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Abstract: G9a is a lysine methyltransferase catalyzing the majority of histone H3 mono- and dimethy-
lation at Lys-9 (H3K9), responsible for transcriptional repression events in euchromatin. G9a has
been shown to methylate various lysine residues of non-histone proteins and acts as a coactivator for
several transcription factors. This review will provide an overview of the structural features of G9a
and its paralog called G9a-like protein (GLP), explore the biochemical features of G9a, and describe
its post-translational modifications and the specific inhibitors available to target its catalytic activity.
Aside from its role on histone substrates, the review will highlight some non-histone targets of G9a, in
order gain insight into their role in specific cellular mechanisms. Indeed, G9a was largely described
to be involved in embryonic development, hypoxia, and DNA repair. Finally, the involvement of G9a
in cancer biology will be presented.

Keywords: G9a; GLP; H3K9 methylation; protein lysine methylation; EHMT2; EHMT1; protein
post-translational modification; cancer

1. Introduction

Protein lysine methylation is a dynamic post-translational modification (PTM) regu-
lating protein stability and function. Lysine methylation of histone proteins can modulate
transcriptional activity without affecting the DNA sequence itself, enabling dynamic gene
transcription patterns in response to environmental stimuli [1]. Lysine methylation is
deposited by writer enzymes called protein lysine methyltransferases (PKMTs), removed
by eraser enzymes called lysine demethylases (PKDMs) and interpreted by reader proteins
that bind to lysine methylation marks. PKMTs catalyze the transfer of the methyl group
from the S-adenosyl-l-methionine (AdoMet) donor to the ε-nitrogen of a lysine residue on
protein substrates [1]. The lysine ε-amino group of proteins can accept up to three methyl
groups, resulting in either mono-, di-, or trimethyl lysines. To date, more than 50 PKMTs
have been reported, with sequence and product specificity. Two PKMT families have been
identified: the SET lysine methyltransferases containing the majority of PKMTs [2] and
the Seven β-strand methyltransferase (7βS) or class I family [3]. Histones are methylated
on several lysine residues. A growing number of reports also describe the methylation of
non-histone proteins on lysine residues [1].

G9a was identified and sequenced in the 1990s [4]. It belongs to the SET PKMT
family. G9a was extensively studied as a key enzyme in the mono- and dimethylation of
lysine 9 of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin [5]. Since the
H3K9me2 mark is associated with transcriptional repression, G9a was primarily considered
to be an epigenetic repressor [5–7]. Its role as a coactivator of several transcription factors
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emerged more recently [8–12]. Though G9a is the most commonly used term for this lysine
methyltransferase, it is also known as lysine methyltransferase-1C (KMT1C), euchromatic
histone N-methyltransferase 2 (EHMT2), or BAT8 (HLA-B associated transcript 8).

The current review will provide an overview of the structural features of the protein
with a particular focus on its paralog GLP (G9a-like protein). The biochemical features
of G9a will also be detailed with a special emphasis on the key PTMs affecting G9a and
regulating its activity and function. Finally, among the large number of G9a substrates
described, including histone and non-histone substrates, the present report will focus on
their involvement in specific physiological pathways and their connection to cancer.

2. Structural Features
2.1. Structure and Domain Architecture

In human cells, G9a exists as two isoforms: a full-length isoform of 1210 amino acids
(called isoform A) derived from 24 exons of the G9a gene and a splice variant of 1176
amino acids (isoform B) that arises from the excision of exon 10 (Figure 1a). The alternative
splicing of G9a is conserved in different species, tissues, and cell lines [13]. Even if the two
isoforms are ubiquitously found in different tissues, the ratio between them varies. For
example, isoform A is preponderant in the kidney, thymus, and testis, and, interestingly,
is more abundant in epithelial cell lines compared to mesenchymal cell lines and more
transformed cell lines [13]. Mauger et al. reported that the two isoforms display similar
methyltransferase activities and subcellular localizations. Likewise, Fiszbein et al. showed
that isoform B expression increased during neuronal differentiation [14]. They did not
report any change in G9a catalytic activity following exon 10 inclusion, but demonstrated
that exon 10 inclusion increases G9a nuclear localization in a neuronal cell line [14]. Mouse
G9a is also subjected to alternative splicing. Full-length mouse G9a protein contains 1263
amino acids and shares more than 90% homology with human G9a [15].

G9a belongs to the Su(var)3-9 family of methyltransferases, which was first identified
in Drosophila melanogaster [16]. The main characteristic of this family of proteins is the
presence of a highly conserved SET domain [17]. SET, an acronym for Su(var)3-9, Enhancer-
of-zeste and Trithorax, is a long sequence of 130 to 140 amino acids, characterized in 1998,
that has a unique structural fold [17]. The SET domain is composed of a series of β strands
that fold into three sheets and surround a knot-like structure [18]. The conserved core of
the SET domain is flanked by a pre-SET (nSET) domain providing structural stability by
interacting with different surfaces of the core SET domain, and a post-SET (cSET) domain
responsible of the formation of a hydrophobic channel via an aromatic residue [19]. Neither
pre-SET nor post-SET domains are conserved across KTM SET domains, as they vary in
size and tertiary structure [20]. In the core SET domain, G9a contains an inserted i-SET
domain (Figure 1a). The i-SET domain forms a rigid docking platform and a substrate
binding groove with the post-SET domain in three-dimensional structures [21]. The G9a
SET domain contains four structural zinc fingers for proper folding and enzymatic activity.
A cluster of three Zn2+ ions is chelated by nine cysteines, whereas the fourth Zn2+ ion,
adjacent to the S-adenosylmethionine (SAM)-binding site, is chelated by four cysteines [22].
The binding of AdoMet and the protein substrate occurs on opposite sides of the SET
domain. AdoMet binds and positions its methyl group at the base of the channel, while
the side chain of the target lysine protrudes into the channel [20]. Within the SET domain,
the tyrosine residue Y1154 was demonstrated to be essential for the catalytic activity of
G9a [23]. The tyrosine may allow deprotonation of the positively charged ammonium
group in order to favor methylation.

G9a also contains a cysteine-rich region, a polyglutamate region and seven ankyrin
repeats of 33 amino acids (Figure 1a). The ankyrin repeat domain was reported to be a
mono- and dimethyllysine binding module, a reader domain important for protein-protein
interactions [24]. The specificity of the G9a ankyrin repeat domain is comparable to the
specificity of other groups of reader proteins recognizing methyl binding protein modules,
such as the chromodomain, the tudor domain, or the PHD finger domain [24]. G9a was



Life 2021, 11, 1082 3 of 25

the first protein described to harbor within a single polypeptide, the signal to catalyze and
read the same epigenetic marks, H3K9me1, and H3K9me2 [24].

A nuclear localization signal was identified in the N-terminal region of human
G9a [25], and amino acids 1-280 of human G9a were shown to act as a coactivator domain
in transient reporter gene assays [10] (Figure 1a).

