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Abstract This paper considers a particular case of the Optimal Homologous Chain7

Problem (OHCP) for integer modulo 2 coefficients, where optimality is meant as a8

minimal lexicographic order on chains induced by a total order on simplices. The9

matrix reduction algorithm used for persistent homology is used to derive polynomial10

algorithms solving this problem instance, whereas OHCP is NP-hard in the general11

case. The complexity is further improved to a quasilinear algorithm by leveraging12

a dual graph minimum cut formulation when the simplicial complex is a pseudo-13

manifold. We then show how this particular instance of the problem is relevant, by14

providing an application in the context of point cloud triangulation.15
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1 Introduction18

1.1 Problem statement19

The computation of minimal simplicial homology generators has been a wide subject20

of interest for its numerous applications related to shape analysis, computer graphics21
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Fig. 1 Open surface triangulations under imposed boundaries (red cycles).

or computer-aided design. Coined in [21], we recall the Optimal Homologous Chain22

Problem (OHCP):23

Problem 1 (OHCP)Given a 3-chain � in a simplicial complex and a set of weights24

given by a diagonal matrix , of appropriate dimension, find the !1-norm minimal25

chain Γmin homologous to �:26

Γmin = min
Γ,�
| |, · Γ| |1 such that Γ = � + m3+1� and Γ ∈ Id ( ) , � ∈ Id+1 ( )27

It has been shown that OHCP is NP-hard in the general case when using coefficients in28

Z2 [9, 15]. However, we consider a specialization of this problem: the Lexicographic29

Optimal Homologous Chain Problem (Lex-OHCP). Using coefficients in Z2, mini-30

mality is now meant according to a lexicographic order on chains induced by a total31

order on simplices. Formulated in the context of OHCP, this would require ordering32

the simplices using a total order and taking a weight matrix , with generic term33

,88 = 28 , where 8 is the rank along the total order, allowing the !1-norm minimization34

to be equivalent to a minimization along the lexicographic order.35

1.2 Contributions36

After providing some required definitions and notations (Section 2), we show how37

an algorithm based on the matrix reduction algorithm used for the computation38

of persistent homology [25] allows to solve this particular instance of OHCP in39

$ (=3) worst case complexity (Section 3). Using a very similar process, we show that40

the problem of finding a minimal 3-chain bounding a given (3 − 1)-cycle admits41

a similar algorithm with the same algorithmic complexity (Section 4). Section 542

then considers Lex-OHCP in the case where the simplicial complex  is a strongly43

connected (3 + 1)-pseudomanifold. By formulating it as a Lexicographic Minimum44

Cut (LMC) dual problem, the algorithm can be improved to a quasilinear complexity:45

the cost of sorting the dual edges and performing a O(�U(�)) algorithm based on46

disjoint-sets, where � is the number of dual edges and U is the inverse Ackermann47

function. Finally, Section 6 legitimizes this restriction of OHCP by characterizing48

the quality of lexicographic optimal homologous chains, namely in the context of49

point cloud triangulation. After defining a total order closely related to the Delaunay50

triangulation, we provide details on an open surface algorithm given a boundary as51
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well as a watertight surface reconstruction algorithm given an interior and exterior52

information.53

1.3 Related work54

Several authors have studied algorithm complexities for the computation of !1-norm55

optimal cycles in homology classes [9, 10, 13–15, 21–23, 27, 37]. However, to the56

best of our knowledge, considering lexicographic-minimal chains in their homology57

classes is a new idea. When minimal cycles are of codimension 1 in a pseudo-58

manifold, the idea of considering the minimal cut problem on the dual graph has59

been previously studied [35]. In particular, Chambers et al. [9] have considered graph60

duality to derive complexity results for the computation of optimal homologous cycles61

on 2-manifolds. Chen et al. [15] also use a reduction to a minimum cut problem62

on a dual graph to compute minimal non-null homologous cycles on 3-complexes63

embedded in R3 . Their polynomial algorithm (Theorem 5.2.3 in [15]) for computing64

a homology class representative of minimal radius is reminiscent of our algorithm65

for computing lexicographic minimal representatives (Algorithm 4). In a recent work66

[22], Dey et al. consider the dual graph of pseudo-manifolds in order to obtain67

polynomial time algorithms for computing minimal persistent cycles. Since they68

consider arbitrary weights, they obtain the O(=2) complexity of best known minimum69

cut/maximum flow algorithms [34]. The lexicographic order introduced in our work70

can be derived from the idea of a variational formulation of theDelaunay triangulation,71

first introduced in [16] and further studied in [1,17]. Finally, many methods have been72

proposed to answer the problem of surface reconstruction in specific acquisition73

contexts [30,31,33]: [32] classifies a large number of these methods according to the74

assumptions and information used in addition to geometry. In the family of purely75

geometric reconstruction based on a Delaunay triangulation, one early contribution76

is the sculpting algorithm by Boissonnat [6]. The crust algorithm by Amenta et77

al. [2, 3] and an algorithm based on natural neighbors [7] were the first algorithms78

to guarantee a triangulation of the manifold under sampling conditions. However,79

these general approaches usually have difficulties far from these sampling conditions,80

in applications where point clouds are noisy or under-sampled. This difficulty can81

be circumvented by providing additional information on the nature of the surface82

