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We analyze a case study of output-feedback stabilization of an unobservable equilibrium. The problem involves achieving two conflicting goals: to estimate the unmeasured states, for which the system must a priori operate in an oscillatory regime, and to stabilize an equilibrium asymptotically. To overcome this quandary we propose a novel hybrid controller that generates a piecewise constant dwindling reference designed to make the system operate in an oscillatory, yet asymptotically stable, regime. The controller relies on a previously proposed switching observer, for which we provide an original analysis of exponential convergence.

I. INTRODUCTION

Observer-based output-feedback stabilization of systems that are unobservable for certain inputs is a problem that remains largely open in its full generality-see [START_REF] Brivadis | Output feedback stabilization of non-uniformly observable systems[END_REF] for a recent account of the literature. Moreover, beyond its academic interest [START_REF] Dufour | Observer design for MIMO nonuniformly observable systems[END_REF]- [START_REF] Moreno | On multi-valued observers for a class of single-valued systems[END_REF], it is well justified by engineering applications in which the system is not observable at the target equilibrium [START_REF] Brivadis | A switching technique for output feedback stabilization at an unobservable target[END_REF]. Some examples include sensorless motor control [START_REF] Ibarra-Rojas | Global observability analysis of sensorless induction motors[END_REF], bioreactor systems [START_REF] Rapaport | A robust asymptotic observer for systems that converge to unobservable states. a batch reactor case study[END_REF], and automotive applications [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF].

We address this problem for the system

ż1 = -az 1 z 2 + u (1a) ż2 = (cz 2 + d)z 1 , z 1 , z 2 ∈ R, (1b) 
where a, c, and d > 0, u is the control input, z 2 is the main state of interest to be controlled, which is unmeasurable, and y = Cz = [1 0]z = z 1 is the measured output.

The system defined by Eqs. ( 1) is representative of a class of systems well-studied in the context of observer design, that of bilinear systems [START_REF] Besanc ¸on | Nonlinear Observers and Applications[END_REF], [START_REF] Brivadis | Avoiding observability singularities in output feedback bilinear systems[END_REF]. Moreover, Eqs. (1) model the dynamics of the so-called extended-braking stiffness (XBS) [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF], [START_REF] Aguado-Rojas | A hybrid controller for ABS-based on extended-braking-stiffness estimation[END_REF] in automotive braking systems. The XBS, which is represented by z 2 in (1b), is a state whose regulation translates into maximizing the braking force [START_REF] Sugai | New control technique for maximizing braking force on antilock braking system[END_REF]. The XBS, however, is not measurable and, as it is clear from (1), the system looses observability for inputs that make z 1 → 0, which is the control goal.

We propose an original observer-based output-feedback hybrid controller that uses state estimates provided by an observer originally proposed in [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF] and further developed in [START_REF] Aguado-Rojas | A hybrid controller for ABS-based on extended-braking-stiffness estimation[END_REF] and [START_REF] Aguado-Rojas | Extended-brakingstiffness estimation under varying road-adherence conditions[END_REF]. Essentially, it is of Luenberger type, with a gain designed to switch between values that are appropriate for either of two dynamics, depending on the sign of z 1 . To overcome the unobservability obstacle, the observer hinges on making the output z 1 oscillate persistently. This, however, is in clear conflict with the goal of stabilizing the origin {z = 0}. To simultaneously achieve the two competing processes of estimation (which requires persistent oscillations) and asymptotic stabilization, we design a piecewise-constant switching reference (for z 1 ), whose amplitude is decreased by half every time the estimation errors decrease by a certain amount. The estimation errors are not measurable, but one of our results is an original proof of exponential stability for the estimation dynamics under the observer of [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF], [START_REF] Aguado-Rojas | A hybrid controller for ABS-based on extended-braking-stiffness estimation[END_REF], with a guaranteed known convergence rate, which may be used to determine the switching instants.

Our main contribution, however, is the design of an original hybrid controller that makes the origin attract the solutions semi-globally and asymptotically. To some extent, our stabilization method is reminiscent of other switching strategies, e.g., in which the input switches between non-singular inputs to enhance observability [START_REF] Coron | On the stabilization of controllable and observable systems by an output feedback law[END_REF]. Other efficient methods for semi-global stabilization include perturbing the input with a term that is proportional to the distance to the target [START_REF] Brivadis | Output feedback stabilization of non-uniformly observable systems[END_REF].

This Technical Note builds upon a long-standing work by the second author, devoted entirely to the observer-design problem [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF], [START_REF] Aguado-Rojas | A hybrid controller for ABS-based on extended-braking-stiffness estimation[END_REF], [START_REF] Aguado-Rojas | Extended-brakingstiffness estimation under varying road-adherence conditions[END_REF], [START_REF] Aguado-Rojas | A switching observer for a class of non-uniformly observable systems via singular time-rescaling[END_REF]; and on [START_REF] Maghenem | A hybrid observer-based controller for a non-uniformly observable system[END_REF], which is a preliminary version of this Note-the latter reference contains numerical simulations in place of the proofs of our main results. We start our exposition by revisiting our observer and giving an original statement of exponential stability.

II. A SWITCHED-OBSERVER REVISITED

Let ẑ := [ẑ 1 ẑ2 ] denote the estimate of z := [z 1 z 2 ] and consider the Luenberger-type observer-see [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF],

ż1 = -az 1 ẑ2 -u + k 1 (z 1 )z 1 (z 1 -ẑ1 ) (2a) ż2 = cz 1 ẑ2 + dz 1 + k 2 (z 1 )z 1 (z 1 -ẑ1 ), (2b) 
where k 1 , k 2 : R → R are functions to be defined. Then, the dynamics of the estimation error zi := ẑi -z i is given by

ż1 ż2 = z 1 (t) -k 1 (z 1 (t)) -a -k 2 (z 1 (t)) c z1 z2 , (3) 
which is a linear system with state z, and depends on time through the measurable output trajectory t → z 1 (t). That is, the latter is part of a solution to (1), with initial conditions

(t o , z o ) ∈ R ≥0 × R 2
, and is defined on [t o , t f ) for any t o ≥ 0 and some t f ≤ ∞. For the sake of argument, we assume in this section that t f = +∞-cf. Remark 2.