Figure 1. Schematic representation of the structure and domains of human G9a (a) and GLP (b). G9a and GLP contain
different domains: an activation domain (AD), a Cys-rich region (Cys), an ankyrin repeat domain (ANK), and a SET
domain composed of a core SET domain associated with pre- and a post-SET domains. G9a and GLP contain a nuclear
localization signal (NLS). G9a also contains a Glu-rich region (E) and GLP a Glu/Asp-rich region (E/D). (c) Sequence
alignment of G9a (NP_006700.3) and GLP (NP_079033.4). The alignment was performed using the MultAlin program [26]
(http://multalin.toulouse.inra.fr/multalin) (accessed on 7 October 2021). Amino acids with 100% and >60% conservation
are shown in red and blue, respectively.

2.2. GLP, a G9a Paralog

A paralog of G9a was identified and called G9a-like protein (GLP), though it is also
termed lysine methyltransferase-1D (KMT1D) or euchromatic histone N-methyltransferase
1 (EHMT1) (Figure 1b). G9a and GLP share 45% sequence identity and around 70%
sequence similarity (Figure 1c) [2]. They differ primarily in the N-terminus, and present
a high level of conservation in the SET domain with over 80% shared sequence identity
(Figure 1c) [27]. The main difference in structure between the two proteins concerns the
E-rich domain of G9a, which is composed of a sequence of repeated glutamic and aspartic
acid residues in the case of GLP (Figure 1b,c). In addition, binding affinities of the ankyrin
domains of G9a and GLP for H3K9 differ, as GLP and G9a preferentially bind to mono-
and dimethylated H3K9, respectively [24,28].

http://multalin.toulouse.inra.fr/multalin
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G9a and GLP form homo- and heterodimers via their SET domains in complex with
ZNF644 and WIZ [6,29–31]. In the endogenous complex, they act mainly as heterodimers
in a large variety of human cells [6]. However, in vitro, independently of each other,
G9a and GLP are able to catalyze lysine methylation by forming homodimers. Extensive
research has focused on G9a, albeit GLP seems to be equally important for most biological
phenomena ascribed to G9a. Indeed, GLP generally possesses similar catalytic activities
as G9a [29]. However, the individual effects of G9a and GLP are hard to study, as G9a
depletion destabilizes GLP [6,32].

3. Biochemical Features
3.1. Sequence Specificity

The majority of studies conducted on G9a sequence specificity focused on Histone H3.
In vitro, the minimum substrate recognition site of seven amino acids of H3 is composed of
residues 6 to 11 (TARKSTG), with a consensus methylation site encompassing RK/ARK [33].
The arginine residue adjacent to the lysine residue is essential for G9a activity [33]. G9a
preferentially acts when a hydrophobic amino acid is positioned before the arginine residue,
such as alanine. After the lysine residue, G9a favors a hydrophilic residue followed by a
hydrophobic one. This G9a recognition site is present in several non-histone proteins, as
well as on its N-terminal domain [34–36].

Several biochemical studies have shown that specific PTMs affect the catalytic ac-
tivity of G9a. For instance, phosphorylation of S10 or T11 of H3 impairs G9a catalytic
efficacy [33,36]. In addition, R8 of H3 can be methylated by the arginine methyltrans-
ferase PRMT5 in vivo, and this event impairs methylation of H3K9 by G9a [36]. Indeed, a
decrease in methylation of over 80% was reported for peptides carrying an asymmetric
dimethylation of R8, a methylation mark catalyzed by PRMT5 [36].

3.2. Product Specificity

G9a mainly catalyzes mono- and dimethylation events, as illustrated with H3K9 [6,24].
However, several reports demonstrated that G9a also generates, after a long incubation
time, trimethylation of H3K9 (H3K9me3) [25,37]. Investigations on G9a-deficient cells
demonstrated that G9a is the major H3K9me1 and H3K9me2 methyltransferase of euchro-
matin [5].

Biochemically, the specificity of G9a methylation for a particular state is largely due to
a tyrosine residue in its active site. Indeed, Y1067 controls whether G9a catalyzes mono-,
di- or trimethylation of lysines; Y1067 mutation to F1067 allowing G9a trimethylation of
H3K9 [21]. Mechanistically, Y1067 forms hydrogen bonds with the nitrogen atom of the
ε-amino group of the target lysine residue [21].

3.3. Regulation
3.3.1. PTMs

As for most proteins, G9a is subjected by many PTMs that regulate its ability to bind
new partners and impact its cellular functions (Figure 2). Further details about their cellular
features will be given in the corresponding sections below.

Figure 2. G9a undergoes several post-translational modifications including methylation (M), phosphorylation (P), sumoyla-
tion (S), and hydroxylation (H). The numbers indicate amino acid (aa) residues.



Life 2021, 11, 1082 5 of 25

G9a was shown to be auto-methylated on lysine 185 (K185) and phosphorylated by the
Aurora kinase B (AurKB) on the adjacent threonine 186 (T186) in the N-terminal domain of
the protein [35] (Figure 2). Heterochromatin protein 1 proteins (HP1α, HP1β, HP1γ) and
CDYL (chromodomain Y-like) were identified as specific partners that bind methylated
G9a [34,35]. These proteins contain chromodomains functioning as methyl-lysine binding
modules. Of note, a similar methylation and phosphorylation switch on adjacent residues
was previously demonstrated for the histone H3 [38,39]. H3K9me2 methylated by G9a
recruits HP1 proteins, whereas H3 phosphorylated on S10 by AurKB has an opposite
effect [38,39]. Like G9a, GLP is also auto-methylated on lysine 205 (K205) and phosphory-
lated by AurKB on threonine 206 (T206) [32]. Both G9a and GLP auto-methylation sites can
be demethylated by the KDM4 lysine demethylase family [40]. Sampath et al. found no
evidence of a role for G9a auto-methylation in the regulation of G9a enzymatic activity [35].

Additionally, G9a was shown to be phosphorylated on two serine residues involved
in DNA damage repair, namely Serine 211 (S211) phosphorylated by casein kinase 2 (CK2)
and serine 569 (S569) phosphorylated by ATM kinase (Figure 2) [41,42]. Interestingly,
phosphorylation of G9a on S211 does not change its methyltransferase activity and G9a
catalytic inhibitor does not affect G9a phosphorylation on S569 [41,42].

G9a is sumoylated in skeletal myoblasts in order to regulate its transcriptional activ-
ity [43]. This event acts as a signal for the recruitment of the histone acetyltransferase PCAF
(p300/CBP-associated factor) to E2F1 target genes, implicated in cell cycle progression by
increasing the level of histone H3 lysine 9 acetylation [43].

Casciello et al. demonstrated that G9a stability is regulated by proline hydroxylation
catalyzed by oxygen sensors, as inhibition of the latter increased protein stability [44].
Authors showed that G9a hydroxylation is detected in normoxic conditions, whereas
it is not detected under hypoxia. Proline hydroxylation occurs on proline residues 676
(P676) and 1207 (P1207) in consensus hydroxylation motifs LXXLAP and leads to efficient
degradation by the proteasome (Figure 2) [44]. G9a is also hydroxylated in the ankyrin
repeat domain of G9a on asparagine 779 (N779) by the asparaginyl hydroxylase factor
inhibiting HIF (FIH) (Figure 2) [45]. This event impedes G9a binding to methylated H3K9
products and to di- and trimethylated H3K9. Hydroxylation of N779 destabilizes the
interaction of H3K9me2 with the ankyrin repeat domain of G9a by disrupting the structural
pocket that facilitates methyl binding [24,45]. Likewise, GLP is hydroxylated on N867 [45].

