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and Andrei Smolyakov3
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Abstract

A spontaneous heating process is found to arise in a system where a magnetic island is present
due to a linearly unstable tearing mode. The parity, the relative phases and the structure of the
fields determined linearly by the tearing mode cause the compression of the plasma in the direction
parallel to the magnetic field to heat the plasma in the vicinity of the separatrix in the non-linear
phase. Using a 6-field electromagnetic fluid model, the process is found to be present in both 2D
single-helicity and 3D multi-helicity simulations with both symmetric and a-symmetric magnetic
equilibrium profiles. A noteworthy feature of the model is that the higher order compression terms
responsible for the heating process are retained in the equations. The process is believed to be
linked to experimental observations of localized hot-spots on externally induced magnetic islands.

1 Introduction

Magnetic islands are a well-studied phenomenon in plasma physics. They are the result of a change in
the topology of the magnetic field following a reconnection process. The interest of the fusion community
in this phenomenon is mostly due to the negative effects they have on the confinement properties of
the plasma, and to the fact that they might lead to disruptions in tokamak discharges, thus potentially
damaging the device they occur in.
With respect to the transport properties, one of the most prominent effects of magnetic islands is that,
in general, they cause a flattening of the radial pressure profile inside the separatrix (i.e. the surface
that separates the island from the rest of the plasma), thus limiting the maximum achievable pressure
in the core, and, consequently, the performance of the plasma. The flattening is due to the nested
magnetic flux surfaces that form inside the separatrix which encloses the island. On these flux surfaces,
the plasma is free to stream with the high speeds of parallel motion in magnetic confinement devices,
thus efficiently connecting two radially distant points, quickly eliminating the pressure gradient inside
the separatrix [11]. This flattening is, however, only effective if the width of the island crosses a critical
threshold above which the parallel diffusion is more efficient than the perpendicular.
A flat pressure gradient is, in turn, reason for concern for the growth of so-called Neoclassical Tearing
Modes (NTMs [27]), i.e. magnetic islands whose driving mechanism is the suppression of the bootstrap
current linked to the fading pressure gradient [6, 25]. This kind of island requires the presence of a seed
island above a critical size to become unstable, but can grow to sizes that are unsafe for the operation
of magnetic confinement devices. This means that even if the magnetic configuration can be optimized
to be stable against the main mechanisms that generate magnetic islands, any other process that could
generate a seed island of sufficient width would still be problematic.
Despite the very large volume of work done on the topic of magnetic islands, there are still some open
questions about the fundamental properties of these structures. Indeed, knowledge about the origin of
seed islands and the ability to predict the birth of NTMs remains partial. In this context, the fact that
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n = n0nN n0 is reference value at resonant surface
B = B0BN B0 is reference value at resonant surface
u∥ = vAu∥N vA = cB0√

mn0
is the Alfven velocity at resonant surface

∇⊥ = L−1
⊥ ∇⊥N L⊥ is a characteristic perpendicular length of the system

∇∥XN = L−1
⊥ {ψN , XN} − L−1

z ∂z NXN The ∂z term only appears in 3D simulations
∂t = τ−1

A ∂tN τA = L⊥/vA
ψ = B0L⊥ψN
ϕ = B0L⊥vAϕN
τi = Ti/Te Ratio of the equilibrium temperatures at the resonant surface

Ωi = eB0/mi ion gyrofrequency at the resonance

ρ2∗ =
T0
mi

1
Ω2

i

1
L2
⊥

1
1+τi

= βe 0

2n0
(square of) normalized ion gyroradius

pe =
p0

(1+τi)ρ2∗ΩiτA
peN p0 = pe 0 + pi 0 is the total pressure at the resonant surface

pi =
p0 τi

(1+τi)ρ2∗ΩiτA
piN

Table 1: Normalization used for the equations of the model.

turbulence can destabilize NTMs and that the current structures distant from low order resonances can
affect the growth deserves further attention [24, 19, 22].
Not only is the generation of seed islands not fully understood, but there are also a number of other
phenomena that have been shown to affect the dynamics of magnetic islands. To this day, their impact
is only marginally considered in real-world applications. Some examples of this latter point, that might
be very impactful in future devices, are the link between magnetic islands and turbulence [34, 1, 2, 8],
the effect of finite Larmor radius effects [9] and some instances of experimental observations of magnetic
islands with non-flat pressure profile or localized heating [7]. The mainstream experimental approach of
using the Modified Rutherford Equation (MRE) to predict the saturation of magnetic islands [10, 20]
has been shown to have limited validity [18, 3, 22], thus more in depth studies are needed.
Of relevance to the latter points is the spontaneous compressional heating phenomenon described in this
paper. We consider a magnetic island driven by an unstable tearing mode, without any other sources or
equilibrium gradient for any field other than the magnetic field, and show that the pressure is increased
on the separatrix of the magnetic island. A tearing mode is a resistive magnethydrodynamic (MHD)
instability due to the presence of a current density gradient on a resonant magnetic surface. If the
current density gradient and the geometry of the system allow for it, the mode will drive the growth
of a magnetic island. A fundamental feature of magnetic islands is the quadrupolar structure of the
mode around the resonant surface [26, 15], which can be recovered directly from the linear phase of
growth of a tearing mode, thus facilitating the study of phenomena pertaining to and surrounding the
island. As will be detailed further down, the heating effect presently described is directly due to the
radial and poloidal structures of the fields in the system, and in particular to the compression of the
component of the fluid velocity directed along the magnetic field lines (referred to as “parallel velocity”)
occurring in regions of positive pressure fluctuations, and can therefore be studied in a system with
an unstable tearing mode. Such an effect has never been observed before due to the approximation of
constant pressure commonly used in fluid models when expanding the convective derivative, and to the
large number of dynamic fields required.
The article develops as follows: in section 2 the fluid model used for the analysis is briefly described, in
section 3 the physical mechanism driving the heating is detailed, in section 4 results from 2D and 3D
simulations highlighting the phenomenon are presented and in section 5 some concluding remarks are
expressed.