For the purpose of estimating z 2 , the goal is to define k 1 and k 2 so that z → 0. To that end, following [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF], we define

k i (z 1 ) :=    k + i if z 1 > 0 k - i if z 1 < 0 0 if z 1 = 0, i ∈ {1, 2},
so, for all z 1 = 0, the matrix on the right-hand side of (3) can only be equal to [START_REF] Aguado-Rojas | A hybrid controller for ABS-based on extended-braking-stiffness estimation[END_REF]. Furthermore, the pairs (A 1 , C) and

A 1 = -k + 1 -a -k + 2 c , or A 2 = k - 1 a k - 2 -c ; these matrices are both Hurwitz if k + 1 > c, k + 2 < -c a k + 1 , k - 1 < c, k - 2 < -c a k - 1 -see
(A 2 , C) are observable and, if k - 1 = 2c -k + 1 , ck + 1 + ak + 2 = ck - 1 + ak - 2
, there exists a positive definite symmetric matrix P ∈ R 2×2 , such that-cf. [8]

A i P + P A i = -C C ∀i ∈ {1, 2}. (4) 
The fact that (4) holds is significant because, albeit an appropriate change of time-scale [START_REF] Aguado-Rojas | A switching observer for a class of non-uniformly observable systems via singular time-rescaling[END_REF], the estimation error dynamics (3) may be analyzed as a switched time-invariant system of the class considered in [START_REF] Hespanha | Uniform stability of switched linear systems: extensions of La Salle's invariance principle[END_REF]. To better see this, let

τ := t to |z 1 (s)|ds =: f z1 (t) (5) 
and

A(w 1 ) :=    A 1 if w 1 > 0 A 2 if w 1 < 0 0 if w 1 = 0.
Then, Eq. ( 3) is equivalent to

w := d w dτ = A(w 1 (τ )) w ∀τ ∈ Im(f z1 ), (6) 
where Im( • ) stands for the image of ( • ), w 1 : Im(f z1 ) → R and w : Im(f z1 ) → R 2 are given by

w 1 (τ ):= z 1 (f -1 z1 (τ )) if card(f -1 z1 (τ )) = 1 0 otherwise, (7) 
w(τ ):= z(f -1 z1 (τ )) if card(f -1 z1 (τ )) = 1 z(min{f -1 z1 (τ )}) otherwise, (8) 
where z := [z 1 z 2 ], and card(•) means cardinality. That is, from Eqs. ( 5)-( 8), we have τ (t o ) := 0 and, for all initial conditions satisfying w 1 (0) = z1 (t o ) and w(0) = z(t o ), we have w 1 (τ ) = z 1 (t) and w(τ ) = z(t) for all τ ≥ 0 and t ≥ t o . But if z 1 (t) = 0 the τ -clock freezes while the t-clock goes on. That is, τ (t) ≡ 0 for all t ∈ T 0 := {t ∈ R ≥to : z 1 (t) = 0} and τ (t) > 0 for all t ∈ T 0 . For the τ -clock, τ (T 0 ) is an instant; f -1 z1 (τ (T 0 )) does not exist, so we set w 1 (τ (T 0 )) = w(τ (T 0 )) = 0. Thus, since w 1 (τ ) = 0 on a null-measure set,

A(w 1 (τ )) ∈ {A 1 , A 2 } for almost all τ ∈ Im(f z1 ),
and system (6) corresponds to a linear system switching between two modes. Now, because w 1 (τ ) and w(τ ) coincide, respectively, with z 1 (t) and z(t), the origin for (3) is asymptotically stable if and only if so is the origin for [START_REF] Ibarra-Rojas | Global observability analysis of sensorless induction motors[END_REF]. This fact is at the basis of Lemma 1 below. In that regard, consider the following hypothesis, which is later proved to hold by design.

Assumption 1: There exist positive constants τ d , τ s , z, and z, and an infinite union of disjoint intervals I d , such that: (i) |z 1 (t)| ≥ z for all t ∈ I d , (ii) |z 1 (t)| ≤ z for all t ∈ R ≥0 \I d , (iii) the length of each connected interval in I d is no smaller than τ d , and (iv) the length of each connected interval in R ≥0 \I d is smaller than τ s .

Lemma 1: If Assumption 1 holds, there exists µ > 0 and, for any P solving (4), there exist κ 1 and κ 2 , such that

|z(t)| ≤ κ 1 |z(t o )|e -κ2µ(t-to) ∀t ≥ t o + T, t o ≥ 0. ( 9 
)
Remark 1: The proof of Lemma 1 is constructive and is provided in Appendix A. The lemma improves over the main result in [START_REF] Aguado-Rojas | A switching observer for a class of non-uniformly observable systems via singular time-rescaling[END_REF], by establishing exponential stability and, more importantly, an explicit stability bound. This is primordial for the control design, which relies on the knowledge of the rate of decrease of the estimation errors.

