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Abstract

In multi-agent systems, most commonly, consensus consists in all agents converg-
ing to a common equilibrium point. For nonholonomic vehicles, which move on
a Cartesian plane and occupy a physical space, it is more appropriate to speak of
consensus-based formation, which implies that the vehicles are required to converge
to a relative position in a given formation while, distributively, agreeing on the cen-
ter of such formation and on their orientation. In this paper we solve such a problem
via a smooth, time-varying, output-feedback control; more precisely, without veloc-
ity measurements. In addition, and this is our main contribution, the controller is
designed to satisfy pre-imposed bounds to avoid input saturation. To the best of the
authors’ knowledge this is the first controller that solves the consensus-based forma-
tion problem for multi-agent nonholonomic vehicles via a bounded, output-feedback
controller. The paper also provides a simulation comparison between our proposal
and its unbounded counterpart.

KEYWORDS:
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1 INTRODUCTION

The control objective in the consensus of multiple dynamical agents is to ensure that the states of all agents converge to a
common value by sharing (part of) their state with their corresponding neighbors [1, 2, 3]. For nonholonomic vehicles, which
obviously cannot occupy the same physical space, the consensus-based formation problem consists in making the positions of
all robots converge to a common value, modulo an offset, i.e., a vector originating at the formation’s center which determines a
predefined position of the robot with respect to that center, while also agreeing on their final orientation value—see Figure 1 for
an illustration. This is the problem addressed in this paper. Now, consensus is intrinsically a set-point control problem and the
nonholonomic restrictions prevent the use of smooth autonomous controllers to solve a consensus problem [4]. In fact, set-point
stabilization is not a particular case of tracking control [5]. Consensus-formation control is pertinent as part of a more complex
task [6], e.g., one in which scattered robots are, first, required to gather in formation regardless of a particular point and, second,
to initiate a scouting mission.
Consensus of nonholonomic mobile robots has been studied, for instance, in [7] where a decentralized feedback control that

drives a system of multiple nonholonomic unicycles to a rendezvous point in terms of both position and orientation is proposed,
the control law is discontinuous and time-invariant. In [8] necessary and sufficient conditions for the feasibility of a class of
position formations are laid. In [9] the position/orientation formation control problem for multiple nonholonomic agents using
a time-varying controller that leads the agents to a given formation using only their orientation is proposed. In [10] a consensus
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FIGURE 1 Control goal: for the vehicles to reach a consensus-based formation, that is, to meet around an a priori unknown
rendezvous set-point and acquire a common orientation.

control law for muti-agent nonholonomic agents, in the presence of bounded disturbances with unknown dynamics in all inputs
channels is presented. In [11] a smooth formation control law using a consensus-based approach to drive a group of agents to
a desired geometric pattern is proposed. The latter result is extended in [12] by introducing a proportional derivative controller
for the velocity dynamics. We remark that the controllers proposed in all of these works rely on velocity measurements, which
are often contaminated by noise or affected by sensor defects. Therefore, it is desirable to design controllers that rely only on
position and orientation measurements [13].
Even though there is an abundant literature on formation control of autonomous vehicles, there are only a few works that pro-

pose output-feedback controllers. For instance, in [14] a discontinuous leader-follower formation-tracking controller is designed,
but the problem addressed therein is fundamentally different to that of consensus-based formation since a reference trajectory
is pre-imposed. In [15] an output-feedback consensus-based formation controller is proposed, but the proposed scheme is prone
to saturate the vehicle’s actuators (motors).
In concrete applications, however, the actuators are prone to saturation, which may seriously downgrade the overall perfor-

mance and put the actuators at risk of thermal and mechanical failure. Hence, saturation of the actuators must be always avoided
[16]. For instance, in [17, 18] the consensus problems are solved considering actuator saturation without requiring velocities to
be measurable. However, none of the results in the latter references apply to nonholonomic vehicles.
In this work we propose a novel dynamic controller that is designed by mimicking a mechanical mass-spring-damper system

