

Hybrid Observer-based Asymptotic Stabilization of Non-uniformly Observable Systems: a Case Study

Mohamed Maghenem, William Pasillas-Lépine, Antonio Loria, Missie Aguado-Rojas

► To cite this version:

Mohamed Maghenem, William Pasillas-Lépine, Antonio Loria, Missie Aguado-Rojas. Hybrid Observer-based Asymptotic Stabilization of Non-uniformly Observable Systems: a Case Study. IEEE Transactions on Automatic Control, 2024, 69 (5), pp.3174-3181. 10.1109/TAC.2023.3319161 . hal-03870029v2

HAL Id: hal-03870029 https://hal.science/hal-03870029v2

Submitted on 30 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hybrid Observer-based Asymptotic Stabilization of Non-uniformly Observable Systems: a Case Study

M. Maghenem

W. Pasillas-Lépine A. Loría M. Aguado-Rojas

Abstract-We analyze a case study of output-feedback stabilization of an unobservable equilibrium. The problem involves achieving two conflicting goals: to estimate the unmeasured states, for which the system must a priori operate in an oscillatory regime, and to stabilize an equilibrium asymptotically. To overcome this quandary we propose a novel hybrid controller that generates a piecewise constant dwindling reference designed to make the system operate in an oscillatory, yet asymptotically stable, regime. The controller relies on a previously proposed switching observer, for which we provide an original analysis of exponential convergence.

Index Terms—Non-uniformly observable systems, observers, hybrid control, ABS.

I. INTRODUCTION

Observer-based output-feedback stabilization of systems that are unobservable for certain inputs is a problem that remains largely open in its full generality-see [1] for a recent account of the literature. Moreover, beyond its academic interest [2]-[4], it is well justified by engineering applications in which the system is not observable at the target equilibrium [5]. Some examples include sensorless motor control [6], bioreactor systems [7], and automotive applications [8].

We address this problem for the system

$$\dot{z}_1 = -az_1z_2 + u \tag{1a}$$

$$\dot{z}_2 = (cz_2 + d)z_1, \quad z_1, \ z_2 \in \mathbb{R},$$
 (1b)

where a, c, and d > 0, u is the control input, z_2 is the main state of interest to be controlled, which is unmeasurable, and $y = Cz = \begin{bmatrix} 1 & 0 \end{bmatrix} z = z_1$ is the measured output.

The system defined by Eqs. (1) is representative of a class of systems well-studied in the context of observer design, that of bilinear systems [9], [10]. Moreover, Eqs. (1) model the dynamics of the so-called extended-braking stiffness (XBS) [8], [11] in automotive braking systems. The XBS, which is represented by z_2 in (1b), is a state whose regulation translates into maximizing the braking force [12]. The XBS, however, is not measurable and, as it is clear from (1), the system looses observability for inputs that make $z_1 \rightarrow 0$, which is the control goal.

We propose an original observer-based output-feedback hybrid controller that uses state estimates provided by an observer originally proposed in [8] and further developed in [11] and [13]. Essentially, it is of Luenberger type, with a

gain designed to switch between values that are appropriate for either of two dynamics, depending on the sign of z_1 . To overcome the unobservability obstacle, the observer hinges on making the output z_1 oscillate persistently. This, however, is in clear conflict with the goal of stabilizing the origin $\{z = 0\}$. To simultaneously achieve the two competing processes of estimation (which requires persistent oscillations) and asymptotic stabilization, we design a piecewise-constant switching reference (for z_1), whose amplitude is decreased by half every time the estimation errors decrease by a certain amount. The estimation errors are not measurable, but one of our results is an original proof of exponential stability for the estimation dynamics under the observer of [8], [11], with a guaranteed known convergence rate, which may be used to determine the switching instants.

Our main contribution, however, is the design of an original hybrid controller that makes the origin attract the solutions semi-globally and asymptotically. To some extent, our stabilization method is reminiscent of other switching strategies, e.g., in which the input switches between non-singular inputs to enhance observability [14]. Other efficient methods for semi-global stabilization include perturbing the input with a term that is proportional to the distance to the target [1].

This Technical Note builds upon a long-standing work by the second author, devoted entirely to the observer-design problem [8], [11], [13], [15]; and on [16], which is a preliminary version of this Note-the latter reference contains numerical simulations in place of the proofs of our main results. We start our exposition by revisiting our observer and giving an original statement of exponential stability.

II. A SWITCHED-OBSERVER REVISITED

Let $\hat{z} := [\hat{z}_1 \ \hat{z}_2]^\top$ denote the estimate of $z := [z_1 \ z_2]^\top$ and consider the Luenberger-type observer-see [8],

$$\dot{\hat{z}}_1 = -az_1\hat{z}_2 - u + k_1(z_1)z_1(z_1 - \hat{z}_1)$$
(2a)
$$\dot{\hat{z}}_2 = cz_1\hat{z}_2 + dz_1 + k_2(z_1)z_1(z_1 - \hat{z}_1).$$
(2b)

$$z_2 = cz_1\hat{z}_2 + dz_1 + k_2(z_1)z_1(z_1 - \hat{z}_1),$$
 (2b)

where $k_1, k_2 : \mathbb{R} \to \mathbb{R}$ are functions to be defined. Then, the dynamics of the estimation error $\tilde{z}_i := \hat{z}_i - z_i$ is given by

$$\begin{bmatrix} \dot{\tilde{z}}_1\\ \dot{\tilde{z}}_2 \end{bmatrix} = z_1(t) \begin{bmatrix} -k_1(z_1(t)) & -a\\ -k_2(z_1(t)) & c \end{bmatrix} \begin{bmatrix} \tilde{z}_1\\ \tilde{z}_2 \end{bmatrix},$$
(3)

which is a linear system with state \tilde{z} , and depends on time through the measurable output trajectory $t \mapsto z_1(t)$. That is, the latter is part of a solution to (1), with initial conditions $(t_o, z_o) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^2$, and is defined on $[t_o, t_f)$ for any $t_o \geq 0$ and some $t_f \leq \infty$. For the sake of argument, we assume in this section that $t_f = +\infty$ —cf. Remark 2.

M. Maghenem is with GIPSA-Lab, University of Grenoble Alpes, CNRS, France (e-mail: mohamed.maghenem@cnrs.fr). W. Pasillas-Lépine is with L2S, CNRS, Univ Paris-Saclay, CentraleSupélec, France (e-mail: wiliam.pasillas-lepine@centralesupelec.fr) A. Loría is with L2S, CNRS, (e-mail: antonio.loria@cnrs.fr). M. Aguado-Rojas is with Hitachi Astemo. The work of M. Maghenem and of A. Loría is supported by the French ANR via project HANDY, contract number ANR-18-CE40-0010.

For the purpose of estimating z_2 , the goal is to define k_1 and k_2 so that $\tilde{z} \to 0$. To that end, following [8], we define

$$k_i(z_1) := \begin{cases} k_i^+ & \text{if } z_1 > 0\\ k_i^- & \text{if } z_1 < 0\\ 0 & \text{if } z_1 = 0, \end{cases} \quad i \in \{1, 2\}.$$

so, for all $z_1 \neq 0$, the matrix on the right-hand side of (3) can only be equal to

$$A_1 = \begin{bmatrix} -k_1^+ & -a \\ -k_2^+ & c \end{bmatrix}, \quad \text{or} \quad A_2 = \begin{bmatrix} k_1^- & a \\ k_2^- & -c \end{bmatrix};$$

these matrices are both Hurwitz if $k_1^+ > c$, $k_2^+ < -\frac{c}{a}k_1^+$, $k_1^- < c$, $k_2^- < -\frac{c}{a}k_1^-$ —see [11]. Furthermore, the pairs (A_1, C) and (A_2, C) are observable and, if $k_1^- = 2c - k_1^+$, $ck_1^+ + ak_2^+ = ck_1^- + ak_2^-$, there exists a positive definite symmetric matrix $P \in \mathbb{R}^{2 \times 2}$, such that—cf. [8]

$$A_i^{\top}P + PA_i = -C^{\top}C \qquad \forall i \in \{1, 2\}.$$
(4)

The fact that (4) holds is significant because, *albeit* an appropriate change of time-scale [15], the estimation error dynamics (3) may be analyzed as a switched time-invariant system of the class considered in [17]. To better see this, let

$$\tau := \int_{t_o}^t |z_1(s)| ds =: f_{z_1}(t)$$
(5)

and

$$A(w_1) := \begin{cases} A_1 & \text{if } w_1 > 0\\ A_2 & \text{if } w_1 < 0\\ 0 & \text{if } w_1 = 0. \end{cases}$$