[8, 20, 24]. Our contribution lies in this category of approaches. We provide some83

topological information of the surface: a boundary for the open surface reconstruction84

and interior and exterior regions for the closed surface reconstruction.85
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2 Definitions86

2.1 Simplicial complexes87

Consider an independent family � = (00, . . . , 03) of points of R# . We call a d-88

simplex f spanned by A the set of all points:89

G =

3∑
8=0

C808 , where ∀8 ∈ {0..3}, C8 ≥ 0 and
3∑
8=0

C8 = 190

Any simplex spanned by a subset of � is called a face of f.91

A simplicial complex  is a collection of simplices such that every face of a92

simplex of  is in  and the intersection of two simplices of  is either empty or a93

common face.94

2.2 Simplicial chains95

Let  be a simplicial complex of dimension at least 3. The notion of chains can be96

defined with coefficients in any ring but we restrict here the definition to coefficients97

in the field Z2 = Z/2Z. A d-chain � with coefficients in Z2 is a formal sum of98

3-simplices :99

� =
∑
8

G8f8 , with G8 ∈ Z2 and f8 ∈  100

We denote Id ( ) the vector space over the field Z2 of 3-chains in the complex  .101

Interpreting the coefficient G8 ∈ Z2 = {0, 1} in front of simplex f8 as indicating the102

existence of f8 in the chain �, we can view the 3-chain � as a set of simplices : for a103

3-simplex f and a 3-chain �, we write that f ∈ � if the coefficient for f in � is 1.104

With this convention, the sum of two chains corresponds to the symmetric difference105

on their sets. In what follows, a 3-simplex f can also be interpreted as the 3-chain106

containing only the 3-simplex f.107

2.3 Boundary operator108

For a 3-simplex f = [00, . . . , 03], the boundary operator is defined as the operator:

m3 : Id ( ) → Id−1 ( )

m3f =
def.

3∑
8=0
[00, . . . , 0̂8 , . . . , 03]

where the symbol 0̂8 means the vertex 08 is deleted from the array. The kernel of the109

boundary operator /3 = Ker m3 is called the group of 3-cycles and the image of the110

operator �3 = Im m?+1 is the group of 3-boundaries. We say two 3-chains � and �′111

are homologous if � − �′ = m3+1�, for some (3 + 1)-chain �.112



Lex-OHCP and applications to point cloud triangulations 5

2.4 Lexicographic order113

We assume now a total order on the 3-simplices of  , f1 < · · · < f=, where114

= = dimId ( ). From this order, we define a lexicographic total order on 3-chains.115

Definition 1 (Lexicographic total order) For �1, �2 ∈ Id ( ):116

�1 v;4G �2 ⇐⇒
def.


�1 + �2 = 0
or
fmax = max {f ∈ �1 + �2} ∈ �2

117

This total order naturally extends to a strict total order @;4G on Id ( ).118

3 Lexicographic optimal homologous chain119

3.1 Problem statement120

In this section,we define a particular instance ofOHCP (Problem1), theLexicographic121

Optimal Homologous Chain Problem (Lex-OHCP):122

Problem 2 (Lex-OHCP) Given a simplicial complex  with a total order on the123

3-simplices and a 3-chain � ∈ Id ( ), find the unique chain Γmin defined by :124

Γmin = minv;4G

{
Γ ∈ Id ( ) | ∃� ∈ Id+1 ( ) , Γ − � = m3+1�

}
125

Definition 2 A 3-chain � ∈ Id ( ) is said reducible if there is a 3-chain Γ ∈ Id ( )126

(called reduction) and a (3 + 1)-chain � ∈ Id+1 ( ) such that:127

Γ @;4G � and Γ − � = m3+1�128

If this property cannot be verified, the 3-chain � is said irreducible. If � is reducible,129

we call total reduction of � the unique irreducible reduction of �. If � is irreducible,130

� is said to be its own total reduction.131

Problem 2 can be reformulated as finding the total reduction of �.132

3.2 Boundary matrix reduction133

With < = dimId ( ) and = = dimId+1 ( ), we now consider the <-by-= boundary134

matrix m3+1with entries inZ2.We enforce that rows of thematrix are ordered according135

to a given strict total order on 3-simplices f1 < · · · < f<, where the 3-simplex f8136

is the basis element corresponding to the 8Cℎ row of the boundary matrix. The order137

of columns, corresponding to an order on (3 + 1)-simplices, is not relevant for this138

section and can be chosen arbitrarily.139

For a matrix ', the index of the lowest (i.e. closest to the bottom) non-zero140

coefficient of a non-zero column ' 9 is denoted by low( 9), or sometimes low(' 9 )141

when we want to explicit the considered matrix.142
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Algorithm 1 is a slightly modified version of the boundary reduction algorithm143

presented in [25]. Indeed, for our purpose, we do not need the boundary matrix144

storing all the simplices of all dimensions and apply the algorithm to the sub-matrix145

m3+1 : Id+1 ( ) → Id ( ). One checks easily that Algorithm 1 has O(<=2) time146

complexity. We now introduce a few lemmas useful for solving Problem 2. We allow

Algorithm 1: Reduction algorithm for the m3+1 matrix
Input: A boundary matrix m3+1
Output: A reduced boundary matrix '
R = m3+1
for 9 ← 1 to = do

