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Abstract—Level-crossing ADCs reduce the size of data streams
in wearable devices. However, in the context of electrocardiogram
(ECG) signals, such an event-driven data source results in a
variable length two-dimensional (time-amplitude tuples) data
vector for each ECG beat. It is difficult to apply many standard
signal processing techniques to this data making classifiers more
complex. In this paper we resolve these difficulties by mapping
the variable length 2D vectors to a fixed length feature vector
comprising the first 80 coefficients of a Chebyshev polynomial
expansion of the ECG beat. We show that, by using these 80
coefficients, the average percentage root-mean-square error is
only ≈3.08%. Using this feature set we constructed a simple
three-layered ANN binary (Normal / Abnormal) ECG classifier
and we demonstrate 98.15% average accuracy and 96.07%
average sensitivity. We also constructed a 4-class ANN, using the
same ANN structure and we achieved 98.80% average accuracy
and 91.5% average sensitivity. Both these networks have only
20k parameters and outperform the state-of-the-art classifiers,
enabling low-power edge computing.

Index Terms—level-crossing ADC, event-driven, electrocardio-
grams, functional approximation, chebyshev polynomials, artifi-
cial neural networks, arrhythmia

I. INTRODUCTION

Long-term monitoring of electrocardiogram (ECG) signals
effectively identifies individuals with high risks of cardio-
vascular disease. Morphological changes in ECG beats can
indicate abnormalities of the heart and the early detection of
these changes is important for preventing life-threatening con-
ditions. A recent study showed the significance of monitoring
ECG signals for longer than 14 days, in both cardiovascular
disease diagnoses and the study of the efficacy of treatment
[1]. Low-power arrhythmia classifiers that prolong battery life
in wearable devices [2]–[5] have been proposed for long-
term ECG classification tasks. Many such methods use high-
dimensional ECG data with computationally expensive deep
learning algorithms to classify arrhythmias. Some methods
transmit ECG data off-chip to classify on a less power-
constrained devices e.g. a mobile phone [6] or cloud-based
systems [7].

Recent development in level-crossing analogue-to-digital
converters (ADCs) has shown a promising future for low-
power wearable devices. Level-crossing ADCs can implicitly
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Fig. 1. The 7-bit level-crossing design with a 2385Mz clock frequency and
6-bit clock timer.

compress ECG data by 3x while maintaining signal quality
in comparison with SAR ADCs [8], however the complexity
of many non-uniform signal processing techniques make the
realization of simple classifiers difficult on a low-powered
device. For example, each beat in a event-driven ECG system
comprises a variable number of (non-uniform) two dimension
(2D) time-amplitude samples, making it impossible to feed
into conventional deep learning networks.

Fig. 2. Level-crossing sampling of ECG from the MIT-BIH dataset.

A recent study [9] explored functional approximation coeffi-
cients as features on several time-series datasets. They showed
that there is only negligible or no change in classification
accuracy using approximation coefficients as features. How-
ever, they achieved a large reduction in input dimensions. This
study [9] is the motivation for our work. In [10], Chebyshev
polynomials were used to classify entire ECG records in a
dataset, however the focus of our work is the classification of



individual ECG beats and so direct comparison with [10] is
not possible.

In [11] the authors show that it is possible to represent
continuous time functions with a weighted sum of Chebyshev
polynomials. In our we apply this concept to transform the
non-uniformly sampled ECG beats to a fixed number of
features (namely the 80 Chebyshev weights/coefficients) and
use these to classify arrhythmias within the MIT-BIH dataset.
In this context, the major contributions of this paper are
as follows: a) This work uses functional approximation to
estimate a fixed number of features from non-uniform level-
crossing samples, and b) presents a low-power ANN (binary
and 4-class) to classify four types of beats in the MIT-BIH
dataset with results better than the state-of-the-art. The rest
of the article is organized as follows. Section II presents
the level-crossing ADC principles, introduces the functional
approximation technique, and proposes a three-layered ANN
classifier. Section III presents results and a comparison with
the state-of-the-art. Finally, in Section IV, conclusions are
drawn.