Then, Eq. (3) is equivalent to

$$\tilde{w}' := \frac{d\tilde{w}}{d\tau} = A(w_1(\tau))\tilde{w} \qquad \forall \tau \in \operatorname{Im}(f_{z_1}), \tag{6}$$

where Im (\cdot) stands for the image of (\cdot) , $w_1 : \text{Im}(f_{z_1}) \to \mathbb{R}$ and $\tilde{w} : \text{Im}(f_{z_1}) \to \mathbb{R}^2$ are given by

$$w_1(\tau) := \begin{cases} z_1(f_{z_1}^{-1}(\tau)) & \text{if } \operatorname{card}(f_{z_1}^{-1}(\tau)) = 1\\ 0 & \text{otherwise,} \end{cases}$$
(7)

$$\tilde{w}(\tau) := \begin{cases} \tilde{z}(f_{z_1}^{-1}(\tau)) & \text{if } \operatorname{card}(f_{z_1}^{-1}(\tau)) = 1\\ \tilde{z}(\min\{f_{z_1}^{-1}(\tau)\}) & \text{otherwise,} \end{cases}$$
(8)

where $\tilde{z}^{\top} := [\tilde{z}_1^{\top} \ \tilde{z}_2^{\top}]$, and $\operatorname{card}(\cdot)$ means cardinality. That is, from Eqs. (5)–(8), we have $\tau(t_o) := 0$ and, for all initial conditions satisfying $w_1(0) = \tilde{z}_1(t_o)$ and $\tilde{w}(0) = \tilde{z}(t_o)$, we have $w_1(\tau) = z_1(t)$ and $\tilde{w}(\tau) = \tilde{z}(t)$ for all $\tau \ge 0$ and $t \ge t_o$. But if $z_1(t) = 0$ the τ -clock freezes while the t-clock goes on. That is, $\dot{\tau}(t) \equiv 0$ for all $t \in \mathcal{T}^0 := \{t \in \mathbb{R}_{\ge t_o} : z_1(t) = 0\}$ and $\dot{\tau}(t) > 0$ for all $t \notin \mathcal{T}^0$. For the τ -clock, $\tau(\mathcal{T}^0)$ is an instant; $f_{z_1}^{-1}(\tau(\mathcal{T}^0))$ does not exist, so we set $w_1(\tau(\mathcal{T}^0)) =$ $\tilde{w}(\tau(\mathcal{T}^0)) = 0$. Thus, since $w_1(\tau) = 0$ on a null-measure set,

$$A(w_1(\tau)) \in \{A_1, A_2\}$$
 for almost all $\tau \in \operatorname{Im}(f_{z_1}),$

and system (6) corresponds to a linear system switching between two modes.

Now, because $w_1(\tau)$ and $\tilde{w}(\tau)$ coincide, respectively, with $z_1(t)$ and $\tilde{z}(t)$, the origin for (3) is asymptotically stable if and only if so is the origin for (6). This fact is at the basis of Lemma 1 below. In that regard, consider the following hypothesis, which is later proved to hold by design.

Assumption 1: There exist positive constants τ_d , τ_s , \underline{z} , and \overline{z} , and an infinite union of disjoint intervals I_d , such that: (i) $|z_1(t)| \geq \underline{z}$ for all $t \in I_d$, (ii) $|z_1(t)| \leq \overline{z}$ for all $t \in \mathbb{R}_{\geq 0} \setminus I_d$, (iii) the length of each connected interval in I_d is no smaller than τ_d , and (iv) the length of each connected interval in $\mathbb{R}_{>0} \setminus I_d$ is smaller than τ_s .

Lemma 1: If Assumption 1 holds, there exists $\mu > 0$ and, for any P solving (4), there exist κ_1 and κ_2 , such that

$$\tilde{z}(t)| \le \kappa_1 |\tilde{z}(t_o)| e^{-\kappa_2 \mu (t-t_o)} \quad \forall t \ge t_o + T, \ t_o \ge 0.$$
(9)

Remark 1: The proof of Lemma 1 is constructive and is provided in Appendix A. The lemma improves over the main result in [15], by establishing exponential stability and, more importantly, an explicit stability bound. This is primordial for the control design, which relies on the knowledge of the rate of decrease of the estimation errors.

III. OBSERVER-BASED HYBRID CONTROL ALGORITHM

Let $z^* : \mathbb{R}_{\geq 0} \to \mathbb{R}$ be a given, piecewise-constant, reference trajectory (to be defined) for z_1 and consider the simple certainty-equivalence control law

$$u := az_1 \hat{z}_2 - k z_{1e}, \quad z_{1e} := z_1 - z^*.$$
(10)

Then, the tracking-error dynamics corresponds to

$$\dot{z}_{1e} = -(k + a\tilde{z}_2)z_{1e} + az^*\tilde{z}_2.$$
(11)

This system is input-to-state stable with respect to z^* uniformly in balls of initial conditions. To better see this, let R > 0 be arbitrarily fixed. Then, after [8], let $P \in \mathbb{R}^{2 \times 2}$ be a positive definite matrix such that the time derivative of

$$V_{obs}(\tilde{z}) := \tilde{z}^{\top} P \tilde{z}, \qquad (12)$$

along the solutions to (3), verifies

$$\dot{V}_{obs}(\tilde{z}(t)) \le 0 \qquad \forall t \ge 0 \tag{13}$$

—see the proof of Lemma 1 in Appendix A. Therefore, for any R > 0, and all $|z(0)| \le R$, one can compute \tilde{R} such that $V_{obs}(\tilde{z}(0)) \le \lambda_{\max}(P)\tilde{R}^2$. In turn, we have

$$\tilde{z}(t)^2 \le \gamma^2 \tilde{z}(0)^2 \le \gamma^2 \tilde{R}^2 \quad \forall t \ge 0, \tag{14}$$

with $\gamma := \sqrt{\lambda_{\max}(P)/\lambda_{\min}(P)} \ge 1$. Then, using the function $V(z_{1e}) := (1/2)z_{1e}^2$ and setting

$$k := \gamma a \tilde{R} + k', \quad k' > 0, \tag{15}$$

we see that, in view of (14), the derivative of V along the trajectories of (11) satisfies

$$\dot{V}(z_{1e}) \le -k' z_{1e}^2 + a |z^*|_{\infty} |\tilde{z}_2|_{\infty} |z_{1e}|,$$
 (16)

where $|\phi|_{\infty} := \operatorname{ess\,sup}_{t\geq 0} |\phi(t)|$. It follows from (16) that the tracking error converges provided that so do $|\tilde{z}_2|$ and $|z^*|$. On the other hand, under Assumption 1, for $|\tilde{z}_2|$ to converge, it is required that $|z^*(t)|$ dwells a certain amount of time separated from zero. To achieve these antagonistic objectives, we design a succession of cycles indexed by $i \in \{1, 2, \ldots\}$, during each of which, z^* takes values in $\left\{-\frac{z_{in}^*}{2^i}, \frac{z_{in}^*}{2^i}\right\}$, so let

$$S^* := \bigcup_{i=0}^{\infty} \left\{ -\frac{z_{in}^*}{2^i}, \frac{z_{in}^*}{2^i} \right\},\tag{17}$$

where $z_{in}^* > 0$ is fixed by design (see below). That is, $z^*(t)$ undergoes a sequence of commutations between two constant values during each cycle (this guarantees the decrease of $|\tilde{z}_2|$) and the said constants decrease as the index *i* increases.

<u>Initialization step</u>: Let z_{in}^* and R > 0 be given. Then, initially, we set $z^*(t) = z_{in}^*$ for all $t \in [0, t_1]$, where t_1 is to be defined, and $\hat{z}_2(0)$ is chosen such that (14) holds. Then,

$$|\tilde{z}_2(t)| \le \gamma \tilde{R} \qquad \forall t \ge 0.$$

In view of (14) and (16), there exists T > 0 such that

$$|z_{1e}(t)| \le \frac{2a\tilde{R}}{\sqrt{k'}}|z^*(t)| \qquad \forall t \ge T,$$

so, by setting $k' \geq 16a^2 \tilde{R}^2$, it follows that

$$|z_{1e}(t)| \le z_{in}^*/2 \qquad \forall t \ge T$$

 $z_1(t) \in [\frac{z_{in}^*}{2}, z_{in}^*]$, and, consequently, Assumption 1 holds. On the other hand, there exist κ_{1o} , $\kappa_{2o} > 0$ such that—see (9),

$$|\tilde{z}(t)| \le |\tilde{z}(0)| \kappa_{1o} \exp\left(-\frac{\kappa_{2o} z_{in}^* t}{2}\right) \qquad \forall t \ge 0$$

so, for any $\varepsilon > 0$, there exists $T_o \ge T > 0$ such that

$$|\tilde{z}(t)| \le g(0)(\varepsilon/\gamma) \qquad \forall t \ge T_o, \quad g(0) := 1,$$

and, since $\gamma \geq 1$ —see below (14)—we have $|\tilde{z}_2(t)| \leq \varepsilon$ for all $t \geq T_o$.