that is interconnected to the plant through virtual springs. This allows us to inject damping in the controller dynamics and thus
to avoid the use of velocity measurements. Through the spring interconnection, the controller steers the second-order plant’s
positions and also injects damping into the plant. In that regard, it is remarked that the control technique is similar to the one
proposed in [19] and as in the latter, our controller is smooth time-varying and relies on persistency of excitation to overcome
the restrictions imposed by the nonholonomic constraints—see also [20]. Thus, our work extends previous results in [12, 19, 15]
by solving the consensus-based formation control problem under input saturation and without velocity measurements. The main
contribution of our work is a novel decentralized output-feedback controller under input constraints that solves the consensus-
based formation problem for multi-agent nonholonomic vehicles exchanging information over an undirected graph.
The rest of the paper is organized as follows. In the next section we describe the model and formulate the consensus-based

formation control problem. In section 3 we present our main result. Numerical simulation tests are provided in Section 4 and
the paper is wrapped up with concluding remarks in Section 5.
Throughout the paper, the following notation is employed. ℝ ∶= (−∞,∞), ℝ≥0 ∶= [0,∞). 1N is a vector of all elements

equal to one of size N . ⊗ is the standard Kronecker product. For any absolutely continuous function f ∶ ℝ≥0 → ℝn, the ∞-
norm is defined as ‖f‖∞ ∶= esssup

t≥0
|f (t)|, and the square of the 2-norm as ‖f‖22 ∶= ∫ ∞

0 |f (t)|2dt. The ∞ and 2 spaces
are defined as the sets {f ∶ ℝ≥0 → ℝn ∶ ‖f‖∞ < ∞} and {f ∶ ℝ≥0 → ℝn ∶ ‖f‖2 < ∞}, respectively. The subscript
i ∈ N̄ ∶= {1, 2, ..., N}.
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2 DYNAMIC MODEL AND PROBLEM FORMULATION

We consider a group ofN nonholonomic vehicles under the assumption that there is no slippage. For each vehicle, the kinematics
model is given by

żi = '
(

�i
)

vi, '(�i) ∶= [cos(�i) sin(�i)]⊤ (1a)
�̇i = !i, (1b)

where, zi = [xi yi]⊤ ∈ ℝ2 denotes the Cartesian coordinates of the ith vehicle on the plane and �i ∈ ℝ denotes its orientation;
vi ∈ ℝ and !i ∈ ℝ are the linear and the angular velocity, respectively.
The vehicles’ dynamic behavior follows a torque-controlled second-order system of the form

[

mi 0
0 Ii

] [

v̇i
!̇i

]

+
[

fvi 0
0 f!i

] [

vi
!i

]

= 1
ri

[

1 1
2Ri −2Ri

] [

�li
�ri

]

, (2)

where Ii is the robot inertia, mi is the mass, fvi, f!i are the friction coefficients, �li and �ri are the left and right wheel torques,
respectively, ri is the wheel radius, and Ri is the wheel axle length.
Regarding the input torques, we assume the following.

Assumption 1. The left and right wheel torques �li, �ri may saturate and thus they satisfy |�li| ≤ �̄li and |�ri| ≤ �̄ri, with known
strictly positive saturation bounds �̄li > 0 and �̄ri > 0, respectively. ⊲

We also assume that only the Cartesian coordinates and the orientation of the vehicles are available for measurement and
hence the linear and the angular velocities, vi and !i cannot be measured. Thus the following assumption.

