitopes, its eventual aggregation, its 

localization and its staining pattern. 

Effects on APP metabolism and GR signaling pathways 

 On the principal proteins associated with GR signaling pathways (i.e. GR, 

p(Ser211)GR, HSP90/HSP70, GSK3-β, Cdk5 and Fyn) and APP metabolism (i.e. APP, C99, 

IDE, sAPPα, ADAM10 and PS1) assessed in our study, there was no additive effect of 

chronic corticosterone on the Aβ toxicity. Interestingly, in 3xTg mice, one-week treatment 

with dexamethasone was able to induce an increase of APP and C99 levels [14]. However, 
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the authors used 4 months-old 3xTg animals before the establishment of important AD-like 

symptoms. Thus, dexamethasone could potentiate the expression of these markers. In our 

study, the modifications induced by each treatment (chronic corticosterone or oAβ25-35) were 

closely similar. This suggests common regulatory mechanisms and supports the important 

role played by GR in the pathophysiology of AD (for review, see [3,4,6,24]). Indeed, we 

recently demonstrated in this acute model of AD (oAβ25-35), that these pathways were 

impaired [20] and associated with a strong and long-lasting disruption of the HPA axis 

activity and functionality [21]. Then, to evaluate the contribution of GR in the Aβ toxicity, we 

tried to restore their functionality using new selective GR modulators (sGRm) [19,20]. This 

family of compounds has the advantage to selectively abrogate pathological effects of GR 

overactivation, while retaining their physiological function [79,80]. By restoring their 

functionality with sGRm, we counteracted all parameters measured and induced by the Aβ 

toxicity, highlighting the central role played by GR in the development of AD [20]. Taken 

together, all of these results highly suggest that a part of Aβ toxicity could be a consequence 

of the GC overexposure and GR signaling impairment. 

 However, the two α-secretases ADAM10 and ADAM17 are differentially regulated in 

the hippocampus by chronic corticosterone consumption and oAβ25-35. We found that Aβ 

toxicity increased ADAM17 levels while inhibiting ADAM10 expression. By contrast chronic 

corticosterone decreased the two α-secretases. These proteases are neuroprotective by 

triggering the non-amyloidogenic pathway and the generation of sAPPα. But the precise role 

of ADAMs in AD pathogenesis is not fully understood. ADAM10 seems to constitutively 

cleave APP while fine regulation is mediated by ADAM17 [81]. In the CSF of AD patients, 

ADAM10 is decreased [82], which is correlated with the inhibition of the non-amyloidogenic 

pathway. Inversely, ADAM17 activity is increased both in early and advanced phases of AD 

[83], that evidences more complex regulatory mechanisms. In fact, besides its 

neuroprotective role, ADAM17 is also highly activated by neuroinflammatory processes and 

promotes pro-inflammatory cytokines maturation in turn (for review, see [58]. These findings 

are relevant with our results in oAβ and CCoAβ groups. In these animals, we found 

decreased ADAM10 and sAPPα expressions and increased ADAM17 expression 

concomitantly with enhanced neuroinflammatory processes (Fig. 4H). So, we could imagine 

that ADAM10 participated to APP non-amyloidogenic cleavage more than ADAM17, that 

could be regulated by pro-inflammatory processes. To summarize, we found that both oAβ 

and chronic corticosterone consumption altered APP processing balance by increasing the 

amyloidogenic (C99, BACE1, PS1) and inhibiting the non-amyloidogenic (ADAM10, IDE) 

pathways (Fig. 3J). It is interesting to note that the main difference observed between 
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chronic corticosterone and oAβ groups is their inflammatory phenotypes. Such difference 

could participate to explain the exacerbation of AD-related markers in CCoAβ animals (Fig. 

4H). 