while ' 9 ≠ 0 and ∃ 90 < 9 with low( 90) = low( 9) do
' 9 ← ' 9 + ' 90

end
end

147

ourselves to consider each column ' 9 of the matrix ', formally an element of Z<2 , as148

the corresponding 3-chain in the basis (f1, . . . , f<).149

Lemma 1 A 3-chain � is reducible if and only if at least one of its 3-simplices is150

reducible.151

Proof If there is a reducible 3-simplex f ∈ �, � is reducible by the 3-chain �′ =
� − f + '43 (f), where '43 (f) is a reduction for f.
We suppose � to be reducible. Let Γ @;4G � be a reduction for � and � the (3 + 1)-
chain such that Γ − � = m�. We denote fmax = max {f ∈ � − Γ}. Note that fmax is
homologous to Γ− � +fmax. The chain Γ− � +fmax only contains simplices smaller
than fmax, by definition of the lexicographic order (Definition 1). We have thus shown
that if � is reducible, it contains at least one simplex that is reducible. ut

Lemma 2 After matrix reduction (Algorithm 1), a non-zero column ' 9 ≠ 0 can be152

described as153

' 9 = flow( 9) + Γ, where Γ is a reduction for flow( 9) .154

Proof As all matrix operations performed on ' by the reduction algorithm consist
of sums of columns of m3+1, each non-zero column ' 9 of ' is in the image of m3+1.
Therefore, there exists a (3 + 1)-chain � such that ' 9 = flow( 9) + Γ = m3+1�, which,
is equivalent in Z2 to Γ − flow( 9) = m3+1�. By definition of the low of a column, we
also have immediately: Γ @;4G flow( 9) . For each non-zero column, the largest simplex
is therefore reducible by the other 3-simplices of the column. ut

Lemma 3 After matrix reduction (Algorithm 1), there is a one-to-one correspondence155

between the reducible 3-simplices and non-zero columns of ':156

f8 ∈ Id ( ) is reducible ⇐⇒ ∃ 9 ∈ {1..=}, ' 9 ≠ 0 and low( 9) = 8157
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Proof Lemma 2 shows immediately that the simplex corresponding to the lowest158

index of a non-zero column is reducible. Suppose now that a 3-simplex f̃ is reducible159

and let Γ̃ be a reduction of it: f̃ + Γ̃ = m3+1� and Γ̃ @;4G f̃. Algorithm 1 realizes160

the matrix factorization ' = m3+1 · + , where matrix + is invertible [25]. It follows161

that Im ' = Im m3+1. Therefore, non-zero columns of ' span Im m3+1 and since162

f̃ + Γ̃ = m3+1� ∈ Im m3+1, there is a family (' 9 ) 9∈� = (flow( 9) , Γ 9 ) 9∈� of columns of163

' such that :164

f̃ + Γ̃ =
∑
9∈�

flow( 9) + Γ 9165

Every flow( 9) represents the largest simplex of a column, and Γ 9 a reduction chain for166

flow( 9) . As observed in section VII.1 of [25], one can check that the low indexes in '167

are unique after the reduction algorithm. Therefore, there is a 9max ∈ � such that for168

all 9 in � \ { 9max}, low( 9) < low( 9max), which implies:169

f9max = max
{
f ∈

∑
9∈�

flow( 9) + Γ 9
}
= max

{
f ∈ f̃ + Γ̃

}
= f̃170

We have shown that for the reducible simplex f̃, there is a non-zero column ' 9max
with f̃ = flow( 9max) as its largest simplex. ut

3.3 Total reduction algorithm171

Combining the three previous lemmas give the intuition on how to construct the total172

reduction solving Problem 2: Lemma 1 allows to consider each simplex individually,173

Lemma 3 characterizes the reducible nature of a simplex using the reduced boundary174

matrix and Lemma 2 describes a column of the reduction boundarymatrix as a simplex175

and its reduction. We now present Algorithm 2, referred to as the total reduction176

algorithm. For a 3-chain Γ, Γ[8] ∈ Z2 denotes the coefficient of the 8Cℎ simplex in177

the chain Γ.

Algorithm 2: Total reduction algorithm
Inputs: A 3-chain Γ, the reduced boundary matrix '
Output: The total reduction of Γ
for 8 ← < to 1 do

if Γ[8 ] ≠ 0 and ∃ 9 ∈ {1..=} with low( 9) = 8 in ' then
Γ← Γ + ' 9

end
end

178

Proposition 1 Algorithm 2 finds the total reduction of a given 3-chain in O(<2) time179

complexity.180

Proof In Algorithm 2, let Γ8−1 be the value of the variable Γ after iteration 8. Since181

the iteration counter 8 decreases from < to 1, the input and output of the algorithm are182
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respectively Γ< and Γ0. At each iteration, Γ8−1 are either equal to Γ8 or Γ8 + ' 9 . Since183

' 9 ∈ Im m3+1, Γ8−1 is in both cases homologous to Γ8 . Therefore, Γ0 is homologous to184