<u>First cycle</u>: From $t_1 := T_o$, we set z^* to satisfy $|z^*| = \frac{z_{in}}{2}$, moreover, the tracking error z_{1e} satisfies (16) with $|\tilde{z}_2| \leq \varepsilon$. Therefore, a limit cycle is generated by switching z^* between $-z_{in}^*/2$ and $z_{in}^*/2$ each time $\hat{z}_2(t)$ reaches d/2c or -d/2c, as follows:

- 1) If $\hat{z}_2(t_1) \leq 0$, $z^*(t_1)$ is set to $\frac{z_{in}^*}{2}$. Then, at $t'_1 \geq t_1$ such that $\hat{z}_2(t'_1) = \frac{d}{2c}$, which means that $z_2(t'_1) \in [\frac{d}{2c} \varepsilon, \frac{d}{2c} + \varepsilon]$, the reference z^* is set to $z^*(t'_1) = -\frac{z_{in}^*}{2}$. Then, at $t''_1 \geq t'_1$ such that $\hat{z}_2(t''_1) = -\frac{d}{2c}$, which means that $z_2(t''_1) \in [-\varepsilon \frac{d}{2c}, \varepsilon \frac{d}{2c}]$, the reference z^* is set back to $\frac{z_{in}^*}{2}$.
- 2) If $\hat{z}_2(t_1) \ge 0$, the reference is set to $z^*(t_1) = -\frac{z_{i_n}^*}{2}$ and the same switching rules as above apply *mutatis mutandis*.

Along the first cycle, Assumption 1 holds on $[t_1, +\infty)$; thus, there exist positive constants $(\kappa_{11}, \kappa_{21})$ such that

$$|\tilde{z}(t)| \le \kappa_{11} |\tilde{z}(t_1)| e^{-\kappa_{21} \int_{t_1}^t |z_1(s)| ds} \quad \forall t \ge t_1$$

The first cycle ends at $t_2 := T_o + T_1 > 0$, such that

$$|\hat{z}_2(t_2)| \le d/2c, \quad |\tilde{z}(t_2)| \le (\varepsilon/\gamma)g(1), \ g(1) \in (0, g(0)),$$

idem for each succeeding cycle indexed $i \ge 2$.

ith cycle: Let $\{g(i)\}_{i=0}^{\infty} \subset (0,1), g(0) := 1$ be a decreasing sequence. From $t_i = T_o + T_1 + \dots + T_{i-1}$, the reference z^* is set to satisfy $|z^*| = \frac{z_{in}^*}{2^i}$, and z_{1e} satisfies (16) with $|\tilde{z}_2| \leq \varepsilon g(i-1)$ for some $g(i-1) \in (0,1)$. Hence, a limit cycle is generated by making z^* switch between $-\frac{z_{in}^*}{2^i}$ and $\frac{z_{in}^*}{2^i}$ each time $\hat{z}_2(t) = d/2^i c$ or $\hat{z}_2(t) = -d/2^i c$, as follows: 1) If $\hat{z}_2(t_i) \leq 0, z^*(t_i)$ is set to $\frac{z_{in}^*}{2^i}$. Then, at $t'_i \geq t_i$ such that $\hat{z}_2(t'_i) = \frac{d}{2^i c}$, which means that $z_2(t'_i) \in [\frac{d}{2^i c} - \varepsilon, \frac{d}{2^i c} + \varepsilon]$, the reference z^* is set to $z^*(t'_i) = -\frac{z_{in}^*}{2^i}$. Then, at $t''_i \geq t_i$ t'_i such that $\hat{z}_2(t''_i) = -\frac{d}{2^i c}$, which means that $z_2(t''_i) \in [-\frac{d}{2^i c} - \varepsilon, -\frac{d}{2^i c} + \varepsilon]$, the reference z^* is set to $\frac{z^*_{in}}{2^i}$.

2) If $\hat{z}_2(t_i) \ge 0$, the reference is set to $z^*(t_i) = -\frac{z_{in}^*}{2^i}$, etc.

During the *i*th cycle, Assumption 1 holds on $[t_i, +\infty)$, so there exist positive constants $(\kappa_{1i}, \kappa_{2i})$ such that

$$|\tilde{z}(t)| \le \kappa_{1i} |\tilde{z}(t_i)| e^{-\kappa_{2i} \int_{t_i}^t |z_1(s)| ds} \quad \forall t \ge t_i.$$

The cycle ends at $t_{i+1} := T_o + T_1 + \ldots + T_i > 0$, such that

$$|\hat{z}_2(t_{i+1})| \le d/2^i c \text{ and } |\tilde{z}(t_{i+1})| \le (\varepsilon/\gamma)g(i) \quad \forall t \ge t_{i+1},$$

A new cycle starts over and so on.

Remark 2: Inequality (16), all of the analysis above, and consequently that in Section II, only hold on the maximal interval of solutions—say on $[t_o, t_f)$ with $t_f \leq \infty$. To show that $t_f = +\infty$ we assume otherwise. Then, we replace $|\tilde{z}_2|_{\infty}$ with $|\tilde{z}_2|_{t_f} =: c \text{ in (16)}$, so we have $\dot{V}(z_{1e}(t)) \leq ac|z^*|_{\infty}V(z_{1e}(t))$ for all t such that $|z_{1e}(t)| \geq 2$. That is, as $t \to t_f$ we have $|z_{1e}(t)| \to \infty$ and $V(z_{1e}(t)) \to \infty$, but integrating on both sides of $\dot{V}(z_{1e}(t)) \leq ac|z^*|_{\infty}V(z_{1e}(t))$, we obtain $+\infty = ac|z^*|_{\infty}[t_f - t_o]$, which contradicts $t_f < +\infty$.

IV. MAIN STATEMENT

To analyze formally the stability of the closed-loop system composed of the plant (1), the controller (10), and the observer (2), we rely on expressing it as a hybrid system that consists in the combination of a constrained differential and a constrained difference equations, as per in [18], *i.e.*,

$$\mathcal{H}: \begin{cases} \dot{x} = F(x) & x \in C\\ x^+ = G(x) & x \in D, \end{cases}$$
(18)

where the state variable $x \in \mathcal{X} \subset \mathbb{R}^n$ has a continuous evolution while in the flow set $C \subset \mathcal{X}$ and it is allowed to jump if in the jump set $D \subset \mathcal{X}$. The continuous- and the discretetime evolution of x are governed by the flow and the jump maps $F: C \to \mathbb{R}_{\geq 0} \times \{0\} \times \mathbb{R}^2 \times \mathbb{R}^2 \times \{0\}$ and $G: D \to \mathcal{X}$, respectively. Furthermore, the closed-loop state is defined as

$$\begin{aligned} x &:= (\tau, i, z, \tilde{z}, z^*) \in \mathcal{X}, \\ \mathcal{X} &:= \mathbb{R}_{\geq 0} \times \mathbb{N} \times \mathbb{R} \times \left(-\frac{d}{c}, +\infty \right) \times \mathbb{R}^2 \times S^*. \end{aligned}$$

Then, the jump and flow sets are defined as follows. The flow set $C := \operatorname{cl}(\mathcal{X} \setminus D)$, where $\operatorname{cl}(\cdot)$ denotes *the closure relative to* \mathcal{X} and the jump set $D := D_c \cup D_{nc}$. The set D_c , which determines the jump conditions *within* the *i*th cycle, is

$$D_c := \left\{ x \in \mathcal{X} : |\hat{z}_2| \ge \frac{d|z^*|}{cz^*_{in}}, \ \hat{z}_2 z^* \ge 0 \right\}$$
(19)

and the set D_{nc} , which determines the jump condition from the *i*th to the (i + 1)th cycle, is given by

$$D_{nc} := \left\{ x \in \mathcal{X} : |\hat{z}_2| \le \frac{d|z^*|}{cz_{in}^*}, \ \hat{z}_2 z^* \le 0, \\ |\Phi_i(\tau, 0)^\top P \Phi_i(\tau, 0)|^{\frac{1}{2}} \le \lambda_{\min}(P)^{\frac{1}{2}} h(i) \right\}, \quad (20)$$

where the transition matrix Φ_i is obtained by integrating (*e.g.*, numerically) the equation—*cf.* Eq. (6)

$$\frac{d\Phi_i}{d\tau} = A(w_1(\tau + \tau_i))\Phi_i \qquad \tau \ge 0, \tag{21}$$

where $\tau_i := \int_0^{t_i} |z_1(s)| ds$, with t_i being the moment when the *i*th cycle starts,

$$h(i) := \frac{g(i)}{g(i-1)} \in (0,1), \quad h(0) := \varepsilon/(\gamma \tilde{R}),$$
 (22)

and we recall that $\{g(i)\}_{i=0}^{\infty} \subset (0,1)$, with g(0) := 1, is a decreasing sequence.