3.3.2. Stability

G9a protein stability relies on the presence of GLP, as GLP depletion also decreases
G9a expression [6,32]. Using G9a−/− and GLP−/− embryonic stem cells, Tachibana et al.
reported that G9a is more stable in the G9a/GLP heteromeric complex. This observation
did not apply to GLP [6]. The protein WIZ was reported to be a key partner of both G9a
and GLP to stabilize the G9a/GLP heteromeric complex [30]. Both WIZ and GLP depletion
decreases G9a protein levels, suggesting that the WIZ/G9a/GLP complex protects G9a
from degradation [30]. Later, Bian et al. mapped the specific sequence of WIZ interacting
with G9a/GLP. They showed that WIZ only interacts directly with the NTD of GLP [31].
Its interaction with G9a might be indirect and mediated by the fact that G9a and GLP form
heterodimers. WIZ contains multiple zinc finger motifs, targeting the G9a/GLP complex
to chromatin in order to mediate H3K9 methylation [31].

3.4. Substrates
3.4.1. Histone Substrates

In 2001, Tachibana et al. identified the first substrates of G9a as histone proteins [46]
(Table 1). They demonstrated that G9a was able to add methyl groups to H3 on lysine 9 and
lysine 27 [46]. Since then, G9a has largely been described as the major PKMT catalyzing the
mono- and dimethylation of H3K9 [5], and, to a lesser extent, H3K9 trimethylation [25,37].
Though H3K9 methylation is well known for its role in transcriptional silencing [6,47], the
impact of H3K27 methylation by G9a emerged more recently. Wu et al. demonstrated in
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2011 that even though H3K27me2/3 is not affected in G9a−/− ES cells, H3K27me1 levels
were clearly lower in these cells [48]. G9a also methylates H3 on lysine 56 (H3K56me1) in
order to maintain proper DNA replication [49], a methylation event that was shown to be
induce by DNA damage [41].

Table 1. List of histone substrates of G9a and their biological outcome. Nd: not determined.

Histone Types Sites Biological Outcome References

Histone H3
H3K9me1

Transcriptional repression
Heterochromatin formation

[5,25,37]H3K9me2
H3K9me3

Histone H3 H3K27me1 Transcriptional repression
Heterochromatin formation [46,48]

Histone H3 H3K56me1 DNA replication [49]

Histone H1.2 H1.2K187me nd [51]

Histone H1.4
H1.4K26me1 Transcriptional repression

Chromatin structure
[50]H1.4K26me2

G9a methylates histone H1 in a variant-specific manner. Human cells have 11 H1
variants, two of which were shown to be methylated by G9a, namely isotype 2 (H1.2) and
isotype 4 (H1.4) [50,51]. H1.4 was reported to be mono- and dimethylated on H1.4K26.
This event provides a recognition site for HP1 binding, establishing a proper chromatin
surface and suggesting a role for H1.4K26me1/2 in transcriptional repression [50]. G9a
methylates H1.2 on K187 in vitro and in vivo. However, H1.2K187me2 is not recognized
by HP1 proteins, demonstrating selective recognition by these proteins [51]. Weiss et al.
demonstrated that G9a does not directly bind to methylated histone variants, suggesting a
different mechanism from that observed in H3K9me1/2 to achieve methylation [51].

3.4.2. Non-Histone Substrates

G9a also methylates a large number of non-histone proteins involved in several biological
functions listed in Table 2. Most of these are linked with transcriptional regulation, as G9a
methylates numerous transcription factors, chromatin remodeling factors, and coregulators.

3.5. Inhibitors

Among the numerous G9a inhibitors, there are three different types: (i) substrate
competitive inhibitors, (ii) SAM cofactor competitive inhibitors and (iii) inhibitors by
ejection of Zn2+ ions. Substrate competitive inhibitors act by binding to G9a substrate
binding sites, while SAM inhibitors prevent G9a-mediated methylation by interacting with
SAM binding sites on G9a [52]. Most of these inhibitors also impact GLP [53].

3.5.1. Substrate Competitive Inhibitors

Substrate competitive inhibitors specifically bind to the substrate binding site of G9a.
The first substrate competitive inhibitor discovered was BIX01294, a quinazolin derivative
able to inhibit H3K9me2 [70]. Many studies then sought to optimize this inhibitor by
enhancing its G9a specificity, efficacy and by reducing cell toxicity. Based on Structure-
Activity Relationship studies (SAR), modifications of BIX01294 provided more specific
and powerful G9a inhibitors including UNC0224, UNC0321, UNC0638, UNC0646 [52].
The majority of G9a substrate competitive inhibitors impede G9a activity by interacting
with two G9a aspartate residues in the SET domain (D1074 and D1083) [71,72]. Recently,
by adding and expanding the 1,4 benzodiazepine cycle, Milite et al. improved UNC0638
potency and named it EML741 [73].
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Table 2. List of substrates of G9a categorized by their biological functions. Nd: not determined.

Functions Substrates Site Biological Outcome References

Transcription
Factors

C/EBPb K39
Inhibits transcriptional
activity by repressing

C/EBPb transactivation
[54]

MyoD K104me1/2 Inhibits MyoD
transcriptional activity [55]

MEF2D K267me1/2

Inhibits MEF2D
transcriptional activity

by preventing its
recruitment on

chromatin

[56]

p53 K373me2

Inhibits transcriptional
activity and

p53-dependent
apoptosis

[57]

ERα K235me2

Induces transcriptional
activity by recruiting

the PHF20/MOF HAT
complex

[58]

Foxo1 K273me1/2 Induces Foxo1
degradation [59]

KLF12 K313 nd [36]

Chromatin
remodeling
factors and

coregulators

G9a K185me2/3

Induces specific
glucocorticoid receptor
transcriptional activity

by recruiting HP1γ

[32,34,35]

GLP K205me2

Induces specific
glucocorticoid receptor
transcriptional activity

by recruiting HP1γ

[32]

Sirt1 K662 nd [60]

Pontin
K265, K267,
K268, K274,
K281, K285

Induces HIF-1
transcriptional activity

by enhancing p300
recruitment

[61]

Reptin K67me1

Inhibits HIF
transcriptional activity

by recruiting
corepressors

[62]

HDAC1 K432 nd [36]

HIFα K674me1/2 Inhibits HIF-1
transcriptional activity [63]

CSB K170, K297,
K448, K1054 nd [36]

MTA1 K532me1

Inhibits transcription by
recruiting the assembly
of the NuRD repressive

complex

[64]

ATF7IP
(hAM) K16me3

Induces transgene
silencing by recruiting

MPP8
[65]
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Table 2. Cont.