Γ<. We are left to show that Γ0 is irreducible. From Lemma 1, it is enough to check185

that it does not contain any reducible simplex.186

Let f8 be a reducible simplex and let us show that f8 ∉ Γ0. Two possibilities may187

occur:188

– if f8 ∈ Γ8 , then Γ8−1 = Γ8 + ' 9 . Since low( 9) = 8, we have f8 ∈ ' 9 and therefore189

f8 ∉ Γ8−1.190

– if f8 ∉ Γ8 , then Γ8−1 = Γ8 and again f8 ∉ Γ8−1.191

Furthermore, from iterations 8 − 1 to 1, the added columns ' 9 contain only simplices192

smaller than f8 and therefore f8 ∉ Γ8−1 ⇒ f8 ∉ Γ0.193

Observe that using an auxiliary array allows to compute the correspondence
low( 9) → 8 in time O(1). The column addition nested inside the loop lead to a O(<2)
time complexity for Algorithm 2. ut

It follows that Problem 2 can be solved in O(<=2) time complexity, by applying194

successively Algorithms 1 and 2, or in O(#3) complexity if # is the size of the195

simplicial complex.196

4 Lexicographic-minimal chain under imposed boundary197

4.1 Problem statement198

This section will study a variant of Lex-OHCP (Problem 3) in order to solve the199

subsequent problem of finding a minimal 3-chain bounding a given (3 − 1)-cycle200

(Problem 4).201

Problem 3 Given a simplicial complex K with a total order on the 3-simplices and a202

3-chain Γ0 ∈ Id ( ), find :203

Γmin = minv;4G

{
Γ ∈ Id ( ) | m3Γ = m3Γ0

}
204

Problem 4 Given a simplicial complex  with a total order on the 3-simplices and a205

(3 − 1)-cycle �, check if � is a boundary:206

�� =
def.

{
Γ ∈ Id ( ) | m3Γ = �

}
≠ ∅207

If it is the case, find the minimal 3-chain Γ bounded by �:208

Γ<8= = minv;4G
��209

In Problem 4, finding a representative Γ0 in the set �� ≠ ∅ such that m3Γ0 = � is210

sufficient: we are then taken back to Problem 3 to find the minimal 3-chain Γmin such211

that m3Γmin = m3Γ0 = �.212
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4.2 Boundary reduction transformation matrix213

As in Section 3, we will derive an algorithmic solution to Problem 3 from the result214

of the boundary matrix reduction algorithm. Note that, unlike Section 3 that used the215

m3+1 boundary operator, we are now considering m3 , meaning the given total order on216

3-simplices applies to the greater dimension. An arbitrary order can be taken for the217

(3 − 1)-simplices to build the matrix m3 . Indeed, if we see the performed reduction in218

matrix notation as ' = m3 ·+ , the minimization steps in this section will be performed219

on the transformation matrix + , whose rows do follow the given simplicial ordering.220

The number of zero columns of ' is the dimension of /3 = Ker m3 [25]. Let’s denote221

it by =Ker = dim(/3). By selecting all columns in + corresponding to zero columns222

in ', we obtain the matrix +Ker, whose columns +Ker1 , . . . , +Ker
=Ker

form a basis of /3 .223

We first show a useful property on the matrix +Ker. Note that the low index for any224

column in +Ker is well defined, as + is invertible.225

Lemma 4 Indexes
{
low(+Ker

8
)
}
8∈{1..=Ker } are unique. If � ∈ Ker m3\{0}, there exists226

a unique column +Kermax of +Ker with low(+Kermax) = low(�).227

Proof Before the boundary matrix reduction algorithm, the initial matrix + is the228

identity: the low indexes are therefore unique. During iterations of the algorithm, the229

matrix + is right-multiplied by an column-adding elementary matrix ! 90 , 9 , adding230

column 90 to 9 with 90 < 9 .231

! 90 , 9 =

9



1
1 1 90

. . .

1
. . .

1

232

Therefore, the indexes {low(+8), +8 ∈ +} stay on the diagonal (i.e. low(+8) = 8) during233

the reduction algorithm and are therefore unique. The restriction of + to +Ker does234

not change this property.235

If � ∈ Ker m3 \ {0}, � can be written as a non-zero linear combination � =∑
8∈� +

Ker
8

of columns of +Ker. By unicity of the lows of +Ker, the largest low of the
combination, i.e. max8∈� {low(+Ker8

)}, is in � and has to be the low of �. ut

4.3 Total reduction with imposed boundary236

We apply a similar total reduction algorithm as previously introduced in Section 3 but237

using the matrix +Ker. In the following algorithm, < = dimId ( ).238

Proposition 2 Algorithm 3 computes the solution for Problem 3 in O(<2) time com-239

plexity.240
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Algorithm 3: Total reduction variant
Inputs: A 3-chain Γ and + Ker
Output: The minimal chain with the same boundary as Γ
for 8 ← < to 1 do

if Γ[8 ] ≠ 0 and ∃ 9 ∈ {1..=Ker } with low( 9) = 8 in + Ker then
Γ← Γ + + Ker

9

end
end

Proof The proof is similar to the one of Proposition 1.241

In Algorithm 3, we denote by Γ8−1 the value of variable Γ after iteration 8. Since242

iteration counter 8 is decreasing from < to 1, the input and output of the algorithm are243

respectively Γ< and Γ0. Since +Ker9 ∈ Ker m3 , at each iteration mΓ8−1 = mΓ8 therefore244

mΓ0 = mΓ<. We are left to show the algorithm’s result is the minimal solution.245