III. OBSERVER-BASED HYBRID CONTROL ALGORITHM

Let z * : R ≥0 → R be a given, piecewise-constant, reference trajectory (to be defined) for z 1 and consider the simple certainty-equivalence control law

u := az 1 ẑ2 -kz 1e , z 1e := z 1 -z * . ( 10 
)
Then, the tracking-error dynamics corresponds to

ż1e = -(k + az 2 )z 1e + az * z2 . ( 11 
)
This system is input-to-state stable with respect to z * uniformly in balls of initial conditions. To better see this, let R > 0 be arbitrarily fixed. Then, after [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF], let P ∈ R 2×2 be a positive definite matrix such that the time derivative of

V obs (z) := z P z, (12) 
along the solutions to (3), verifies

Vobs (z(t)) ≤ 0 ∀ t ≥ 0 (13) 
-see the proof of Lemma 1 in Appendix A. Therefore, for any R > 0, and all |z(0)| ≤ R, one can compute R such that V obs (z(0)) ≤ λ max (P ) R2 . In turn, we have

z(t) 2 ≤ γ 2 z(0) 2 ≤ γ 2 R2 ∀t ≥ 0, (14) 
with γ := λ max (P )/λ min (P ) ≥ 1. Then, using the function V (z 1e ) := (1/2)z 2 1e and setting

k := γa R + k , k > 0, (15) 
we see that, in view of ( 14), the derivative of V along the trajectories of (11) satisfies

V (z 1e ) ≤ -k z 2 1e + a|z * | ∞ |z 2 | ∞ |z 1e |, (16) 
where 

2 i , z * in 2 i , so let S * := ∞ i=0 - z * in 2 i , z * in 2 i , (17) 
where z * in > 0 is fixed by design (see below). That is, z * (t) undergoes a sequence of commutations between two constant values during each cycle (this guarantees the decrease of |z 2 |) and the said constants decrease as the index i increases. Initialization step: Let z * in and R > 0 be given. Then, initially, we set z * (t) = z * in for all t ∈ [0, t 1 ], where t 1 is to be defined, and ẑ2 (0) is chosen such that ( 14) holds. Then,

|z 2 (t)| ≤ γ R ∀t ≥ 0.
In view of ( 14) and ( 16), there exists T > 0 such that

|z 1e (t)| ≤ 2a R √ k |z * (t)| ∀t ≥ T, so, by setting k ≥ 16a 2 R2 , it follows that |z 1e (t)| ≤ z * in /2 ∀t ≥ T, z 1 (t) ∈ [ z * in 2 , z * in ],
and, consequently, Assumption 1 holds. On the other hand, there exist κ 1o , κ 2o > 0 such that-see [START_REF] Besanc ¸on | Nonlinear Observers and Applications[END_REF],

|z(t)| ≤ |z(0)|κ 1o exp - κ 2o z * in t 2 ∀t ≥ 0, so, for any ε > 0, there exists T o ≥ T > 0 such that |z(t)| ≤ g(0)(ε/γ) ∀t ≥ T o , g(0) := 1,
and, since γ ≥ 1-see below ( 14)-we have

|z 2 (t)| ≤ ε for all t ≥ T o . First cycle: From t 1 := T o , we set z * to satisfy |z * | = z * in 2
, moreover, the tracking error z 1e satisfies ( 16) with |z 2 | ≤ ε. Therefore, a limit cycle is generated by switching z * between -z * in /2 and z * in /2 each time ẑ2 (t) reaches d/2c or -d/2c, as follows:

1) If ẑ2 (t 1 ) ≤ 0, z * (t 1 ) is set to z * in 2 . Then, at t 1 ≥ t 1 such that ẑ2 (t 1 ) = d 2c , which means that z 2 (t 1 ) ∈ [ d 2c -ε, d 2c +ε], the reference z * is set to z * (t 1 ) = - z * in 2 . Then, at t 1 ≥ t 1 such that ẑ2 (t 1 ) = -d 2c , which means that z 2 (t 1 ) ∈ [-ε - d 2c , ε -d 2c ], the reference z * is set back to z * in 2 . 2) If ẑ2 (t 1 ) ≥ 0, the reference is set to z * (t 1 ) = - z * in 2
and the same switching rules as above apply mutatis mutandis. Along the first cycle, Assumption 1 holds on [t 1 , +∞); thus, there exist positive constants (κ 11 , κ 21 ) such that

|z(t)| ≤ κ 11 |z(t 1 )|e -κ21 t t 1 |z1(s)|ds ∀t ≥ t 1 .

The first cycle ends at t

2 := T o + T 1 > 0, such that |ẑ 2 (t 2 )| ≤ d/2c, |z(t 2 )| ≤ (ε/γ)g(1), g(1) ∈ (0, g(0)), idem for each succeeding cycle indexed i ≥ 2. ith cycle: Let {g(i)} ∞ i=0 ⊂ (0, 1), g(0) := 1 be a decreasing sequence. From t i = T o + T 1 + • • • + T i-1 , the reference z * is set to satisfy |z * | = z * in 2 i
, and z 1e satisfies ( 16) with |z 2 | ≤ εg(i -1) for some g(i -1) ∈ (0, 1). Hence, a limit cycle is generated by making z * switch between -

z * in 2 i and z * in 2 i each time ẑ2 (t) = d/2 i c or ẑ2 (t) = -d/2 i c, as follows: 1) If ẑ2 (t i ) ≤ 0, z * (t i ) is set to z * in 2 i . Then, at t i ≥ t i such that ẑ2 (t i ) = d 2 i c , which means that z 2 (t i ) ∈ [ d 2 i c -ε, d 2 i c + ε], the reference z * is set to z * (t i ) = - z * in 2 i . Then, at t i ≥ t i such that ẑ2 (t i ) = -d 2 i c , which means that z 2 (t i ) ∈ [-d 2 i c -ε, -d 2 i c + ε], the reference z * is set to z * in 2 i . 2) If ẑ2 (t i ) ≥ 0, the reference is set to z * (t i ) = - z * in 2 i , etc.
During the ith cycle, Assumption 1 holds on [t i , +∞), so there exist positive constants (κ 1i , κ 2i ) such that

|z(t)| ≤ κ 1i |z(t i )|e -κ2i t t i |z1(s)|ds ∀t ≥ t i .
The cycle ends at

t i+1 := T o + T 1 + ... + T i > 0, such that |ẑ 2 (t i+1 )| ≤ d/2 i c and |z(t i+1 )| ≤ (ε/γ)g(i) ∀t ≥ t i+1 ,
A new cycle starts over and so on.