The definition of the jump sets D_c and D_{nc} follows the rationale developed in the previous section, but certain technical aspects are also considered in order to cast the analysis in the framework of [18]. The respective first inequalities in D_c and D_{nc} correspond to the switch conditions explained in Section III. The constraint $\hat{z}_2 z^* \leq 0$, which requires that the signs of \hat{z}_2 and z^* be different, is imposed in the definition of D_{nc} , while the opposite is used to define D_c , to render the intersection of these sets empty (the apparent intersection $\{\hat{z}_2 = z^* = 0\}$ is void since $z^* \neq 0$ by design). Defining the jump sets D_{nc} and D_c by simply imposing a strict inequality in either set would be in better concordance with the algorithm described in the previous section, but such definition would lead to the hybrid system being not well-posed [18].

The third inequality in the definition of D_{nc} ,

$$|\Phi_i(\tau,0)^\top P\Phi_i(\tau,0)| \le \lambda_{\min}(P)h(i)^2, \tag{23}$$

is a conservative, yet verifiable, condition that essentially tests the size of the otherwise non-measurable estimation errors $\tilde{z}(t) \equiv \tilde{w}(\tau)$. To better see this, consider the function V_{obs} in (12). Its total derivative along the solutions to (6) satisfies $\dot{V}_{obs}(\tilde{w}(\tau)) \leq 0$, so $V_{obs}(\tilde{w}(\tau)) \leq V_{obs}(\tilde{w}(0))$ for all $\tau \geq 0$. Hence, equivalently,

$$\tilde{w}(\tau)^{\top} P \tilde{w}(\tau) \leq \tilde{w}(0)^{\top} P \tilde{w}(0).$$

Therefore, using the fact that $\tilde{w}(\tau) = \Phi_i(\tau, 0)\tilde{w}(0)$, we see that (23) implies that, for any $\tilde{w}(0) \in \mathbb{R}^2$,

$$\tilde{w}(\tau)^{\top} P \tilde{w}(\tau) \leq \lambda_{\min}(P) h(i)^2 \tilde{w}(0)^2,$$

that is, $|\tilde{w}(\tau)|^2 \le h(i)^2 |\tilde{w}(0)|^2$.

Then, we introduce the flow map

$$F(x) := \begin{bmatrix} |z_1| \\ 0 \\ [-(k+a\tilde{z}_2)z_{1e} + az^*\tilde{z}_2] \\ (cz_2 + d)z_1 \\ z_1 \begin{bmatrix} -k_1(z_1) & -a \\ -k_2(z_1) & c \end{bmatrix} \tilde{z} \\ 0 \end{bmatrix}.$$
(24)

Note that in the definition of F the dynamics of the discrete variables (i, z^*) is null, the dynamics of τ corresponds to (5), and the dynamics of z and \tilde{z} are simply repeated from (11) and (3), respectively.

On the other hand, the jump map is given by

$$G(x) := \begin{bmatrix} \begin{cases} 0 & \text{if } x \in D_{nc} \\ \tau & \text{if } x \in D_{c} \\ i+1 & \text{if } x \in D_{nc} \\ i & \text{if } x \in D_{c} \\ z \\ z \\ z \\ z \\ -z^{*} & \text{if } x \in D_{nc} \\ -z^{*} & \text{if } x \in D_{c} \end{bmatrix}.$$
(25)

The map G is designed to reset the value of τ to 0 each time a new cycle starts and updates the cycle index *i*. The variables z and \tilde{z} are continuous variables, so they do not change their values during jumps. According to the algorithm previously explained, the variable z^* halves its size in absolute value whenever a jump to a new cycle occurs. Otherwise, while switching within a cycle, z^* only alternates sign. It is important to note that since $D_c \cap D_{nc} = \emptyset$, then the map G is continuous on D. This is important for the system to be well-posed [18].

In addition, the initial state $x_o := (\tau_o, i_o, z_o, \tilde{z}_o, z_o^*) \in \mathcal{X}$ is defined as follows. By assumption, a number R is known such that $|z_o| \leq R$. Then, the estimates \hat{z}_o are set so that $|\tilde{z}_o| \leq \tilde{R}$ for some $\tilde{R} > 0$ known. Hence, when a reliable estimate of $|z_o|$ is available, the Initialization step described on p. 3 may be skipped by defining the initial cycle index as $i_o := \max\{0, \kappa_1(\tilde{R})\}$, where

$$\kappa_1(\tilde{R}) := \max\left\{i \in \mathbb{Z} : \tilde{R} \le \frac{\varepsilon g(i-1)}{\gamma}\right\}.$$

Furthermore, according to (5), $\tau_o = 0$. Finally, the reference trajectory z^* is initialized to

$$z_o^* := \begin{cases} \frac{z_{in}^*}{2^{i_o}} & \text{if } \hat{z}_{2o} < 0\\ -\frac{z_{in}^*}{2^{i_o}} & \text{otherwise} \\ & z_{in}^* & \text{if } i_o = 0. \end{cases}$$

Our main statement establishes semi-global attractivity of the set $\mathcal{A} := \{x \in \mathcal{X} : z = \tilde{z} = 0\}$ for the closed-loop system. That is, for any ball of initial conditions of radius R, there exists a control gain k(R), as defined in (15), such that all trajectories converge to the set \mathcal{A} . In particular, the domain of attraction may be enlarged by increasing the control gain.

Theorem 1: Consider the closed-loop hybrid system $\mathcal{H} = (C, F, D, G)$ defined by (18)–(20), (22), (24), and (25). Let R, $\tilde{R} > 0$ be such that $|z_o| \leq R$ and $|\tilde{z}_o| \leq \tilde{R}$, and let (i_o, z_o^*, τ_o) be defined as above. Then, for each R and \tilde{R} , we can find k > 0 such that

- (i) each solution to¹ \mathcal{H} satisfies $\lim_{(t+j)\to+\infty} |x(t,j)|_{\mathcal{A}} = 0$, provided that $\lim_{i\to\infty} g(i) = 0$;
- (ii) there exists κ ∈ K and δ* > 0, such that, for any δ ∈ (0,δ*), if |ž_o| ≤ δ, the system's trajectories satisfy the bound |(z, ž)|_∞ ≤ κ(|z_o| + δ);
- (iii) system \mathcal{H} is well posed—see [18], and its solutions are uniformly non-Zeno, that is, there exist T > 0 and $J \in \mathbb{N}$

¹Note that $(t, j) \mapsto x(t, j)$ are defined as absolutely continuous functions mapping their hybrid domain, dom $x \subset \mathbb{R}_{\geq 0} \times \mathbb{N}$, into \mathbb{R}^2 . See [18] for details.

such that, on any time period of length T, at most J jumps can occur.

Statement (i) establishes attractivity of the origin, provided that the algorithm is initialized as shown above Theorem 1. In that regard, note that the initialization cycle $i_o = 0$, described in Section III, may be avoided if one has approximate knowledge of the initial condition z_o , so as to set $\hat{z}_o \delta$ -close for $\delta > 0$ sufficiently small. In this case, a bound on the overshoot of the trajectories is guaranteed—see Statement (ii). Note that this bound does not require convergence of g to 0.

Now, in general, the assumption in (ii) is restrictive, but not for commercial ABS systems, for which the initial condition z_{1o} is often approximately known.