Suppose there is Γ★ such that m3Γ★ = mΓ and Γ★ @;4G Γ0. Let’s consider the246

difference Γ0 − Γ★, and its largest element index low(Γ0 − Γ★) = 8, with f8 ∈ Γ0247

and f8 ∉ Γ★ by Definition 1 of the lexicographic order. As Γ0 − Γ★ ∈ Ker m3 \ {0},248

there has to be a column +Ker
9

in +Ker where low
(
+Ker
9

)
= 8, from Lemma 4. Two249

possibilities may occur at iteration 8:250

– if f8 ∈ Γ8 , then Γ8−1 = Γ8 + +Ker9 . Since 8 = low( 9), we have f8 ∈ +Ker9 and251

therefore f8 ∉ Γ8−1.252

– if f8 ∉ Γ8 , then Γ8−1 = Γ8 and again f8 ∉ Γ8−1.253

However, from iterations 8−1 to 1, the added columns+Ker
9

contains only simpliceswith
indices smaller than 8 and therefore we obtain f8 ∉ Γ8−1 ⇒ f8 ∉ Γ0, a contradiction
to the definition of f8 as the largest element of Γ★ − Γ0. ut

4.4 Finding a representative of BA254

As previously mentioned, solving Problem 4 requires deciding if the set �� is empty255

and in case it is not empty, finding an element of the set ��. Algorithm 3 can then be256

used to minimize this element under imposed boundary. In the following algorithm,257

< = dimId−1 ( ) and = = dimId ( ).258

Proposition 3 Algorithm 4 decides if the set �� is non-empty, and in that case, finds259

a representative Γ0 such that mΓ0 = � in O(<2) time complexity.260

Proof We start by two trivial observations from the definition of a reduction. First, �261

is a boundary if and only if its total reduction is the null chain. Second, if a non-null262

chain is a boundary, then its greatest simplex is reducible.263

If, at iteration 8, �0 [8] ≠ 0, then f8 is the greatest simplex in �0. In the case ' has264

no column ' 9 such that low( 9) = 8, f8 is not reducible by Lemma 3 and therefore �0265

is not a boundary. Since � and �0 differ by a boundary (added columns of '), � is266

not a boundary either. This means the set �� is empty.267

The main difference with the previous chain reduction is we keep track of the column268
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Algorithm 4: Finding a representative
Inputs: A (3 − 1)-chain �, a boundary matrix ' reduced by +
Output: A 3-chain Γ0 bounded by � if � is a boundary.
Γ0 ← ∅
�0 ← �

for 8 ← < to 1 do
if �0 [8 ] ≠ 0 then

if ∃ 9 ∈ {1..=} with low( 9) = 8 in ' then
�0 ← �0 + ' 9
Γ0 ← Γ0 + +9

else
The set �� is empty.

end
end

end

operations in Γ0. If the total reduction of � is null, we have found a linear combination269

(' 9 ) 9∈� such that � =
∑
9∈� ' 9 . We have also computed Γ0 as the sum of the270

corresponding columns in + : Γ0 =
∑
9∈� + 9 . As ' = m3 · + , we can now verify:271

m3Γ0 = m3

(∑
9∈�

+ 9

)
=

∑
9∈�

' 9 = �272

ut

5 Efficient algorithm for codimension 1 (dual graph)273

In this section we focus on Problem 5, a specialization of Problem 2, namely when  274

is a subcomplex of a (3 + 1)-pseudomanifold.275

5.1 Problem statement276

Recall that a 3-dimensional simplicial complex is said pure if it is of dimension 3277

and any simplex has at least one coface of dimension 3.278

Definition 3 A d-pseudomanifold is a pure 3-dimensional simplicial complex for279

which each (3 − 1)-face has exactly two 3-dimensional cofaces.280

Definition 4 The dual graph of a 3-pseudomanifoldM is the graph whose vertices281

are in one-to-one correspondence with the 3-simplices ofM and whose edges are in282

one-to-one correspondence with (3 − 1)-simplices of M : an edge 4 connects two283

vertices E1 and E2 of the graph if and only if 4 corresponds to the (3 − 1)-face with284

cofaces corresponding to E1 and E2.285

Definition 5 A strongly connected 3-pseudomanifold is a 3-pseudomanifold whose286

dual graph is connected.287
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Given a strongly connected (3 + 1)-pseudomanifold M and g1 ≠ g2 two (3 + 1)-288

simplices ofM, we consider a special case of Problem 2 where  =M\ {g1, g2} and289

� = mg1:290

Problem 5 Given a strongly connected (3 + 1)-pseudomanifoldM with a total order291

on the 3-simplices and two distinct (3 + 1)-simplices (g1, g2) ofM, find:292

Γmin = minv;4G

{
Γ ∈ Id (M) | ∃� ∈ Id+1 (M \ {g1, g2}) , Γ − mg1 = m�

}
293

Definition 6 Seeing a graph � as a 1-dimensional simplicial complex, we define294

the coboundary operator m0 : I0 (�) → I1 (�) as the linear operator defined by295

the transpose of the matrix of the boundary operator m1 : I1 (�) → I0 (�) in the296

canonical basis of simplices.1297

For a given graph � = (V, E),V and E respectively denote its vertex and edge sets.298