Functions Substrates Site Biological Outcome References

Chromatin
binding protein

CDYL1 K135me3 Decreases its interaction
with H3K9me3 [36]

WIZ K305me3 nd [36]

DNA methyl-
transferases

DNMT1 K70me2 nd [36]

DNMT3 K47me2

Inhibits transcription by
recruiting

MPP8/DNMT3/G9a/GLP
repressive complex

[66]

Others

Acinus K654me2 nd [36]

MDC1 K45me2
Induces ATM

accumulation on
damage sites

[67]

Plk1 K209me1

Antagonizes T210
phosphorylation to

inhibit Plk1 activity on
DNA replication

[68]

Lig1 K126me2/3

Maintenance in DNA
methylation by

promoting UHRF1
recruitment to
replication foci

[69]

3.5.2. SAM Competitive Inhibitors

The cofactor SAM is the methyl donor essential for G9a-mediated methylation. SAM
competitive inhibitors compete with SAM to bind to the SAM binding site of G9a. The first
inhibitor of this class to be identified by Kubicek et al. was BIX01338, discovered around
the same time as BIX01294 [70]. Analogous inhibitors were then synthetized with similar
structures, such as BRD9536 and BRD4770 [74]. However, this type of inhibitor remains
less specific than substrate competitive inhibitors, as it also downregulates the enzymatic
activity of several other PKMTs [52].

3.5.3. Inhibition by Ejection of Structural Zn2+

Lastly, Lenstra et al. reported that structural zinc ions are essential to maintain the
enzymatic activity of the methyltransferases G9a/GLP [22]. By using selenium- or sulfur-
containing proteins able to eject the fourth structural zinc ions, they demonstrated that G9a
methyltransferase activity could be inhibited. Molecules used clinically such as ebselen,
disulfiram, and cisplatin work specifically as inhibitors of G9a and GLP. These findings
may offer new perspectives to develop further G9a-specific inhibitors [22].

4. Cellular Features
4.1. Connection with Chromatin Regulation
4.1.1. G9a Corepressor Functions

As mentioned above, G9a is a coregulator with an essential role in repression of
gene transcription. Functionally, G9a is involved in several mechanisms, primarily the
methylation of the histone H3 N-terminal tail in order to close chromatin (Table 1).

• G9a in Euchromatin

Numerous studies have shown that G9a is recruited to specific target genes as a core-
pressor by transcription factors, such as CCAAT displacement protein/cut (CDP/cut) [75],
growth factor independent 1 (Gfi1) [76], positive regulatory domain I-binding factor 1
(PRDI-BF1) [77], neuron restrictive silencing factor (NRSF) (also known as REST) [78],
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multi-domain protein UHRF1 [79], and the noncoding RNA Air [80], in order to remodel
chromatin structure. G9a also represses active gene transcription by recruiting other core-
pressors. For example, in euchromatin, G9a interacts with Polycomb Repressive Complex
2-proteins, including the PKMT EZH2, in order to transcriptionally silence specific regions
within the genome (Figure 3a) [81].

Figure 3. G9a acts as a transcriptional coregulator, either as a corepressor (a) or coactivator (b). (a) After G9a recruitment by
some transcription factors (TFs), G9a methylates histones (red circles) leading to chromatin remodeling and gene repression.
G9a also recruits corepressor proteins (i.e., other PKMTs and chromatin remodelers) and DNA methyltransferases (i.e.,
DNMT3a and DNMT1) in order to fully repress transcription via histone modifications (i.e., acetylation (orange circles)
and DNA methylation (green circles)). Of note, G9a also methylates some TFs and DNA methyltransferases modulating
their functions. (b) Conversely, G9a recruitment by the glucocorticoid receptor (GR), estrogen receptor (ERα), RunX2 and
NF-E2/p45 leads to gene activation through the recruitment of specific coactivators (CoAct) (i.e., histone acetyltransferases
and methyltransferases) and the transcription machinery (i.e., Mediator complex or RNA polymerase II).

• G9a in heterochromatin

In heterochromatin, G9a drives silencing mechanisms by serving as a platform for
the formation of repressive complexes. Methylation of H3K9 leads to the recruitment of
proteins such as HP1, which can bind to methylated H3K9 via their chromodomains [38,39].
This recruitment is crucial for heterochromatin formation and gene silencing [82]. In
addition, G9a also recognizes H3K9 methylation via its ankyrin repeat in order to work
as a scaffold for the recruitment of other corepressors [24]. It was shown for instance that
G9a interacts with the PKMT Suv39h and SETDB1 in specific regions of heterochromatin to
maintain chromosomal stability (Figure 3a) [83].

• G9a and DNA methylation

Other mechanisms underlying G9a repressive function have been identified. For
example, the ankyrin repeat domain of G9a was reported to contribute to DNA methylation-
mediated repression of transcription by recruiting DNA methyltransferases (DNMT3a and
DNMT3b), and by recognizing the H3K9me2 histone mark [24,84]. A specific residue of the
ankyrin repeat domain (Asp905) has also been associated with this co-repressive function by
maintaining H3K9me2 levels and establishing DNA methylation [85]. In addition, Chang
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et al. demonstrated that G9a dimethylates DNMT3a on K47, allowing its recognition
by the MPP8 chromodomain [66]. This event results in a silencing complex containing
DNMT3a/MPP8/G9a on chromatin that could in part explain the co-occurrence of DNA
methylation and H3K9 methylation in chromatin (Figure 3a). Additionally, Smallwood
et al reported that HP1 proteins, the readers of H3K9 methylation, target DNMT1 enzyme
to euchromatic sites, providing a basis for the generation of CpG methylation [86]. Finally,
DNMT1 is methylated by G9a reinforcing the whole model [36] (Figure 3a).

4.1.2. G9a Coactivator Functions

In addition to the well-studied and established co-repressive function of G9a, reports
have emerged on its function as a coactivator, by contributing to the activation of gene
expression [9–12,32,87,88].

It was suggested that different binding partners may play critical roles in the switch
between the coactivator and corepressor functions of G9a. Indeed, G9a stabilizes the
occupancy of the Mediator complex on the promoter of the adult β globin gene in a NF-
E2/p45-dependent manner to exert its coactivator function, while it recruits the H3K4
demethylase Jarid1a to the promoter of the embryonic β globin gene and results in tran-
scription repression [12,89] (Figure 3b). It has also been shown that G9a is recruited to
the promoter or enhancer regions of its positively regulated target genes, indicating that
G9a may act directly on their expression [8–12,32,87–89]. In addition, G9a was reported to
bind to RNA polymerase II, indicating that G9a may be involved in the establishment of a
preinitiation or initiation complex during transcription [12].

The G9a activation domain (AD) (amino acid 1–280 in human G9a) was first identified
by Dr. Stallcup’s group using transient reporter gene assay [10] (Figure 1). G9a AD is suffi-
cient and required for its coactivator function [10] and contains an autonomous activation
domain [9]. Recently, we demonstrated the importance of G9a auto-methylation in the G9a
AD for its coactivator function. Indeed, auto-methylation of G9a (K185) is required for its
coactivator function with the glucocorticoid receptor (GR), by facilitating the binding of
HP1γ and the subsequent recruitment of RNA pol II [32]. Inversely, G9a phosphorylation
(T186) by AurKB antagonizes these effects (Figure 3b). Thus, these adjacent modifications
regulate coactivator functions and contribute to determining whether G9a act as a coactiva-
tor or corepressor [32]. At the physiological level, we demonstrated that the coactivator
activity of G9a regulates migration of the lung cancer cell line, A549 [32], and GC-induced
cell death in leukemia [32,88]. In addition, G9a was reported to function as a scaffold
protein to recruit the coactivators p300 and CARM1 on a subset of GR target genes, leading
to transcriptional activation [8,9].