2 A 6-field fluid model

The present study is performed using a 6-field fluid model developed starting from the usual Braginskii
fluid equations [4], retaining, as detailed in [12], neoclassical effects in the Pfirsch-Schlüter regime and
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the dynamics of trace impurities. These two latter points will not be considered in the present study, but
are a possible future application of the model. The model is capable, in its “full version”, of describing
both small-scale phenomena, like Ion-Temperature-Gradient (ITG) turbulence, and large-scale ones, like
magnetic islands, on the long time scales of magnetic reconnection.
Most studies done in the past employed models with fewer dynamic fields, that allowed to study
interchange-like turbulence in a variety of conditions. The extension to a larger number of fields is
an approach not often explored [28, 29, 13, 35] that can provide significant insight. The model used
in the present article is an electromagnetic fluid model that allows to study the individual dynamics of
electrons and ions by having an evolution equation for the pressure of each species, while maintaining
quasineutrality. It also introduces the parallel velocity of the ions as a dynamic field, which is funda-
mental for the study of parallel dynamics (e.g. compressional sound waves) and neoclassical effects.
The full expression of the flux terms is retained in the model, meaning that, in reduced notation, the
parallel derivatives are given by the product of 3 fields, e.g.

p∇∥u∥ = p{ψ, u∥} (1)

where ψ is the poloidal magnetic flux, u∥ the parallel velocity, p the pressure and the curly brackets
indicate the Poisson bracket, defined as {f, g} = (∇f × ∇g) · Bz, which in slab geometry is {f, g} =
(∂xf ∂yg−∂xg ∂yf). To obtain the expression in cylindrical geometry it is sufficient to replace ∂y → ∂θ/r.
Since the fluctuations of such a “cubic term”, as it will be referred to, are expected to be small, it is often
the case that in fluid models the field multiplying the Poisson bracket is considered as a normalization
constant or an equilibrium parameter rather than an evolving field itself. Crucially, however, keeping or
not such a term has a deep impact on the physics of the model, as alongside the additional products of
the fluctuations, a number of additional quadratic terms are added to the model, that allow richer and
more complicated dynamics. It must be emphasized that the word “cubic” does not refer to the order
at which a series expansion is stopped, but to the fact that, directly from the derivation of the transport
equations, the model presents terms that combine three fields at once.
A difference with respect to the model described in [12] is that all terms of this kind are kept in all the
equations, not only in the pressure equations. Also kept are the compression of (but not the advection
by) the polarization velocity in the equation for the ion pressure and for the perpendicular dynamics
(more on this in appendix A), and the advection by the parallel velocity for both ions and electrons.
More explicitly, here is a brief description of the equations (the dissipative terms are re-added in the
last step), starting from the definitions of the fluid/drift velocities. Those are obtained from the vector
product of the magnetic field with the momentum conservation equations for electrons and ions. For
the ions the higher order polarization effects due to inertia and stresses are retained as uI (more details
on this latter term in appendix A):

ui = u∥ ib+ uE + upi + uI (2)

ue = u∥ eb+ uE + upe (3)

where uE is the E × B drift, up i/e = c(B × ∇pi/e)/(eB2Zi/eni/e) the diamagnetic drift for ions and
electrons (eZi/e being the signed electrical charge of the species), u∥ i/eb the parallel drift velocity (b is
the unit vector parallel to the equilibrium magnetic field and u∥ e = u∥ i − J∥/en, J∥ being the parallel
current density defined below) and with the polarization drift defined as

uI =
1

Ωi

b×
[
∂t + (uE + upi) · ∇+ u∥ i∇∥

]
(uE + upi) +

c

Zie niB
b×∇ · Πi (4)

with Ωi the ion gyrofrequency, Zie the ion electric charge, ni the ion density, B the modulo of the
equilibrium magnetic field, and Πi the ion gyroviscosity tensor. Note that keeping parallel advection is
not done in many fluid models, where the so-called “flute ordering” u∥∇∥ ≪ u⊥ · ∇ is used, so that in
the present model the role of parallel dynamics is considered to a higher degree.
The continuity equation for the electrons is (quasi-neutrality is assumed):

∂tne +∇ ·
[
n (u∥ e + uE)

]
− 1

e
K · ∇pe = 0 (5)
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Here the compression of the diamagnetic drift leaves a curvature term if the divergence of the drift is
̸= 0 (indicated with the vector K). In the normalized equations, the sign of this curvature term is
determined by the directions of the ion and electron diamagnetic drifts.
The parallel momentum balance, neglecting the electron inertia is given by:

mini
[
∂tu∥ i + uE · ∇u∥ i + u∥ i∇∥u∥ i

]
= −∇∥pi −∇∥pe (6)