For a 3-chain U ∈ Id (M) and a (3 + 1)-chain V ∈ Id+1 (M), Ũ and Ṽ denote their299

respective dual 1-chain and dual 0-chain in the dual graph � (M) ofM. We easily300

see that:301

Remark 1 For a set of verticesV0 ⊂ V, m0V0 is exactly the set of edges in� = (V, E)302

that connect vertices inV0 with vertices inV \V0.303

Remark 2 LetM be a (3 + 1)-pseudomanifold. If U ∈ Id (M) and V ∈ Id+1 (M),304

then Ũ = m0 Ṽ ⇐⇒ U = m3+1V.305

5.2 Codimension 1 and Lexicographic Min Cut (LMC)306

The order on 3-simplices of a (3 + 1)-pseudomanifoldM naturally defines a corre-307

sponding order on the edges of the dual graph: g1 < g2 ⇐⇒ g̃1 < g̃2. This order308

extends similarly to a lexicographic order v;4G on sets of edges (or, equivalently,309

1-chains) in the graph.310

In what follows, we say a set of edges Γ̃ disconnects g̃1 and g̃2 in the graph (V, E)311

if g̃1 and g̃2 are not in the same connected component of the graph (V, E \ Γ̃).312

Given a graph with weighted edges and two vertices, the min-cut/max-flow prob-313

lem [26, 34] consists in finding the minimum cut (i.e. set of edges) disconnecting the314

two vertices, where minimum is meant as minimal sum of weights of cut edges. We315

consider a similar problem where the minimum is meant in term of a lexicographic316

order: the Lexicographic Min Cut (LMC).317

Problem 6 (LMC) Given a connected graph� = (V, E) with a total order on E and318

two vertices g̃1, g̃2 ∈ V, find the set Γ̃LMC ⊂ E minimal for the lexicographic order319

v;4G , that disconnects g̃1 and g̃2 in �.320

1 In order to avoid to introduce non essential formal definitions, the coboundary operator is defined over
chains since, for finite simplicial complexes, the canonical inner product defines a natural bĳection between
chains and cochains.
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Proposition 4 Γmin is solution of Problem 5 if and if only its dual 1-chain Γ̃min is321

solution of Problem 6 on the dual graph � (M) ofM where g̃1 and g̃2 are respective322

dual vertices of g1 and g2.323

Proof Problem 5 can be equivalently formulated as:324

Γmin = minv;4G

{
m3+1 (g1 + �) | � ∈ Id+1 (M \ {g1, g2})

}
(1)325

Using Observation 2, we see that Γmin is the minimum in Equation (1) if and only if326

its dual 1-chain Γ̃min satisfies:327

Γ̃min = minv;4G

{
m0 (g̃1 + �̃) | �̃ ⊂ V \ {g̃1, g̃2}

}
(2)328

Denoting Γ̃LMC the minimum of Problem 6, we need to show that Γ̃LMC = Γ̃min.329

As Γ̃LMC disconnects g̃1 and g̃2 in� = (V, E), g̃2 is not in the connected component of330

g̃1 in (V, E \ Γ̃LMC). We define �̃ as the connected component of g̃1 in (V, E \ Γ̃LMC)331

minus g̃1. We have that �̃ ⊂ V \ {g̃1, g̃2}. Consider an edge 4 ∈ m0 (g̃1 + �̃). From332

Observation 1, 4 connects a vertex E0 ∈ {g̃1} ∪ �̃ with a vertex E1 ∉ {g̃1} ∪ �̃. From333

the definition of �̃, Γ̃LMC disconnects E0 and E1 in�, which in turn implies 4 ∈ Γ̃LMC.334

We have therefore shown that m0 (g̃1 + �̃) ⊂ Γ̃LMC. Using Equation (2), we get:335

Γ̃min v;4G m0 (g̃1 + �̃) v;4G Γ̃LMC (3)336

Now we claim that if there is a �̃ ⊂ V \ {g̃1, g̃2} with Γ̃ = m0 (g̃1 + �̃), then Γ̃
disconnects g̃1 and g̃2 in (V, E). Consider a path in � from g̃1 to g̃2. Let E0 be the last
vertex of the path that belongs to {g̃1} ∪ �̃ and E1 the next vertex on the path (which
exists since g̃2 is not in {g̃1} ∪ �̃). From Observation 1, we see that the edge (E0, E1)
must belong to Γ̃ = m0 (g̃1 + �̃). We have shown that any path in � connecting g̃1 and
g̃2 has to contain an edge in Γ̃ and the claim is proved.
In particular, the minimum Γ̃min disconnects g̃1 and g̃2 in (V, E). As Γ̃LMC denotes
the minimum of Problem 6, Γ̃LMC v;4G Γ̃min which, together with Equation (3), gives
us Γ̃LMC = Γ̃min. We have therefore shown the minimum defined by Equation (2)
coincides with the minimum defined in Problem 6. ut

5.3 Algorithm for Lexicographic Min Cut337

In light of the new problem equivalency, we will study an algorithm solving Problem338