Effects on inflammatory processes 

 Neuroinflammation is a key feature of AD pathology. Activated microglia and 

astrocytes trigger the overproduction of pro-inflammatory cytokines, which promotes Aβ 

accumulation and thus neurodegeneration [2]. As we already observed [17-20], we 

confirmed in this study that oAβ25-35 induced neuroinflammation, since it increased GFAP 

and Iba1, but also ADAM17, which is highly activated by neuroinflammatory processes and, 

as discussed above, promotes pro-inflammatory cytokines maturation in turn (for review, 

see [58]) (Fig. 4H). Inversely, chronic corticosterone consumption favored the anti-

inflammatory pathways (Fig. 4H). It was well known that stress and GC influence 

substantially the level and the quality of the immune response. The activation of GR-

AnnexinA1 pathway inhibits the pro-inflammatory response, thus mediating the major 

immunosuppressive effects of GC [51,84]. Here, we observed the decrease of GFAP and 

Iba1 levels in the hippocampus, associated with the increase of GR, p(S211)GR, Annexin 

A1 and the anti-inflammatory cytokine IL-10 expressions. Same results were obtained in 

recent research that investigated the effects of chronic stress on astroglial cells. Both chronic 

variable stress and chronic restraint stress increased GC plasma levels while decreasing 

GFAP expression by around 20% in astrocytes [85-87]. Such variation in astrocytes was 

sufficient to trigger depressive and anxiety-like behaviors [85-87]. The authors found that 

this modification is not due to glial cell loss, but could be due to an important remodeling of 

astrocytes morphology and network. This decrease of astrocytes plasticity led to a loss of 

their trophic functions on neurons, particularly on synaptic formation, LTP induction and 

growth factor expression [85,87,88]. Based on our results, these alterations could be linked 

to synaptic and memory deficits induced by the chronic corticosterone consumption. 

Moreover, a negative glucocorticoid-responsive element (nGRE) on the promoter of GFAP 

was identified, indicating that GC inhibits directly the transcription of GFAP [89]. So, it is not 

surprising that in these conditions, chronic corticosterone seemed to be highly 

immunosuppressive (Fig. 4H). To reinforce this view, these results were also correlated with 

ADAM17 decreased expression. As mentioned, ADAM17 expression and activity are under 

the control of pro-inflammatory processes [58]. 

 Otherwise, we observed attractive results in CCoAβ animals. We found in this group 

that GC plasma levels were higher than in control group, but not as well as chronic 
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corticosterone consumption or oAβ groups. Such result could be explained by the atrophy 

of adrenals and the impairment of HPA axis, indicating that this endocrine system was 

exhausted in CCoAβ animals. In accordance with our results, other groups demonstrated 

that chronic GC overexposure might blunt stress-induced corticosterone secretion [29,90]. 

These findings were obtained with animals pretreated with GC and then submitted to 

behavioral stressors. This observation could be extended to cellular stressors such as oAβ25-

35 in our study. These results in CCoAβ animals could also explain the incapacity of GC to 

restrain inflammatory processes induced by oAβ. Indeed, in these animals we observed a 

potentiation of pro-inflammatory (GFAP, Iba1, ADAM17) and an inhibition of anti-

inflammatory (IL-10) markers (Fig. 4H). This incapacity of GC to regulate neuroinflammatory 

processes could partly explain the exacerbation of AD hallmarks evidenced here. Such 

phenomenon was already described in chronically stressed animals injected with 

lipopolysaccharide (LPS) [91-94]. Thus, in accordance with our results, it appears that 

chronic stress, as well as chronic corticosterone consumption, primes the 

neuroinflammatory response to a subsequent pro-inflammatory stimulus as oAβ25-35 or LPS. 

Therefore, the neuroimmune context is more responsive to inflammation, also favoring GC 

insensitivity or reducing the HPA response [94-96].  