G9a also acts as a coactivator by specifically methylating the estrogen receptor alpha
(ERα) on K235 [58]. This event is recognized by the Tudor domain of PHF20, which recruits
the MOF histone acetyltransferase complex in order to acetylate H4K16 and promote active
transcription (Figure 3b. Through this mechanism, G9a regulates a specific subset of ERα
target genes [58].

4.2. Cellular Roles and Functions
4.2.1. Embryonic Development

Most PKMTs are essential for the formation of healthy embryo, as they remodel
histones and control chromatin packaging and transcriptional accessibility along the
genome [1]. Hence, it came as no surprise that G9a knockout impacted embryonic develop-
ment [5]. Embryo of mice genetically engineered to be G9a-deficient displayed delayed
development, growth arrest by the earliest stages monitored, and were no longer viable by
embryonic day 9.5 [5]. Histones extracted from G9a-deficient embryos showed a strong
decrease in H3K9me2 [5,6] Later studies, then reported the importance of G9a in specific
developing tissues and organs based on different analyses.

• Germ Cell Development
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Germ line-specific G9a knockout mice were shown to be sterile due to a drastic loss of
mature gametes [90]. In addition, completion of meiosis was not observed in either gender.
In G9a-deficient germ cells, H3K9me1/2 decreased during meiosis, suggesting that gene
silencing induced by G9a is crucial for proper meiotic prophase progression [90].

• Cardiac Development

Engineered mice in which GLP was knocked out and G9a knocked down in cardiomy-
ocytes showed neonatal lethality and atrioventricular septal defects, strongly implicating
G9a and GLP in cardiomyocyte function for atrioventricular septum formation [91]. How-
ever, cardiomyocyte-specific G9a knockout mice were normal and the loss of G9a induced
only a slight decrease in H3K9me2 levels in cardiomyocytes, indicating that adequate
H3K9me2 can be performed by enzymes other than G9a in cardiomyocytes [91].

• Neuronal Development

Neuron-specific deficiency of G9a did not reveal obvious neuronal developmental or
architectural defects [92]. However, these mice displayed various abnormal phenotypes,
including defects in cognition and adaptive behaviors, such as difficulties in learning, moti-
vation and environmental adaptation [92]. Authors demonstrated that multiple non-adult
neuronal and non-neuronal progenitor genes were derepressed in the forebrain of these
mice deficient for G9a [92]. Using pharmacological inhibition of G9a/GLP activity, it was
demonstrated that G9a/GLP are required in the dorsal hippocampus for the transcriptional
switch from short-term to long-term spatial memory formation [93]. Repression of G9a
and H3K9 methylation has been described in postmortem nucleus accumbens of human
cocaine addicts, indicating a clinical relevance of G9a in human addiction [94]. Through
extended analyses, Maze et al. demonstrated a role for G9a in neuronal subtype identity in
the adult central nervous system, and a critical function for G9a and H3K9 methylation in
the regulation of behavioral responses to environmental stimuli [95].

• Bone Formation

G9a protein levels and H3K9me2 were reported to increase during developmental pro-
gression in tooth and growth plate cartilage [96]. G9a methyltransferase activity regulates
cell proliferation and differentiation in dental mesenchyme in order to promote proper
tooth development [96].

Using two different models of conditional G9a knockout mice, G9a was shown to
be involved in cranial bone formation, since mutant mice had severe defects in cranial
vault bones with opened fontanelles [97,98]. Mechanistically, the effect of G9a on cranial
bone formation relies on its function as repressor of Twist expression during osteoblastic
differentiation and as coactivator of RunX2 [97,98]. Stallcup’s group demonstrated that G9a
is able to enhance RunX2-mediated transcription in transient reporter gene assays by acting
as a coactivator of RunX2 [11]. RunX2 is a key transcription factor of bone-forming cells by
regulating osteoblastic differentiation [99]. Later, Ideno et al. showed that G9a enhances
RunX2 transcriptional activity in mesodermal cells through binding and activation of
RunX2 [97].

• Other Mechanisms

G9a knockdown or inhibition through pharmacological inhibitors in adult erythroid
cells induces re-emergence of a fetal gene program, illustrated by the switch in expression
from adult to fetal β-globin isoforms [12,89] (Figure 3).

Conditional knockout of G9a in the skeletal muscle lineage highlighted that G9a has
little effect on skeletal myogenesis [100].

Targeted depletion of G9a in the developing mouse retina generated disorganized
tissues [101]. According to the authors this was due to the fact that retinal progenitor cells
depleted for G9a were highly proliferative and were not able to mature into the specialized
components of the retina [101]. Similar results were obtained in zebrafish embryos knocked
down for G9a using morpholino antisense oligos [102].
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These different studies clearly demonstrated that G9a has a major impact on embryonic
development, with roles in various pathologies, including neurological disorders, cardiac
pathogenesis, immune cell development, and cancer progression.

4.2.2. Hypoxia

In mammalian cell lines, G9a activity was reported to increase under hypoxic con-
ditions, concomitant to an increase in total H3K9me2 levels, resulting in gene silenc-
ing [103]. In G9a-/- mouse embryonic stem cells under hypoxic conditions, the level
of H3K9me2 was significantly lower, demonstrating that G9a was involved in hypoxia-
induced H3K9me2 [103]. The hypoxic upregulation of G9a was attributed to specific PTMs
(Figure 4). As described previously, G9a is hydroxylated at residues P676 and P1207 by
PHD1 in order to target G9a toward proteasome degradation via ubiquitinylation [44].
Hypoxia induces PHD1 inhibition and a subsequent upregulation of G9a, leading to an
increase in H3K9me2 and the silencing of a specific subset of target genes. Casciello et al
demonstrated that G9a inhibition decreases proliferation, migration, and in vivo tumor
growth [44]. Likewise, in ovarian cancer, FIH reaction was limited under hypoxia, leading
to a reduced expression of metastasis-suppressor genes via H3K9 methylation [45]. Mecha-
nistically, FIH induces hydroxylation of G9a on N779, impairing its ability to bind mono-
and dimethylated H3K9, and thus methylate H3K9 [45] (Figure 4).