Proof of Theorem 1

<u>Proof of item (i)</u>: To guarantee asymptotic convergence of z to zero, we first show that Assumption 1 holds on the *i*th cycle, for all $i \in \{1, 2, ...\}$. Let $i \in \{1, 2, ...\}$ be arbitrarily fixed and consider the behavior of the solutions to \mathcal{H} for all $t \in \mathcal{I}_i$, that is, during the duration of the *i*th cycle. Over the interval \mathcal{I}_i , the solutions to \mathcal{H} coincide with those of the hybrid system $\mathcal{H}_i := (F_i, G_i, C_i, D_i)$, with state vector

$$\begin{split} x &:= (z, \tilde{z}, z^*) \in \mathcal{X}_i := \mathbb{R}^2 \times \mathbb{R}^2 \times \left\{ -\frac{z_{in}^*}{2^i}, \frac{z_{in}^*}{2^i} \right\},\\ \text{flow map } F_i(x) &:= \begin{bmatrix} \begin{bmatrix} -(k+a\tilde{z})z_{1e}+az^*\tilde{z}_2\\ (cz_2+d)z_1 \end{bmatrix} \\ z_1 \begin{bmatrix} -k_1(z_1) & -a\\ -k_2(z_1) & c \end{bmatrix} \tilde{z} \\ 0 \end{bmatrix}, \end{split}$$

jump map $G_i(x) := \begin{bmatrix} z^\top & \tilde{z}^\top & -z^* \end{bmatrix}^\top$, jump set $D_i := D_{i1} \cup D_{i2}$, where

$$D_{i1} := \left\{ x \in \mathcal{X}_i : \hat{z}_2 \ge \frac{d/c}{2^i}, \ z^* = \frac{z_{in}^*}{2^i} \right\},$$
$$D_{i2} := \left\{ x \in \mathcal{X}_i : \hat{z}_2 \le -\frac{d/c}{2^i}, \ z^* = -\frac{z_{in}^*}{2^i} \right\},$$

flow set $C_i := \operatorname{cl} (\mathcal{X}_i \setminus D_i)$, and $x_o := (z_o, \tilde{z}_o, z_o^*)$, such that

$$|\tilde{z}_o| \le \frac{\varepsilon g(i-1)}{\gamma} \quad \text{and} \quad z_o^* = \begin{cases} \frac{z_{in}}{2^i} & \text{if } \hat{z}_{o2} < 0\\ -\frac{z_{in}}{2^i} & \text{otherwise.} \end{cases}$$
(26)

The solutions to \mathcal{H}_i (and consequently to \mathcal{H} over \mathcal{I}_i), within the *i*th cycle, jump according to the conditions defining $D_{i1} \cup D_{i2}$ and satisfy the following.

Lemma 2: Consider the hybrid system \mathcal{H}_i such that (26) holds and let the parameter k satisfy (15) with $2k' \ge a^2 \varepsilon^2$. Then,

(i) the set

$$\mathcal{D}_{i} := \left\{ x \in \mathcal{X}_{i} : |z_{1}| \le \frac{z_{in}^{*}}{2^{i-1}} + \frac{z_{in}^{*}}{2^{i-1}}g(i-1) \right\}$$
(27)

is forward invariant and finite-time attractive.

(ii) Let $x_o \in \mathcal{D}_i$ and let the parameter k satisfy (15) with $2k' \ge a^2 \varepsilon^2$. Then, there exists $T_{lmin} > 0$, independent of *i*, such that the time between each pair of consecutive

Furthermore, after Lemma 2 the following also holds (see the appendix for the proofs).

Lemma 3: Consider the hybrid system $\mathcal{H}_i(C_i, F_i, D_i, G_i)$ such that (26) holds and the parameter k satisfy (15). Then, for k' sufficiently large and independent of i, there exist positive constants $(\tau_{di}, \tau_{si}, \overline{z}_i, \underline{z}_i)$ so that Assumption 1 holds.

By Lemma 3, Assumption 1 holds. Therefore, from Lemma 1 it follows that there exist positive constants κ_{1i} , κ_{2i} , T_i , and μ_i such that

$$|\tilde{z}(t)| \le \kappa_{1i} |\tilde{z}(t_i)| e^{-\kappa_{2i}\mu_i(t-t_{oi})} \qquad \forall t \ge t_i + T_i,$$

where t_i is the beginning the interval \mathcal{I}_i . Hence, in view of the second condition in (20), the interval of duration of the *i*th cycle, \mathcal{I}_i , is finite. Now, we use Lemmata 2 and 3 to complete the proof of Item (i) of the theorem. We show that, for each $i_o \in \{1, 2, ...\}$, there exits $i^* \geq i_o$ and $t_{i^*} \in \mathcal{I}_{i^*}$, *i.e.*, during the Cycle i^* , such that $x(t_{i^*}) \in \mathcal{D}_{i^*}$. By the definition of \mathcal{D}_i , the convergence of $z_1(t)$ follows.

Let $i_o \in \{1, 2, ...\}$ and $t_{i_o} \ge 0$ be the time at which Cycle i_o starts. Assume, without loss of generality, that $z_1(t_{i_o}) > 0$, but $x(t) \notin \mathcal{D}_{i_o}$ for all $t \in \mathcal{I}_i$, that $z_2(t_{i_o}) \le 0$, and that $z^*(t_{i_o}) > 0$ —the same reasoning that will follow applies to any other choice of initial conditions. For the considered choice of initial conditions, $\hat{z}_2(t)$ increases until one of the following two scenarios occurs:

- 1) There exist a time instant when $\hat{z}_2(t) = \frac{d/c}{2^{i_o}}$, in which case, $\operatorname{sign}(z^*(t))$ becomes negative, so the jump to Cycle $i_o + 1$ does not occur before $\hat{z}_2(t)$ becomes, again, smaller or equal than $\frac{d/c}{2^{i_o}}$. For this to happen, $z_2(t)$ must decrease, that is, $z_1(t)$ must become negative—see (1b)—and, consequently, x(t) must enter the set \mathcal{D}_{i_o} .
- 2) A jump to Cycle $i_o + 1$ occurs before \hat{z}_2 passes $\frac{d/c}{2^{i_o}}$. In this case, either the previous scenario occurs with i_o replaced by $i_o + 1$ and x(t) enters \mathcal{D}_{i_o+1} within Cycle $i_o + 1$, or a jump to Cycle $i_o + 2$ occurs before \hat{z}_2 passes $\frac{d/c}{2^{i_o+1}}$. However, at some point, there must exist $i^* \ge i_o$ such that x(t) enters \mathcal{D}_{i^*} within Cycle i^* .

Next, we show that $z_2(t)$ also converges, by establishing an upperbound in the latter for all $t \in \mathcal{I}_{i^*}$ such that $z_1(t) \in \mathcal{D}_{i^*}$ and when $\hat{z}_2(t_{i^*}) = \frac{d/c}{2^{i^*-1}}$ and $z^*(t_{i^*}) = -\frac{z_{in}}{2^{i^*}}$. The latter must happen at some point while in Cycle i^* . Note that after the proof of Lemma 3 the overshoot of $z_2(t)$ occurs during the interval $[0, T_{lmin}]$, where T_{lmin} corresponds to the time it takes $z_1(t)$ to acquire the same sign as $z^*(t)$ —in this case, to becomes negative. By virtue of the comparison Lemma, it is enough to construct a bound on the solution of

$$\dot{z}_2 = \begin{bmatrix} \max_{z_1 \in \mathcal{D}_{i^*}} |z_1| \end{bmatrix} [cz_2 + d], \quad z_2(0) = \frac{d/c + \varepsilon}{2^{i^* - 1}},$$

over the interval $[0, T_{lmin}]$. Clearly, we deduce an upperbound on z_2 that converges to zero as i^* goes to infinity.

<u>Proof of item (ii)</u>: By definition, the control algorithm is initiated at Cycle i_o with $i_o := \max\{0, \kappa_1(\delta)\}$. Furthermore, when δ is sufficiently small, we conclude that $i_o := \kappa_1(\delta)$. Therefore, by definition of κ_1 and (14), we conclude that

$$|\tilde{z}(t,j)| \le \min \{ \varepsilon g(i_o - 1), \gamma \delta \} \qquad \forall (t,j) \in \operatorname{dom} \tilde{z}.$$

Next, to find an upper bound for z_1 , we distinguish between two cases:

 If x_o ∈ D_{i_o}, where D_{i_o} is defined in (27) and is forward invariant, then we know that there exists a class K function κ₂ such that

$$z_1(t,j) \subset \kappa_2(|\delta|)[-1,1] \qquad \forall (t,j) \in \operatorname{dom} z_1,$$

Indeed, it is easy to see that when δ goes to zero, i_o goes to infinity, and thus \mathcal{D}_{i_o} reduces to $\{0\}$.