 Furthermore, additional effects of chronic corticosterone consumption and oAβ25-35 

injection were evidenced in the hippocampus on Annexin A1. As previously mentioned this 

protein is activated by pro-inflammatory mediators and is an important anti-inflammatory 

actor mediating GC and GR effects [50,51]. However, no study identified a GRE on the 

promoter region of Annexin A1 gene, and its transcription seems to be mediated by pro-

inflammatory cytokines and oxidative stress [97,98]. Here, surprisingly, even if GR signaling 

pathways were impaired, Annexin A1 levels were highly increased in CCoAβ animals. Taken 

together, we can envisage that this increase of Annexin A1 could be a compensatory 

mechanism to counteract exacerbated pro-inflammatory processes. Further investigations 

are needed to assess if the GR-Annexin A1 axis is still functional, even in a context of GR 

overactivation. 

We focused on GR as we previously observed and established its central role in AD 

pathophysiology [3,19, 20]. In stress conditions, and a fortiori in pathological conditions, GR 

seem to be more involved than MR [10]. However, a recent work demonstrated that 

hippocampal MR are overexpressed and overactivated by oxidative stress. This leads to 

microglia activation, pro-inflammatory mediators secretion, and down-regulation of anti-

inflammatory factors [99]. Thus, we cannot totally exclude the involvement of MR in our 
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study. Further investigations are needed to decipher the precise role of MR between chronic 

stress, high levels of GC and the pathophysiology of AD. 

CONCLUSIONS 

 All these results evidenced the crucial role played by GC and GR, and brought new 

information on how chronic corticosterone consumption could accelerate the development 

of AD by generating a deleterious inflammatory environment. It also reinforces the idea 

making chronic GC overexposure, as well as anxiety, as main risk factors in AD. Despite 

physiological anti-inflammatory properties of GC, prior chronic exposure to corticosterone 

markedly potentiates neuroinflammation associated with a subsequent innate immune 

system challenge induced by oAβ injection. The direct consequence of this exacerbated 

neuroinflammation is the aggravation of synaptic and memory deficits (Fig. 5). 

 It also highlights the therapeutic potential of new GR modulators, called sGRm, which 

are in capacity to reestablish GR functioning and signaling pathways and subsequent HPA 

axis physiological activity. These compounds represent a really attractive therapeutic 

approach in all stress-related disorders, pathologies displaying GC overproduction, or 

pathology needing an anti-inflammatory treatment [4,19,100-103].  

 Otherwise, the present study strongly argues in favor of the hypothesis suggesting 

that AD, as well as depression, could be a stress-related disorder [4]. Indeed, for years, 

clinical evidences established a strong correlation between elevated GC and higher risk to 

develop AD [104]. Thus, it was not surprising that recent clinical trials showed no difference 

in cognitive decline in AD patients prescribed with the GC receptor agonist, prednisone 

[105]. That’s why this work also aims to alert about the risk to prescribe GC-based therapies 

in the elderly or in early AD patients. 
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LEGENDS 

Fig. 1 

Impact of chronic corticosterone consumption on oAβ25-35-induced toxicity. Panel A: 

Experimental protocol - At T0, adult male rats (Sprague Dawley) were treated with 

corticosterone in drinking water (10 mg/kg/day, dissolved in 0,45% β-cyclodextrine) for 5 

weeks (CORT animals, red columns) and compared to a second group treated only with β-

cyclodextrine (vehicle animals, blue columns). At week 4, animals received any icv injection 

(control (C) group), an icv injection of oAβ25-35 (10 µg/rat, “oAβ” group) or an icv injection of 

Scrambled control (“S” group). The last day before sacrifice (day 34) the spatial short-term 

memory of each rat was tested in a T-maze. The following day (day 35), the animals were 

sacrificed between 9H00 and 12H00 (during the diurnal trough of the HPA axis circadian 

rhythm), blood samples and hippocampi were rapidly collected for corticosterone assay and 