Remark 2: Inequality ( 16), all of the analysis above, and consequently that in Section II, only hold on the maximal interval of solutions-say on [t o , t f ) with t f ≤ ∞. To show that t f = +∞ we assume otherwise. Then, we replace

|z 2 | ∞ with |z 2 | t f =: c in (16), so we have V (z 1e (t)) ≤ ac|z * | ∞ V (z 1e (t)) for all t such that |z 1e (t)| ≥ 2. That is, as t → t f we have |z 1e (t)| → ∞ and V (z 1e (t)) → ∞, but integrating on both sides of V (z 1e (t)) ≤ ac|z * | ∞ V (z 1e (t)), we obtain +∞ = ac|z * | ∞ [t f -t o ], which contradicts t f < +∞.

IV. MAIN STATEMENT

To analyze formally the stability of the closed-loop system composed of the plant (1), the controller [START_REF] Brivadis | Avoiding observability singularities in output feedback bilinear systems[END_REF], and the observer (2), we rely on expressing it as a hybrid system that consists in the combination of a constrained differential and a constrained difference equations, as per in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], i.e.,

H : ẋ = F (x) x ∈ C x + = G(x) x ∈ D, (18) 
where the state variable x ∈ X ⊂ R n has a continuous evolution while in the flow set C ⊂ X and it is allowed to jump if in the jump set D ⊂ X . The continuous-and the discretetime evolution of x are governed by the flow and the jump maps

F : C → R ≥0 × {0} × R 2 × R 2 × {0}
and G : D → X , respectively. Furthermore, the closed-loop state is defined as

x := (τ, i, z, z, z * ) ∈ X , X := R ≥0 × N × R × - d c , +∞ × R 2 × S * .
Then, the jump and flow sets are defined as follows. The flow set C := cl (X \D), where cl( • ) denotes the closure relative to X and the jump set D := D c ∪ D nc . The set D c , which determines the jump conditions within the ith cycle, is

D c := x ∈ X : |ẑ 2 | ≥ d|z * | cz * in , ẑ2 z * ≥ 0 (19)
and the set D nc , which determines the jump condition from the ith to the (i + 1)th cycle, is given by

D nc := x ∈ X : |ẑ 2 | ≤ d|z * | cz * in , ẑ2 z * ≤ 0, |Φ i (τ, 0) P Φ i (τ, 0)| 1 2 ≤ λ min (P ) 1 2 h(i) , ( 20 
)
where the transition matrix Φ i is obtained by integrating (e.g., numerically) the equation-cf. Eq. ( 6)

dΦ i dτ = A(w 1 (τ + τ i ))Φ i τ ≥ 0, (21) 
where τ i := ti 0 |z 1 (s)|ds, with t i being the moment when the ith cycle starts,

h(i) := g(i) g(i -1) ∈ (0, 1), h(0) := ε/(γ R), (22) 
and we recall that {g(i)} ∞ i=0 ⊂ (0, 1), with g(0) := 1, is a decreasing sequence.

The definition of the jump sets D c and D nc follows the rationale developed in the previous section, but certain technical aspects are also considered in order to cast the analysis in the framework of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. The respective first inequalities in D c and D nc correspond to the switch conditions explained in Section III. The constraint ẑ2 z * ≤ 0, which requires that the signs of ẑ2 and z * be different, is imposed in the definition of D nc , while the opposite is used to define D c , to render the intersection of these sets empty (the apparent intersection {ẑ 2 = z * = 0} is void since z * = 0 by design). Defining the jump sets D nc and D c by simply imposing a strict inequality in either set would be in better concordance with the algorithm described in the previous section, but such definition would lead to the hybrid system being not well-posed [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF].

The third inequality in the definition of D nc ,

|Φ i (τ, 0) P Φ i (τ, 0)| ≤ λ min (P )h(i) 2 , ( 23 
)
is a conservative, yet verifiable, condition that essentially tests the size of the otherwise non-measurable estimation errors z(t) ≡ w(τ ). To better see this, consider the function V obs in [START_REF] Sugai | New control technique for maximizing braking force on antilock braking system[END_REF]. Its total derivative along the solutions to (6) satisfies Vobs ( w(τ )) ≤ 0, so V obs ( w(τ )) ≤ V obs ( w(0)) for all τ ≥ 0. Hence, equivalently, w(τ ) P w(τ ) ≤ w(0) P w(0).

Therefore, using the fact that w(τ ) = Φ i (τ, 0) w(0), we see that (23) implies that, for any w(0

) ∈ R 2 , w(τ ) P w(τ ) ≤ λ min (P )h(i) 2 w(0) 2 , that is, | w(τ )| 2 ≤ h(i) 2 | w(0)| 2 .
Then, we introduce the flow map

F (x) :=           |z 1 | 0 -(k + az 2 )z 1e + az * z2 (cz 2 + d)z 1 z 1 -k 1 (z 1 ) -a -k 2 (z 1 ) c z 0           . ( 24 
)
Note that in the definition of F the dynamics of the discrete variables (i, z * ) is null, the dynamics of τ corresponds to [START_REF] Brivadis | A switching technique for output feedback stabilization at an unobservable target[END_REF], and the dynamics of z and z are simply repeated from ( 11) and (3), respectively.