Assumption 2. The Cartesian position zi and the orientation �i, for each vehicle, are available. ⊲

In this work, we require the vehicles to meet in a given formation around a non-predefined rendezvous point on the plane,
denoted zc ∶= (xc , yc), and acquire a non-predefined common orientation, denoted �c . The position of the ith vehicle, modulo a
given offset �i = [�xi �yi]⊤, with i ∈ N̄ , relative to the unknown center of the formation—see Figure 1, is defined as z̄i ∶= zi−�i.
Correspondingly, x̄i ∶= xi − �xi and ȳi ∶= yi − �yi. Hence, our control goal is to make

lim
t→∞

vi(t) = 0, lim
t→∞

z̄i(t) = zc , (3)

lim
t→∞

!i(t) = 0, lim
t→∞

�i(t) = �c ∀ i ∈ N̄, (4)

for all initial conditions.
In contrast to the leader-follower formation control problem the control goal defined above is leaderless, since there is no

pre-specified reference. That is, neither the coordinates (xc , yc) nor the angle �c are imposed a priori, but they depend on the
initial postures, on the systems’ nonlinear dynamics, and on the graph’s topology. This consensus-based formation problem has
been successfully solved under different conditions, but the originality of this paper resides in considering the realistic scenario
determined by Assumptions 1 and 2 above.
In order to solve the aforementioned problem, it is also assumed that each vehicle exchanges its position (xi, yi) and its

orientation �i—see Figure 1—with a set of neighbors, which we denote byi. It is naturally assumed that once a communication
is set between two vehicles i and j ∈i, the flow of information is bidirectional and is never lost. Whence the following.

Assumption 3. The interconnections are static and are modeled via an undirected and connected graph. ⊲

Remark 1. In graph theory, a graph is undirected if the nodes exchange information in both directions, it is static if the inter-
connection is constant, and it is connected if any node is reachable from any other node. The latter is a necessary condition to
achieve consensus [21].

In order to establish the proof of our result, it is convenient to define the Laplacian matrix L ∶= [lij] ∈ ℝN×N , where

lij =

⎧

⎪

⎨

⎪

⎩

∑

k∈i

aik i = j

−aij i ≠ j,
(5)
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additionally aij > 0 if j ∈ i and aij = 0 otherwise. Defining 1N ∶= [1 ⋯ 1]⊤ then, by construction, L1N = 0 and,
after Assumption 3, L is symmetric, it has a unique zero-eigenvalue, and all of its other eigenvalues are strictly positive. Thus,
rank(L) = N − 1.

3 MAIN RESULT

The proposed scheme contains an inner control-loop that is designed as
[

�ri
�li

]

=
ri
2

[

1 1
2Ri

1 − 1
2Ri

]

[

uvi
u!i

]

. (6)

Then, replacing (6) in (2), we obtain

v̇i =
1
mi
(uvi − fvivi), (7a)

!̇i =
1
Ii
(u!i − f!i!i). (7b)

The control design exploits the fact that the model of the nonholonomic system consists, essentially, in two interconnected
second-order systems given by Eqs. (1a)-(7a) and (1b)-(7b). The first set of equations corresponds to the linear-motion dynamics
while the latter corresponds to the angular-motion dynamics. They are interconnected through the term '(�). In other words,
these systems are a pair of double integrators, but one of which is subject to the nonholonomic constraint ẋ2i + ẏ

2
i − v

2
i = 0.

Therefore, the consensus equilibrium is not stabilizable via smooth static feedback. This is because if smooth static feedback is
used, the system admits multiple equilibria.
For each robot, we design a dynamic output-feedback controller that mimics the model of two other mechanical second

order systems. Then, the controller’s systems are coupled, through virtual nonlinear (saturated) springs, to the robots’ linear and
angular dynamics. To copewith the nonholonomic constraint, we use a so-called �-persistently exciting function [22] that ensures
the unicity of the goal equilibrium. Furthermore, to achieve consensus stabilization via output feedback, we employ a control
strategy that consists in making the dynamic controllers achieve consensus. In turn, due to the virtual-spring coupling, the robots
also achieve consensus, both in position and orientation. This control strategy follows up the ideas first laid in [3] for Euler-
Lagrange systems with holonomic constraints and used, also, in [19], where an analogy of the controller with a flexible-joint
robot is made. With this in mind, the controller for the linear part is given by

uvi = −kvi'(�i)⊤ tanh(z̄i − #vi) (8a)
#̈vi = −dvi#̇vi − kvi tanh(#vi − z̄i) − pvievi, (8b)

where kvi, dvi, and pki are positive constants and evi denotes the consensus error

evi ∶=
∑

j∈i

aij
(

#vi − #vj
)