Western blot analysis, respectively. Panel B: Spatial short-term memory performance was 

determined in a T-maze test and was expressed as the ratio of the time spent in the initially 

closed arm (B) over the time spent in the previous arm (A). Two-way ANOVA: F2,39 = 44.7 

for group, p<0.0001; F1,39 = 36. 4 for treatment, p<0.0001; and F2,39 = 1.09 for interaction, 

ns. In addition, all data were analyzed in comparison to chance level (CL), i.e., maximal 

deficit, using a one sample t-test. All data are different to the CL, except rats co-treated with 

CORT and oAβ. Panel C: Plasma concentrations of corticosterone (CORT) were 

determined by Elisa and expressed as ng/ml. Two-way ANOVA: F2,30= 9.48 for group, p< 

0.001; F1,30= 0.15 for treatment, ns; and F2,30= 15.3 for interaction, p< 0.0001. Panel D: 

Variations of apoptosis hallmark (caspase-3, 19 kDa) were evaluated in each group and 

normalized with the variations of β-tubulin (β-tub, 55 kDa) and compared with non-injected 

rats (control group: C). Two-way ANOVA: F2,30= 1.99 for group, ns; F1,30= 8.45 for treatment, 

p< 0.01; and F2,30= 11.0 for interaction, p< 0.001. 

Data are expressed as means ± SEM in percent of naive rats. * p< 0.05 and ** p< 

0.01 vs. respective group treated with vehicle. ++ p< 0.01 vs. respective control (C) group. 

∅ p< 0.05 and ∅∅ p< 0.01 vs. respective scrambled (S) group, ◆ p< 0.05 and ◆◆ p< 0.01 

vs. selected group, ** p< 0.01 vs. chance level (CL). 

Fig. 2 

The cumulative effects in the hippocampus of chronic corticosterone consumption 

and oAβ25-35 injection on GR signaling pathways (Panels A), were evaluated by Western 

blot. Variations of the expression of GR (95 kDa) (Panels B,C), the phosphorylation of GR 

(p[Ser211]GR, 95 kDA) (Panels B,D), the expression ratio of HSP90/HSP70 (90 kDa / 70 
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kDa) (Panels B,E), ANNEXIN A1 (35 kDA) (Panels B,F), Fyn (59 kDa) (Panels B,G), the 

activation of GSK-3β (ratio of p[Tyr216]GSK-3β/GSK-3β total, 46kDa) (Panels H,I), the 

Cdk5 (30 kDa) (Panels H,J) pathways, the expression ratio of p25/p35 (25 & 35 kDa) 

(Panels H,K) were evaluated in each group and normalized with the variations of β-tubulin 

(β-tub, 55 kDa). For experimental protocol see Fig.1A. Two-way ANOVA: GR: F2,30= 3.71 

for group, p< 0.05; F1,30= 20.8 for treatment, p< 0.001; and F2,30= 2.63 for interaction, ns; 

pGR: F2,30= 4.48 for group, p< 0.05; F1,30= 21.5 for treatment, p< 0.0001; and F2,30= 3.98 for 

interaction, p< 0.05; HSP90/HSP70: F2,30= 10.7 for group, p< 0.001; F1,30= 7.23 for 

treatment, p< 0.001; and F2,30= 0.53 for interaction, ns; Annexin A1: F2,30= 17.4 for group, 

p< 0.0001; F1,30= 43.8 for treatment, p< 0.0001; and F2,30= 1.06 for interaction, ns; Fyn: 

F2,30= 11.1 for group, p< 0.001; F1,30= 15.9 for treatment, p< 0.001; and F2,30= 0.83 for 

interaction, ns; p[Tyr216]GSK-3β/GSK-3β: F2,30= 18.4 for group, p< 0.0001; F1,30= 13.8 for 

treatment, p< 0.001; and F2,30= 1.95 for interaction, ns; Cdk5: F2,30= 3.38 for group, p< 0.05; 

F1,30= 40.3 for treatment, p< 0.0001; and F2,30= 2.75 for interaction, ns; p25/p35: F2,30= 19.5 

for group, p< 0.0001; F1,30= 56.5 for treatment, p< 0.0001; and F2,30= 1.21 for interaction, 

ns. 