On the other hand, the jump map is given by

G(x) :=             0 if x ∈ D nc τ if x ∈ D c i + 1 if x ∈ D nc i if x ∈ D c z z z * /2 if x ∈ D nc -z * if x ∈ D c             . ( 25 
)
The map G is designed to reset the value of τ to 0 each time a new cycle starts and updates the cycle index i. The variables z and z are continuous variables, so they do not change their values during jumps. According to the algorithm previously explained, the variable z * halves its size in absolute value whenever a jump to a new cycle occurs. Otherwise, while switching within a cycle, z * only alternates sign. It is important to note that since D c ∩D nc = ∅, then the map G is continuous on D. This is important for the system to be well-posed [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF]. In addition, the initial state

x o := (τ o , i o , z o , zo , z * o ) ∈ X is defined as follows.
By assumption, a number R is known such that |z o | ≤ R. Then, the estimates ẑo are set so that |z o | ≤ R for some R > 0 known. Hence, when a reliable estimate of |z o | is available, the Initialization step described on p. 3 may be skipped by defining the initial cycle index as i o := max{0, κ 1 ( R)}, where

κ 1 ( R) := max i ∈ Z : R ≤ εg(i -1) γ .
Furthermore, according to (5), τ o = 0. Finally, the reference trajectory z * is initialized to

z * o :=          z * in 2 io if ẑ2o < 0 - z * in 2 io otherwise      if i o ≥ 1 z * in if i o = 0.
Our main statement establishes semi-global attractivity of the set A := {x ∈ X : z = z = 0} for the closed-loop system. That is, for any ball of initial conditions of radius R, there exists a control gain k(R), as defined in [START_REF] Aguado-Rojas | A switching observer for a class of non-uniformly observable systems via singular time-rescaling[END_REF], such that all trajectories converge to the set A. In particular, the domain of attraction may be enlarged by increasing the control gain.

Theorem 1: Consider the closed-loop hybrid system H = (C, F, D, G) defined by ( 18)-( 20), ( 22), (24), and (25). Let R, R > 0 be such that |z o | ≤ R and |z o | ≤ R, and let (i o , z * o , τ o ) be defined as above. Then, for each R and R, we can find k > 0 such that (i) each solution to1 H satisfies lim (t+j)→+∞ |x(t, j)| A = 0, provided that lim i→∞ g(i) = 0; (ii) there exists κ ∈ K and δ * > 0, such that, for any δ ∈ (0, δ * ), if |z o | ≤ δ, the system's trajectories satisfy the bound |(z, z)| ∞ ≤ κ(|z o | + δ); (iii) system H is well posed-see [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], and its solutions are uniformly non-Zeno, that is, there exist T > 0 and J ∈ N such that, on any time period of length T , at most J jumps can occur. Statement (i) establishes attractivity of the origin, provided that the algorithm is initialized as shown above Theorem 1. In that regard, note that the initialization cycle i o = 0, described in Section III, may be avoided if one has approximate knowledge of the initial condition z o , so as to set ẑo δ-close for δ > 0 sufficiently small. In this case, a bound on the overshoot of the trajectories is guaranteed-see Statement (ii). Note that this bound does not require convergence of g to 0.

Now, in general, the assumption in (ii) is restrictive, but not for commercial ABS systems, for which the initial condition z 1o is often approximately known.

Proof of Theorem 1

Proof of item (i): To guarantee asymptotic convergence of z to zero, we first show that Assumption 1 holds on the ith cycle, for all i ∈ {1, 2, ...}. Let i ∈ {1, 2, ...} be arbitrarily fixed and consider the behavior of the solutions to H for all t ∈ I i , that is, during the duration of the ith cycle. Over the interval I i , the solutions to H coincide with those of the hybrid system H i := (F i , G i , C i , D i ), with state vector

x := (z, z, z * ) ∈ X i := R 2 × R 2 × - z * in 2 i , z * in 2 i , flow map F i (x) :=        -(k + az)z 1e + az * z2 (cz 2 + d)z 1 z 1 -k 1 (z 1 ) -a -k 2 (z 1 ) c z 0        , jump map G i (x) := z z -z * , jump set D i := D i1 ∪ D i2
, where

D i1 := x ∈ X i : ẑ2 ≥ d/c 2 i , z * = z * in 2 i , D i2 := x ∈ X i : ẑ2 ≤ - d/c 2 i , z * = - z * in 2 i , flow set C i := cl (X i \D i ), and 
x o := (z o , zo , z * o ), such that |z o | ≤ εg(i -1) γ and z * o =      z * in 2 i if ẑo2 < 0 - z * in 2 i otherwise. ( 26 
)
The solutions to H i (and consequently to H over I i ), within the ith cycle, jump according to the conditions defining D i1 ∪ D i2 and satisfy the following. Lemma 2: Consider the hybrid system H i such that (26) holds and let the parameter k satisfy (15) with 2k ≥ a 2 ε 2 . Then, (i) the set

D i := x ∈ X i : |z 1 | ≤ z * in 2 i-1 + z * in 2 i-1 g(i -1) (27) 
is forward invariant and finite-time attractive. (ii) Let x o ∈ D i and let the parameter k satisfy [START_REF] Aguado-Rojas | A switching observer for a class of non-uniformly observable systems via singular time-rescaling[END_REF] with 2k ≥ a 2 ε 2 . Then, there exists T lmin > 0, independent of i, such that the time between each pair of consecutive jumps of the solution starting from x o is larger than T lmin . Furthermore, after Lemma 2 the following also holds (see the appendix for the proofs).

Lemma 3: Consider the hybrid system H i (C i , F i , D i , G i ) such that (26) holds and the parameter k satisfy [START_REF] Aguado-Rojas | A switching observer for a class of non-uniformly observable systems via singular time-rescaling[END_REF]. Then, for k sufficiently large and independent of i, there exist positive constants (τ di , τ si , zi , z i ) so that Assumption 1 holds.