The ∇ · J = ∇ · (JI + Jp + J∥) = 0 condition (where JI is the polarization and Jp the diamagnetic
current), or, equivalently, quasi-neutrality is used to derive as a perpendicular momentum equation:

n∇ · uI = −1

e
∇⊥ · Jp −

1

e
∇∥J∥ = − 1

eB
K ·

[
∇pi +∇pe

]
− 1

e
∇∥J∥ (7)

In order to be consistent in ordering with the neglect of the advection by the polarization velocity, the
density on the left-hand side of equation 7 is constant. Furthermore, as detailed in Appendix A, when
deriving an expression for ∇ · uI the Boussinesq approximation is applied.
Thermal energy conservation gives the pressure equations:

3

2
∂tpe +

5

2
pe∇ · uE +

5

2
pe∇∥u∥ e +

3

2
uE · ∇pe (8)

+
3

2
u∥ e · ∇∥pe −

5

2e
K · ∇(Tepe) = 0

3

2
∂tpi +

5

2
pi∇ · uE +

5

2
pi∇∥u∥ i +

5

2
pi∇ · uI +

3

2
uE · ∇pi (9)

+
3

2
u∥ i · ∇∥pi +

5

2e
K · ∇(Tipi) = 0

Note that here is not included the inertial heat flux that [30] shows to be a term of the same order as
the polarization drift necessary to have the gyrokinetic equations matching the gyrofluid ones. While
this missing term is not expected to play a major role in the phenomenon studied in this paper, since
the physics of polarization is not at the core of the phenomenon in question, it might become important
when one wishes to perform quantitative analysis of real-world discharges, and should be added in future
studies.
And, finally, the parallel momentum equation for electrons, neglecting inertia, gives:

0 = −enE∥ −∇∥pe = −en(∂tψ −∇∥ϕ)−∇∥pe (10)

For simplicity, the curvature and neoclassical effects present in the full model will be neglected for the
present study, giving the expression for the normalized equations of the reduced system in 2D (details
on the derivation of 12, along with a brief discussion about ordering are given in appendix A):

∂tψ = {ψ, ϕ} − 1

n
{ψ, pe}+ η

J̃∥
n

(11)

∂tω = −{ϕ, ω} − τi{∇αϕ,∇αpi} − u∥ i{ψ, ω}+ ΩiτA{ψ, J∥}+ µ∆⊥ω̃ (12)

∂tpi = −5

3
pi{ψ, u∥ i} − {ϕ, pi} − u∥ i{ψ, pi}+

5

3
Ti{ψ, J∥} (13)

+χ⊥ i∆⊥Ti + χ∥ i{ψ, {ψ, Ti}}

∂tpe = −5

3
pe{ψ, u∥ e} − {ϕ, pe} − u∥ e{ψ, pe}+ χ⊥ e∆⊥Te + χ∥ e{ψ, {ψ, Te}} (14)

∂tn = −{ϕ, n} − n{ψ, u∥ e} − u∥ e{ψ, n}+D∆⊥n (15)

∂tu∥ i = −{ϕ, u∥ i} − u∥ i{ψ, u∥ i} −
ΩiτA
n

{ψ, τipi + pe}+ Ud∆⊥u∥ i (16)
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where ψ is the poloidal magnetic flux, ϕ the electrostatic potential, pe and Te the electron pressure
and temperature, pi and Ti the ion pressure and temperature, n the electron density (quasi-neutrality
is assumed) and u∥ i/e the ion and electron parallel fluid velocities. The definition of the generalized
vorticity is ω = ∆⊥(ϕ + τipi), meaning that here the Boussinesq approximation is applied, and the
parallel current density is J∥ = ∆⊥ψ. A “∼” above the symbol of the field indicates that only the
fluctuating part of the field is retained. α is an index for the perpendicular geometrical coordinates.
The normalization is detailed in table 1.
In slab geometry the vectorial Poisson bracket is defined as:

{∇αϕ,∇αpi} = {∂xϕ, ∂xpi}+ {∂yϕ, ∂ypi} (17)

In the above equations 11 - 16, the advection by the diamagnetic velocity cancels with the stress-tensor
through the gyroviscous cancellation, as detailed in [14], [16] and [31].
Comparison of these equations to those used in such models as GBS [13], GDB [36] and GRILLIX [35]
shows that up to vanishing electron mass, neglect of the effect of the thermal forces on the parallel drifts
and the Boussinesq approximation they are equivalent. Thus the energy conservation properties are
analogous, with the appropriate corrections just mentioned.
An inspection of the equations (13) and (14) for the ion and electron pressures reveals that they are
extremely similar in this reduced system, differing by the parallel velocity and the polarization term
in the ion pressure. Indeed, it was observed that both pressures follow very similar dynamics for the
phenomenon and cases in question, so in (most of) the figures only the ion pressure will be shown, with
the understanding that the electron pressure is following similar dynamics.
In this paper, the model is used to describe the dynamics of magnetic islands generated by linearly un-
stable tearing modes. These allow us to recover the fundamental features of magnetic islands, meaning
that what described here should also exist for magnetic islands generated by other means, such as NTMs
or Turbulence Driven Magnetic Islands (TDMIs).
The model is implemented in the semi-spectral fluid code “AMON”. More details on the simulations
will be given in section 4.