Data are expressed as means ± SEM in % of naive rats. * p< 0.05 and ** p< 0.01 vs. 

respective group treated with vehicle. + p< 0.05 and ++ p< 0.01 vs. respective control (C) 

group. ∅ p< 0.05 and ∅∅ p< 0.01 vs. respective scrambled (S) group, ◆◆ p< 0.01 vs. 

selected group. 

Fig. 3 

The cumulative effects in the hippocampus of chronic corticosterone consumption 

and oAβ25-35 injection on APP processing (Panels A), were evaluated by Western blot. 

Variations of the expression of APP (120 kDa) (Panels B,C), C99 (13 kDa) (Panels B,D), 

BACE1 (β-secretase, 70 kDa) (Panels B,E), PS1 (𝛾-secretase, 20 kDa) (Panels B,F), 

sAPPα (100 kDa) (Panels B,G), Adam10 (α-secretase, 70 kDa) (Panels B-H), IDE (110 

kDa) (Panels B,I) were evaluated in each group and normalized with the variations of β-

tubulin (β-tub, 55 kDa). For experimental protocol see Fig.1A. Two-way ANOVA: APP: F2,30= 

5.14 for group, p< 0.01; F1,30= 19.5 for treatment, p< 0.0001; and F2,30= 5.98 for interaction, 

p< 0.01; C99: F2,30= 11.6 for group, p< 0.001; F1,30 5.34 for treatment, p< 0.05; and F2,30= 

5.48 for interaction, p< 0.01; BACE1: F2,30= 16.7 for group, p< 0.0001; F1,30= 41.3 for 

treatment, p< 0.0001; and F2,30= 0.34 for interaction, ns; PS1: F2,30= 7.85 for group, p< 0.01; 

F1,30= 8.75 for treatment, p< 0.01; and F2,30= 2.63 for interaction, ns; sAPPα: F2,27= 9.56 for 

group, p< 0.001; F1,27= 35.8 for treatment, p< 0.0001; and F2,27= 18.5 for interaction, p< 

0.0001; ADAM10: F2,30= 9.52 for group, p< 0.001; F1,30= 5.81 for treatment, p< 0.05; and 
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F2,30= 1.38 for interaction, ns; IDE: F2,30= 3.14 for group, p< 0.05; F1,30= 14.3 for treatment, 

p< 0.001; and F2,30= 4.54 for interaction, p< 0.05. Panel J: Radar chart displaying the profile 

of APP processing (non-amyloidogenic pathway; sAPPα, ADAM10 & IDE, vs. amyloidogenic 

pathway; C99, BACE1 & PS1) occurring in each experimental condition (control, treated 

with CORT, treated with oAβ or treated with CORT and oAβ). 

Data are expressed as means ± SEM in % of naive rats. * p< 0.05 and ** p< 0.01 vs. 

respective group treated with vehicle. + p< 0.05 and ++ p< 0.01 vs. respective control (C) 

group. ∅ p< 0.05 and ∅∅ p< 0.01 vs. respective scrambled (S) group, ◆ p< 0.05 and ◆◆ 

p< 0.01 vs. selected group. 

Fig. 4 

The cumulative effects in the hippocampus of chronic corticosterone consumption 

and oAβ25-35 injection on synaptic deficits and neuroinflammation were evaluated by 

Western blot. Variations of the expression of PSD95 (95 kDa) (Panels A,B), 

Synaptotagmine (SYN) (65 kDA) (Panels A,C), GFAP (50 kDa) (Panels A,D), Iba1 (21 kDa) 

(Panels A,E), IL-10 (25 kDa) (Panels A,F) and ADAM17 (55 kDa) (Panel A,G) were 

evaluated in each group and normalized with the variations of β-tubulin (β-tub, 55 kDa). For 

experimental protocol see Fig.1A. Two-way ANOVA: PSD95: F2,30= 18.8 for group, p< 