By Lemma 3, Assumption 1 holds. Therefore, from Lemma 1 it follows that there exist positive constants κ 1i , κ 2i , T i , and

µ i such that |z(t)| ≤ κ 1i |z(t i )|e -κ 2i µ i (t-t oi ) ∀t ≥ t i + T i ,
where t i is the beginning the interval ) > 0-the same reasoning that will follow applies to any other choice of initial conditions. For the considered choice of initial conditions, ẑ2 (t) increases until one of the following two scenarios occurs: 1) There exist a time instant when ẑ2 (t) = d/c 2 io , in which case, sign(z * (t)) becomes negative, so the jump to Cycle i o + 1 does not occur before ẑ2 (t) becomes, again, smaller or equal than d/c 2 io . For this to happen, z 2 (t) must decrease, that is, z 1 (t) must become negative-see (1b)-and, consequently, x(t) must enter the set D i o .

I i .
2) A jump to Cycle i o +1 occurs before ẑ2 passes d/c 2 io . In this case, either the previous scenario occurs with i o replaced by i o + 1 and x(t) enters D i o +1 within Cycle i o + 1, or a jump to Cycle i o + 2 occurs before ẑ2 passes d/c 2 io +1 . However, at some point, there must exist i * ≥ i o such that x(t) enters D i * within Cycle i * . Next, we show that z 2 (t) also converges, by establishing an upperbound in the latter for all t ∈ I i * such that z 1 (t) ∈ D i * and when ẑ2 (

t i * ) = d/c 2 i * -1 and z * (t i * ) = - z * in 2 i * .
The latter must happen at some point while in Cycle i * . Note that after the proof of Lemma 3 the overshoot of z 2 (t) occurs during the interval [0, T lmin ], where T lmin corresponds to the time it takes z 1 (t) to acquire the same sign as z * (t)-in this case, to becomes negative. By virtue of the comparison Lemma, it is enough to construct a bound on the solution of ż2 = max

z 1 ∈D i * |z 1 | [cz 2 + d ], z 2 (0) = d/c+ε 2 i * -1 ,
over the interval [0, T lmin ]. Clearly, we deduce an upperbound on z 2 that converges to zero as i * goes to infinity. Proof of item (ii): By definition, the control algorithm is initiated at Cycle i o with i o := max {0, κ 1 (δ)}. Furthermore, when δ is sufficiently small, we conclude that i o := κ 1 (δ). Therefore, by definition of κ 1 and ( 14), we conclude that

|z(t, j)| ≤ min {εg(i o -1), γδ} ∀(t, j) ∈ dom z.
Next, to find an upper bound for z 1 , we distinguish between two cases: 1) If x o ∈ D i o , where D i o is defined in (27) and is forward invariant, then we know that there exists a class K function κ 2 such that

z 1 (t, j) ⊂ κ 2 (|δ|)[-1, 1] ∀(t, j) ∈ dom z 1 .
Indeed, it is easy to see that when δ goes to zero, i o goes to infinity, and thus D i o reduces to {0}.

2) 

If D i o ⊂ {x ∈ X : z 1 ∈ [-|z 1o |, |z 1o | ]}
|z 1 (t, j)| ≤ |z 1o | ∀(t, j) ∈ dom z 1 . (28) 
Finally, to complete the proof, we establish an upper bound on z 2 . Assume, without loss of generality, that z 2o > 0 and

z * o = -2 -i o z * in = -2 -κ 1 (δ) z * in =: κ 3 (δ).
Then, consider the following two possibilities: 1) If z 1o ∈ D i o we conclude that the overshoot of |z 2 | occurs only on the interval [0, T 1 * ], on which |z 1 | ≤ κ 2 (δ), and before z 1 becomes negative.

2) To complete the proof, we show that T * can be chosen as a class K function of |(z o , zo )|. To do so, we use the Lyapunov function v(z 1e ) := z 2 1e , whose time derivative along the solutions to

If D i o ⊂ {x ∈ X : z 1 ∈ [-|z 1o |, |z 1o | ]},
H i satisfies v = -2k v + 2az * z2 z 1e ≤ -2k v + 2aε z * 2 i o g(i o -1)|z 1e |.
Let k ≥ 1. After the triangle inequality and

g(i o -1) < 1, v ≤ -k v + z * 2 in 2 2i o a 2 ε 2 4 κ 1 (δ) ≤ -k v + a 2 κ 4 (δ)
. Then, T * corresponds to the time elapsed for the solution of

v = -k v + a 2 κ 4 (δ) to attain the value v(t) = z * 2 in 2 2io from v(0) := max {|z 1o |, κ 2 (δ)} + z * in 2 io

2

. We obtain that, since i o := max{0, κ 1 (δ)}, T * is upper bounded by a class K function of (|z o | + δ).

Proof of item (iii): After [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF], system H is well-posed if the sets C and D are closed relative to X and F and G are continuous on C and D, respectively. It is easy to conclude that our closed-loop hybrid system H satisfies the hybrid basic conditions which require the sets C and D to be closed and the maps F and G to be continuous. Note that both C and D are closed subsets relative to X , F is smooth and G is continuous on D = D c ∪ D nc since both D c and D nc are closed relative to X and their intersection is empty.

Next, we show that the closed-loop solutions are uniformly non-Zeno. To do so, we note that within a same Cycle i, and between each two consecutive jumps, ẑ2 (t) flows from -d 2 i-1 c to d 2 i-1 c back and forth. The latter flow phase takes a time we denote by T li . After Item (ii) in Lemma 2, there exists a uniform lower bound T lmin > 0 such that T li ≥ T lmin for all i ∈ {1, 2, ...}, provided that z 1o ∈ D i . In general, after Item (i) of Lemma 2, z 1 must reach D i in finite time while in Cycle i; otherwise, only one jump occurs within Cycle i.