Figure 4. The role of G9a in hypoxia. (a) In normoxia, PHD-1 hydroxylates G9a on P676 and P1207 leading to proteosomal
degradation. Likewise, FIH hydroxylates G9a on N779 impairing its ability to bind to H3K9me1/2 products. These
hydroxylation processes are inhibited under hypoxic conditions resulting in an increase in the global level of G9a protein
and H3K9me2. (b) In addition, under hypoxia, G9a methylates histones and non-histone targets. Hypoxia increases
G9a-dependent H3K9me2 at the promoter regions of several genes leading to their repression. In addition, G9a methylates
HIF-1α coregulators Pontin and Reptin during hypoxic stress, leading to the activation and repression of HIF-1α target
genes. Finally, HIF-1 methylation by G9a suppresses HIF-1α transcriptional activity under hypoxia.
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However, the role of G9a under hypoxia is likely more extensive, as G9a methylates
many protein substrates involved in hypoxia, namely Pontin, Reptin, and HIF-1α [61–63]
(Figure 4). Bao et al. demonstrated that HIF-1α, a master regulator of the hypoxic response,
is mono- and dimethylated by G9a on K674 [63]. They demonstrated that G9a is able to
methylate HIF-1α in an oxygen-independent manner. However, endogenous HIF-1α is
unstable and degraded under normoxic conditions, indicating that HIF-1α is unlikely to be
methylated in normoxia [63]. HIF-1αK674me1/2 suppresses HIF-1α transcriptional activity
under hypoxia and expression of its downstream target genes (Figure 4). These authors
also demonstrated that HIFαmethylation by G9a decreases HIF-1-dependent migration
of glioblastoma cells [63]. In addition, G9a methylates Reptin and Pontin, two chromatin
remodelers involved in hypoxia, known to bind to HIF-1 proteins [61,62]. Under hypoxia,
G9a monomethylates Reptin on K67 (K67me1), this methylation negatively regulates a
subset of hypoxia target genes via the recruitment of Reptin K67me1 to their promoters and
an enhanced binding to HIF-1α [62]. In addition, Reptin K67me1 leads to the recruitment
of corepressors such as HDAC1 to hypoxia-responsive gene promoters in order to decrease
HIF-1α transcriptional activity [62] (Figure 4). Conversely, under hypoxia, G9a methylates
Pontin on six lysine residues (K265, K267, K268, K274, K281, K285), enhancing p300
coactivator recruitment on the promoters of HIF-1α target genes, resulting in an increase in
HIF-1 transcriptional activity [62] (Figure 4). Although Reptin and Pontin share similarities
in their structures, they act as coactivator or corepressor of HIF-1 depending on their subset
of target genes in order to modulate cellular responses to hypoxia [61,62].

The ability of G9a to repress genes under hypoxic conditions suggests a key role for
G9a in cell survival processes in this condition, especially in solid tumors where hypoxia is
a common microenvironmental state.

4.2.3. DNA Damage and DNA Repair

Two reports demonstrated that G9a was recruited to DNA-damage sites, mainly
through G9a phosphorylation [41,42]. G9a is phosphorylated by casein kinase 2 (CK2)
at S211 in response to DNA double-strand breaks (DSBs), promoting G9a recruitment to
sites of DNA damage by increasing its interaction with chromatin, where it can directly
interact with replication protein A (RPA) [42]. In turn, binding of G9a to RPA modulates
RPA and Rad51 foci formation, allowing efficient homologous recombination of DSBs and
cell survival [42]. In parallel, Ginjala et al. demonstrated that G9a is phosphorylated by
ATM kinase on S569 [41]. This event also leads to its recruitment to sites of DNA breaks.
Authors demonstrated that the catalytic activity of G9a is critical for early recruitment of
53BP1 and BRCA1 to DNA lesions, but dispensable for their late recruitment. Induction
of DSBs leads to an increase in H3K9me2 and H3K56me1 in their neighboring chromatin,
two histone targets of G9a [41]. Inhibition of the catalytic activity of G9a decreases these
modifications, suggesting that G9a could be recruited to DNA breaks in order to induce
local histone methylation and subsequent local transcriptional silencing. Finally, using
GFP-based reporters of homologous repair (HR) or non-homologous end-joining repair
(NHEJ), they demonstrated that the catalytic activity of G9a impairs both mechanisms, HR
and NHEJ [41]. Moreover, phosphorylation of S211 and S569 appears to be essential for
proper DNA repair [41,42].

G9a may also methylate specific non-histone proteins involved in DNA repair mecha-
nisms, such as Polo-loke kinase 1 (Plk1) and p53 [57,68]. Plk1 phosphorylation on T210
is required during DNA damage repair and checkpoint recovery [104]. Recently Li et al.
demonstrated that the activity of Plk1 is controlled by a switch between methylation and
phosphorylation, as for G9a and GLP [68]. Authors showed that under DNA damage stress
conditions, the interaction between G9a and Plk1 is enhanced and G9a monomethylation
on K209 of Plk1 is increased [68]. Interestingly, Plk1 methylation by G9a is not necessary
for its recruitment to DNA lesions or for the assembly of the DNA repair machinery via
RPA and Rad51 recruitment. However, this methylation is crucial for the timely removal of
this DNA repair machinery from DNA lesions, which is essential for the proper completion
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of DNA damage repair [68]. The tumor suppressor p53 was also demonstrated to be a
substrate for G9a on K373 [57]. However, p53 methylation seems to be link with inactive
p53, as the level of methylated p53 during DNA damage does not change even though
the total level of p53 increases dramatically [57]. This data is consistent with the fact that
catalytic inhibition of G9a using inhibitors under low DNA damage conditions impairs
DNA DSB repair in a p53-independent manner [105]. However, it is interesting to note
that G9a dimethylation of p53 at K373 increases Plk1 expression and promotes colorectal
cancer [106].

These reports clearly demonstrate the relevance of G9a in the maintenance of genome
integrity, implicating G9a in cancer biology.

5. G9a in Cancer
5.1. G9a Oncogenic Role

Recently, dysregulations in the PTMs of both DNA and histones were shown to con-
tribute to cancer initiation and progression [107]. These epigenetic modifications, which
result in altered chromatin structure and gene expression were reported in different types
of cancers [108] (Figure 3). G9a was overexpressed in breast, gastric, ovarian, cervical,
endometrial, prostate, lung, colorectal, liver, urinary bladder, and brain cancers, as well as
in hematological malignancies, melanoma, and cholangiocarcinoma, leading to aberrant
H3K9 methylation [109–122]. One of the main reasons for this increase in G9a expression
and H3K9 methylation is hypoxia [103]. The molecular mechanisms associated with this
phenomenon are described in a previous section (Figure 4). Furthermore, high levels
of G9a expression were associated with poor prognosis and shorter survival in cancer
patients [57,123–127]. G9a involvement in cancer biology is likely due to its pivotal role in
tumor cell proliferation, survival, and metastasis primarily by controlling several transcrip-
tion programs (Table 3).