3 Heating of the island through parallel compression

The analysis of the fluid equations generating magnetic islands via unstable tearing modes in a two-
dimensional symmetric system provides essential insight into the heating effect when one considers the
parity of the fields [21, 17]. Focusing on a mono-helical, symmetric equilibrium magnetic field, the parity
of the fields with respect to the resonant surface is going to be the following for the tearing mode (with
“+” indicating even and “−” indicating odd fields):

(ψ+, ϕ−, p−i , p
−
e , n

−, u+∥ ) (18)

with phase relationships between the fields (taking the phase of the magnetic flux φψ for reference) given
by:

φψ = φu∥ = 0 − φϕ = φpi = φpe = φn = −π
2

(19)

The relevant fields for the heating process are pe/i, u∥ and ψ, meaning, as will be detailed, that in order
to observe the heating in tearing modes at least a 4-field model (ψ, ϕ, p and u∥) is required. Indeed, this
phenomenon constitutes a channel to transfer energy first from the equilibrium current density gradient
to the parallel velocity, through the presence of the tearing mode, and finally from the kinetic energy to
the thermal energy, through the parallel compression, as will be now detailed.
At the end of the linear growth phase of a tearing mode these 4 fields will have the configuration shown
in figure 1, where the position of the extrema are schematically represented along the field lines, and
the configuration of ϕ is analogous to that of p.
Compression is a mechanism by which kinetic energy can be converted to thermal energy, and viceversa
for expansion. Considering only the configuration of u∥, the zones of expansion and compression are
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Figure 1: The colored areas represent the spatial disposition of the extrema of the fields driving the
heating process in the non-linear phase of a linearly unstable tearing mode. The isocontours of ψ are
shown for reference. The compression (magenta “C” in the figure) due to the parallel velocity structure
corresponds to regions of positive pressure. The arrows on the grey lines indicate the direction of the
magnetic field

exactly symmetrical, both poloidally and radially, so that no net effect should result from the parallel
dynamics when integrating over the whole volume. That is true if the pressure is considered as a constant
parameter. Recalling, however, that the model considers the full pressure fields, including fluctuations,
in the cubic terms in equations (13) and (14), it is not sufficient to consider the symmetry of the
compression and expansion regions, but they must be taken together with the structure of the pressure
fluctuations (see equation 1). The latter have odd parity in tearing modes, and a phase difference in
the poloidal direction of π

2
as indicated in equation (19). Hence regions of compression correspond to

regions of positive pressure fluctuations, and the opposite is true for expansion regions. This results in
an imbalance between the two effects in favor of the positive pressure fluctuations (or, equivalently, the
parallel compression regions) when integrated over the volume. The non-linear dynamics then make it so
that these increasing pressure can enter the magnetic island through both diffusion and the quadrupolar
flow, thus giving the localized heating that is being described.
It is then because the fields have the parities and relative phases indicated above, that this phenomenon
can be observed. In this paper the role played by the tearing mode instability is to maintain this
configuration stable throughout the whole simulation, thus allowing pressure accumulation. Much more
generally, any mechanism generating a positive correlation between the pressure fluctuations and the
parallel compression of the kind described is going to result in similar localized heating. What is meant
by positive correlation is that

∫
V p ∇∥u∥ dV

′ > 0.
The heating is localized close to the separatrix until diffusion, advection or secondary instabilities allow
the heat to spread further outside the island. The process has a positive feedback on itself, as ∂tpe/i ∝
pe/i, and, in the absence of secondary instabilities, saturates if the pressure fluctuations are limited by
the perpendicular diffusion and advection. The evolution of the averaged pressure profile is limited by
the diffusivity, as it establishes a critical gradient for the system.
Note that all that has been said so far about the heating process applies analogously to the regions of
parallel expansion, but the feedback loop means that the cooling effect in these regions is weaker, so
that the heating ends up dominating.
Since the heating is localized at the separatrix, it is possible for gradients to develop near this layer,
but the destabilization of secondary modes driven by pressure gradients was not observed, although it
must be remembered that the curvature is suppressed in the present study. This might be due to the
parallel diffusion inside the island allowing for partial flattening of the pressure inside the separatrix.
The interaction of this phenomenon with turbulence will need to be further investigated.
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4 Numerical Simulations

4.1 2D single-helicity simulations

For non-linear 2D single-helicity (i.e. only one resonant magnetic surface in the system) simulations we
consider only the magnetic equilibrium and no curvature for simplicity. The presence of heating does
not depend on the dissipative (table 2) and equilibrium (table 3) parameters, as long as they are kept
within ranges relevant for Tokamak physics, but they can affect its rate and how localized it is around
the resonance. In the present work, the only parameter far from a “realistic” value is the resistivity η,
since the time required to reach saturation of magnetic islands in simulations for a physical η ≈ 10−8 is
excessively long, and the core physics are unaffected. The reference parameters correspond to a plasma
with β0 = 2p0/B

2
0 = 0.02 at the resonance.

A grid with 512 points on the x axis and 256 on the y axis was used for the simulations. The lengths
of the x axis is Lx = 4.0 and for the y axis Ly = 2π. The fluctuations of the fields are initialized with
random white noise at normalized amplitude 10−9.
The equilibrium magnetic profile is chosen to be the current density sheet Harris profile:

Beq = −AH tanh(x/aH) (20)

with AH = 0.5 being a multiplicative factor and the shear length aH = 0.5 determining the linear
instability of the tearing mode with ∆′ = lim

ϵ→0

∂xψ1(xr+ϵ)−∂xψ1(xr−ϵ)
ψ(xr)