II. METHODOLOGY

A. Level-Crossing Sampling

In contrast to uniform sampling, level-crossing sampling
does not sample at every clock cycle of the ADC. A level-
crossing ADC produces an output only when the amplitude of
the input signal crosses either an upper or a lower threshold
at which point the threshold are updated. If there are no
level crossings within a clock roll-over period, the ADC will
produce an output at that time. Fig. 1 shows the 7-bit level-
crossing ADC design used in this study with a 2385 Hz clock
frequency and 6-bit clock timer (corresponding to a roll-over
time of 26.8 ms). These parameters were chosen based on the
analysis in [8].

At every level-crossing the output is a tuple comprising an
ECG amplitude ECGout, and corresponding timing informa-
tion TIn, where n is an index indicating the nth sample. TIn
is an N bit word (in our case 6-bit) and indicates the time
between two consecutive samples w.r.t the clock frequency
of 2385 Hz. Fig. 2 shows an example of the level-crossing
sampling of an ECG beat from the MIT-BIH dataset.

B. Functional Approximation Features

Functional approximation is a method for estimating an
underlying unknown function from a set of observations.
Functional approximation can also be used where samples
exist at irregular intervals in time [9] assuming these samples
are from a continuous signal [12].

We define the variable length vector t⃗j,i as the vector of
time values (in seconds) where a variable number of level
crossing events associated with the jth beat occurred. These
time vectors are formed by only selecting those level crossing
events that lie with a specific window about the R-peak of the
jth beat, denoted here as occurring at time tRj , as follows:

−260 ms < tj,i − tRj < 400 ms

For the purpose of Chebyshev polynomial approximation we
need to normalize these time values to the range [−1,+1] so
we perform the following mapping:

x⃗j,i = 2
t⃗j,i − tRj + 260 ms
260 ms + 400 ms

− 1

Let fj(x) denote the continuous function representing the
jth beat. Then, the amplitudes of the level-crossings at the
times tj,i can be represented as fj(xj,i).

Given a suitable set of finite basis functions, fj(x) can be
represented as a weighted sum of basis functions defined on
the interval [−1, 1] as:

fj(x) =

n∑
k=0

cj,kgk(x)

where, cj,k are the functional approximation coefficients of
the jth beat and they represent the amount of the respective
basis function present in the signal fj(x). Motivated by [9],
we choose Chebyshev polynomials of the first kind as the set
of basis functions in this study. They can be represented by
the following recurrence relations:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

Then, we compute the cj,k by a dot product of the points
corresponding to the roots of the (n+ 1)th polynomial [9]:

cj,k =
2

n+ 1

n∑
l=0

fj(xl)Tk(xl) (1)

where, xl time points are defined by:

where, xl = cos

((
l +

1

2

)
π

n+ 1

)
(2)

However, we do not know exactly the points fj(xl), there-
fore we use linear interpolation to approximate the fj(xl) from
the set of points fj(xj,i) throughout this study.

1) Raised Cosine Windowing and Rotation: Fig. 3a shows
the distribution of xl points on an ECG beat using (2). It can be
seen that the distribution of these points is mostly concentrated
towards the edges of the ECG beat, whereas, the highest
activity of the QRS complex lies around the R peak. We
observed that using these xl time points resulted in high error
when the ECG beat was reconstructed using the coefficients.
To address this issue, we introduce a preprocessing step, which
applies raised cosine windowing to the ECG beat followed by
a rotation around the R peak.

The raised cosine window is used to taper of the edges of
the ECG beat as follows:

w(t) =


1 |t| < (1− β)

0 |t| > 1

1/2
(
1 + cos

(
π |t|−(1−β)

β

))
elsewhere



Fig. 3. (a) An example of the xl time points using linear interpolation on an ECG beat for n=50, (b) after linear interpolation, windowing and a rotation for
n=50, and (c) Reconstructed ECG beat using 50 approximation coefficients (PRD of 2.034%).