6. As we will only consider the dual graph for this section, we leave behind the dual339

chain notation: vertices g̃1 and g̃2 are replaced by U1 and U2, and the solution to the340

problem is simply noted ΓLMC. The following lemma exposes a constructive property341

of the solution on subgraphs.342

Lemma 5 Consider ΓLMC solution of Problem 6 for the graph � = (V, E) and343

U1, U2 ∈ V. Let 40 be an edge inV ×V such that 40 < min{4 ∈ E}. Then:344

– The solution for (V, E ∪ {40}) is either ΓLMC or ΓLMC ∪ {40}.345
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– ΓLMC ∪ {40} is solution for (V, E ∪ {40}) if and only if U1 and U2 are connected346

in (V, E ∪ {40} \ ΓLMC).347

Proof Let’s call Γ′LMC the solution for (V, E ∪ {40}). Since Γ′LMC ∩ E disconnects348

U1 and U2 in (V, E), one has ΓLMC v;4G Γ′LMC. Since ΓLMC ∪ {40} disconnects349

U1 and U2 in (V, E ∪ {40}), we also have Γ′LMC v;4G ΓLMC ∪ {40}. Therefore,350

ΓLMC v;4G Γ′LMC v;4G ΓLMC ∪ {40}.351

As 40 < min{4 ∈ E}, there is no set in E ∪ {40} strictly between ΓLMC and
ΓLMC ∪ {40} for the lexicographic order. It follows that Γ′LMC is either equal to ΓLMC
or ΓLMC ∪ {40}. The choice for Γ′LMC is therefore ruled by the property that it should
disconnect U1 and U2: if U1 and U2 are connected in (V, E ∪ {40} \ ΓLMC), ΓLMC
does not disconnect U1 and U2 in (V, E ∪ {40}) and ΓLMC ∪ {40} has to be the
solution for (V, E ∪ {40}). On the other hand, if U1 and U2 are not connected in
(V, E ∪ {40} \ ΓLMC), then both ΓLMC and ΓLMC ∪ {40} disconnect U1 and U2 in
(V, E ∪ {40}), but as ΓLMC @;4G ΓLMC ∪ {40}, ΓLMC ∪ {40} is not the solution for
(V, E ∪ {40}). ut

Building an algorithm from Lemma 5 suggests a data structure able to check352

if vertices U1 and U2 are connected in the graph: the disjoint-set data structure,353

introduced for finding connected components [28], does exactly that. In this structure,354

each set of elements has a different root value, called representative. Calling the355

operation MakeSet on an element creates a new set containing this element. The356

FindSet operation, given an element of a set, returns the representative of the set. For357

all elements of the same set, FindSet will of course return the same representative.358

Finally, the structure allows merging two sets, by using the UnionSet operation. After359

this operation, elements of both sets will have the same representative.360

We now describe Algorithm 5. The algorithm expects a set of edges sorted in361

decreasing order according to the lexicographic order.362

Algorithm 5: Lexicographic Min Cut
Inputs: � = (V , E) and U1, U2 ∈ V, with E = {48 , 8 = 1, . . . , =} in decreasing order
Output: ΓLMC
ΓLMC ← ∅
for E ∈ V do

MakeSet(v)
end
for 4 ∈ E in decreasing order do

4 = (E1, E2) ∈ V × V
A1 ← FindSet(E1) , A2 ← FindSet(E2)
21 ← FindSet(U1) , 22 ← FindSet(U2)
if {A1, A2 } = {21, 22 } then

ΓLMC ← ΓLMC ∪ 4
else

UnionSet(A1, A2)
end

end
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Proposition 5 Algorithm 5 computes the solution of Problem 6 for a given graph363

(V, E) and two vertices U1, U2 ∈ V. Assuming the input set of edges E are sorted,364

the algorithm has O(=U(=)) time complexity, where = is the cardinal of E and U the365

inverse Ackermann function.366

Proof We denote by 48 the 8Cℎ edge along the decreasing order and Γ8LMC the value367

of the variable ΓLMC of the algorithm after iteration 8. The algorithm works by368

incrementally adding edges in decreasing order and tracking the growing connected369

components of the set associated with U1 and U2 in (V, {4 ∈ E, 4 ≥ 48} \ Γ8LMC), for370

8 = 1, . . . , =.371

At the beginning, no edges are inserted, and Γ0LMC = ∅ is indeed solution for372

(V,∅). With Lemma 5, we are guaranteed at each iteration 8 to find the solution for373

(V, {4 ∈ E, 4 ≥ 48}) by only adding to Γ8−1LMC the current edge 48 if U1 and U2 are374

connected in {4 ∈ E, 4 ≥ 48} \ Γ8−1LMC, which is done in the if-statement. If the edge is375

not added, we update the connectivity of the graph (V, {4 ∈ E, 4 ≥ 48} \ Γ8LMC) by376

merging the two sets represented by A1 and A2. After each iteration, Γ8LMC is solution377

for (V, {4 ∈ E, 4 ≥ 48}) and when all edges are processed, Γ=LMC is solution for378

(V, E).379

The complexity of the MakeSet, FindSet and UnionSet operations have been
shown to be respectively O(1), O(U(E)) and O(U(E)), where U(E) is the inverse
Ackermann function on the cardinal of the vertex set [36]. Assuming sorted edges
as input of the algorithm – which is performed in O(= ln(=)), the algorithm runs in
O(=U(=)) time complexity. ut

The similarity of Algorithm 5 with Kruskal’s algorithm for minimum spanning-380

tree suggests an even better theoretical time complexity, by using Chazelle’s algorithm381