= 6. Boundary conditions are periodic

in the y direction and impose that the perturbations are zero at either end on the x axis. Let us stress
that the heating is not due to the presence or absence of any particular equilibrium gradient, except
for Beq, which is needed to drive the tearing mode. Indeed, the presence of heating was also verified in
cylindrical geometry with an a-symmetric equilibrium magnetic field for 2D single-helicity simulations
with similar results.
The attribution of the heating to the cubic terms is evidenced by the fact that removing the cubic
terms in the simulations ( e.g. pe/i{ψ, u∥} becomes pr{ψ, u∥} where pr is the pressure at the resonance)
removes the heating entirely.
As shown in figure 2, the fields of interest for the heating process do indeed show tearing parity, and
relative phases matching those in the heating scheme illustrated in figure 1. The evolution of the
pressure profiles is shown in figure 3, where it is visible how the heating is centered on the island, with
an alternation of peaking and hollowing at the resonant position. This is due to the formation of a
quadrupole spinning around the O-point, as visible in figure 4, late in the non-linear phase. In the early
non-linear phase the heating is mostly on the separatrix, as that is where the compression takes place.
It is also to be remarked that the maximum value of pressure reached, even in cases where the equilibrium
gradient of pressure was non-zero, is above the maximum value of the pressure in the equilibrium profile,
meaning that the localized heating is not an effect of the transport of pressure, but is due to the additional
thermal energy coming from the compression. As mentioned above, the maximum value of the pressure
is ultimately limited by other mechanisms. Notably, a similar graph as in figure 6 for the density shows
<∂tn/n>= 0 for all simulations for the whole duration of the simulation, except for minor oscillation
that don’t cause a net “gain” in density. This will be addressed in the discussion.

By calculating the terms that regulate the evolution of the heating, where the drive is given by
pe/i{ψ, u∥}, the advection by {ϕ, pe/i} and the dissipation by χ∥{ψ, {ψ, T̃e/i}} and χ⊥∆⊥T̃e/i (see figure
5), one can verify that they do indeed all act around the X-point in the non-linear phase, where the
pressure fluctuations can enter the island. The advection by the quadrupolar flows balances, although not
entirely, the parallel compression to try and maintain incompressibility, thus transporting the pressure
inside the island. The remaining part of the compression term which is not advected is dissipated by
the parallel and perpendicular diffusion. The relative magnitude of all these terms changes significantly
over the course of the simulation, mostly due to the pressure increasing until the transport balances its
growth and the other fields saturating due to the “regular” saturation of the magnetic island.
As shown in figure 6, the intensity of the heating has a dependence on η, but not at all on β, the

latter only acting to anticipate or delay the transition to the non-linear phase. Fitting the results of
the available simulations shows that, in the saturated non-linear phase, the heating rate scales as η1.7.
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Figure 2: Poloidal maps of the fields relevant to the heating process for the ion pressure in the early
non-linear phase of the simulation. The parities and relative phase match those determined by the
linearly unstable tearing.

Figure 3: Radial profiles of the pressure in the non-linear phase of the 2D simulation. Profiles go from
transparent to opaque over time. The separatrix of the magnetic island at corresponding time is shown
through the grey dotted lines as if placed on the XY plane for reference.
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Figure 4: Poloidal maps of the fields relevant to the heating process for the ion pressure in the saturation
non-linear phase of the simulation. The quadrupolar structures at the O-point are spinning clockwise
with νq ≈ 2π

245τA
. The symmetry of the maximum and minimum values in the colorbars is enforced for

pi and u∥ for clarity: the actual data gives |max(pi)| > |min(pi)| and viceversa for u∥.

Figure 5: Poloidal maps of the terms involved in the heating for 2D simulations. Note that their relative
magnitude changes significantly throughout the simulations. A symmetric range of values was enforced
on all maps to ensure that the color white would correspond to the value 0, thus the asymmetry of
positive and negative values is not clearly visible, especially in the top right panel.
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Figure 6: Dependence of the heating rate on the resistivity. In the run labeled ∆η the resistivity is
η = 2.5e−03 up to t = 2000τA, and it is then changed to the reference value η = 5.0e−04, thus showing
a direct dependence of the heating on the resistivity. The simulation with lowest η = 1.0e − 04 did
not reach saturation of the island in the time frame shown, as the heating saturates much earlier. In
greyscale are the island sizes matching the simulations with the same line style.

η 5 · 10−4

µ 2.5 · 10−5

χ⊥ e/i 2.5 · 10−5

χ∥ e 101

χ∥ i 1.6 · 10−1

D 5 · 10−5

Ud 5 · 10−5

Table 2: Dissipative parameters used for the reference simulation.

While this point has not yet been entirely clarified, it is observed that the amplitude of the fluctuations
for all fields except ψ and ϕ at saturation is directly affected by the resistivity, and so is the width of the
eigenmodes around the separatrix. The combination of these two effects is probably what determines
the dependence on η. The simulations with different β in figure 6 indicate that the width of the modes,
which is most affected by the dissipations, is the dominant parameter to determine the heating, as
otherwise the different magnitude of the pressure fluctuations would show its effect. Furthermore, as is
visible in figure 6, the heating rate saturates before the island has properly started to grow, suggesting
once more that the heating rate is a function of the resistive layer width, which is established in the
linear phase, rather than the island size.
It is also possible that the scaling obtained is only valid for the large η regime considered here, and
that some other dissipative process dominates once the values of η approach a more physically relevant
range η ≈ 10−8. The amplitude and the width of the fluctuations would then no longer scale with η as
indicated, but the heating process should be present nontheless.