0.0001; F1,30= 66.7 for treatment, p< 0.0001; and F2,30= 0.60 for interaction, ns; SYN: F2,30 

37.8 for group, p< 0.0001; F1,30 16.7 for treatment, p< 0.001; and F2,30= 0.37 for interaction, 

ns; GFAP: F2,30= 69.5 for group, p< 0.0001; F1,30= 1.99 for treatment, ns; and F2,30= 19.0 for 

interaction, p< 0.0001; Iba1: F2,30= 55.9 for group, p< 0.0001; F1,30= 22.9 for treatment, p< 

0.0001; and F2,30= 7.80 for interaction, p< 0.01; IL-10: F2,30= 5.84 for group, p< 0.01; F1,30= 

1.20 for treatment, ns; and F2,30= 100 for interaction, p< 0.0001; ADAM17: F2,30= 67.4 for 

group, p< 0.0001; F1,30= 6.49 for treatment, p< 0.05; and F2,30= 5.43 for interaction, p< 0.01. 

Panel H: Radar chart displaying the inflammatory profile (anti-inflammatory mediators; IL-

10 & ADAM-17, vs. pro-inflammatory mediators; GFAP, Iba1) occurring in each 

experimental conditions (control, treated with CORT, treated with oAβ or treated with CORT 

and oAβ) and in relation with plasma CORT levels. 

Data are expressed as means ± SEM in % of naive rats. * p< 0.05 and ** p< 0.01 vs. 

respective group treated with vehicle. + p< 0.05 and ++ p< 0.01 vs. respective control (C) 

group. ∅ p< 0.05 and ∅∅ p< 0.01 vs. respective scrambled (S) group, ◆◆ p< 0.01 vs. 

selected group. 



 
 
 
 
 
 

Table 1 

Effects of icv injection of oAβ25-35 on body weights (g) of corticosterone-treated rats. 

 Control groups Scrambled groups oAβ25-35 groups 

 C CV CC  S SV SC oAβ oAβV oAβC 

Before treatments 162 ± 4 163 ± 5 166 ± 3 171 ± 3 172 ± 8 167 ± 3 168 ± 4 168 ± 3 165 ± 4 

After CORT treatment 
(4 weeks) 

370 ± 10 362 ± 14 336 ± 9 371 ± 11 358 ± 13 329 ± 5 352 ± 6 343 ± 7 319 ± 15 

I week after oAβ25-35 icv injection 
(5 weeks) 

392 ± 12 371 ± 15 
 

332 ± 10 
**/+ 

372 ± 12 362 ± 10 313 ± 5 
**/++ 

325 ± 4 324 ± 6 292 ± 11 
**/+/◊ 

N 8 7 8 8 8 8 8 9 9 

The data are shown mean ± SEM and analyzed using a two-way ANOVA: Before treatment, F2,64 = 0.09; p> 0.05 for CORT treatment, F2,64 = 1.09, 
p> 0.05 for groups and F4,64 = 0.28, p> 0.05 for interaction. After CORT treatment, F2,64 = 2.76; p> 0.05 for CORT treatment, F2,64 = 2.53, p> 0.05 
for groups and F4,64 = 0.06, p> 0.05 for interaction. After oAβ25-35 icv injection, F2,64 = 22.6; p< 0.01 for CORT treatment, F2,64 = 21.5, p< 0.01 for 
groups and F4,64 = 0.87, p> 0.05 for interaction.  ** p< 0.01 vs. respective control rats. + p< 0.05 and ++ p< 0.01 vs. respective vehicle injected rats. 
◊ p< 0.05 vs. control and scrambled rats treated with CORT. N: number of rats. C: control; CV: control + vehicle (β-CD 0.45%); CC: control + CORT 
(10 mg/kg/day); S: Aβ25-35 scrambled (10 µg/rat icv); SV: scrambled + vehicle; SC: scrambled + CORT; oAβ: oAβ25-35 (10 µg/rat icv); oAβV: oAβ25-

35 + vehicle and oAβC: oAβ25-35 + CORT. 
 