Fig. 4. The effect of the windowing function w(t) on an ECG beat with a
roll-off factor of 0.3.

Fig. 5. The three-layered artificial neural network used to classify the ECG
beats in the MIT-BIH dataset.

where, β is the roll-off factor and signifies the percentage
of the signal being tapered off. Fig. 4 shows the effect of
windowing the ECG beat with a roll-off factor of 0.3.

Next, the beat is rotated around the R-peak such that the R-
peak is now concentrated around the edges as shown in Fig. 3b
and the new time points xl capture the R peak more uniformly.
Fig. 3c shows a reconstructed ECG beat using windowing
and rotation method and 50 approximation coefficients. The

percentage root-mean-square difference (PRD) between the
original ECG beat and the reconstructed beat is 2.034%, which
is well under the signal quality limit of 10% [13].

2) Choosing the right number of coefficients: To understand
the effect of windowing and rotation on the ECG beat, we ran
simulations on the entire MIT-BIH dataset with and without
the technique described in Section II-B1. We observed that
without the windowing and rotation technique, 200 more xl

time points and approximation coefficients were required for
the PRD to converge. Similarly, we observed that when using
windowing and rotation, the PRD converged to ≈3.08% at
n = 200 interpolation time points, xl, and for k = 80
approximation coefficients. Therefore, for the rest of this
article, we use n = 200 and k = 80 for estimating the
approximation coefficients. Due to the page limits of this
article, this comparative study is not presented in detail here.

C. Classification

For every beat in the MIT-BIH dataset, we generate a
feature vector of 81 values using functional approximation
with n = 200 and k = 80. This feature vector is fed into
a three-layered ANN as shown in Fig. 5. There are 128,
64 and 32 neurons in the three hidden layers. Finally, each
output is classified into one of the following four classes:
normal (N), supraventricular (S), ventricular (V), and fusion
(F) beats. The number of hidden layers and the respective
number of neurons were chosen from several simulations of
one to five hidden layers and 8-256 neurons per layer. Here,
the dataset is split into 62%, 13%, and 25% of training,
validation and test set. Synthetic minority over-sampling [14]
is used to handle the class-imbalance. Adam optimizer, sparse
categorical cross entropy loss and a batch size of 64 is used to
train the model. We also tested the same classifier for binary
classification performance, where each beat was classified into
two classes: normal (N) and abnormal(A). Accuracy (ACC),
sensitivity (SEN), positive predictivity (+PV or precision),
and false positive rate (FPR) are used to assess the classifier
performance as defined in [8].



TABLE I
ARRHYTHMIA CLASSIFICATION USING ARTIFICIAL NEURAL NETWORK

AND APPROXIMATION COEFFICIENTS

Model Class ACC(%) SE(%) +PV(%) FPR(%)

4-class ANN

N 97.83 98.22 99.34 5.4
S 98.38 87.91 65.5 1.31
V 99.39 95.15 96.33 0.28
F 99.61 84.73 71.97 0.27

2-class ANN N 98.15 98.72 99.2 6.5
A 98.15 93.43 89.76 1.27

TABLE II
COMPARISON WITH PREVIOUS WORKS (EVENT-DRIVEN)

Study Model #Params Class ACC(%) SEN(%) +PV(%)

This
work* ANN 20,964

N 97.83 98.22 99.34
S 98.38 87.91 65.5
V 99.39 95.15 96.33
F 99.61 84.73 71.97

[15] ANN 3,717

N 99.32 99.45 99.76
S 99.70 97.75 94.39
V 99.68 98.67 98.07
F 98.87 49.03 87.80

[8] 1D-CNN 132,676

N 98.57 99.55 98.86
S 99.13 76.98 90.01
V 99.49 95.19 97.45
F 99.74 80.48 87.56

III. RESULTS AND DISCUSSION

We also tested the classification performance using SVM
with Gaussian and Cubic kernels as well as an ensemble of
bagged trees. However, the ANN showed consistently superior
performance for lower computational complexity. Table I
shows the results for the four-class and two-class ANN. The 4-
class ANN has an average 98.80% accuracy, 91.5% sensitivity,
83.28% precision, and 1.81% false positive rate. The 2-class
ANN has an average 98.15% accuracy, 96.07% sensitivity,
94.48% precision, and 3.88% false positive rate.