ρ2∗ 6.6 · 10−3

ΩiτA 1.5
Ti/Te 3.2 · 10−1

K1/2 0

Table 3: Physical parameters used for the reference simulation.
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4.2 3D multi-helicity simulations

Examination of the effect in non-linear 3D multi-helicity simulations has shown that it is still present
and driven by the same process (see figure 7, top left, top right and bottom right panels), but the
behaviour of the heating, especially with respect to its localization, its intensity and its dynamics, is
much more dependent on the specifics of the system than in the 2D case. For brevity, the details about
the behaviour of this phenomenon in 3D simulations are left for another time, giving here only a quick
overview and confirmation of its existence also in 3D cylindrical simulations.
The simulation parameters in 3D multi-helicity are analogous to those in the 2D single-helicity case, as
are the boundary conditions, with the addition of periodicity on the z axis. Even in this case we were
not able to find parameters where the heating didn’t appear. A grid with 256 points on the x axis, 64
on the y axis and 32 on the z axis was used for the simulations shown. The y and z axis are de-aliased
by only retaining modes up to 2/3 of the maximum mode number.
The profile of the safety factor q = (Bzr)/(BθR0) is chosen to be of the form:

q = q0 + (q1 − q0)
(
x− Lx0
Lx

)4

(21)

with q0 = 1.7, q1 = 4.5, Lx0 = 0.3 being the leftmost boundary of the simulation box and Lx = 1.2 being
the width along the x-axis of the simulation box. This positions the resonance for q = 2 at x ≈ 1.13 (the
vertical dashed black line in figures 7 and 8). Other geometrical parameters are the size along y and z
of the simulation box Ly = 2π and Lz = 3π. This setup ensures that only the mode (m,n) = (2, 1) is
linearly unstable.
The additional 3D terms represent the fluctuations in the “toroidal” (z in this article) direction, and
are introduced in the system through the expression of the parallel gradient:

∇∥u∥ = {ψ, u∥} − ∂zu∥ (22)

This addition is particularly important as the non-linear couplings in the Poisson bracket and in the
cubic terms will then also couple toroidal fluctuations, making the dynamics more complex. Still, it
can be see in figure 7 that the Poisson bracket and the ∂z derivative act the same way, although with
different magnitudes, thus allowing the heating to appear through the same process described above.
This might be in large part due to the presence of a single dominant (2, 1) mode and the low level of
fluctuations in the simulation, so more extensive study of the phenomenon in 3D need to be carried out,
but it is consistent with the picture obtained from the 2D simulations.
As is known from the literature [32, 23], in cylindrical geometry with an asymmetric equilibrium mag-
netic field the tearing mode grows mostly on the inner side of the resonance. This then means that the
E×B flows transporting the magnetic field lines are only present on one side, resulting in a net shift of
the O-point in one direction and of the X-point in the opposite. This shift is visible in the isocontours
of ψ(2,1) in figure 7. Also visible in figure 7, because the tearing mode is mainly growing on one side,
pi doesn’t have two regions of opposite sign across the resonance, but rather across the separatrix and,
due to the radial shift of the island, it is non-null on the resonance. Furthermore, the radial profile of
pi, shown as the continuous line in the bottom right panel of figure 7, is only increasing on one side of
the resonance, which is the opposite of the side where pe is growing, as visible in figure 8. Regardless
of these additional elements, the phase differences in the fields are the same as those found in the 2D
case, and the other terms, like {ϕ, pi}, play the same role. In other words, the heating mechanism is
present in 3D simulations despite the fields not having the same radial structure as in the 2D case and
the presence of asymmetric geometry and of the 3D terms.
As visible in figure 8, both pressures are much less localized on the island than in 2D single-helicity
simulations, and radially show alternating positive and negative regions, that overall weaken, but don’t
suppress, the heating. In figure 8 both pressures are included to show that while in the 2D case electrons
and ions have the same dynamics, the 3D case introduces more complexity. Late in the non-linear phase
both pressures run into the limits imposed by the boundary box due to the heating spreading much more
efficiently outside of the separatrix. The specifics of the profile shapes vary depending on the simulation
parameters, but the heating shows up consistently.
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Figure 7: Poloidal maps showing the terms relevant to the heating in 3D multi-helicity simulations at
a specified toroidal position z = 0, in the early non-linear phase. In the bottom right panel in red is
overlayed the averaged radial profile of pi to show the position where the heating is localized. The dashed
black lines show the position of the resonance and of the separatrix for the q = 2 modes at the same
time point. The isocontours of the mode (2, 1) of the poloidal magnetic flux are shown for reference.

Figure 8: Radial profiles of the electron (orange) and ion (dark red) pressure in the non-linear phase of
the 3D simulation. The dashed black line is the initial value for both axes pe and pi. The separatrix of
the magnetic island is shown dotted in gray as if placed on the XY plane for reference. All elements are
shown at z = 0.
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5 Discussion