, (9)

and tanh(z̄i − #vi) ∶= [tanh(x̄i − #vix) tanh(ȳi − #viy)]⊤.
Equation (8a) corresponds to the control input for the linear-motion dynamics. It is reminiscent of a virtual nonlinear spring

coupling, with saturated mechanical force. The inclusion of '(�i) is motivated by the fact that the linear-motion kinematics
corresponds to a nonholonomic integrator. The equation (8b) consists, first, on the closed-loop system of an ordinary second-
integrator system—hence, a (unitary-) mass-damper system,

#̈vi = −dvi#̇vi − pvi
∑

j∈i

aij
(

#vi − #vj
)

, (10)

with a rather standard consensus control law, so it is guaranteed to achieve consensus, that is, #vi → #vj for all i, j ≤ N [21].
Second, (10) is coupled to the robot system through the term −kvi tanh(#vi − z̄i). This yields (8b).
The design of the dynamic output-feedback controller with bounded output for the angular-dynamics follows a similar

rationale. We define

u!i = −k!i tanh (�i − #!i) (11a)
#̈!i = −d!i#̇!i − k!i tanh (#!i − �i) − p!ie!i + �i, (11b)
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where k!i, d!i, and p!i are positive constants and

e!i ∶=
∑

j∈i

aij
(

#!i − #!j
)

. (12)

In contrast to the linear-motion controller, (11b) contains an additional term, denoted �i. This is an input to the controller
that depends both on time and the plant’s states. It is added to ensure that the stabilization of the unique closed-loop system’s
equilibrium implies that evi → e!i → 0. The term �i excites the angular dynamics as long as the consensus equilibrium has not
been reached; it prevents the multi-agent system to converge to unwanted equilibria. To that end, we define

�i(t, �i, #vi, z̄i) ∶= k�i i(t)'(�i)⟂⊤ tanh(#vi − z̄i), (13)

where k�i > 0, '(�i)⟂ ∶= [− sin(�i) cos(�i)]⊤ is the annihilator of '(�i), so '(�i)⟂⊤'(�i) = '(�i)⊤'(�i)⟂ = 0.
The time-varying function  i is designed such that  ̇i is persistently exciting, that is, there exist T and � > 0 such that

t+T

∫
t

 ̇i(s)2ds ≥ �, ∀ t ≥ 0. (14)

Controllers using such persistently-exciting, yet vanishing disturbances are known as �-persistently controllers [23]. The
terminology is motivated by the rationale that the function �i is persistently exciting as long as the errors are away from a
�-neighbourhood of the origin. The induced excitation, however, compels the trajectories to converge.
We are now ready to present our main statement.

Proposition 1. The controller defined in (6), (8), (11) and (13) ensures that the consensus-based formation objective (3)–(4)
holds globally for any strictly positive gains kki, dki and pki, with k ∈ {v, !} and i ∈ N̄ . Additionally, if gains kvi and k!i are
set as

4Ri
ri
min{ �̄ri, �̄li } > 2

√

2Rikvi + k!i, (15)

the controller never saturates the actuators and thus |�ki| < �̄ki, for k ∈ {l, r}. △

Proof. We start by showing that the actuators do not saturate if (15) holds. To that end, note that from the properties of tanh( ⋅ )
we have |uvi| ≤

√

2kvi and |u!i| ≤ k!i. Therefore, from (6) we have

max{ |�li|, |�ri| } ≤
ri
2

[
√

2kvi +
1
2Ri

k!i
]

.