SUPPLEMENTARY LEGENDS 

Sup-Fig. 1 

Validation of the chronic corticosterone consumption model. Panel A: Experimental 

protocol - At T0, adult male rats (Sprague Dawley) were chronically treated with 

corticosterone in drinking water (at 1, 5 or 10 mg/kg/day, dissolved in 0,45% β-

cyclodextrine) for 4 weeks). One group did not receive any treatment (control rats, 

white column), a second group were treated only with β-cyclodextrine (vehicle control 

- blue column). Two days before sacrifice, the locomotor activity and the anxious-like 

behavior of each rat were tested in an Open-field (day 26) and in elevated plus maze 

(EPM) (day 27). The following day (day 28), the animals were sacrificed, blood samples 

and hippocampi were rapidly collected for corticosterone assay and Western blot 

analysis, respectively. Panel B: Plasma concentrations of corticosterone (CORT) were 

determined by Elisa and expressed as ng/ml. One-way ANOVA: F4,20= 17.7 p< 0.0001. 

Panel C: Anxious-like behavior was tested in the open-field. Each animal was placed 

in the center of the arena and allowed to freely explore for 10 min. Parameters 

analyzed: latency to start moving (sec), total immobility time (sec), number of entries 

in the center zone of the open-field, numbers of grooming, number of rearing, and total 

distance moved (m). One-way ANOVA: F4,20= 9.57 (p< 0.001) for latency to start 

moving; F4,20= 8.33 (p< 0.001) for total immobility time; F4,20= 7.44 (p< 0.001) for 

number of entries in the center zone of the open-field; F4,20= 13.0 (p< 0.0001) for 

numbers of grooming; F4,20= 6.48 (p< 0.01) for numbers of rearing; F4,20= 0.85 (ns) for 

total distance moved. Panel D: Anxious-like behavior was determined in the EPM 

paradigm. Each animal was placed at the center of the EPM and allowed to freely 

explore for 10 min. Data were expressed as time spent in the open arms (OA) in % of 

total time. One-way ANOVA: F4,25= 8.77 (p< 0.001). 

Data are expressed as means ± SEM. * p< 0.05 and ** p< 0.01 vs. control (C) group, 

+ p< 0.05 and ++ p< 0.01 vs. vehicle (V) group, ø p< 0.05 and øø p< 0.01 vs. selected 

group. 





 
 
 
 
 
 
 
 

Supplementary Table 1 

Body, adrenal and pituitary weights of corticosterone-treated rats. 

   CORT (mg/kg/day – 4 weeks)  

 Control Vehicle  
(β-CD) 

1  5 10 Anova (one way) 

Body weight (g)       

Before treatment 130 ± 2 132 ± 1 131 ± 2 129 ± 2 130 ± 2 F4,20 = 0.14; p> 0.05 
After 1 week 188 ± 4 190 ± 1 194 ± 6 193 ± 5 186 ± 6 F4,20 = 0.47; p> 0.05 
After 2 weeks 237 ± 5 235 ± 6 246 ± 5 240 ± 7 233 ± 5 F4,20 = 0.77; p> 0.05 
After 3 weeks 284 ± 4 279 ± 5 296 ± 5 286 ± 10 283 ± 8 F4,20 = 0.88; p> 0.05 
After 4 weeks 332 ± 4 323 ± 5 348 ± 5 332 ± 10 318 ± 8 F4,20 = 2.66; p> 0.05 

Adrenal weight (mg) 
(after 4 weeks) 

43.2 ± 3.6 43.6 ± 4.0 45.2 ± 
1.7 

35.8 ± 2.1 
*/+ 

34.0 ± 2.4 
**/++ 

F4,20 = 3.14; p< 0.05 

Pituitary weight 
(mg) 
(after 4 weeks) 