A heating process in magnetic islands generated by linearly unstable tearing modes was described, and
its presence verified in both 2D single-helicity and 3D multi-helicity simulations performed with a 6-field
electromagnetic fluid model. The heating is shown to be due to the presence of cubic terms in the
equations for the pressure evolution that involve the product of the compression of the parallel velocity
and the pressure fluctuations in proximity of the separatrix.
Let us emphasize that a model with the same fields but that does not retain the full cubic terms would
miss the heating mechanism described in this paper. On the other hand, using a lower number of fields
could simplify the analysis a bit, but at least 4 fields (ψ, ϕ, p and u∥) would be needed. Moreover,
restricting the model to 4 fields would no longer allow to study the interaction between the magnetic
island (eventually NTMs) and toroidal ITG turbulence.
It has been shown that, in order for the heating to take place, the parity and relative phase of the fields
must allow for the positive match between parallel compression and pressure fluctuations, which in the
present case was obtained by having a current-driven linearly unstable tearing mode. The quadrupolar
flow determined by the tearing mode further contributes to advect the fluctuations inside the island
(see figure 5). This list of features is expected to be present not only for tearing modes, but more
generally whenever a magnetic island is present, including the case where a locked magnetic island is
externally induced. It follows that the finding of heating inside an induced magnetic island, in [7], might
be linked to the heating mechanism described in this paper. The absence of background turbulence in
the simulations shown did not allow to observe the propagation of the fluctuations to the X-point as
described in the experiment [7], but it was observed that the pressure fluctuations causing the heating
enter the island at the X-point through the quadrupolar flows (see figure 5) and tend to accumulate in the
center as a spinning quadrupole. This motivates further investigations about the interaction of magnetic
islands and turbulence, that will be carried out in future work to check whether the same turbulence
propagation dynamics as observed experimentally can be recreated in simulations. In particular, in
the experiments the heating is shown to be much more focused in the center of the island than on
the separatrix like in the present case, and the expulsion of the heat observed in experiments was not
replicated in our simulations to the degree where the hot-spot disappears completely. Whether these
effects might be due to the presence of turbulence and/or to different processes remains to be studied
and clarified.
The heating effect can be expected to be present both in the presence of background turbulence and
for turbulence driven magnetic island, as it has been shown [15] that turbulence doesn’t alter the mode
structure, but such a prediction needs to be verified. Indeed, once the fluctuations of p and u∥ are
no longer driven by the tearing mode but by turbulence it can be expected that the properties of the
process, especially its magnitude, will change.
Since this is a phenomenon that has a direct (and dominant in the present study) impact on the pressure
profiles, an open question is why it is not commonly observed in experimental measurements. There are
clues about this in the scaling with η mentioned in section 4.1, and the magnitude of the effect itself,
nevertheless there should be hints of this effect in the regime of large islands in which tokamaks operate
when a magnetic island is present for any significant duration of time (see figure 9).
It is also the case that the heating is stronger if the plasma operates in the large island regime. In
figure 9 a scan of the heating effect is performed for varying critical widths, above which the equilibrium
pressure profile is expected to be flattened, of the island, as defined in [11]

wc =
√
8

(
χ⊥

χ∥

)1/4 (
R0

ntors

)1/2

(23)

where R0 is the major radius of the torus, ntor the mode of the toroidal mode and s = ∂rBeq/Beq the
magnetic shear.
More precisely in figure 9 four simulations with different perpendicular diffusivities χ⊥ are performed,
and each point represents the average heating rate for the given island size. The right-most point corre-
sponds to the saturation of the dynamics, thus the saturated island size. The result is that the larger the
ratio between the saturated island size w and the critical width wc, the more the heating <∂tps/ps> is
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Figure 9: Dependence of the heating on the critical width (see equation 23) of the island. To obtain
different critical island widths the ratio χ⊥/χ∥ is varied. Empty circles (diamonds) represent positive
(negative) average heating rate for a given island width. The more the plasma operates in the large
island regime the more the heating is prominent. The critical island widths are indicated at the top of
the graph with line-styles matching those of the simulations in the legend.

active throughout the simulation, while it tends to disappear in the opposite case. However, simulations
(not shown) run with different “toroidal” lengths of the simulation boxes and χ∥, and thus different wc,
have approximately identical behaviour with respect to the heating, thus indicating that the behaviour
of the heating is mostly due to the perpendicular diffusivity itself, rather than to the critical island
width, as is the case for pressure flattening. Indeed, if the perpendicular dissipation is large enough
to prevent the accumulation of the pressure on the separatrix, the heating hardly appears at all and
there is a phase of decrease in pressure. In this case the electrons show a slightly different behaviour
where, even for large χ⊥ e the heating is present in the initial phase of the island growth, and then drops
to 0 much later. This is further indication that in experiments where the ratio χ⊥/χ∥ is smaller than
considered here, this effect should be non-negligible, and should be at play through the whole plasma
discharge.
It is important to address why no average accumulation is observed for the density even though its parity
and phase match those of the pressure. A “bump” in the density inside the separatrix is indeed visible,
not unlike in figure 3, but it is matched by regions of negative density fluctuations outside the separatrix,
that bring the average over the simulation box to 0. This is characteristic of a transport phenomenon,
whereby no net increase is obtained but the field is transported inside the separatrix, rather than having
exchange of energy from one field to another. This is of course reasonable as the only way for the
density to increase globally is through fueling, while the pressure can be increased through compression.
In figure 4 the same fields shown in figure 2 are shown late in the saturation phase. Notice that while
inside the separatrix pi and n are very similar, with a spinning (νq ≈ 2π