5.1.1. Breast Cancer

High G9a-mediated H3K9 methylation triggers the proliferation and progression of
breast cancer (Table 3) [109,128,129]. For instance, G9a overexpression was shown to down-
regulate the expression of some tumor suppressor genes, such as ARNTL, CEACAM7,
GATA2, HHEX, KLRG1, and OGN. Blocking G9a methyltransferase activity was sufficient
to re-express these genes, and consequently inhibit breast cancer cell proliferation and
migration in vitro and tumor growth in vivo [44]. G9a was also demonstrated to inter-
act with MYC and suppress its target genes by favoring H3K9me2, in order to stimulate
MYC-dependent breast tumor growth [129]. G9a may also contribute to enhancing breast
tumor metastasis by silencing several genes implicated in epithelial-mesenchymal transi-
tion (EMT), namely the two anti-metastatic tumor suppressor genes, desmocollin 3 (DSC3),
belonging to the cadherin superfamily, and the protease inhibitor MASPIN, which were
transcriptionally reactivated in a dose-dependent manner upon inhibition of G9a activity,
concomitantly to a significant decrease in global H3K9 dimethylation [130]. In addition,
in EMT, G9a was shown to repress the expression of E-cadherin, a cell adhesion factor,
upon association with the SNAIL transcription factor and to induce H3K9me2 of its pro-
moter [131]. Depletion of G9a restored E-cadherin expression and inhibited breast cancer
cell migration and invasion in vitro and in vivo [131]. G9a also silenced the expression of
the type-II cadherin CDH10 through histone methylation, stimulating hypoxia-mediated
cellular motility; and its inhibition prevented cellular movement and breast cancer cell
colonization in the lungs [123]. G9a methyltransferase activity was further reported to (i)
collaborate with the transcription factor YY1 and HDAC1 to disrupt cellular iron homeosta-
sis by repressing ferroxidase hephaestin, resulting in iron accumulation and breast cancer
progression [109], (ii) induce breast cancer cell autophagy by modulating the AMPK-mTOR
pathways [132], and (iii) promote breast cancer recurrence through the suppression of
pro-inflammatory genes [133].
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5.1.2. Gastric Cancer

In gastric cancer, G9a activation reduces apoptosis and promotes tumor cell growth
(Table 3) [134]. For instance, blocking the catalytic activity of G9a reduces cell growth and
autophagy by downregulating the mechanistic target of rapamycin (mTOR) pathways.
Authors showed that G9a activates mTOR through H3K9 monomethylation at the mTOR
promoter [125]. G9a inhibition by (i) kaempferol, a flavonoid present in fruits and veg-
etables [135], (ii) SH003, an herbal formulation [136], or (iii) cinnamaldehyde (CA), the
bioactive ingredient in Cinnamomum [137], stimulated autophagic gastric cancer cell death.
Increase in H3K9 methylation under hypoxia also mediated the silencing of the tumor
suppressor gene, runt-domain transcription factor 3 (RUNX3) [138]. Finally, G9a overex-
pression was shown to upregulate the expression of ITGB3, an integrin family member, in
an enzyme-independent manner inducing gastric cancer metastasis [139].

5.1.3. Human Reproductive Cancers

Alterations in G9a expression were also associated with human reproductive cancers
(Table 3). In ovarian cancer (OCa), high G9a expression levels were correlated with late
stage, high grade, and a decreased overall survival in OCa patients [111,140]. An elevation
in the level of G9a was observed in vitro in invasive cell lines ES-2, SKOV-3, TOV-21G,
OV-90, and OVCAR-3, and in vivo in metastatic lesions in comparison with less aggressive
tumor cells and primary tumors [111]. Depletion of G9a inhibited cellular adhesion,
migration, invasion, and anoikis-resistance of OCa cell lines in vitro and suppressed OCa
metastasis in vivo [111]. Further investigations revealed that several tumor suppressor
genes were repressed in OCa by G9a, such as DUSP5, SPRY4, CDH1, and PPP1R15A.
PARP inhibitor-resistant high-grade serous ovarian carcinoma (HGSOC) displayed an
increase in H3K9me2 associated with an increase in the overall expression of G9a [140].
Similar observations were made in vivo on patient-derived xenografts, indicating that a
high G9a expression maintains resistance to PARP inhibitors [140]. Interestingly, inhibition
of G9a displayed synergistic anti-tumor effects in combination with DNA methylation
inhibitors in OCa cell lines, where authors induced cell death by upregulating endogenous
retroviruses (ERVs), consequently activating the viral immune response [141].

In cervical cancer, G9a induces the expression of angiogenic factors including angio-
genin, interleukin-8, and C-X-C motif chemokine ligand-16, prompting angiogenesis and
cancer cell invasion, and decreasing patient survival [142]. Interestingly, depletion of G9a
decreased the expression of oncogenic proteins such as Bcl-2, Mcl-1, and Survivin, and
increased the expression of E-cadherin inhibiting cell adhesion and invasion [112].

Likewise, in endometrial cancer, G9a-mediated H3K9 methylation induced tumor
invasion in vitro and in vivo via the silencing of the E-cadherin [113]. Indeed, G9a deple-
tion reduces H3K9me2 levels, restores E-cadherin expression and decreases E-cadherin
promoter DNA methyltransferase recruitment. G9a expression is higher in endometrial
cancer tissues and its expression is correlated with deep myometrial invasion [113].

Finally, in prostate cancer, high G9a expression was associated with high pathological
grade and poor overall survival. In this model, G9a promoted cancer proliferation by
inhibiting PI3K/AKT/mTOR pathway [114].

5.1.4. Lung Cancer

In lung cancer, G9a possesses proliferative and metastatic properties (Table 3) [114].
Highly invasive lung cancer cell lines were reported to display higher G9a protein levels,
in comparison with weakly invasive cells. Overexpressing G9a increased cell motility and
invasiveness [143]. Different reports demonstrated that G9a induced tumor growth, inva-
sion, and migration by (i) silencing specific EMT-regulating genes, including caspase-1 and
the epithelial cell adhesion molecule Ep-CAM [124,144], (ii) mediating the Snail2-induced
E-cadherin suppression [145], and/or (iii) activating the focal adhesion kinase signaling
pathway [146]. Depletion of G9a abolished lung cancer cell migration and invasion in vitro
and metastasis in vivo [124,144,146]. G9a also induced cell proliferation through the activa-
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tion of the WNT signaling pathway by suppressing WNT signaling inhibitors like DKK1,
APC2, and WIFI [121]. Moreover, G9a was shown to play an important role in maintaining
lung cancer cell stemness by maintaining DNA methylation of multiple lung cancer stem
cell genes and their subsequent expression [147].

5.1.5. Colorectal Cancer

In colorectal cancer (CRC), high levels of G9a are associated with tumor initiation,
maintenance, and proliferation (Table 3) [59,106,148]. In primary CRC patient samples,
transcriptome profiling revealed the co-enrichment of G9a and H3K9me2 of multiple
genes involved in the negative regulation of the WNT signaling pathway, in repression
of EMT and extracellular matrix organization, leading to their repression in CRC [148].
G9a also methylates two non-histone substrates involved in CRC cell proliferation, FOXO1
(Forkhead family transcription factor) and p53 [59,106]. FOXO1 is methylated by G9a
on K273, increasing the interaction between FOXO1 and the E3 ligase SKP2. This event
decreases FOXO1 protein stability and promotes cellular proliferation in colon cancer [59].
These authors also demonstrated that G9a protein expression is increased in human colon
cancer patient tissue samples associated with a decrease in FOXO1 protein level [59].
Likewise, G9a-mediated p53 dimethylation at lysine 373 was shown to increase Plk1
expression and consequently CRC cell growth [106].