Hence, setting kvi and k!i such that (15) holds, it follows that |�ri| < �̄ri and |�li| < �̄li.
Next, we write the linear- and angular-motion closed-loop equations,

Σvi

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇̄zi ='(�i)vi,

v̇i = −
1
mi

(

fvivi + kvi'(�i)⊤ tanh(z̄i − #vi)
)

,

#̈vi = − dvi#̇vi − kvi tanh(#vi − z̄i) − pvievi,

(16)

and

Σ!i

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇i =!i,

!̇i = −
1
Ii

(

f!i!i + k!i tanh (�i − #!i)
)

,

#̈!i = − d!i#̇!i − k!i tanh (#!i − �i) − p!ie!i + �i.

(17)

Then, the rest of the proof is divided in two steps. In Step 1 we show boundedness of trajectories; in Step 2 we show that all
errors converge asymptotically to zero.
Step 1. Consider the candidate Lyapunov function in the space of the consensus errors,

V =
N
∑

i=1

⎡

⎢

⎢

⎣

1
pvi

vi +
1
4
∑

j∈i

aij|#vi − #vj|2
⎤

⎥

⎥

⎦

, (18)

where
vi ∶=

mi
2
v2i +

1
2
|#̇vi|

2 + kvi ln
(

cosh(x̄i − #vix)
)

+ kvi ln
(

cosh(ȳi − #viy)
)

,
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x̄i ∶= xi − �xi and ȳi ∶= yi − �yi. Evaluating V̇ along the trajectories of (16) yields

V̇ = −
N
∑

i=1

1
pvi

[

dvi|#̇vi|
2 + fviv2i

]

≤ 0, (19)

so V̇ ≤ 0 and, since V is positive definite and radially unbounded with respect to vi, #̇vi, ||#vi − z̄i|| , and
|

|

|

#vi − #vj
|

|

|

, it follows by
integrating on both sides of V̇ ≤ 0 that vi, #̇vi, ||#vi − z̄i|| , and

|

|

|

#vi − #vj
|

|

|

are bounded. Furthermore, integrating on both sides
of the first inequality in (19) we conclude that #̇vi, vi ∈ 2.
Next, let

W ∶=
N
∑

i=1

⎡

⎢

⎢

⎣

1
p!i

!i +
1
4
∑

j∈i

aij
(

#!i − #!j
)2
⎤

⎥

⎥

⎦

,

with
!i ∶=

Ii
2
!2i +

1
2
#̇2!i + k!i ln cosh

(

#!i − �i
)

.

Evaluating Ẇ along the trajectories of (17) results

Ẇ ≤ −
N
∑

i=1

1
p!i

[

f!i!
2
i + d!i#̇

2
!i − #̇!i�i

]

(20)

Since W is positive definite and radially unbounded in !i, #̇!i, e!i, and |#!i − �i| then (20) implies that Σ!i is an output
strictly passive map [24] from the input �i to the output (!i, #̇!i). Furthermore, the closed-loop system Σ!i has a property
reminiscent of zero-state observability, in the sense that if the input and the output are equal to zero, i.e., �i = 0 and (!i, #̇!i) = 0
respectively, then there exists �c ∈ ℝ such that the consensus errors satisfy (�i−�c , !i, #!i−�c) = (0, 0, 0). This last is established
invoking Barbashin-Krasovskı̆i’s theorem with the fact that, when �i = 0, Σ!i is autonomous,W is positive definite and radially
unbounded, Ẇ is negative semi-definite, and Ẇ = 0⇒ (#̇!i, !i) = 0. Hence, #̈!i = 0 and !̇i = 0 so, from the second equation
in (17), tanh(�i − #!i) = 0. Furthermore, from the third equation in (17), it follows that e!i = 0, so using the properties of the
Laplacian matrix this implies that L#! = 0, i.e., there exists �c ∈ ℝ such that #! = 1N�c .
Now, the time-varying function t →  i(t) admits the upper bound  ̄i, so we have that, for all trajectories,

|�i| ≤
√

2 ̄ik�i.