245τA
) quadrupolar structure at the

O-point, outside the separatrix the pressure has a positive “band”, while for the density it is negative,
contributing to the 0 average. Also, overall, the positive fluctuations have higher absolute value than
the negative ones for pi, while for n they are symmetric, even in the quadrupole in the center, so for
the pressure there is a net increase, that can not be justified, as was already mentioned, by transport
phenomena. In sum this is properly heating in the sense of a temperature increase.
When discussing the effect of this phenomenon on realistic scenarios, it is also important to point out
that the pressure generated by the heating mechanism has quadrupolar structure (see figure 5 top right
frame), and will thus enhance the reconnection rate in the plasma, which has been checked in simula-
tions, giving a 10% increase in the reconnection rate ∂t|<ψm=1> | during the growth phase of the island
for large resistivity (η = 10−3). In future works, it will be very interesting to consider the effect on the
resistivity of the localized heating. This is going to be relevant for both tearing modes and NTMs [6, 5]
(as are the direct effects on the pressure profiles) since considering a very basic Spitzer ∼ T−3/2 scaling
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law, this heating would locally reduce the resistivity, thus affecting the current and finally the dynamics
in the island.
Results from simulations show that the term responsible for the cumulative heating effect ranges from
roughly one tenth of the E × B advection term at the beginning of the non-linear phase to the same
magnitude at saturation. This further proves that the phenomenon should not be ignored as a curiosity.
Note that other phenomena [9, 1] have already been found to limit the flattening of the pressure profile
expected [11] and observed [33] to happen in a magnetic island. Unlike those studies, however, the
presently described phenomenon is present at all times in the evolution of a magnetic island, provided
that the fields retain their parities and relative phases and that no other effect intervenes to disrupt the
structure of the fields.
In conclusion, this analysis suggests that the dynamics of magnetic islands should be investigated more
in depth at a fundamental, rather than heuristic, level, in particular when it comes to the dynamics of
the parallel flow. The heating also relies on the presence of magnetic fluctuations in the system, thus
being of relevance for high-β regimes [27], and its scaling with the diffusivity makes it even more relevant
for the low collisionality regimes in large tokamaks.
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A Derivation of the equation for the perpendicular motion

There are some additional terms in the equation for the perpendicular momentum 12 used in this work
with respect to more “conventional” reduced fluid models, these being the 2nd and 3rd term on the RHS
of equation 12. These terms come about from the inclusion of finite Larmor radius effects in the model
through the polarization drift, so that the role of the gyro-motion of the ions may be taken into account

in the fluid model. The magnitude of these effects scales as the ion Larmor radius ρi =
√
Ti/mi ·Ω−1

i and
they are expected to play a significant role as the β of the plasma increases, or, more in general, when
one wants to look at phenomena happening at the ion scale. Since the original goal for the development
of the model was studying ion-scale turbulence and instabilities (namely ITG driven instabilities), the
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inclusion of FLR effects was needed to be able to carry out the analysis. The existence of the heating
mechanism described in this paper is not dependent on these terms. Here some detail on their derivation
and physical significance is provided, and further discussion can be found in papera that employ similar
models [28, 29, 13, 35].
Since we are using the Boussinesq approximation, and neglecting advection by uI , the LHS of equation
7 gives:

∇ · (nuI) = n0∇ · uI = −n0∇ · 1

Ωi

d

dt

(
∇⊥ϕ+

1

en0

∇⊥pi

)
(24)

The compression of uI should be retained since the drift is non-ambipolar, and thus, in order to maintain
quasineutrality, its role is significant. On the other hand, advection by uI would act on the gradients
of neq (and pi eq in the ion pressure equation) to higher order than the other drifts, and add to the non-
linearities also at higher order, so that it being neglected isn’t expected to have any significant impact
on the dynamics.
One can re-write equation 24 (neglecting constants and only keeping the E × B advection for clarity)
as:

∇ ·
[
∂t(∇⊥ϕ+∇⊥pi) + (uE · ∇)(∇⊥ϕ+∇⊥pi)

]
=: ∇ ·

[
∂t(∇⊥W ) + (uE · ∇)(∇⊥W )

]
(25)

Using vector identities the second term on the RHS of equation 25 can be re-written as

∇ ·
[
∇(∇⊥W )uE

]
−
[
(∇×∇⊥W )︸ ︷︷ ︸

=0

·(∇× uE)− uE · (∇(∇ · ∇⊥W ))︸ ︷︷ ︸
=−{ϕ,W}

+uE ·∆(∇⊥W )
]

(26)

And further, ignoring the known term {ϕ,W}

∇ ·
[
∇(∇⊥W )uE

]
− uE ·∆(∇⊥W ) = (∇uE) · (∇∇⊥W ) = −{∇⊥ϕ,∇⊥W} (27)

This term is not properly a Poisson bracket as it involves two vectors, but for convenience of notation
we write it as above. It is a term that describes FLR components in the stress tensor, these being due
to the exchange of momentum between the diamagnetic and the E×B drifts for ion-scale motions, and
is a further correction to the already known {ϕ,W} stress tensor term. Given the high-order derivatives
it involves, this term plays a significant role only in the non-linear evolution of the system. Explicitly,
in slab geometry it is the following contraction:

{∇αϕ,∇αW} =
∑

α∈{x,y}

[
∂x(∂αϕ) ∂y(∂αW )− ∂y(∂αϕ) ∂x(∂αW )

]
(28)

Since the Poisson bracket of a field with itself is 0, from theW in equation 28 only the pressure component
gives a non-zero contribution, recovering the 2nd term on the RHS of equation 12.
Doing the same derivation for the parallel drift:

∇ ·
[
∇(∇⊥W )u∥ i

]
−
[
− u∥ i · (∇(∇ · ∇⊥W )) + u∥ i ·∆(∇⊥W )

]
= u∥ i{ψ,W} (29)

This term represents the parallel advection of vorticity fluctuations along the field lines, and is kept in
order to be consistent with the choice of not applying flute ordering.
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