[12] for minimum spanning-tree, running in O(=U(=)) complexity without requiring382

sorted edges.383

6 Application to point cloud triangulation384

In all that precedes, the order on simplices was not specified and one can wonder if385

choosing such an ordering makes the specialization of OHCP too restrictive for it to386

be useful. In this section, we give a concrete example where this restriction makes387

sense and provides a simple and elegant application to the problem of point cloud388

triangulation. Whereas all that preceded dealt with an abstract simplicial complex,389

we now consider a bĳection between vertices and a set of points in Euclidean space,390

allowing to compute geometric quantities on simplices.391

6.1 Simplicial ordering392

Recent works have studied a characterization of the 2D Delaunay triangulation as a393

lexicographic minimum over 2-chains. Denote by RB (f) the radius of the smallest394

enclosing ball and RC (f) the radius of the circumcircle of a 2-simplex f. For an395
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Fig. 2 Watertight reconstructions under different perturbations. Under small perturbations (first two im-
ages from the left), the reconstruction is a triangulation of the sampled manifold. A few non-manifold
configurations appear however under larger perturbations (Rightmost image).

acute triangle f, RB (f) = RC (f). Based on [18, 19], we define the total order on396

2-simplices:397

f1 ≤ f2 ⇐⇒


RB (f1) < RB (f2)
or
RB (f1) = RB (f2) and RC (f1) ≥ RC (f2)

(4)398

Under generic condition on the position of points, we can show this order is total. In399

what follows, the lexicographic order v;4G is induced by this order on simplices. The400

following proposition from [19] shows a strong link between the simplex ordering401

and the 2D Delaunay triangulation.402

Proposition 6 (Proposition 7.9 in [19]) Let P = {%1, . . . , %# } ⊂ R2 with # ≥ 3 be403

in general position and let  P be any 2-dimensional complex containing the Delaunay404

triangulation of P. Denote by VP ∈ �1 ( P) the 1-chain made of edges belonging to405

the boundary of convex hull CH(P). If Γmin = minv;4G
{
Γ ∈ I2 ( P) , mΓ = VP

}
, the406

simplicial complex |Γmin | support of Γmin is the Delaunay triangulation of P.407

As the 2D Delaunay triangulation has some well-known optimality properties, such408

as maximizing the minimal angle, we can hope that using the same order to minimize409

2-chains in dimension 3 will keep some of those properties. In fact, it has been shown410

that for a Čech or Vietoris-Rips complex, under strict conditions linking the point set411

sampling, the parameter of the complex and the reach of the underlying manifold of412

Euclidean space, the minimal lexicographic chain using the described simplex order413

is a triangulation of the sampled manifold [18]. Experimental results (Figure 2) show414

that this property remains true relatively far from these theoretical conditions.415

6.2 Open surface triangulation416

Given a point cloud sampling an open surface and a 1-cycle sampling the boundary of417

the surface, we generate a Čech complex of the point cloud using the Phat library [5].418

The parameter of the complex should be sufficient to capture the homotopy type419

of the surface to reconstruct and should contain the provided boundary cycle. After420

constructing the 2-boundary matrix, we apply the boundary reduction algorithm,421

slightly modified to store the transformation matrix + (Section 4.2). We then apply422
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Algorithm 4 to find out if a 2-chain bounded by the cycle exists in the current Čech423

complex. In this case, we get a chain bounded by the provided cycle and apply424

Algorithm 3 to minimize the chain under imposed boundary. Otherwise, we might425

have to increase the Čech parameter to capture the homotopy type of the surface to426

reconstruct [4, 11]. Figure 1 shows results of this method.427

6.3 Closed surface triangulation428

Using Algorithm 5 requires a strongly connected 3-pseudomanifold: we therefore use429

a 3D Delaunay triangulation, for its efficiency and non-parametric nature, using the430

CGAL library [29], and complete it into a topological 3-sphere by connecting, for any431

triangle on the convex hull of the Delaunay triangulation, its dual edge to an "infinite"432

dual vertex.433

Experimentally, sorting triangles does not require exact predicates: the RB and434

RC quantities can simply be calculated in fixed precision. The quasilinear complexity435

of Algorithm 5 makes it competitive in large point cloud applications. Outliers are436

naturally ignored and, being parameter free, the algorithm adapts to non uniform point437

densities, as seen in the closeup of Figure 4.438

IN

OUT

IN

OUT

OUT

Fig. 3 Providing additional topological information can improve the result of the reconstruction. Here, the
lexicographic order on 1-chains is induced by edge length comparison.

The choice of U1 and U2 defines the location of the closed separating surface and439

are chosen interactively. Although we could devise an algorithm where these inputs440

are not required – the algorithm would simply merge regions until only two connected441

components remain – this would only work for uniform and non-noisy point clouds442

but not make for a robust algorithm. On the contrary, adding multiple interior and443

exterior regions can guide the algorithm by providing better topological constraints,444

as depicted in Figure 3.445

Algorithm 5 requires to be slightly modified to take as input multiple U1, U2: after446

creating all sets with MakeSet, we need to combine all U1 sets together, and all U2447

sets together. The algorithm remains unchanged for the rest.448
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Fig. 4 Closed surface triangulation of 440K points in 7.33 seconds. Beside the point cloud, the only user
input is one inner tetrahedron. The closeup shows that small features are correctly recovered.
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