On the other hand, for a jump from Cycle i to Cycle i+1 to occur, the variable τ must flow so that |Φ i (τ, 0)

P Φ i (τ, 0)| 1 2 decreases from |P | 1 2 to λ min (P ) 1 2

2

, where Φ i is defined by (21). We show the existence of a strictly positive lower bound on the time the latter decrease process takes. To that end, we use V = | w| 2 and the fact that

w A(w 1 (τ )) + A(w 1 (τ )) w ≥ -η| w| 2 ∀ τ ≥ 0, w ∈ R 2 ,
where η := max i∈{1,2} {|A i + A i |}. Then, V (τ ) ≥ -aV (τ ) for all τ ≥ 0, which, by using the comparison Lemma, implies that V (τ ) ≥ e -aτ V (0) and, in turn, for each w(0) ∈ R 2 , w(0) Φ i (τ, 0) Φ i (τ, 0) w(0) ≥ e -aτ | w(0)| 2 , hence, since for our case |P | > λ min (P ) there exists τ * > 0 such that, for each i ∈ {1, 2, ...}, and for all τ ∈ [0, τ * ],

|Φ i (τ, 0) P Φ i (τ, 0)| ≥ λ min (P ) ≥ λ min (P )h(i).

V. CONCLUSION AND FUTURE WORK

Simultaneous estimation and stabilization at an equilibrium where observability is lost is, in general, an open problem that we solved for a particular bilinear system using a switchingobserver-based hybrid controller. It is important to explore the applicability of our approach to other non-uniformly observable systems. Other challenging improvements include the design of a smooth output-feedback controller as well as analyzing its robustness (with respect to measurement noise) in the sense of input-to-state stability. Furthermore, beyond these theoretical questions, a deeper study regarding control implementation is required to determine different cycle-jump conditions that deliver good performance, while satisfying the technical conditions imposed by the analysis.

along the solutions to the switched linear system in (6) verifies V obs ( w) = -w C C w ≤ 0, which implies uniform global stability (i.e., uniform stability and uniform global boundedness) of the origin for [START_REF] Ibarra-Rojas | Global observability analysis of sensorless induction motors[END_REF]. Furthermore, under Assumption 1, Im(f z 1 ) = R ≥0 and there exist an infinite union of disjoint intervals, denoted Īd := f z 1 (I d ), such that: (i) |w 1 (τ )| > z for all τ ∈ Īd , (ii) the length of each connected interval in Īd is no smaller than τ d z, and (iii) the length of each connected interval in R ≥0 \ Īd is smaller than τ s z. Now, inspired by [START_REF] Hespanha | Uniform stability of switched linear systems: extensions of La Salle's invariance principle[END_REF], let λ > 0 and c := e max{|A 1 |,|A 2 |}zτ s , and let [START_REF] Hespanha | Uniform stability of switched linear systems: extensions of La Salle's invariance principle[END_REF]Lemma 9] 

generate K 1 ∈ R 2 and K 2 ∈ R 2 such that, for each i ∈ {1, 2}, e (A i +K i C)τ ≤ 1 c e -2λ(τ -τ d z 2 ) ∀t ≥ τ d z 2 . Furthermore, let k := max{|K 1 |, |K 2 |}, k := p M c2 k 2 /λ, γ := p M /p m , where p m I ≤ P ≤ p M I, and κ 1 := γ[ k + 2c 2 γ]/[ρ(1 + k)]. Finally, let L > 0 be such that ρ := 2γc 2 e -2λL + k 1 + k < 1.
According to the proof of [START_REF] Hespanha | Uniform stability of switched linear systems: extensions of La Salle's invariance principle[END_REF]Lemma 5], there exists a map w 1 → K(w 1 ) ∈ {K 1 , K 2 , 0} such that, along each map τ → w 1 (τ ) enjoying the properties (i)-(iii) listed above,

|Φ z1 (τ 1 , τ o )| ≤ ce -λ(τ 1 -τ o ) ∀τ 1 ≥ τ o ≥ 0,
where Φ z1 is the transition matrix of the system w = [A(w 1 (τ )) + K(w 1 (τ ))C] w. Now, after Assumption 1, there exists µ > 0 such that

t t o |z 1 (s)|ds ≥ µ(t -t o ) ∀t ≥ t o + T, ∀t o ≥ 0,
so, using the proof of Theorem 4 in [START_REF] Hespanha | Uniform stability of switched linear systems: extensions of La Salle's invariance principle[END_REF], we conclude that

| w(τ 1 )| ≤ κ 1 ρ τ 1 -τo L | w(τ o )| ∀τ 1 ≥ τ o ≥ 0.
Therefore, the statement follows defining κ 2 := -ln(ρ) L and using the fact that z(t) ≡ w(τ ).

B. Proof of Lemma 2 1) Proof of Item (i):

We first use the fact that |z o | ≤ εg(i-1) γ , together with [START_REF] Coron | On the stabilization of controllable and observable systems by an output feedback law[END_REF], to conclude that

|z(t, j)| ≤ εg(i -1) ∀(t, j) ≥ dom z.
Next, we use the Lyapunov function v(z 1 ) := z 2 1 , whose time derivative along the solutions to

H i satisfies v ≤ -k v + 2k z * in 2 4 i + 2a 2 ε 2 z * in 2 4 i g(i -1) 2 .
As a result, we obtain

v(t, j) ≤ v(0, 0)e -k t + 2z * in 2 2 2i 1 -e -k t + a 2 ε 2 z * in 2 (2k )4 (i-1) g(i -1) 2 1 -e -k t , so, by choosing k such that k ≥ a 2 ε 2 2 , we get v(t, j) ≤ v(0, 0)e -k t + z * in 2 2 2(i-1) + z * in 2
4 (i-1) g(i -1) 2 1 -e -k t ≤ max v(0, 0), z * in 2 2 2(i-1) + z * in 2 2 2(i-1) g(i -1) 2 .