11.5 ± 0.7 10.6 ± 0.6 11.0 ± 
0.6 

10.4 ± 0.3 10.2 ± 0.6 F4,20 = 0.69; p> 0.05 

N 5 5 5 5 5 - 

The data are shown mean ± SEM. N: number of rats. * p< 0.05 and ** p< 0.01 vs. control group. + p< 0.05 
and ++ p< 0.01 vs. vehicle injected group. β-CD: β-cyclodextrin; CORT: corticosterone 



Supplementary Table 2 

Antibodies used in Western blot experiments 

Protein 
Mol. 

weight 
Antibody Dilution Ref. Supplier 

Primary antibodies 

ADAM10  72 kDa 
Rabbit anti-

ADAM10 
1/1000 AB19026 Merck-Millipore, France 

APP/C99  
125/13 

kDa 

Rabbit anti-

APP/C99 
1/750 PA1-84165 

Thermo-Fisher 

Scientific, France 

BACE1  70 kDa 
Rabbit anti-

BACE 
1/1000 #5606 

Cell Signaling/Ozyme, , 

St Cyr-l’Ecole, France 

Caspase 3  19 kDa 
Rabbit anti-

caspase 3 
1/500 #9665 

Cell Signaling/Ozyme, 

France 

Cdk5  30 kDa Rabbit anti-Cdk5 1/500 #2506 
Cell Signaling/Ozyme, 

France 

Fyn  59 kDa Rabbit anti-Fyn 1/500 #4023 
Cell Signaling/Ozyme, 

France 

GFAP  55 kDa 
Mouse anti-

GFAP 
1/2000 G3893 Sigma-Aldrich, France 

GR  95 kDa Rabbit anti-GR 1/1000 #3660 
Cell Signaling/Ozyme, 

France 

GSK-3β  46 kDa 
Mouse anti-GSK-

3β 
1/2000 610202 

BD-Biosciences, Rungis, 

France 

HSP70  70 kDa 
Rabbit anti-

HSP70 
1/500 #4872 

Cell Signaling/Ozyme, 

France 

HSP90  90 kDa 
Rabbit anti-

HSP90 
1/1000 #4877 

Cell Signaling/Ozyme, 

France 

Iba1  17 kDa Rabbit anti-Iba1 1/750 013-19741 
Wako Chem,,Osaka, 

Japan 

IDE  110 kDa Rabbit anti-IDE 1/3000 AB9210 Merck-Millipore, France 

IL-10 21 kDa Rabbit anti-IL10 1/500 AB192271 
Abcam, Cambridge, 

United-Kingdom 

p[Tyr216]GSK-3β  46 kDa 
Mouse anti-

p[Tyr216]GSK-3β 
1/2000 612313 BD-Biosciences, France 

p35/p25  35/25 kDa 
Rabbit anti-

p35/p25 
1/500 #2680 

Cell Signaling/Ozyme, 

France 

pGR 95 kDa 
Rabbit anti-

p[Ser211]GR 
1/1000 #4161 

Cell Signaling/Ozyme, 

France 

PS1 22 kDa Rabbit anti-PS1 1/1000 #5643 
Cell Signaling/Ozyme, 

France 

PSD95 95 kDa 
Rabbit anti-

PSD95 
1/2000 #3450 

Cell Signaling/Ozyme, 

France 

sAPPα 100 kDa 
Mouse anti-

sAPP  
1/50 11098 IBL, Hamburg, Germany 

SYN  65 kDa 
Mouse anti-

synaptotagmine 
1/1000 MAB5200 Merck-Millipore, France 

β-Tub 50 kDa 
Mouse anti-β-

Tubulin 
1/7500 T4026 Sigma-Aldrich, France 

Secondary antibodies 

IgG 
Goat anti-rabbit IgG 

peroxidase conjugate 
1/2000 A61-54 Sigma-Aldrich, France 

IgG 
Goat anti-mouse IgG 

peroxidase conjugate 
1/2000 A67-82 Sigma-Aldrich, France 
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