5.1.6. Hepatocellular Carcinoma

In hepatocellular carcinoma (HCC), targeting G9a is suggested as a novel therapy for
HCC treatment as it drives tumorigenesis and aggressiveness (Table 3) [149,150]. Indeed,
G9a is upregulated in HCC, which leads to the epigenetic silencing of the retinoic acid
receptor responder protein 3 (RARRES3) tumor suppressor gene, thus triggering HCC
proliferation and metastasis in vitro and in vivo [116]. Moreover, G9a was shown to
enhance metastasis formation through an epigenetic regulation of EMT, as it interacts
with SNAIL2 and HDACs at the E-cadherin promoter in order to inhibit E-cadherin
transcription [151]. A recent study showed that G9a contributes to HCC initiation by
escaping p53-induced apoptosis in DNA-damaged hepatocytes via the repression of Bcl-G
expression, a pro-apoptotic Bcl-2 family member [152].

5.1.7. Urinary Bladder Cancer

G9a was reported to be upregulated or amplified in urinary bladder cancer (UBC) [153].
G9a represents a promising therapeutic target for UBC as various G9a inhibitors decrease
cell proliferation and increase cell death through the endoplasmic reticulum stress path-
way [153]. Likewise, targeting G9a and DNMT methyltransferase activity with a novel
dual inhibitor called CM-272 induces cell apoptosis and immunogenic cell death [153].

5.1.8. Hematological Cancers

G9a is upregulated in hematological malignancies, for which G9a inhibitors have
been identified as promising targets for patient management (Table 3) [154–158]. In T-
lymphoblastic leukemia cells (T-ALL), inhibiting G9a activity suppresses cellular prolifera-
tion and induces apoptosis by downregulating the expression of Bcl-2 and upregulating
the expression of Bax and caspase-3 [155]. Likewise, in chronic lymphocytic leukemia, tar-
geting G9a and GLP was shown to stimulate cancer cell death [154]. In multiple myeloma,
G9a fosters ReIB-dependent cancer growth and survival, whereas its depletion reduces the
expression of ReIB and increases the expression of pro-apoptotic genes, such as Bim and
BMF [118]. In acute myeloid leukemia (AML), G9a inhibition attenuates the transcriptional
activity of the leukemogenic transcription factor HoxA9 and thus promotes AML prolifera-
tion, progression, and self-renewal [157]. In childhood acute lymphoblastic leukemia, G9a
is reported to enhance the ability of cancer cells to migrate [159].
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Table 3. Role of G9a in Cancer Biology.

G9a Roles Cancer Types G9a Biological Roles References

Oncogenic

Breast Cancer

Suppresses tumor suppressor
genes

Enhances EMT
Disrupts iron homeostasis

Inhibits autophagy

[44,130]
[123,131]

[109]
[132]

Gastric Cancer

Suppresses tumor suppressor
genes

Inhibits apoptosis and
autophagy

Promotes metastasis

[138]
[125,135–137]

[139]

Ovarian Cancer

Promotes metastasis
Suppresses tumor suppressor

genes
Maintains PARP-inhibitor

resistance

[111]
[45,111]

[140]

Cervical Cancer Induces angiogenesis
Enhances tissue invasion

[142]
[112]

Endometrial Cancer Enhances tissue invasion [113]

Prostate Cancer Stimulates proliferation [114]

Lung Cancer

Enhances EMT
Activates WNT signaling

pathway
Maintains lung cancer stemness

Supports resistance to
radiotherapy

[124,144,145,160]
[121]
[147]
[161]

Colorectal
Cancer

Stimulates proliferation
Enhances self-renewal and

stemness
Promotes resistance to

chemotherapy

[59,106]
[148]
[162]

Liver Cancer

Suppresses tumor suppressor
genes

Enhances EMT
Inhibits cell apoptosis

[116]
[151]
[152]

Bladder Cancer Inhibits cell apoptosis and
autophagy [122,153]

Brain Cancer Stimulates proliferation
Inhibits autophagy

[117,163]
[164]

Hematological
malignancies

Enhances self-renewal and
stemness

Promotes migration
Inhibits apoptosis and stimulates

proliferation

[157]
[159]

[118,155]

Skin Cancer Promotes progression [119,165]

Head and Neck
Cancer Enhances EMT [166]

Bile duct Cancer Suppresses tumor suppressor
genes [120]

Anti-
oncogenic

Lung Cancer Inhibits cancer progression [167]

Brain Cancer Inhibits HIF-induced migration
Inhibits cancer stemness [63]
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5.1.9. Other Cancers

G9a represents an intriguing target in various other types of cancers (Table 3). In
medulloblastoma, G9a drives H3K9me1/2/3 at the promoter of ubiquitin-specific protease
37 (USP37) to repress its gene expression [163]. USP37 controls cell proliferation by reg-
ulating the stability of the cyclin-dependent kinase inhibitor 1B (CDKN1B/p27Kip1) in
cell cycle. Thus, blocking G9a inhibits cellular proliferation and tumorigenic potential of
medulloblastoma cells [163]. Pre- or post-treatment of glioma cells with a G9a inhibitor
sensitizes these cells to Temozolomide (TMZ), the first line therapy for glioblastoma pa-
tients, and increases its cytotoxicity [168]. Interestingly, authors demonstrated that the
G9a inhibitor reprograms glioma cells and glioma stem-like cells to increase sensitivity to
TMZ [164,168]. As previously described in breast cancer, HCC, and lung cancer, G9a inter-
acts with SNAIL in order to mediate repression of E-cadherin and EMT in head and neck
squamous cell carcinoma (HNSCC) [166]. Additionally, G9a was associated with cholan-
giocarcinoma, a highly malignant epithelial tumor of the biliary tree, where G9a-mediated
H3K9 methylation suppressed the expression of the tumor suppressor gene LATS2, leading
to the subsequent activation of the oncogenic YAP signaling pathway [120]. Recently in
melanoma, elevated G9a levels promoted cancer progression through the activation of the
WNT/β-catenin signaling by epigenetic silencing of the WNT antagonist DKK1 gene [165],
or through the upregulation of the Notch1 signaling pathway, that further stimulates
PI3K/AKT pathway [119].

5.2. G9a Tumor Suppressive Role

In stark contrast to its oncogenic roles, several studies demonstrated that G9a also
promotes tumor suppressive functions. For example, G9a depletion increased the ag-
gressiveness of lung tumor propagating cells (TPC) and accelerated disease progression
and metastasis [167]. Inhibition of G9a derepresses genes that regulate the extracellular
matrix. Patients with high levels of G9a displayed a better survival in early-stage lung
cancer [167]. Interestingly, in glioblastoma, G9a inhibited HIF-1α-mediated migration via
the methylation of the alpha subunit at lysine 674 [63].

6. Outlook

Over the last three decades since G9a was discovered, extensive studies were con-
ducted to gain further insight into its physiological and pathophysiological roles. Aside
from its key role in epigenetic repression through H3K9 methylation, G9a displays many
biological functions, notably in gene expression, associated with its methylation of histone
and non-histone substrates. Furthermore, a growing body of evidence indicates that G9a
acts as a coregulator of transcription factors and steroid receptors, and could hence endorse
other functions through these properties. Owing to its broad implication in biological
activities, dysregulation of G9a expression is common to many types of cancers, and, as
such, G9a represents a promising target for anti-cancer agents. Indeed, many inhibitors of
G9a inhibitors have been synthetized and characterized, and could represent interesting
therapeutic agents.
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