If D_{i_o} ⊂ {x ∈ X : z₁ ∈ [-|z₁₀|, |z₁₀|]} we use the fact that D_{i_o} is finite-time attractive—see Item (i) in Lemma 2. Furthermore, since the flows are unique and z₁ is a continuous variable, we conclude that [-|z₁₀|, |z₁₀|] must be forward invariant. Hence, we obtain that

$$|z_1(t,j)| \le |z_{1o}| \qquad \forall (t,j) \in \operatorname{dom} z_1.$$
(28)

Finally, to complete the proof, we establish an upper bound on z_2 . Assume, without loss of generality, that $z_{2o} > 0$ and $z_o^* = -2^{-i_o} z_{in}^* = -2^{-\kappa_1(\delta)} z_{in}^* =: \kappa_3(\delta)$. Then, consider the following two possibilities:

- 1) If $z_{1o} \in \mathcal{D}_{i_o}$ we conclude that the overshoot of $|z_2|$ occurs only on the interval $[0, T_{1*}]$, on which $|z_1| \leq \kappa_2(\delta)$, and before z_1 becomes negative.
- 2) If $\mathcal{D}_{i_o} \subset \{x \in \mathcal{X} : z_1 \in [-|z_{1o}|, |z_{1o}|]\}$, we conclude that (28) holds. Hence, the overshoot of z_2 occurs only on the interval $[0, T_{2*}]$, on which $|z_1| \leq |z_{1o}|$, and before z_1 becomes negative.

Thus, after the comparison Lemma, it suffices to assess the behavior of the solutions of

$$\dot{z}_2 = \max\{|z_{1o}|, \kappa_2(|\delta|)\}(cz_2 + d) \text{ with } z_2(0) = |z_{2o}|,$$

over the interval $[0, T_*]$, where $T_* := \max\{T_{1*}, T_{2*}\}$ is an upper bound on the time that $|z_1|$ takes to flow from $\max\{|z_{1o}|, \kappa_2(|\delta|)\}$ to zero.

To complete the proof, we show that T_* can be chosen as a class \mathcal{K} function of $|(z_o, \tilde{z}_o)|$. To do so, we use the Lyapunov function $v(z_{1e}) := z_{1e}^2$, whose time derivative along the solutions to \mathcal{H}_i satisfies

$$\dot{v} = -2k'v + 2az^* \tilde{z}_2 z_{1e} \le -2k'v + 2a\varepsilon \frac{z_{in}^*}{2^{i_o}}g(i_o - 1)|z_{1e}|$$

Let $k' \geq 1$. After the triangle inequality and $g(i_o - 1) < 1$,

$$\dot{v} \le -k'v + \frac{z_{in}^{*2}}{2^{2i_o}} \frac{a^2\varepsilon^2}{4^{\kappa_1(\delta)}} \le -k'v + a^2\kappa_4(\delta)$$

Then, T_* corresponds to the time elapsed for the solution of $\dot{v} = -k'v + a^2\kappa_4(\delta)$ to attain the value $v(t) = \frac{z_{in}^{*2}}{2^{2t_o}}$ from $v(0) := \left[\max\{|z_{1o}|, \kappa_2(\delta)\} + \frac{z_{in}^{*}}{2^{t_o}}\right]^2$. We obtain that, since $i_o := \max\{0, \kappa_1(\delta)\}, T_*$ is upper bounded by a class \mathcal{K} function of $(|z_o| + \delta)$.

<u>Proof of item (iii)</u>: After [18], system \mathcal{H} is well-posed if the sets C and D are closed relative to \mathcal{X} and F and G are continuous on C and D, respectively. It is easy to conclude that our closed-loop hybrid system \mathcal{H} satisfies the hybrid basic conditions which require the sets C and D to be closed and the maps F and G to be continuous. Note that both C and D are closed subsets relative to \mathcal{X} , F is smooth and G is continuous on $D = D_c \cup D_{nc}$ since both D_c and D_{nc} are closed relative to \mathcal{X} and their intersection is empty.

Next, we show that the closed-loop solutions are uniformly non-Zeno. To do so, we note that within a same Cycle *i*, and between each two consecutive jumps, $\hat{z}_2(t)$ flows from $-\frac{d}{2^{i-1}c}$ to $\frac{d}{2^{i-1}c}$ back and forth. The latter flow phase takes a time we denote by T_{li} . After Item (ii) in Lemma 2, there exists a uniform lower bound $T_{lmin} > 0$ such that $T_{li} \ge T_{lmin}$ for all $i \in \{1, 2, ...\}$, provided that $z_{1o} \in \mathcal{D}_i$. In general, after Item (i) of Lemma 2, z_1 must reach \mathcal{D}_i in finite time while in Cycle *i*; otherwise, only one jump occurs within Cycle *i*.

On the other hand, for a jump from Cycle *i* to Cycle *i*+1 to occur, the variable τ must flow so that $|\Phi_i(\tau, 0)^\top P \Phi_i(\tau, 0)|^{\frac{1}{2}}$ decreases from $|P|^{\frac{1}{2}}$ to $\frac{\lambda_{min}(P)^{\frac{1}{2}}}{2}$, where Φ_i is defined by (21). We show the existence of a strictly positive lower bound on the time the latter decrease process takes. To that end, we use $V = |\tilde{w}|^2$ and the fact that

$$\tilde{w}^{\top} \begin{bmatrix} A(w_1(\tau)) + A(w_1(\tau))^{\top} \end{bmatrix} \tilde{w} \ge -\eta |\tilde{w}|^2 \quad \forall \tau \ge 0, \, \tilde{w} \in \mathbb{R}^2,$$

where $\eta := \max_{i \in \{1,2\}} \{|A_i + A_i^{\top}|\}$. Then, $V'(\tau) \ge -aV(\tau)$ for all $\tau \ge 0$, which, by using the comparison Lemma, implies that $V(\tau) \ge e^{-a\tau}V(0)$ and, in turn, for each $\tilde{w}(0) \in \mathbb{R}^2$, $\tilde{w}(0)^{\top} \Phi_i(\tau, 0)^{\top} \Phi_i(\tau, 0) \tilde{w}(0) \ge e^{-a\tau} |\tilde{w}(0)|^2$, hence, since for our case $|P| > \lambda_{min}(P)$ there exists $\tau^* > 0$ such that, for each $i \in \{1, 2, ...\}$, and for all $\tau \in [0, \tau^*]$,

$$|\Phi_i(\tau, 0)^\top P \Phi_i(\tau, 0)| \ge \lambda_{min}(P) \ge \lambda_{min}(P)h(i).$$

V. CONCLUSION AND FUTURE WORK

Simultaneous estimation and stabilization at an equilibrium where observability is lost is, in general, an open problem that we solved for a particular bilinear system using a switchingobserver-based hybrid controller. It is important to explore the applicability of our approach to other non-uniformly observable systems. Other challenging improvements include the design of a *smooth* output-feedback controller as well as analyzing its robustness (with respect to measurement noise) in the sense of input-to-state stability. Furthermore, beyond these theoretical questions, a deeper study regarding control implementation is required to determine different cycle-jump conditions that deliver good performance, while satisfying the technical conditions imposed by the analysis.

ACKNOWLEDGMENTS

The authors are very thankful to the AE for the outstanding handling of this Technical Note, and to the reviewers for their constructive criticism.

APPENDIX

A. Proof of Lemma 1

Consider system (6), which is equivalent to (3). It is a linear system that switches between two modes defined by the matrices A_1 and A_2 , which are both Hurwitz and the pairs (A_1, C) and (A_2, C) are observable. Let [8] generate a positive definite matrix P such that (4) holds. Then, the derivative of

$$V_{obs}(\tilde{w}) := \tilde{w}^{\dagger} P \tilde{w}$$

along the solutions to the switched linear system in (6) verifies

$$V_{obs}'(\tilde{w}) = -\tilde{w}^{\top} C^{\top} C \tilde{w} \le 0,$$

which implies uniform global stability (*i.e.*, uniform stability and uniform global boundedness) of the origin for (6). Furthermore, under Assumption 1, $\operatorname{Im}(f_{z_1}) = \mathbb{R}_{\geq 0}$ and there exist an infinite union of disjoint intervals, denoted $\overline{I}_d := f_{z_1}(I_d)$, such that: (i) $|w_1(\tau)| > \underline{z}$ for all $\tau \in \overline{I}_d$, (ii) the length of each connected interval in \overline{I}_d is no smaller than $\tau_d \underline{z}$, and (iii) the length of each connected interval in $\mathbb{R}_{\geq 0} \setminus \overline{I}_d$ is smaller than $\tau_s \overline{z}$.