Therefore it holds that

Ẇ ≤ −
N
∑

i=1

1
p!i

[

f!i!
2
i +

(

d!i|#̇!i| −
√

2 ̄ik�i
)

|#̇!i|
]

. (21)

Note that if |#̇!i| ≥
√

2
d!i
 ̄ik�i then, by integration of Ẇ ≤ 0, andW is radially unbounded in !i, e!i, and #̇!i, we obtain that !i,

e!i, and #̇!i ∈ ∞. In turn, since also �i is bounded, we conclude from (17) that !̇i, #̈!i ∈ ∞.
Step 2. From the second equation in (16) note that v̇i ∈ ∞ because '(�i) and tanh(z̄−#vi) are uniformly bounded. Moreover,

since vi ∈ 2 ∩ ∞ then, by Barbalǎt’s Lemma —see e.g., [25, p. 323], lim
t→∞

vi(t) = 0. Additionally, since #̈vi, #̇vi ∈ ∞ and
#̇vi ∈ 2 it follows also, from Barbalǎt’s Lemma, that lim

t→∞
#̇vi(t) = 0.

Note also that vi ∈ ∞ implies that ̇̄zi ∈ ∞, from (16). Hence,

#(3)vi = −dvi#̈vi − kvi

[

sech2(#vix − x̄i)(#̇vix − ̇̄xi)
sech2(#viy − ȳi)(#̇viy − ̇̄yi)

]

− pviėvi (22)

is also bounded. The latter and the fact that

lim
t→∞

t

∫
0

#̈vi(�) d� = lim
t→∞

#̇vi(t) − #̇vi(0) = −#̇vi(0)

imply together, by Barbalǎt’s Lemma, that lim
t→∞

#̈vi(t) = 0.
Since all signals on the right-hand side of

v̈i = −
1
mi

(

fvivi + kvi!i'(�i)⟂⊤ tanh(z̄i − #vi) + kvi

[

sech2(#vix − x̄i)(#̇vix − ̇̄xi)
sech2(#viy − ȳi)(#̇viy − ̇̄yi)

])

(23)
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are bounded, then v̈i ∈ ∞. Note, moreover, that

lim
t→∞

t

∫
0

v̇i(�) d� = lim
t→∞

vi(t) − vi(0) = −vi(0),

which by Barbalǎt’s Lemma implies that lim
t→∞

v̇i(t) = 0. Proceeding as above, we also conclude that limt→∞ v̈i(t) = 0.
Now, convergence to zero of v̇i, v̈i, #̇vi, and of vi, implies that

'(�i)⊤ tanh(z̄i − #vi)→ 0, !i'(�i)⟂⊤ tanh(z̄i − #vi)→ 0.

On the other hand, the solutions of the equation

'(�i)⊤ tanh(z̄i − #vi) = 0, (24)

are of the form tanh(z̄i − #vi) = c1'(�i)⟂ with c1 ∈ ℝ while the solutions of the equation

!i'(�i)⟂⊤ tanh(z̄i − #vi) = 0, (25)

are of the form tanh(z̄i − #vi) = c2!i'(�i) with c2 ∈ ℝ. Therefore, (24) and (25) hold together if and only if c!i'(�i) = '(�i)⟂
with c ∶= c1∕c2. In turn, the latter may hold only if either c = 0 or !i = 0.
If (24) and (25) hold simultaneously because c = 0, then lim

t→∞
tanh(z̄i(t) − #vi(t)) = 0, hence from the last equation in (16),

we have that
lim
t→∞

evi(t) = 0,

which in turn implies that lim
t→∞

(L ⊗ I2)#v(t) = 0. In view of the properties of L, supports the existence of z̄c ∈ ℝ2 such that
#v = 1N ⊗ z̄c , or #vi = z̄c for all i ∈ N̄ . Therefore

lim
t→∞

z̄i(t) = lim
t→∞

#vi(t) = z̄c .