Hence, the set D i is finite-time attractive and forward invariant.

2) Proof of Item (ii): If x oi ∈ D i , using the comparison lemma, a lower bound on the time between each two consecutive jumps of H i can be obtained by computing the time the solution to

ż2 = - 2z * in 2 i-1 (cz 2 + d), (29) 
with initial conditions z o2 = d/c-ε 2 i-1 . That is, the time that takes to reach -d/c+ε 2 i-1 . To compute such time, we introduce the new time scale τ := 2 i-1 , ẑ2 (t, j) = d/c 2 i-1 for some t + j < ∞. Moreover, the following reasoning applies mutatis mutandis if ẑo2 = -d/c 2 i-1 . We also use the fact that |z o | ≤ g(i -1) ε γ together with [START_REF] Coron | On the stabilization of controllable and observable systems by an output feedback law[END_REF] to conclude that |z(t, j)| ≤ εg(i -1) ∀(t, j) ∈ dom z.

(30) 1) At this point, we estimate a lower bound on the flow time that ẑ2 takes to flow from d/c 2 i-1 to -d/c 2 i-1 . Using (30), we conclude that such a time is lower bounded by the time z 2 takes to flow from d/c 2 i-1 -ε 2 i-1 to -d/c 2 i-1 + ε 2 i-1 when

z 1 = - z * in 2 i-1 + z * in 2 i-1 g(i -1) .
Let us denote such time by T li , which can be easily obtained by solving the ordinary differential equation

ż2 = - z * in 2 i-1 + z * in 2 i-1 g(i -1) (cz 2 + d),
with z 2o = d/c-ε 2 i-1 . After Item (ii) of Lemma 2 there exists T lmin > 0 such that T li ≥ T lmin for all i ∈ {1, 2, ...}. By assuming, for example that k ≥ 1, we conclude that

v ≤ -k v + a 2 ε 2 z * 2 in 2 2i g(i -1) 2 ,
Then, for each t ≥ 0 such that (t, 0) ∈ dom x, v(t, 0) ≤ v(0, 0)e -k t + aεz * in

2 i √ k g(i -1)

  we conclude that (28) holds. Hence, the overshoot of z 2 occurs only on the interval [0, T 2 * ], on which |z 1 | ≤ |z 1o |, and before z 1 becomes negative. Thus, after the comparison Lemma, it suffices to assess the behavior of the solutions of ż2 = max {|z 1o |, κ 2 (|δ|)} (cz 2 + d) with z 2 (0) = |z 2o |, over the interval [0, T * ], where T * := max{T 1 * , T 2 * } is an upper bound on the time that |z 1 | takes to flow from max {|z 1o |, κ 2 (|δ|)} to zero.

3

 3 2z * in 2 i-1 t, to obtain in the new time scale z 2 = -cz 2 -d. By solving the latter equation, we obtainz 2 (τ ) = σ i e -cτd c 1 -e -cτ , σ i := d/c -ε 2 i-1and we use the latter to solve z 2 (τ ) = σ i for τ . Reordering terms, we obtaine -cτ [d/c + σ i ] = d/c -σ i . Hence, -σ i .This implies that, in the original time scale, the length of the interval [t i , t i+1 ] between two jumps of the solution to (29), denoted T li , satisfiesT li ≥ 2 i-1 2cz * in ln 1 + 2 σ i d/c-σ i ,which is separated from zero, i.e., Let x o ∈ D i and let ẑo2 = d/c 2 i-1 . There is no loss of generality since if x o ∈ D i Assumption 1 trivially holds over the ith cycle and if ẑo2 = d/c

2 )

 2 During the phase when ẑ2 flows from d/c 2 i-1 to -d/c 2 i-1 , z * = -z * in 2 i . Next, we show how to choose k > 0 to conclude that z 1e must take at most T li 2 units of time to enter the ball of radius |z * | 2 . To that end, we use the Lyapunov function v(z 1e ) := z 2 1e , whose time derivative along the solutions to H i satisfies v ≤ -2k v + 2az * in 2 i εg(i -1)|z 1e |.

  Hence, in view of the second condition in (20), the interval of duration of the ith cycle, I i , is finite. Now, we use Lemmata 2 and 3 to complete the proof of Item (i) of the theorem. We show that, for eachi o ∈ {1, 2, ...},there exits i * ≥ i o and t i * ∈ I i * , i.e., during the Cycle i * , such that x(t i * ) ∈ D i * . By the definition of D i , the convergence of z 1 (t) follows. Let i o ∈ {1, 2, ...} and t i o ≥ 0 be the time at which Cycle i o starts. Assume, without loss of generality, that z 1 (t i o ) > 0, but x(t) / ∈ D i o for all t ∈ I i , that z 2 (t i o ) ≤ 0, and that z * (t i o

  we use the fact that D i o is finite-time attractive-see Item (i) in Lemma 2. Furthermore, since the flows are unique and z 1 is a continuous variable, we conclude that [-|z 1o |, |z 1o | ] must be forward invariant. Hence, we obtain that

Note that (t, j) → x(t, j) are defined as absolutely continuous functions mapping their hybrid domain, dom x ⊂ R ≥0 × N, into R

. See[START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] for details.
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APPENDIX

A. Proof of Lemma 1

Consider system [START_REF] Ibarra-Rojas | Global observability analysis of sensorless induction motors[END_REF], which is equivalent to [START_REF] Farza | Extended high-gain observer design for a class of MIMO nonuniformly observable systems[END_REF]. It is a linear system that switches between two modes defined by the matrices A 1 and A 2 , which are both Hurwitz and the pairs (A 1 , C) and (A 2 , C) are observable. Let [START_REF] Hoàng | Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control[END_REF] generate a positive definite matrix P such that (4) holds. Then, the derivative of V obs ( w) := w P w