Table II shows a comparison with previous arrhythmia
classifiers in literature using level-crossing ADCs. This study
and [8] use a class-oriented evaluation scheme whereas, [15]
uses a patient-specific scheme. The performance in [8] is
comparable to this work but requires 6x more computational
resources. The classifier in [15] outperforms this work for
the S class, specifically in precision and requires much less
computations. However, the classifier performs poorly for the
minority F class with 49.03% sensitivity. Additionally, as it
is a patient-specific design it requires labeled data from each
patient to train the classifier before analyzing real-time data.
This is generally not possible in real-time analysis. In [18], a
patient-specific 2-class ANN was presented using event-driven
ECG using 296 parametes. They reported an average accuracy
of 98.4% and an average sensitivity of 98.4% using selected
records from the database.

Table III shows a comparison of this work with previous
arrhythmia classifiers using uniform-sampling. In [16], the
authors used a patient-specific approach to classify S and V
classes only. Their ANN model required a smaller amount of
computational resources, however, the accuracy and sensitivity

TABLE III
COMPARISON WITH PREVIOUS WORKS (UNIFORMLY-SAMPLED)

Study Model #Params Class ACC(%) SEN(%) +PV(%)

This
work* ANN 20,964

N 97.83 98.22 99.34
S 98.38 87.91 65.5
V 99.39 95.15 96.33
F 99.61 84.73 71.97

[16] ANN 8,415

N - - -
S 88.6 86.4 -
V 92.5 83.7 -
F - - -

[17]* SVM 32M+32A

N - - -
S 97.9 78.6 68.9
V 98.0 91.1 81.3
F - - -

performance was much lower than this work. Similarly, in
[17], a patient specific approach was used to classify S and
V type beats using a very low power linear SVM that only
requires 32 multiplications and 32 additions. However, the
performance was much lower compared to this work.

A. Complexity considerations

As a measure of complexity of the pre-processing step,
i.e. the conversion from the 2D variable length vectors to
fixed length Chebyshev coefficients, we count the number of
multiplications (or equivalently divisions) required. According
the linear interpolation process to generate the 200 interpo-
lated values, fj(xl), requires approximately 400 multiplication
operations. The subsequent windowing function requires an
additional 200 multiplications and the rotation in time can
be implemented for free by careful pre-rotation of the stored
Chebyshev basis functions1. Each of the 80 coefficients is
computed by a length 200 dot product each requiring 200
multiplications as per (1). In total the pre-processing steps
require 400+200+80*200 ≈ 17k multiplications per ECG beat.
Similarly, we can take the number of multiplications in the
ANN itself as being approximately equal to the number of
trained parameters as enumerated in Tables II and III.

IV. CONCLUSION

In this study, a low-power feature extraction technique
using functional approximation and Chebyshev polynmials is
presented. Using 200 Chebyshev time points and 80 approxi-
mation coefficients, event-driven ECG beats can be accurately
reconstructed with only an average ≈3.08% PRD. A low-
computation artificial neural network with three-hidden layers
was also presented. The 2-class ANN classifies the dataset
with 98.15% average accuracy, 96.07% average sensitivity.
The 4-class ANN classifies the dataset with 98.80% average
accuracy and 91.5% average sensitivity. Both these networks
take only 20k parameters and outperforms the state-of-the-art
classifiers. The combination of event driven ADCs and our
presented algorithms represent a power efficient solution for
ECG recording and classification at the edge.

1The windowing can be absorbed into the stored Chebyshev basis functions.
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