Another consequence of lim
t→∞

tanh(z̄i(t) − #vi(t)) = 0 is that �i also converges to zero. Thus, it can be seen as a vanishing
perturbation of (17) and, in view of the attractivity of

{

(�i − �c , !i, #!i − �c) = (0, 0, 0)
}

subject to �i = 0 for all i ∈ N̄ , ti
follows that the equilibrium (!i, �i, #!i, #̇!i) = (0, �c , �c , 0) is asymptotically stable. Convergence holds globally because the
energy-like functionW is radially unbounded. Since �i is globally bounded —by construction— and it vanishes, then standard
theory for nonlinear systems with vanishing perturbations ensures that the equilibrium (!i, �i, #!i, #̇!i) = (0, �c , �c , 0) is globally
asymptotically stable.
If, alternatively, (24) and (25) hold simultaneously in the limit because lim

t→∞
!i(t) = 0, then

lim
t→∞

t

∫
0

!̇i(�)d� = −!i(0).

Then, because
!̈i = −

1
Ii

[

f!i!i + k!isech2(�i − #!i)(!i − #̇!i)
]

(26)

is bounded—in view of the boundedness of !i and #̇—it follows that, also, !̈i ∈ ∞. Therefore, limt→∞ !̇i(t) = 0 and

lim
t→∞

t

∫
0

!̈i(�)d� = −!̇i(0).

In turn, all the functions on the right-hand side of

!(3)i = − 1
Ii

(

f!i!̈i − 2k!isech
2(�i − #!i) tanh(�i − #!i)(!i − #̇!i)2 + k!isech

2(�i − #!i)(!̇i − #̈!i)
)

(27)

are bounded, so !(3)i ∈ ∞. After Barbalǎt’s Lemma, lim
t→∞

!̈i(t) = 0, so, from (26), lim
t→∞

#̇!i(t) = 0. Proceeding as before and
invoking systematically Barbalǎt’s Lemma it follows that lim

t→∞
#̈!i(t) = 0 and that limt→∞ #

(3)
!i (t) = 0.

Now, from the third equation of (17) we get

#(3)!i = −d!i#̈!i − k!isech
2(#!i − �i)(#̇!i − !i) − p!iė!i + �̇i, (28)
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with

�̇i = k�i ̇i(t)'(�)⟂⊤ tanh(#vi − z̄i) − k�i i(t)!i'(�i)⊤ tanh(#vi − z̄i) + k�i i(t)'(�i)⟂⊤
[

sech2(#vix − x̄i)(#̇vix − ̇̄xi)
sech2(#viy − ȳi)(#̇viy − ̇̄yi)

]

. (29)

Convergence to zero of #̇!i, #̈!i, #
(3)
!i and of !i, vi imply that

lim
t→∞

 ̇i(t)'(�(t))⟂⊤ tanh(#vi(t) − z̄i(t)) = 0.

The fact that  ̇i(t) is persistently exciting ensures that

lim
t→∞

'(�(t))⟂⊤ tanh(#vi(t) − z̄i(t)) = 0.

This last, with the fact that (24) holds, implies that lim
t→∞

tanh(z̄i(t) − #vi(t)) = 0. Therefore, proceeding as in the previous
case, we conclude that lim

t→∞
z̄i(t) = z̄c . Furthermore, �i converges to zero and thus, because #̇!i and #̈!i also converge to zero,

lim
t→∞

e!i(t) = 0, which by the properties of the Laplacian matrix establishes the result.

4 NUMERICAL SIMULATIONS

To illustrate the good performance of the controller proposed in Section 3, we performed comparative numerical simulations in
which we also tested the controller reported in [19], which may be considered as an unbridled version of the controller (8)-(11).
In the simulation case-study, we consider a group of six differential-drive mobile robots having three different sets of physical
parameters, except for the friction coefficient which we set to the unity for simplicity—see Table 1. The robots are assumed to
be interconnected over an undirected graph, whose Laplacian matrix is given by

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 −1 0 −1 0 −1
−1 2 −1 0 0 0
0 −1 3 −1 0 −1
−1 0 −1 3 −1 0
0 0 0 −1 2 −1
−1 0 −1 0 −1 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and the consensus control objective is set to making the robots converge to a triangular formation without pre-defined center.
For that we set the individual robots’ offsets as in Table 2.