Now, inspired by [17], let $\lambda > 0$ and $\bar{c} := e^{\max\{|A_1|, |A_2|\}\bar{z}\tau_s}$, and let [17, Lemma 9] generate $K_1 \in \mathbb{R}^2$ and $K_2 \in \mathbb{R}^2$ such that, for each $i \in \{1, 2\}$,

$$\left|e^{(A_i+K_iC)\tau}\right| \le \frac{1}{\bar{c}}e^{-2\lambda(\tau-\frac{\tau_d\underline{z}}{2})} \quad \forall t \ge \frac{\tau_d\underline{z}}{2}.$$

Furthermore, let $k := \max\{|K_1|, |K_2|\}, \bar{k} := p_M \bar{c}^2 k^2 / \lambda,$ $\gamma := p_M / p_m$, where $p_m I \leq P \leq p_M I$, and $\kappa_1 := \gamma [\bar{k} + 2\bar{c}^2 \gamma] / [\rho(1+\bar{k})]$. Finally, let L > 0 be such that

$$\rho := \frac{2\gamma \bar{c}^2 e^{-2\lambda L} + \bar{k}}{1 + \bar{k}} < 1.$$

According to the proof of [17, Lemma 5], there exists a map $w_1 \mapsto K(w_1) \in \{K_1, K_2, 0\}$ such that, along each map $\tau \mapsto w_1(\tau)$ enjoying the properties (*i*)–(*iii*) listed above,

$$|\Phi_{\bar{z}_1}(\tau_1,\tau_o)| \le \bar{c}e^{-\lambda(\tau_1-\tau_o)} \qquad \forall \tau_1 \ge \tau_o \ge 0,$$

where $\Phi_{\bar{z}_1}$ is the transition matrix of the system

$$\tilde{w}' = [A(w_1(\tau)) + K(w_1(\tau))C] \,\tilde{w}$$

Now, after Assumption 1, there exists $\mu > 0$ such that

$$\int_{t_o}^t |z_1(s)| ds \ge \mu(t-t_o) \quad \forall t \ge t_o + T, \ \forall t_o \ge 0,$$

so, using the proof of Theorem 4 in [17], we conclude that

$$\tilde{w}(\tau_1)| \le \kappa_1 \rho^{\frac{\tau_1 - \tau_o}{L}} |\tilde{w}(\tau_o)| \qquad \forall \tau_1 \ge \tau_o \ge 0.$$

Therefore, the statement follows defining $\kappa_2 := -\frac{\ln(\rho)}{L}$ and using the fact that $\tilde{z}(t) \equiv \tilde{w}(\tau)$.

B. Proof of Lemma 2

1) Proof of Item (i): We first use the fact that $|\tilde{z}_o| \leq \frac{\varepsilon g(i-1)}{\gamma}$, together with (14), to conclude that

$$|\tilde{z}(t,j)| \le \varepsilon g(i-1) \qquad \forall (t,j) \ge \operatorname{dom} \tilde{z}.$$

Next, we use the Lyapunov function $v(z_1) := z_1^2$, whose time derivative along the solutions to \mathcal{H}_i satisfies

$$\dot{v} \leq -k'v + \frac{2k'z_{in}^{*2}}{4^i} + \frac{2a^2\varepsilon^2 z_{in}^{*2}}{4^i}g(i-1)^2.$$

As a result, we obtain

$$\begin{aligned} v(t,j) &\leq v(0,0)e^{-k't} + \frac{2z_{in}^{*2}}{2^{2i}} \left[1 - e^{-k't} \right] \\ &+ \frac{a^2 \varepsilon^2 z_{in}^{*2}}{(2k')4^{(i-1)}} g(i-1)^2 \left[1 - e^{-k't} \right], \end{aligned}$$

. 2

so, by choosing k' such that $k' \ge \frac{a^2 \varepsilon^2}{2}$, we get

$$\begin{aligned} v(t,j) &\leq v(0,0)e^{-k t} \\ &+ \left[\frac{z_{in}^{*2}}{2^{2(i-1)}} + \frac{z_{in}^{*2}}{4^{(i-1)}}g(i-1)^2 \right] \left[1 - e^{-k't} \right] \\ &\leq \max\left\{ v(0,0), \left[\frac{z_{in}^{*2}}{2^{2(i-1)}} + \frac{z_{in}^{*2}}{2^{2(i-1)}}g(i-1)^2 \right] \right\}. \end{aligned}$$

Hence, the set \mathcal{D}_i is finite-time attractive and forward invariant. 2) Proof of Item (ii): If $x_{oi} \in \mathcal{D}_i$, using the comparison lemma, a lower bound on the time between each two consecutive jumps of \mathcal{H}_i can be obtained by computing the time the solution to

$$\dot{z}_2 = -\left(\frac{2z_{in}^*}{2^{i-1}}\right)(cz_2+d),$$
 (29)

with initial conditions $z_{o2} = \frac{d/c-\varepsilon}{2^{i-1}}$. That is, the time that takes to reach $\frac{-d/c+\varepsilon}{2^{i-1}}$. To compute such time, we introduce the new time scale $\tau := \left(\frac{2z_{in}^*}{2^{i-1}}\right)t$, to obtain in the new time scale $z'_2 = -cz_2 - d$. By solving the latter equation, we obtain

$$z_2(\tau) = \sigma_i e^{-c\tau} - \frac{d}{c} \left[1 - e^{-c\tau} \right], \quad \sigma_i := \left[\frac{d/c - \varepsilon}{2^{i-1}} \right]$$

and we use the latter to solve $z_2(\tau) = \sigma_i$ for τ . Reordering terms, we obtain $e^{-c\tau}[d/c + \sigma_i] = d/c - \sigma_i$. Hence,

$$\tau = \frac{1}{c} \ln \left[\frac{d/c + \sigma_i}{d/c - \sigma_i} \right] = \frac{1}{c} \ln \left[1 + 2 \frac{\sigma_i}{d/c - \sigma_i} \right].$$

This implies that, in the original time scale, the length of the interval $[t_i, t_{i+1}]$ between two jumps of the solution to (29), denoted T_{li} , satisfies $T_{li} \geq \frac{2^{i-1}}{2cz_{in}^*} \ln \left[1 + 2\frac{\sigma_i}{d/c - \sigma_i}\right]$, which is separated from zero, *i.e.*,

$$\lim_{t \to \infty} T_{li} \ge \frac{1}{dz_{in}^*} \left[\frac{d}{c} - \varepsilon \right] > 0.$$

C. Proof of Lemma 3

Let $x_o \in \mathcal{D}_i$ and let $\hat{z}_{o2} = \frac{d/c}{2^{i-1}}$. There is no loss of generality since if $x_o \notin \mathcal{D}_i$ Assumption 1 trivially holds over the *i*th cycle and if $\hat{z}_{o2} \neq \frac{d/c}{2^{i-1}}$, $\hat{z}_2(t,j) = \frac{d/c}{2^{i-1}}$ for some $t + j < \infty$. Moreover, the following reasoning applies *mutatis mutandis* if $\hat{z}_{o2} = -\frac{d/c}{2^{i-1}}$. We also use the fact that $|\tilde{z}_o| \leq g(i-1)\frac{\varepsilon}{\gamma}$ together with (14) to conclude that

$$|\tilde{z}(t,j)| \le \varepsilon g(i-1) \qquad \forall (t,j) \in \operatorname{dom} \tilde{z}.$$
(30)

1) At this point, we estimate a lower bound on the flow time that \hat{z}_2 takes to flow from $\frac{d/c}{2^{i-1}}$ to $\frac{-d/c}{2^{i-1}}$. Using (30), we conclude that such a time is lower bounded by the time z_2 takes to flow from $\frac{d/c}{2^{i-1}} - \frac{\varepsilon}{2^{i-1}}$ to $\frac{-d/c}{2^{i-1}} + \frac{\varepsilon}{2^{i-1}}$ when

$$z_1 = -\left(\frac{z_{in}^*}{2^{i-1}} + \frac{z_{in}^*}{2^{i-1}}g(i-1)\right).$$

Let us denote such time by T_{li} , which can be easily obtained by solving the ordinary differential equation

$$\dot{z}_2 = -\left(\frac{z_{in}^*}{2^{i-1}} + \frac{z_{in}^*}{2^{i-1}}g(i-1)\right)(cz_2 + d),$$

with $z_{2o} = \frac{d/c - \varepsilon}{2^{i-1}}$. After Item (ii) of Lemma 2 there exists $T_{lmin} > 0$ such that $T_{li} \ge T_{lmin}$ for all $i \in \{1, 2, ...\}$.