TABLE 1 Physical parameters

index mi [Kg] Ii [Kgm2] Ri [m] ri [m]
1, 2 10 3 0.3 0.05
3, 4 15 3 1.0 0.03
5, 6 12 4 0.7 0.10

TABLE 2 Formation offsets and initial conditions

index xi(0) yi(0) �i(0) �xi �yi
1 4 10 −3�∕4 −5 −2.7
2 10 10 −�∕2 −2.5 1.7
3 19 10 3�∕4 0 6.7
4 7 10 �∕2 2.5 1.7
5 16 10 −�∕4 5 −2.7
6 13 10 �∕4 0 −2.7

To assess the robustness of our controller, with respect to neglected dynamics, it is assumed that the center of mass does not
lay on the wheels axle. Such displacement induces Coriolis terms that are not considered in the dynamic model (2)—see, [26].
Indeed, in this case, Eqs. (7) become

v̇i + fvivi +
ri
3
!2i =

1
mi
uvi

!̇i + f!i!i −
rimi
3Ii

!ivi =
1
Ii
u!i.
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The simulations were carried out using physical parameters similar to those in [27]. We consider three pairs of robots with
mi = 1.9cj [Kg], ri = 0.0333cj [m], Ri = 0.15cj [m], and Ii = 0.5cj [Kgm2], with i ∈ {1, 2, … 6}, j ∈ {1, 2, 3}, and
cj ∈ {0.8, 1, 0.5}. The maximal wheel torque for all the robots is assumed to be �̄ri = �̄li = 0.15 [N]. The initial postures
considered in the simulation are given in Table 2. The simulation results are showed in Figures 2–5.

(a) With pre-bounded controls (b) With unbridled torques

FIGURE 2 Paths described by the robots on the plane. Final positions in triangle pattern; final orientations represented by arrows

The controller gains are set to kvi = 1, k!i = 1, dvi = 50, pvi = 5, d!i = 100, p!i = 7, and k�i = 500, for the controller
(8)-(11) and k�i = 30 for the controller from [19]. With these control gains Inequality (15) holds for all the robots. In addition,
we used the persistently-exciting function  i(t) ∶= 1.25 +

4
�
sin(0.05t). It is clear that the consensus-based formation objective,

both in position and orientation, is achieved under both controllers, with and without pre-bounding the control inputs, and in
spite of the neglected dynamics.
The control gains are the same, except for k�i , which determines the amplitude of the “perturbation” �i, which is indispensable

to stabilize the consensus equilibrium. This parameter is set differently for both controllers for the purpose of obtaining fairly
comparable performances. Relatively high values of k�i result in faster convergence. However, for the controller [19] this comes
at the expense of a highly oscillatory transient behavior, which does not appear when using the controller (8)-(11), due to the
presence of the saturations.



10 E. Nuño, A. Loría, A.I. Paredes and T. Hernández

(a) With pre-bounded controls (b) With unbridled torques

FIGURE 3 Relative Cartesian positions z̄ and angle orientations �

(a) With pre-bounded controls (b) With unbridled torques

FIGURE 4 Consensus errors as defined in Eqs. (9) and (12)
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(a) With pre-bounded controls (b) With unbridled torques

FIGURE 5 Wheels’ torques for three different pairs of robots
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5 CONCLUSIONS

In this work we solve the consensus-based formation problem for multi-agent nonholonomic vehicles. We consider the realistic
scenario where the robots are modeled by second order dynamics and where input saturation arises and it must be avoided. The
proposed dynamic controller is smooth and time-varying and it does not rely on velocity measurements. The controller injects
damping through its second-order dynamics and this damping back-propagates to the plant.
A potential inconvenience of the controller, which is appreciated from the numerical simulations, is that the transient may be

long and appear erratic. This is due to the use of persistency of excitation in the controller, which nevertheless is necessary to
ensure stabilization. Further simulation tests are needed to characterize the relation of the controller’s persistency of excitation
to the convergence rate and the oscillatory transient.
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