2) During the phase when \hat{z}_2 flows from $\frac{d/c}{2^{i-1}}$ to $\frac{-d/c}{2^{i-1}}$, $z^* = -\frac{z_{in}^*}{2^i}$. Next, we show how to choose k' > 0 to conclude that z_{1e} must take at most $\frac{T_{li}}{2}$ units of time to enter the ball of radius $\frac{|z^*|}{2}$. To that end, we use the Lyapunov function

$$v(z_{1e}) := z_{1e}^2,$$

whose time derivative along the solutions to \mathcal{H}_i satisfies

$$\dot{v} \le -2k'v + \frac{2az_{in}^*}{2^i}\varepsilon g(i-1)|z_{1e}|$$

By assuming, for example that $k' \ge 1$, we conclude that

$$\dot{v} \leq -k'v + \frac{a^2\varepsilon^2 z_{in}^{*2}}{2^{2i}}g(i-1)^2,$$

Then, for each $t \ge 0$ such that $(t, 0) \in \operatorname{dom} x$,

$$v(t,0) \le v(0,0)e^{-k't} + \left[\frac{a\varepsilon z_{in}^*}{2^i\sqrt{k'}}g(i-1)\right]^2 \left[1 - e^{-k't}\right]$$

so, choosing k' large such that $k' \ge 4a^2 \varepsilon^2$, we obtain

$$\begin{split} v(t,0) &\leq v(0,0)e^{-k't} + \left[\frac{z_{in}^*}{2^{i+1}}g(i-1)\right]^2 \left[1 - e^{-k't}\right] \\ &\leq \left[\frac{2z_{in}^*}{2^i} + \frac{2z_{in}^*}{2^i}g(i-1)\right]^2 e^{-k't} \\ &+ \left[\frac{z_{in}^*}{2^{i+1}}g(i-1)\right]^2 \left[1 - e^{-k't}\right] \\ &\leq 9z^{*2}e^{-k't} + \frac{z^{*2}}{4} \left[1 - e^{-k't}\right]. \end{split}$$

Next, by letting $k' \geq -\frac{2\ln(2^{-5})}{T_{lmin}}$, we conclude that

$$z_{1e}(t,0)^2 \le \left(\frac{z^*}{2}\right)^2 \qquad \forall t \in \left[\frac{T_{li}}{2}, T_{li}\right].$$
(31)

Hence, during the interval where \hat{z}_2 flows from $\frac{d/c}{2^{i-1}}$ to $-\frac{d/c}{2^{i-1}}$, we have $z_1 \in [z^*, z^*/2]$ for all t belonging to a sub interval of length larger than $T_{li}/2$.

3) Next, we estimate an upper bound on the time that \hat{z}_2 takes to flow from $\frac{d/c}{2^{i-1}}$ to $-\frac{d/c}{2^{i-1}}$. Using (30) and (31), we conclude that such a time is upper bounded by the time that z_2 takes to flow from $\frac{d/c}{2^{i-1}} + \frac{\varepsilon}{2^{i-1}}$ to $-\frac{d/c}{2^{i-1}} - \frac{\varepsilon}{2^{i-1}}$ when

$$z_1(t) = \begin{cases} \frac{z_{in}^*}{2^{i-1}} + \frac{z_{in}^*}{2^{i-1}}g(i-1) & \forall t \in \left[0, \frac{T_{li}}{2}\right] \\ -\frac{|z^*|}{2} & \forall t \ge \frac{T_{li}}{2}. \end{cases}$$

Let us denote such a time by T_{ui} . Note that T_{ui} can be easily obtained by solving the linear switched dynamics:

$$\dot{z}_2 = \begin{cases} \left[\frac{z_{in}^*}{2^{i-1}} + \frac{z_{in}^*}{2^{i-1}}g(i-1)\right](cz_2+d) & \forall t \in [0, \frac{T_{li}}{2}] \\ -\frac{|z^*|}{2}(cz_2+d) & \forall t \ge \frac{T_{li}}{2}, \end{cases}$$

from the initial condition $z_{2o} = \frac{d/c + \varepsilon}{2^{i-1}}$.

Finally, we conclude that Assumption 1 holds on Cycle i with

$$\begin{aligned} \tau_{di} &:= \frac{T_{li}}{2}, & \tau_{si} &:= T_{ui} - \frac{T_{li}}{2}, \\ \bar{z}_i &:= \frac{z_{in}^*}{2^{i-1}} + \frac{z_{in}^*}{2^{i-1}} g(i-1), & \underline{z}_i &:= \frac{|z^*|}{2}, \end{aligned}$$

which completes the proof.

REFERENCES

- L. Brivadis, J.-P. Gauthier, and L. Sacchelli, "Output feedback stabilization of non-uniformly observable systems," *Trudy Matematicheskogo Instituta imeni V.A. Steklova*, vol. 321, pp. 77–93, 2023.
- [2] P. Dufour, S. Flila, and H. Hammouri, "Observer design for MIMO nonuniformly observable systems," *IEEE Trans. Automat. Cont.*, vol. 57, no. 2, pp. 511–516, 2012.
- [3] M. Farza, T. Ménard, A. Ltaief, I. Bouraoui, M. M'Saad, and T. Maatoug, "Extended high-gain observer design for a class of MIMO nonuniformly observable systems," *Automatica*, vol. 86, pp. 138–146, 2017.
- [4] J. A. Moreno and G. Besançon, "On multi-valued observers for a class of single-valued systems," *Automatica*, vol. 123, p. 109334, 2021.
- [5] L. Brivadis and L. Sacchelli, "A switching technique for output feedback stabilization at an unobservable target," in *Proc. IEEE Conf. Dec. Cont.*, 2021, pp. 3942–3947.
- [6] S. Ibarra-Rojas, J. Moreno, and G. Espinosa-Pérez, "Global observability analysis of sensorless induction motors," *Automatica*, vol. 40, no. 6, pp. 1079–1085, 2004.
- [7] A. Rapaport and D. Dochain, "A robust asymptotic observer for systems that converge to unobservable states. a batch reactor case study," *IEEE Trans. Automat. Cont.*, 2019.
- [8] T. B. Hoàng, W. Pasillas-Lépine, A. de Bernardinis, and M. Netto, "Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control," *IEEE Trans. Cont. Syst. Technol.*, vol. 22, no. 6, pp. 2384–2392, 2014.
- [9] G. Besançon, Ed., Nonlinear Observers and Applications, ser. Series Lecture Notes in Control and Information Science. London: Springer Verlag, 2007, vol. 363.
- [10] L. Brivadis, J.-P. Gauthier, L. Sacchelli, and U. Serres, "Avoiding observability singularities in output feedback bilinear systems," *SIAM J. Control Optim.*, vol. 59, no. 3, pp. 1759–1780, 2021.
- [11] M. Aguado-Rojas, W. Pasillas-Lépine, and A. Loría, "A hybrid controller for ABS-based on extended-braking-stiffness estimation," *IFAC*-*PapersOnLine*, vol. 52, no. 5, pp. 452 – 457, 2019, 9th IFAC Symposium on Advances in Automotive Control AAC 2019.
- [12] M. Sugai, H. Yamaguchi, M. Miyashita, T. Umeno, and K. Asano, "New control technique for maximizing braking force on antilock braking system," *Vehicle System Dynamics*, vol. 32, no. 4-5, pp. 299–312, 1999.
- [13] M. Aguado-Rojas, W. Pasillas-Lépine, and A. Loría, "Extended-brakingstiffness estimation under varying road-adherence conditions," *IEEE Trans. Cont. Syst. Technol.*, vol. 28, no. 5, pp. 1964–1971, 2020.
- [14] J.-M. Coron, "On the stabilization of controllable and observable systems by an output feedback law," *Math. Cont. Sign. Syst.*, vol. 7, no. 3, pp. 187–216, 1994.
- [15] M. Aguado-Rojas, T.-B. Hoang, W. Pasillas-Lépine, A. Loría, and W. Respondek, "A switching observer for a class of non-uniformly observable systems via singular time-rescaling," *IEEE Trans. Automat. Cont.*, vol. 66, no. 12, pp. 6071–6076, 2021.
- [16] M. Maghenem, W. Pasillas-Lépine, A. Loría, and M. Aguado-Rojas, "A hybrid observer-based controller for a non-uniformly observable system," in *Proc. IEEE Conf. Dec. Cont.*, Cancún, MX, 2022, pp. 4467– 4472.
- [17] J. P. Hespanha, "Uniform stability of switched linear systems: extensions of La Salle's invariance principle," *IEEE Trans. Automat. Cont.*, vol. 49, pp. 470–482, 2004.
- [18] R. Goebel, R. G. Sanfelice, and A. R. Teel, *Hybrid Dynamical Systems:* Modeling, Stability, and Robustness. Princeton University Press, 2012.